

Data Submitted (UTC 11): 11/24/2025 8:08:00 PM

First name: Robin

Last name: Sherwin

Organization:

Title:

Comments: Logging may increase fire intensity and risk (Cruz et al. 2014; Evers et al. 2022; Zald and Dunn 2018). For example, logged forests become more susceptible to solar radiation, winds, and drying- thus becoming more flammable after logging in many situations (Achat et al. 2015; Countryman 1956; Leismeister et al. 2021; Platt et al. 2006; Summary of the Sierra Nevada Ecosystem Project Report 1996). Heavy, industrial logging results in homogenous forests can increase fire risk and burn more severely (Zald & Dunn. 2018). In addition, there is a very short window of time that "treatments" are ostensibly effective, usually ~10-15 years (Rhodes and Baker 2008). The authors found that "treated" (logged) areas have a vanishingly small chance of encountering a wildfire during that 10-15 year window of time.

Large, fast moving fires are primarily driven by drought, heat, and wind- not by "fuels". In addition, climate change is increasing the frequency and severity of wildfires, as well as the amount of area burned. (Abatzoglou & Koldon 2013; Abatzoglou & Williams 2016; Abatzoglou et al 2021; Balch et al. 2024; Jain et al. 2022; Keeley & Syphard 2019; Keyser & Westerling 2017; Kirchmeyer-Young et al. 2019; Littell et al. 2009; Miller et al. 2012).

Furthermore, increasing road access- which is an essential part of logging- will further put large swaths of forests at risk for the most common fire ignitions- human-caused fire starts.