

Data Submitted (UTC 11): 7/21/2025 7:00:00 AM

First name: Brian

Last name: Kelly

Organization: Greater Hells Canyon Council

Title: Senior Advisor

Comments: July 21, 2025Umatilla National ForestAttn: Eric Watrud, Forest Supervisor72510 Coyote RoadPendleton, Oregon 97801Submitted electronically to: objections-pnw-umatilla@usda.govRE: Objection to the Ellis Integrated Vegetation Project (#41350)We are writing on behalf of Greater Hells Canyon Council (["GHCC"] regarding the Final Environmental Assessment (FEIS) and Draft Record of Decision (DROD) for the Ellis Integrated Vegetation Project (["project"]).GHCC is a non-profit conservation organization based in Northeast Oregon with over 2,000 members and supporters. We were founded in 1967 (as Hells Canyon Preservation Council), and our mission is to connect, protect, and restore the wild lands, waters, native species and habitats of the Greater Hells Canyon Region, ensuring a legacy of healthy ecosystems for future generations. GHCC actively participates in Forest Service proceedings and decisions concerning the management of public lands within the Umatilla National Forest. We are an ["interested public"] for timber sales.Our objection is filed pursuant to CFR 218 and we respectfully request a meeting for potential resolution of our objection. The responsible official for this project as shown on the Draft Record of Decision is Douglas McKay, Hepner District Ranger.Project LocationThe Ellis project is located on the Hepner and North Fork John Day Ranger Districts of the Umatilla National Forest. Ellis is about 15 miles southeast of Hepner and 7 miles west of Ukiah in Morrow, Umatilla and Grant counties. Approximately 110,000 acres of National Forest lands have been considered for treatment.GHCC's Participation in the Ellis ProjectThis objection is filed pursuant to issues raised by our organization in written comments submitted to the Forest Service during Scoping in 2019 and the Draft Environmental Impact Statement (DEIS) for the project during 2022. GHCC has attended field trips to the project area, attended meetings about the Ellis project, and we have provided spoken comments during these opportunities for public discussion. We have extensively read through written documents about the project as provided by the Forest Service. We are familiar with the Ellis project area based on many visits on-the-ground to this part of the Umatilla National Forest. We very much appreciate the opportunities for the public to participate.The Draft DecisionThe Draft Decision would implement Alternative 2 modified. Significantly, this Decision would include Alternative 1 (No Action) for road management actions.Purpose and Need (FEIS pages 2-4)The Ellis Project is intended to reduce tree density in overstocked stands and improve ecosystem health. The desired outcome of the proposed activities is to enhance landscape resiliency by creating and maintaining diverse vegetative conditions at both stand and landscape scales. The overall objectives for the project include increasing forest health and vigor; enhancing unique plant communities; improving wildlife habitat; maintaining and continuing public and traditional land uses; and protecting values at risk and increasing public and firefighter safety in the event of a wildfire.Six ["Purposes"] were identified in Table 1-1: Increase forest health and vigor? Enhance aspen stands, shrub steppe communities, meadows and other non-forested plant communities? Improve terrestrial wildlife habitat? Enhance and monitor culturally significant resources? Improve and maintain recreational values? Reduce the risk of uncharacteristically severe wildfire effects.Need for Change, Desired Outcomes, and Relevant Forest Plan Goals for Terrestrial Wildlife(FEIS page 3)The ["Need for Change"]in order to ["improve terrestrial wildlife habitat"] is described as follows: Wildlife habitat is not well distributed and has limited vegetative diversity? Elk security and forage quality and quantity are limited? Elk are not staying on the forest and are not fully utilizing spring, summer, and fall ranges? Dry forests are overstocked, and natural processes are not intact.The ["Desired Outcomes"] from the ["need to Improve terrestrial wildlife habitat"] are: Increase wildlife habitat variability by providing diverse vegetative conditions at multiple scales? Improve distribution of elk by: improving security, increasing quality and quantity of forage? Improve open, dry forest conditions for species like the white-headed woodpecker.The ["Relevant Forest Plan Goals"] for the wildlife purpose and need are listed as: Provide, develop, and enhance effective and well-distributed habitats throughout the Forest for all existing native and desired nonnative vertebrate wildlife species. (USDA FS 1990, p. 4-1)? Provide and manage big game (elk and deer) habitat and its components (cover, forage, and roads) to assist in meeting state wildlife agency population management objectives. (USDA FS 1990, p. 4-1)STATEMENT

OF OBJECTIONPART 1: ELK HABITAT, SECURITY AND DISTRIBUTIONThe Draft Decision did not provide an Effects Determination for Alternative 1 (included in Alternative 2-modified)The Draft Decision would implement Alternative 2 modified. This Decision includes Alternative 1 (No Action) for road management.Alternative 1 was included in the Draft Record of Decision to authorize [ldquo]no action[rdquo] for road management. However, the Forest Service never analyzed an Effects Determination for Alternative 1(included in the Draft Record of Decision as a component of Alternative 2 modified). The FEIS only provides effects determinations for the action alternatives. In other words, The Forest Service can not just rely on the NEPA analysis without an Effects Analysis for Alternative 1 to support Alternative 2 Modified.The Forest Service failed to adequately address elk habitat, security, and distribution.The Forest Service Draft Record of Decision fails to improve elk habitat, security, and distribution.This is inconsistent with the Purpose and Need for the Ellis project and the 1990 Umatilla Forest Land and Resource Management Plan.The Forest Service Draft Decision does not address the management of the road system for the benefit of elk security and distribution. Elk require quality habitat located away from open roads for their security. Failure to manage the road system is a failure to manage elk security. Failure to manage elk security is a failure to manage their habitat and distribution across the landscape.Of course, a quality road system is essential for public access and Forest Service management of public lands. However, excessive motorized routes are harmful to wildlife habitat. Strategically managing the road system is an essential responsibility of the Forest Service. This failure to strategically manage the road system in the Ellis project is a failure to meet the [ldquo]Desired Outcome[rdquo] for the project to improve the distribution of elk.This failure to improve elk habitat, security and distribution is a failure to address important ecological, social, and economic concerns. These concerns are described by the Forest Service in the FEIS as follows:[ldquo]Alternative 1At a project level, current road density meets Forest Plan standards. Yet, currently, elk security as defined by Hillis (1991) is below the recommended 30% for 7 out of the 14 subwatersheds that occur in the project area. Overall, existing elk security is only 11.6% for the project area. These factors would continue to contribute to the issues concerning elk distribution and habitat suitability within the project areas. During hunting seasons, elk may continue to leave National Forest lands to nearby private property and may continue to cause damage to agricultural lands. Elk security and open road densities would remain unchanged for Alternative 1 and elk distribution in the greater landscape would likely continue to be an issue. This issue is also discussed in the Socioeconomic report for the Ellis Project, which also states the damage from elk to private lands would not improve under Alternative 1.[rdquo] (Page 107 FEIS)The need to address the road system for elk security is described by the Forest Service in the Draft Environmental Impact Statement:[ldquo]Security and Road DensityResearch indicates that elk respond to motorized vehicles by avoiding cover and foraging areas adjacent to open roads (Rowland et al. 2000, Rowland et al. 2004). Areas greater than 0.5 miles from roads open to motorized vehicles and 250 acres or greater in size, are considered security or refuge areas where elk are less likely to be impacted by motorized vehicle use (Hillis et al. 1991). Vulnerability and hunting mortality have been found to be higher in forested stands with greater road densities and less hiding cover (Weber et al. 2000). Even though topography and cover may influence how elk use the landscape, roads open to motorized use is one of the most consistent and strongest variables that is connected to elk distribution and use of public lands. Currently, security is limited with approximately 340 miles of roads open to motorized use with only 11% of the project area that is considered [ldquo]security[rdquo] based on the definition above. Across the project area open road density is about 1.9 miles per square mile. Historically, elk used the National Forest lands in spring, summer, and fall, and mostly wintered at lower elevations which are now largely privately owned lands that have been converted to agriculture. Over the past several decades, elk have been using the private lands to the north of the Ellis Project area earlier in the fall and staying longer in the spring and some elk have become residents on the private lands and not using traditional seasonal ranges as they have in the past. This shift in use of private lands often starts during hunting seasons from disturbance to elk from hunting pressure and increased use of motorized vehicles during this time. As a result, elk are causing damage on private lands, and many are not available for public and tribal hunters or wildlife viewing within the Ellis project area. The minimum desired condition is 30% elk security across a large landscape (like the Ellis project area) based on research and recommendation of subject matter experts (Hillis et al. 1991). Coupling strategic road management with vegetation management (thinning and prescribed fire) improves forage conditions within security areas and helps to improve elk distribution across the greater landscape as well as improving habitat for many other species.[rdquo] (pages 93-94 DEIS).The Forest

Service used flawed rationale ignoring Best Available Science to remove road management from the Draft DecisionAs stated in the Draft Record of Decision, [ldquo]Road closures were removed from this decision because the science used to develop roads management for the action alternatives was misapplied to the Ellis project (Hillis et al 1991). (Page 1 of DROD).This "misapplication" of Hillis et. al. is not explicitly explained in the Draft Record of Decision. However, the FEIS states, [ldquo]It should be noted that this project did use the Hillis guidelines as presented, and did not analyze for any of the additional considerations (i.e. vegetation density, topography, road access, hunter-use patterns, and elk movements) and was incorporated in all action alternatives.[rdquo] (Page ii of FEIS).This application or [ldquo]misapplication[rdquo] of the Hillis guidelines was described in the Final Environmental Impact Statement. Curiously, the following section was added to the section about [ldquo]Security and Road Density[rdquo] in the FEIS. This section was absent in the DEIS:[ldquo]This idea and these general guidelines were presented at a Montana conference on elk escapement in 1991. Hillis proposed this framework to be a starting point, and the minimum guidelines, to begin thinking about creating elk security when planning for timber projects on public lands. Although the guideline of areas 250 acres or larger and over 0.5 miles from open roads was presented as a beginning point and a minimum to create elk security, Hillis stated that these guidelines alone should not be extrapolated to other areas without consideration of variables such as vegetation density, topography, road access, hunter-use patterns, and elk movements. The Ellis project used the Hillis framework and approach to analyze for an objective to meet a purpose and need (elk distribution) and thus, this project incorporated Hillis et al. (1991) into a general analysis relating to elk security for all alternatives. It should be noted that this project did use the Hillis guidelines as presented, and did not analyze for any of the additional considerations above (i.e. vegetation density, topography, road access, hunter-use patterns, and elk movements), and thus results could vary from the expected outcome due to misapplication of the Hillis presentation and paper (published for the conference proceedings) from 1991. Much of the science used by Hillis for his paper and associated presentation is still valid today.[rdquo] (FEIS pages 106-107)In fact, the guidelines presented by Hillis describe minimum security areas. [ldquo]Hillis proposed this framework to be a starting point, and the minimum guidelines, to begin thinking about creating elk security when planning for timber projects on public lands.[rdquo] (FEIS page 106).If the Forest Service were to actually include [ldquo]the additional considerations (i.e. vegetation density, topography, road access, hunter-use patterns, and elk movements)[rdquo] to the analysis for the Ellis project, it would almost certainly lead to the need for additional road management and road closures in accordance with the Hillis guidelines.In fact, decades of scientific research has shown that elk consistently avoid roads and trails open to public motorized uses. This occurs during both non-hunting and hunting seasons, although road effects are strongest during hunting seasons and can result in population shifts from public to private lands. Elk movement onto private lands reduces or eliminates public and Tribal hunting opportunities and increases the potential for economic damages to agriculture.The Draft Decision to avoid all road closures based on a [ldquo]misapplication[rdquo] of a framework for analysis of elk habitat is flawed at best and inconsistent with the best available science.This best available science includes research by Forest Service scientists in the nearby Blue Mountains of Oregon cited by the Umatilla National Forest in the DEIS (Rowland et al. 2000, Rowland et al. 2004). The science documenting the need for road management to improve elk security is extensive.Please see below in this Objection the section titled: Attachment: A Letter From a Wildlife Biologist and Expert for Elk Habitat Management including Literature Cited.The Forest Service removed from analysis a proposal for 30% elk security.As stated in the Draft Environmental Impact Statement, [ldquo]In addition, road management was expanded in Alternative 5 to further increase elk security to help improve elk distribution across the greater landscape. This would achieve conditions closer to the minimum of 30% of an area to be in a [ldquo]secure[rdquo] state from motorized disturbance which is consistent with best available science and professional recommendation (Hillis et al. 1991).[rdquo] (DEIS Page 18).This proposal to achieve 30% elk security was removed from the Final Environmental Impact Statement analysis as follows: [ldquo]Alternative 5 was also developed to meet the recommendation (Hillis et al. 1991) of providing 30% or greater of an analysis area with elk secure areas, when planning for timber sales. It should be noted that this project did use the Hillis guidelines as presented, and did not analyze for any of the additional considerations (i.e. vegetation density, topography, road access, hunter-use patterns, and elk movements) and was incorporated in all action alternatives. Alternative 5 was removed from detailed study in the FEIS because there is conflicting interpretation of the applicability of elk security as it is defined and how it was used to develop

alternatives for the management of elk distribution.[rdquo] (Page ii of FEIS).As described above, the best available science regarding elk security is well-established. The decision to remove from analysis the proposal to achieve 30% security based on a [ldquo]misapplication[rdquo] of a science-based guideline for management of elk habitat is flawed at best.The Forest Service ignored its own analysis of elk security and road density.Overall, existing elk security is only 11.6% for the project area. This is not adequate. The Draft Record of Decision would not improve this important metric of elk habitat.In fact, the increased use of motorized equipment and development of [ldquo]temporary roads[rdquo] during project implementation would likely decrease elk security during the duration of the project activities.As shown above, the Forest Service describes the need for road management and elk security in the FEIS and the DEIS. During hunting seasons, elk would continue to leave National Forest lands to nearby private property, continuing to cause damage to agricultural lands and continuing to reduce hunting opportunities for the public and Tribal members.The Forest Service ignored the three Action Alternatives developed in the FEIS to improve elk security and road management. These are described in the FEIS as follows:[ldquo]Action AlternativesAlternatives 2 through 4 will improve elk security, although not to the recommended 30%. Elk security calculations were done using all lands within the project boundary including non-FS lands (114,861 acres). Alternative 2 will improve elk security to the greatest degree by increasing security to 26.9% (16% increase). Alternative 3 will have the smallest improvement to elk security, only increasing security to about 15% (3.8% increase). Alternative 4 will have an overall improved elk security of 18.3% (7% increase). The alternatives with the highest percentage of elk security would have the largest effect on elk distribution and could provide enough elk security to encourage elk to use the project area instead of being pushed onto nearby private property during hunting or other human disturbance events. If there is hunting on these private lands then elk would likely seek out Forest or other natural areas where they can escape hunters and human disturbance. If there is hunting on Forest Service lands and within elk security areas, and no hunting on private and adjacent lands, elk are likely to seek refuge on the private lands during this disturbance, regardless of forage quality. Coupling vegetation management with road management will help to improve elk distribution across the greater landscape and will also increase habitat suitability for a variety of other wildlife species. Alternative 2 is the best alternative to address the local elk distribution issues, then 4, with Alternative 3 being the least effective. Road management proposals across all alternatives include seasonal closures during hunting seasons and storing roads (yearlong closure to public motorized use). A reduction in open road density in strategic areas may decrease daily movements of elk and their respective home ranges, and these reductions could lead to energetic benefits that result in increased fat reserves and thus, greater survivorship and productivity (Cole et al. 1997). Vegetation treatments such as thinning and underburning would improve elk forage quality and would benefit overall elk herd health, productivity, and result in increased use by elk within the project area.[rdquo] (FEIS pages 107-108).Habitat Effectiveness Index (HEI)[ldquo]The elk HEI model is used to predict the influence of forest management on elk and other big game species. The model uses the distribution of cover and forage areas, cover quality, and roads open to motorized use to help indicate how effective an area will be in supporting big game (Thomas et al. 1988). It is intended to be a relative measure of habitat and does not consider many other factors such as topography, forage quality, weather, predation, and hunting.[rdquo] (FEIS page 108).The Draft Decision for the Ellis project does not comply with the Umatilla Forest Plan standards for Habitat Effective Index (HEI).Additionally, the Forest Service never analyzed an Effects Determination for HEI for Alternative 1 (selected within the DROD as Alternative 2 modified). The FEIS only provides effects determinationsfor the action alternatives. In other words, The Forest Service can not just rely on the NEPA analysis for Alternative 1 to support Alternative 2 Modified.Non-Compliance with Umatilla National Forest Land and Resource Management Plan Standards for HEI and Road Density by Analysis AreaTable 3-30. describes [ldquo]Cover, HEI, and Road Density by Analysis Area for Existing Conditions and each Action Alternative[rdquo]. (FEIS page 110).According to Table 3-30, Alternative 2 does not comply with Forest Plan standards for total cover, satisfactory cover, and HEI for 7,589 acres in Management Areas C-3 and C-5 (Area 1). It must be noted that the table describes Alternative 2 (unmodified) which included road closures for elk security. The selected Alternative (Alternative 2 modified) does not include these road closures and the actual HEI values would therefore be expected to be lower than HEI values shown.Additionally, the current open road densities for Area 2 (6,952 acres), Area 4 (38,783 acres), and Area 5 (5,688 acres) exceed Forest Plan Standards (as shown for Alternative 1 which is incorporated in the selected Alternative 2 modified). In other

words, 51,423 acres of the Ellis project area would remain in non-compliance with the Umatilla Forest Plan standard for road density. [“Three out of the seven HEI analysis areas currently do not meet HEI standards. It appears this is mostly due to road densities and not the amount or quality of cover available.”] (FEIS page 108). Non-Compliance with Umatilla National Forest Land and Resource Management Plan Chapter 4 Forest Management Direction (pages 4-55 & 4-56) Big Game 1. Big game habitat effectiveness models will be used in project planning to provide the quality, quantity, and distribution of cover and forage needed to reach management objectives for each planning area. Forage, cover, and road densities are factors that will be considered and monitored on each subwatershed and/or management area identified within the Forest. 2. Forest stands managed for satisfactory cover will be 40 feet or more in height with a canopy closure of at least 70 percent and generally no less than 600 feet wide. The desired cover condition will generally appear as a multi-layered stand capable of obscuring 90 percent of a standing elk at a distance of 200 feet or less. Stands managed for marginal cover will be no less than 10 feet in height with a canopy closure of at least 40 percent and also capable of hiding 90 percent of a standing elk at a distance of 200 feet. 3. Forest stands designed and managed to maintain or enhance elk use should provide cover of 600 feet to 1,800 feet in width. Exceptions may be made by wildlife biologists based upon an on-the-ground assessment of the value of the stand(s) for elk. 4. In evaluating habitat effectiveness for big game (elk and deer) species, roads considered as [“open”] to vehicular access are those that receive, on average, more than four trips per month. Timing of use will be measured on a monthly basis. 5. Key big game use areas and habitats such as migrational corridors, calving/fawning areas, and wallows will be considered in the design and implementation of projects to retain or protect their important characteristics. 6. District access management plans will include provisions that will assist the states in meeting management objectives for bull/buck escapement. Big Game Winter Range 1. Where available, maintain no less than 10 percent of each identified winter range as satisfactory cover. 2. On designated big game winter ranges, Forest management activities will be restricted during the big game winter use period of December 1 through March 30 or April 15 (as specified for individual winter ranges) to meet big game management objectives. Wildlife Programs 1. Emphasize partnerships in managing and enhancing the Forest wildlife resources. Utilize all types of available opportunities and methods in strengthening existing and developing new partnerships to attract funding and support for wildlife programs and resources. 2. Strengthen the Recreation Outreach Program related to fish and wildlife resources. 3. Survey user and other publics [“] (customers [“]) concerns and preferences related to wildlife management on the Forest and develop programs and services or adjust management to provide a variety of ways to meet their needs and wants. The Ellis project does not comply with aspects of the Forest Management Direction for Big Game shown above. Please note that item 4 above specifies [“In evaluating habitat effectiveness for big game (elk and deer) species, roads considered as [“open”] to vehicular access are those that receive, on average, more than four trips per month. Timing of use will be measured on a monthly basis.”] HEI analysis should therefore include temporary roads, user-created roads, closed roads receiving unlawful use, and any other roads fitting this description. These roads are in addition to the [“administratively-open”] roads recognized by the Forest Service. Non-Compliance with Umatilla National Forest Land and Resource Management Plan Wildlife Management Area C-4 (pages 4-165 & 4-166) [“WILDLIFE”] Elk habitat will be managed to achieve a habitat effectiveness index of no less than 60, including discounts for roads open to motorized vehicular traffic, as described in Wildlife Habitats in Managed Forests (Thomas and others 1979). Marginal cover, satisfactory cover, and forage areas will be managed to meet size and spacing criteria as described in Habitat Effectiveness Index for Elk on Blue Mountain Winter Ranges (Thomas and others 1988). The habitat effectiveness standard will be measured on a subwatershed (allocation zone) basis. EXCEPTION: The Rhea Creek watershed area (Allocation Zone HO2), lying to the north and west of the ridgeline running east-west between Madison Butte and Coalmine Hill on the Heppner District, will be managed to achieve a habitat effectiveness index of no less than 90. Cover A minimum of 15 percent of the area will be managed as satisfactory cover (20 percent is desirable). If this is not attainable because of low natural potential, the highest percentage of satisfactory cover potentially attainable will be created or maintained. A minimum of 30 percent of an area will be managed as total cover. Stands managed for satisfactory cover will meet the following criteria: [“] Be at least 40 feet in height, with a canopy closure of at least 70 percent in all forest types; [“] should be 1,200 to 1,850 feet in width (larger cover areas are preferable) though exceptions may be made by wildlife biologists on an on-the-ground assessment of the stand(s) value for

elk; and[bull] satisfactory cover should generally appear as a multi-layered timber stand.Marginal cover will be no less than 10 feet in height with a canopy closure of at least 40 percent, and 600 to 1,200 feet wide. Exceptions may be made by wildlife biologists on an on-the-ground assessment of the stand(s) value for elk.All cover areas will be managed to provide sufficient vegetation to obscure 90 percent of a standing elk at a distance of 200 feet or less.EXCEPTIONS: Exceptions to the achievement of HEI and cover standards may be made on an individual project basis. Such cases would include situations where past harvesting, large scale insect and disease damage, and/or catastrophic fires have made the possibility of accomplishing the desired future condition (DFC) (long-term potential) marginal within a reasonable period (without applying additional silvicultural treatments such as regeneration harvest, tree planting, release, and other cultural operations).Where these situations exist, activities may occur that reduce HEI and cover further in the near term only if they are consistent with the ultimate goal of the management area, and if the 4-165 activities will clearly result in achieving a higher HEI cover condition and desired future condition (DFC) in a shorter period of time than if the area was left untreated.All such activities will be supported by a documented NEPA analysis and will include a cumulative effects analysis of big game habitat in the project area over time. The analysis will also describe the anticipated improved condition on a subwatershed or management area basis. All exceptions must be recommended by the District Ranger and approved by the Forest Supervisor for implementation.[rdquo]The Ellis project does not comply with aspects of the Management Area C-4 Wildlife Habitat shown above.As described above, exceptions to achievement of HEI and cover standards made on an individual project [ldquo]will be supported by a documented NEPA analysis and will include a cumulative effects analysis of big game habitat in the project area over time. The analysis will also describe the anticipated improved condition on a subwatershed or management area basis. All exceptions must be recommended by the District Ranger and approved by the Forest Supervisor for implementation.[rdquo]Non-Compliance with Umatilla National Forest Land and Resource Management Plan Timber and Forage Management Area E-1 (pages 4-185)WILDLIFEElk habitat will be managed to achieve a habitat effectiveness index of at least 30, including discounts for roads open to motorized vehicular traffic, as described in Wildlife Habitats in Managed Forests (Thomas and others 1979). The habitat effectiveness standard will be measured on a subwatershed (allocation zone) basis.The Ellis project does not comply with the Management Area E-1 Timber and Forage shown above.Non-Compliance with Umatilla National Forest Land and Resource Management Plan Timber and Big Game Management Area E-2 (pages 4-189)WILDLIFEElk habitat will be managed to achieve a habitat effectiveness index of no less than 45, including discounts for roads open to motorized vehicular traffic, as described in Wildlife Habitats in Managed Forests (Thomas and others 1979). Marginal and satisfactory cover and forage areas will be managed to meet or exceed the habitat effectiveness standard, using processes described in Habitat Effectiveness Index for Elk on Blue Mountain Winter Ranges (Thomas and others 1988). The habitat effectiveness standard will be measured on a subwatershed (allocation zone) basis.A minimum of 10 percent of the area will be managed as satisfactory cover (15 to 20 percent is desired). If this is not attainable because of low natural potential, the highest percentage of satisfactory cover potentially attainable will be created or maintained. A minimum of 30 percent of an area will be managed as total cover.Stands managed for satisfactory cover will meet the following criteria:[bull] Be at least 40 feet in height, with a canopy closure of at least 70 percent in mixed conifer/lodgepole pine types, and no less than 50 percent in the ponderosa pine type;[bull] should be 1,200 to 1,850 feet in width (larger cover areas are preferable) though exceptions may be made by wildlife biologists based on an on-the-ground assessment of the stand(s) value for elk: and[bull] should generally appear as a multi-layered timber stand.EXCEPTIONS: Exceptions to the achievement of HEI and cover standards may be made on an individual project basis. Such cases would include situations where past harvesting, large scale insect and disease damage, and/or catastrophic fires have made the possibility of accomplishing the desired future condition (DFC) (long-term potential) marginal within a reasonable period (without applying additional silvicultural treatments such as regeneration harvest, tree planting, release, and other cultural operations).Where these situations exist, activities may occur that reduce HEI and cover further in the near term only if they are consistent with the ultimate goal of the management area, and if the activities will clearly result in achieving a higher HEI cover condition and desired future condition (DFC) in a shorter period of time than if the area was left untreated.All such activities will be supported by a documented NEPA analysis and will include a cumulative effects analysis of big game habitat in the project area over time. The analysis will also describe the anticipated improved condition on a subwatershed

or management area basis. All exceptions must be recommended by the District Ranger and approved by the Forest Supervisor for implementation. The Ellis project does not comply with aspects of the Management Area E-2 Timber and Big Game shown above. As described above, exceptions must be supported by a documented NEPA analysis and will include a cumulative effects analysis of big game habitat in the project area over time. The analysis will also describe the anticipated improved condition on a subwatershed or management area basis. All exceptions must be recommended by the District Ranger and approved by the Forest Supervisor for implementation. Attachment: A Letter From a Wildlife Biologist and Expert for Elk Habitat Management including Literature Cited July 18, 2025 Subject: Elk Security in the Ellis Integrated Vegetation Project (#41350) To whom it may concern, I am acting as a subject matter expert for elk habitat management on behalf of the Greater Hells Canyon Council regarding the Ellis Integrated Vegetation Project, [“Ellis Project”] hereinafter. My credentials relative to this role include: ? B.S. Wildlife Sciences, North Carolina State University, 1989. ? Certified Professional Wildlife Biologist, The Wildlife Society, 2000. ? 30 years[“] experience as a wildlife biologist for the US Forest Service, 27 of those in the Blue Mountains of northeastern Oregon. ? Active member of the Blue Mountains Elk Initiative Steering Committee, 1999 [dash] 2023. ? 3 years[“] experience as a fisheries and wildlife biologist for the US Fish and Wildlife Service, La Grande Field Office. ? Liaison between USDI and the states of Oregon and Washington for Secretarial Order 3362, improving, conserving and enhancing winter ranges and migration routes for Rocky Mountain elk, mule deer and American pronghorn. My familiarity with the Ellis Project began in 2017 when the Blue Mountains Elk Initiative (BMEI) steering committee discussed the poor elk distribution problem in the area that later became the Ellis Project analysis area. The Oregon Department of Fish and Wildlife (ODFW) brought the issue to the attention of this committee because their aerial elk survey observations indicated that thousands of elk in that area had shifted their seasonal use of spring/summer/fall range on National Forest System (NFS) lands to lower elevation private lands, where many were residing all year long and causing damage to crops, fences, and pastures managed for livestock. The plethora of elk damage complaints from private landowners also prompted ODFW to seek expertise from the BMEI committee. Shortly thereafter the Umatilla National Forest began developing the Ellis Project with one of its primary objectives to improve wildlife habitat, which was further described to the public as improving seasonal elk distribution within the Heppner Wildlife Management Unit (WMU 48). Credible, peer-reviewed literature on the topic of seasonal elk distribution, elk habitat effectiveness, and factors that influence elk productivity and distribution is abundant and readily available to resource specialists and line officers on the Umatilla NF. Additionally, many of the most important and relevant research efforts have taken place relatively close to the Ellis Project area on the Starkey Experimental Forest and Range (Starkey) in adjacent Union County, Oregon. Starkey is a USDA Forest Service research facility that was constructed to answer management questions about a broad range of land management topics. Elk habitat, elk/cattle/deer interactions, and multiple topics related to elk productivity and habitat selection have been central to the work at Starkey for the past 35 years. The publications and tools that Starkey has produced are local, recognized world-wide as credible science, and extremely applicable to projects exactly like Ellis. The BMEI committee, on which I served as an active member for 24 years, was presented with the idea of developing a vegetation management project that utilized the best available science in order to improve the distribution of elk in the Heppner WMU, thereby alleviating damage to adjacent private lands while allowing elk to perform all of their social and environmental functions on their traditional seasonal ranges. These functions include how elk shape vegetation through browsing and grazing, serve as prey for medium and large predators, provide hunting opportunities which feed local economies, and provide for scavengers and decomposers. A key component identified in a plethora of peer-reviewed research points to disturbance from motorized routes (road and trails) as the most important factor influencing the distribution of elk (Christensen et al. 1991, Hillis et al. 1991, Cole et al. 1997, Montgomery et al. 2013, Ranglack et al. 2017, Proffitt et al. 2010, 2013, 2016, Rowland et al. 2000, Rowland et al. 2005, Wisdom et al. 2004, Naylor et al. 2009, Preisler et al. 2006, 2013). This preponderance of science led to including road closures as an integral part of the Ellis Project. By strategically closing some roads to motorized travel, the Ellis Project would create [“secure”] areas for elk to utilize forage that would increase in quality and quantity as a result of vegetation treatments. A common theme in the most applicable research indicates that forage improvements cannot be decoupled from motorized disturbance if improvements in elk distribution is an objective. In other words, newly improved forage will not result in improved habitat effectiveness unless disturbance from motorized access is reduced in these areas. The

term [ldquo]elk security areas[rdquo] is generally used to discuss areas where motorized disturbance is low. I attended meetings and field trips about the Ellis Project with employees of the Umatilla NF and other agency and Tribal biologists with particular expertise in elk management. Elk managers from the Confederated Tribes of the Umatilla Indian Reservation, ODFW, Washington Department of Fish and Wildlife, Rocky Mountain Elk Foundation, Bureau of Land Management, and various levels of the US Forest Service, and all agreed that integrating strategic road closures with vegetation management would stand the greatest chance of success in improving seasonal distribution of elk in the Ellis Project area. It was a disappointing surprise to learn that the latest version of the Ellis EIS removed all road closures from the selected action alternative. Essentially the Ellis project went from an integrated vegetation management project that would meet its stated purpose and need, including improving wildlife habitat, to just a timber sale that will exacerbate the poor distribution of elk in that landscape. [ldquo]Improving wildlife habitat[rdquo] was clearly and regularly explained to the public, Tribal and state partners that this stated purpose was to improve elk distribution. The decision to remove road closures from the selected alternative is incredibly disingenuous to those of us who supported the Ellis Project from the beginning. The Umatilla NF[rsquo]s stated rationale for removing road closures from the project was based on an improper and inaccurate interpretation of how the [ldquo]Hillis paradigm[rdquo] was used in designing elk security areas. The Forest also states that the Ellis Project area already meets Forest Plan Standards and Guidelines for road densities, therefore no additional closures are needed. This is inconsistent with the best available science and does not meet the intent of those outdated road density standards. To further erode trust in the Umatilla NF, the stated rationale related to the Hillis paradigm was simply untrue. The decision to remove road closures was based on the June 25, 2025 letter from Regional Forester Jacqueline Buchanan directing Forests in Region 6 to not include travel management decisions in any NEPA decisions until further notice. The selected alternative for the Ellis Project will open up forested stands, thereby increasing sight distance and exacerbating the effects of motorized traffic in the area. The improvements in forage quality and quantity will not be realized. Habitat effectiveness for elk will decrease, worsening the poor distribution of elk and increasing damage to adjacent private lands. Additionally, hunters and wildlife viewers will be disappointed by the sparsity of elk on their spring/summer/fall public land ranges. Finally, an additional indirect effect of pushing elk off public lands is that the increasing wolf population will be forced to spend more time on private lands in close proximity to livestock. If the majority of wolves[rsquo] natural prey is concentrated on private lands, this will only set the stage for increases in livestock predation and reduced tolerance for a native species that has been successfully reintroduced into its native range.

Cordially,/s/Mark Penninger
Mark Penninger
La Grande, OR 97850
Literature Cited
Christensen, A.G., et al., editors. 1991. Proceedings of elk vulnerability[mdash]a symposium. Montana State University, April 10-12, 1991, Bozeman MT.
Cole, E.K., et al. 1997. Effects of road management on movement and survival of Roosevelt elk. *J. Wildl. Manage.* 61:1115-1126.
Hillis, J.M., et al. 1991. Defining elk security: The Hillis paradigm. In: Proceedings for symposium on elk vulnerability. A.G. Christensen et al., eds., Bozeman, MT. Montana State University: 38-54.
Montgomery, R.A., et al. 2013. Variation in elk response to roads by season, sex, and road type. *J. Wildl. Manage.* 77:313-325.
Naylor, L.M., et al. 2009. Behavioral responses of North American elk to recreational activity. *J. Wildl. Manage.* 73:328[ndash]338.
Proffitt, K.M., et al. 2010. Changes in elk resource selection and distributions associated with a late-season elk hunt. *J. Wildl. Manage.* 74:210-218.
Proffitt, K.M., et al. 2013. Effects of hunter access and habitat security on elk habitat selection in landscapes with a public and private land matrix. *J. Wildl. Manage.* 77:514-524.
Proffitt, K.M., et al. 2016. Linking landscape[ndash]scale differences in forage to ungulate nutritional ecology. *Ecological Appls.* 26:2156-2174.
Preisler, H.K., et al. 2006. Statistical methods for analyzing responses of wildlife to human disturbance. *J. Appl. Ecol.* 43:164[ndash]172.
Preisler, H.K., et al. 2013. Analyzing animal movement patterns using potential functions. *Ecosphere* 43.
Ranglack, D.H., et al. 2017. Security areas for elk during archery and rifle hunting seasons. *J. Wildl. Manage.* 81:778-791.
Rowland, M.M., et al. 2000. Elk distribution and modeling in relation to roads. *J. Wildl. Manage.* 64:672[ndash]684.
Rowland, M.M., et al. 2005. Effects of roads on elk: implications for management in forested ecosystems. *Trans. N. Amer. Wildl. Nat. Res. Conf.* 69:491[ndash]508.
Wisdom, M.J., et al. 2004. Effects of off-road recreation on mule deer and elk. *Trans. N. Amer. Wildl. Nat. Res. Conf.* 69:531[ndash]550.

PART 2: FOREST VEGETATION MANAGEMENT

Forest Treatments in the Selected Alternative

The selected alternative (Alternative 2 Modified) includes:

- mechanical treatment on up to 53,872 acres?
- 25,207 acres of large diameter thinning/logging (trees 7 inches to less than 21 inches dbh)?
- 7,557 acres

of large diameter thinning/logging (7 to <21 inch dbh) as part of fuel breaks? 32,764 acres total commercial logging/thinning (trees 7 inches to less than 21 inches dbh)? excludes commercial harvest of 21-inch diameter at breast height (dbh) and larger trees to be in compliance with the 1995 Eastside Screens, and the [ldquo]snag and green tree retention portion[rdquo] of the 2021 Eastside Screens Amendment Decision Notice? 273 miles of 500-foot fuel breaks (including 7,557 acres of large diameter thinning/logging)? 23,519 acres of small diameter thinning? 17 miles of temporary roads and? 87,764 acres of prescribed fire. Concerns about forest treatmentsGHCC[rsquo]s comments during Scoping (2019) and the DEIS (2022) described multiple concerns with the proposed forest treatments. Our comments on the DEIS included concerns about the extent of proposed commercial logging; the intensity of logging to low targeted basal areas; prescriptions for regeneration cuts; logging in old forests, moist and cold forests; protecting wildlife habitat connectivity corridors; and impacts of temporary roads for logging. Our comments also advocated for the protection of large and old trees during thinning and logging activities. We are grateful that the Draft Decision would protect large trees 21 inches dbh and greater. We encourage the Forest Service to also protect trees with old growth characteristics regardless of their size. Some of our concerns were identified as [ldquo]Relevant Issues[rdquo] We appreciate that the Forest Service addressed some of our concerns while developing the Action Alternatives for the Ellis project. These include:[bull] Relevant Issue #1: There is a concern about the scope and scale of the proposed activities and the potential long-term impacts to the vegetation.[bull] Relevant Issue #2: There is a concern about the impacts of proposed treatments in Old Forest Single Structure (OFSS) and Old Forest Multi Structure (OFMS) forest structure types and cold and cool moist forest types.[bull] Relevant Issue #4: There is a concern about whether proposed actions will effectively improve or maintain elk habitat and distribution.[bull] Relevant Issue #5: There is a concern about the impacts of proposed treatments on the undeveloped qualities of the Potamus Inventoried Roadless Area (IRA) or other lands that lack development identified within the project area.[bull] Relevant Issue #6: There is a concern about potential miles of temporary road construction needed to implement the project and the impacts to soils and aquatic resources.[bull] Relevant Issue #7: There is a concern about proposed fuels treatments being too aggressive in areas outside of dry forest types and project does not consider historical fire intervals. Alternative 3We appreciate that Alternative 3 was developed in part to address some of our concerns including concerns about the scope of the project and the amount of treatment outside of dry forests. Alternative 3 was developed to focus treatment within Dry Upland Forest (UF) and preserve old forest structure. Alternative 3 limits mechanical thinning to low intensity zones (LIZ) within late old forest structure type (LOS), and in moist and cold forest types. Alternative 3 also decreases the number of acres and miles in proposed fuel breaks. This alternative no longer proposes treatment for vistas along the Scenic Byway and will not allow the use of temporary roads to complete treatment unless on ML1 roads. Alternative 3 also excludes commercial harvest of 21-inch diameter at breast height (dbh) and larger trees to be in compliance with the 1995 Eastside Screens, and the [ldquo]snag and green tree retention portion[rdquo] of the 2021 Eastside Screens Amendment Decision Notice. Please note that while we support aspects of the forestry components of Alternative 3, we do not support the road management and elk security component of Alternative 3 which compared to the other Action Alternatives would have the smallest improvement to elk security, only increasing security to about 15% (3.8% increase). PART 3: RESOLVING OUR OBJECTIONWe appreciate the opportunity to participate in the Objection Resolution process. We look forward to presenting the basis of our Objection during an Objection Resolution meeting with the Forest Service. We offer the following ways that our Objection may be resolved:? We request that the Final Record of Decision will provide at least 30% elk security throughout the Ellis project area in accordance with the best available science.? We request that Habitat Effectiveness Index standards will be met throughout the project area.? We request that the Forest Service comply with all aspects of the Umatilla National Forest Land and Resource Management Plan, the National Environmental Policy Act, and all relevant laws, rules, and regulations.? We request that forest management activities include the limitations included in Alternative 3 as well as modifications to prescriptions to reduce the intensity of commercial logging prescriptions as requested in our comments above. (As described above, we do not support the road management and elk security component of Alternative 3). ConclusionThank you for the opportunity to continue engaging with the Umatilla National Forest on this project. We appreciate this opportunity. Please feel free to reach out if we may be of assistance. Sincerely, Brian Kelly, Senior AdvisorGreater Hells Canyon Council