

Data Submitted (UTC 11): 9/11/2024 2:49:42 PM

First name: david

Last name: eisler

Organization:

Title:

Comments: September 11, 2024

From David Eisler

Forestland Owner

Walton, OR

Dear Michelle Jones,

Please consider my comments as they relate to the Siuslaw National Forest Restoration Project 59122, North Fork Smith Restoration Project.

Large wood, both standing and on the ground, is an important component of forest ecology. The Forest Service has employed a downed wood model, DECAID, to determine the number of trees that should be cut and left on the ground, typically two trees per acre, to replicate the natural forest conditions prior to the commercial harvest of the stand. These pre harvest on-the-ground logs were frequently greater than 36" diameter old forest trees. These large logs provide a wide range of wildlife habitat as they deteriorate over several hundred years.

Additionally this large wood provided temperature and moisture micro climates favorable to forest plants and animals and a critical source of habitat for developing soil microorganisms.

Currently the 40-60 year old trees that are left on the restoration unit forest floor, along with whatever blowdown might occur, in no way replicate the natural contributions of truly large old trees. Over the last several decades the NRCS has been employing an alternative to the addition of single logs by clustering smaller logs into large logs structures simulating, to a degree, old growth logs as well as log and branch combinations creating enhanced wildlife denning and nesting habitat for mammals, reptiles, amphibians and birds.

I have, over the last 4 years or so, tried to engage Forest Service staff in this practice to no avail. There seems to be no interest in incorporating this into the restoration design the goal of which is to move and accelerate the thinned stands toward old growth characteristics. Old growth forests are not trees alone but a complex interaction of plant and animal communities. The benefits of these wildlife structures should be obvious and the costs are not prohibitive.

I encourage you to acknowledge a need for a more productive approach to the large downed wood component in the SNF restoration efforts.

If the Siuslaw National Forest has accepted Climate Change as a factor which can impact the health of the forest then thinning designs should reflect concern for the short and long term impacts of climate change. Restoration designers should utilize a variety of thinning designs which may demonstrate successful or unsuccessful designs as we move into future restoration efforts.

Forest thinning that retains a mere 40% canopy closure is certainly at greater risk of stressing both the overstory and understory from higher heat and lower moisture. At this point I see no evidence of monitoring data that this design will take us into the future without impacts to the health of the stand. Is this question been asked ?

Extreme canopy openings of 40% seem to offer a higher risk for higher negative impacts but high timber volume removal. Lower risk of smaller canopy openings would reduce possible climate change impacts and decrease timber volume removed. One would ask the question, which has been asked in the past, ' What is the primary goal of forest management in the Siuslaw National Forest? Forest restoration or timber harvest?' In my opinion the extreme of canopy removal should be only occasionally employed as a thinning management experiment for climate change impact monitoring. As we all move into the climate change reality that includes areas of higher heat and less rainfall it seems that the Forest Service should be erring on the side of caution as well as asking how best to move forests toward old growth conditions over the next decade. Large stand openings might best be the exception rather than the rule and N Fork Smith River Restoration should provide an understanding of

thinning design in a climate change reality. SNF staff should be committed to asking the very important questions and collecting stand response data.