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Effects of fuel spatial distribution onwildland fire behaviour

Adam L. Atchley A,E, Rodman LinnA, Alex Jonko A, Chad Hoffman B,

Jeffrey D. Hyman A, Francois Pimont C, Carolyn SiegD and

Richard S. Middleton A

ALos Alamos National Laboratory, Earth and Environmental Sciences, PO Box 1663 Los Alamos,

NM 87545, USA.
BColorado State University, Warner College of Natural Resources, 1472 Campus Delivery Fort

Collins, CO 80523-1472, USA.
CINRAE, URFM, Site Agroparc Domaine Saint Paul F-84914 Avignon, France.
DUSDA Forest Service, Rocky Mountain Research Station, 2500 S, Pine Knoll Dr. Flagstaff,

AZ 86001, USA.
ECorresponding author. Email: aatchley@lanl.gov

Abstract. The distribution of fuels is recognised as a key driver of wildland fire behaviour. However, our understanding
of how fuel density heterogeneity affects fire behaviour is limited because of the challenges associated with experiments
that isolate fuel heterogeneity from other factors. Advances in fire behaviour modelling and computational resources

provide a means to explore fire behaviour responses to fuel heterogeneity. Using an ensemble approach to simulate fire
behaviour in a coupled fire–atmosphere model, we systematically tested how fuel density fidelity and heterogeneity shape
effective wind characteristics that ultimately affect fire behaviour. Results showed that with increased fuel density fidelity

and heterogeneity, fire spread and area burned decreased owing to a combination of fuel discontinuities and increased
fine-scale turbulent wind structures that blocked forward fire spread. However, at large characteristic length scales of
spatial fuel density, the fire spread and area burned increased because local fuel discontinuity decreased, and wind
entrainment into the forest canopy maintained near-surface wind speeds that drove forward fire spread. These results

demonstrate the importance of incorporating high-resolution fuel fidelity and heterogeneity information to capture
effective wind conditions that improve fire behaviour forecasts.

Keywords: fire behaviour modelling, fuel classification, fuel representation, wind response.
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Introduction

It is exceedingly difficult to know a priori if a wildland fire will

extinguish, or spread and contribute to the annual 36 to 46million
km2 burned globally (Doerr and Santı́n 2016). Nevertheless, this
knowledge is critical for forecasting if a wildland fire will meet
management targets or for guiding management response to fires

that endanger lives and property. A combination of environ-
mental factors – including wind, topography, fuel moisture,
and the amount and arrangement of fuel – determinewildland fire

behaviour. For example, the spatial distribution of fuel hetero-
geneity, which determines the arrangement of combustible
material and local wind flows, significantly influences fire

behaviour (Turner and Romme 1994; Finney 2001; Knapp and
Keeley 2006; Parsons et al. 2017). Simulated wind conditions,
coupled to fire interacting with heterogeneous forest canopies,

show that fire behaviour is affected by fuel structure (Pimont et al.
2011; Linn et al. 2013; Hoffman et al. 2015; Parsons et al. 2017;
Ziegler et al. 2017). However, studies that systematically char-
acterise the sensitivity of fire behaviour to fuel heterogeneity are

absent owing to poorly described fuel conditions and computa-
tional or experimental costs. Therefore, the response of fire

behaviour to fuel arrangement remains poorly quantified, which
limits estimates of fire outcomes.

Over the past two decades, a growing breadth of fire scenarios –
ranging from prescribed fires in marginal conditions to high-

intensitywildfires – and the increasing availability of computational
resources have motivated the development of coupled fire–
atmosphere models, such as WFDS (Mell et al. 2007, 2009;

Bova et al. 2016), FIRESTAR3D (Frangieh et al. 2018;
Morvan et al. 2018), FIRETEC (Linn 1997; Linn et al. 2002) and
QUIC-Fire (Linn et al. 2020). These models resolve wind fields

that are consistent with local heterogeneous vegetation structure
and respond to dynamic two-way feedbacks between the fire and
surrounding winds that compare well with observations (Linn and

Cunningham 2005; Linn et al. 2012; Hoffman et al. 2016). By
simulating wind flows and explicitly accounting for shear stress
through canopy structures, including intermittent gusts and lulls that
result from gaps between groups of trees (Pimont et al. 2009), fire
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behaviour simulations respond to the aerodynamic influences of
canopy structure and the spatial heterogeneity of vegetation and
buoyant heat from combustion. Although many of these models

are too computationally expensive for operational use, they allow a
fully three-dimensional description of the forest. The development
of this class of models now lets us test how sensitive simulated fire

behaviour is to representation of fuel and the characterisations of
fuel heterogeneity, especially for low-intensity fires that are more
sensitive to fuel arrangement compared with high-intensity fires

(Clements et al. 2016).
Discontinuities in the horizontal distribution of canopy fuels

associated with large-scale heterogeneities create wind patterns
(Dupont and Brunet 2007) that influence fire behaviour. Forest

structure affects the fire environment by determining: (1) the
distribution of combustible material; (2) the ambient flow
patterns through and around vegetation (Gao and Shaw 1989;

Finnigan 2000; Pimont et al. 2011); and (3) the response of
winds to the heat released during the fire (Kiefer et al. 2018).
Canopy heterogeneity increases the spatial and temporal varia-

tion in the wind field within and just above the canopy, with the
intermittent sweeping of fast-moving air down into the canopy
and the ejection of slow-moving air upward out of the canopy

(Kiefer et al. 2016; Kiefer et al. 2018; Moon et al. 2019). The
aggregated effects of this turbulence alter the mean wind shear
above (Dupont and Brunet 2008), within and below the canopy.
Likewise, the distribution of fuels influences the spatial patterns

of winds that can be drawn in by the fire and fire-influenced
winds that feed back to fire behaviour (Kiefer et al. 2018).

Variability in wind conditions associated with boundary-

layer turbulence and wind–canopy interaction is recognised as a
chief contributor to uncertainty in fire behaviour (Burrows et al.
2000; Sun et al. 2009; Linn et al. 2012; Pinto et al. 2016; Benali

et al. 2017). Atmospheric turbulence is amplified when winds
interact with fire (Clements et al. 2008), increasing uncertainties
in fire behaviour simulations, especially under marginal fire
conditions (Hiers et al. 2020) when fire-influenced winds are

significantly stronger than ambient winds. This complicates
the ability to measure how forest heterogeneity interacts with
fire-influenced winds to affect fire behaviour.

Given the influence of canopy structure on ambient and fire-
induced winds, it is essential to explicitly account for the effects
of canopy structure when exploring the interaction between

forest structure and fire behaviour (Hilton et al. 2015). Never-
theless, the effects of forest heterogeneity on the variability of
fire behaviour have not been quantified adequately (Parsons

et al. 2017) because few studies systematically account for
increasing levels of fuel variability. Therefore, a generalised
understanding of how spatial fuel characterisation determines
fire behaviour is lacking. By identifying how fuel heterogeneity

influences fire behaviour and describing essential aspects of
fuel heterogeneity, simulated uncertainty and fire behaviour
variability can be constrained.

To determine the influence of vegetation structure on fire
behaviour, an analysis of ensembles of simulations is required
to avoid confounding mean behaviour with the influences of

site and moment-specific conditions (Parsons et al. 2017). Fire
behaviour at a specific location in time and space is a function
of the site and moment-specific environmental conditions,
including the local arrangement of fuels and timing of gusts

relative to the fire’s arrival at that location. The absence of
precise knowledge of fuel locations or relative timing of fires
and wind events limits predictability (Pimont et al. 2017).

Ensembles of vegetation scenarios with the same macro-scale
characteristics (e.g. canopy bulk density) but different fine-scale
characteristics (e.g. the position of individual trees) can help

(1) determine the sensitivity of fire behaviour to fine-scale fuel
characteristics, and (2) quantify the uncertainty associated with
fire behaviour forecasts. By performing ensemble simulations

with a physics-based model of combined dynamic winds and
fire behaviour, we can quantify both the mean and variability in
fire behaviour associated with macro-scale fuel heterogeneity.
Likewise, an ensemble approach provides a measure of fire

behaviour uncertainty within constrained conditions (Pinto et al.
2016) that can inform fuel management planning and risk
assessment frameworks for operational use (Ager et al. 2011;

Finney et al. 2011). Increasingly, probabilistic ensemble meth-
ods have also been shown to elicit fundamental behaviourwithin
complex fire models that account for non-linear processes

(Cruz and Alexander 2017). To discern fire behaviour sensitiv-
ity to details of fuel heterogeneity, ensembles of multiple fuel
beds that have the same domain fuel load and spatial characteri-

sation of the variance of fuel density are required. Here, we
investigated the sensitivity of fire behaviour simulations in
FIRETEC to spatial characterisation of fuel arrangement.
Virtual canopies with the same macro-scale characteristics but

different degrees of detail in representation were developed to
perform ensemble fire behaviour simulations.

Methodology

We used FIRETEC, a mechanistic fire–atmosphere model, to

investigate how the representation and heterogeneity of fuel
influence simulated fire behaviour. We generated ensembles of
virtual forest canopies based on field measurements from a
50 � 20-m ponderosa pine (Pinus ponderosa)-dominated plot

near Flagstaff, AZ, with 860 trees ha�1, a mean diameter at breast
height (DBH) of 23 cm and amean tree height of 14m (Linn et al.
2005). Each ensemble features identical macro-scale character-

istics, including domain average and vertical profiles of fuel
density (0.083 kg m�3) (Fig. 1, plot (a)), average tree height,
and average height to live crown, but with different variance and

spatial characterisation of fuel conditions.Weconducted a total of
101 simulations, including 20 replicates each of five different
heterogeneous fuel distributions, and an unreplicated simulation

with a homogeneous fuel distribution (Average Fuel). We
explored the spectrum of fuel fidelity starting with the low-
fidelity homogeneous or Average Fuel case. The five heteroge-
neous fuel scenarios represent a stepwise increase in fuel fidelity

and length scales of fuel heterogeneity representation. They are:
(1) Average Tree, with one representative tree randomly repli-
cated across the domain (no difference between trees); (2) Forest

Data, with variable trees, whose attributes match field data, ran-
domly placed across the domain; (3) 15-m Gaps, with the same
fuel fidelity as Forest Data, but with trees aggregated to create

15-m gaps; (4) 30-m Gaps, same as Forest Data, with trees
aggregated to create 30-m gaps, and (5) 45-m Gaps, same as
Forest Data, with trees aggregated to create 45-m gaps. In each
simulation, the total fuel load was held constant, and only the
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arrangement of the trees was altered. The 20 replicates were
developed by rerandomising tree and gap locations. All simula-
tions were performed in 400 � 400-m domains with 2-m hori-

zontal discretisation to a height of 600 m. Domain fuel density
was defined as the total mass of fuel within the 160 000-m2

domain between the ground and 22.9 m, top of the highest cell

containing fuel. We established a gradient of fuel density vari-
ability between the ensembles, starting with 0 (kg m�3)2 for the
Average Fuel ensemble and increasing to 0.377 (kg m�3)2 for the

45-m Gap ensemble (Table 1). Likewise, there was a gradient of

increasing lengths at which deviations from the local fuel load
were no longer similar (correlation lengths).

We developed a different 3D fuel density arrangement for

each replicate within each ensemble using values for tree height,
crown radius and height to live crown obtained from data. For
the Forest Data ensemble, the distribution of fine fuel in the
canopy was parameterised following the methods outlined by

Linn et al. (2005), where sampled trees and their dimensions
were randomly placed throughout the domain to maintain
observed stem density and forest characteristics. We developed

the Average Tree virtual forest realisations by first estimating
the mean tree height, height to live crown and crown circumfer-
ence, and then randomly populating the domain with trees that

had these properties. Note that populating the domain with a
single-tree representation resulted in slightly different vertical
profiles of fuel density (Fig. 1a). To develop the Average Fuel

realisation, we computed the vertical distribution of fuel by
horizontally averaging every vertical layer in the Forest Data
domains. This vertical distribution was then applied to every x

and y location to establish a horizontally homogeneous forest

with the same vertical distribution of fuel density as for the
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Fig. 1. (a) Domain-average vertical fuel density profiles for each ensemble; note that all ensembles except Ave.

Tree overlap. (b) Vertical fuel density profiles averaged over areas with canopy fuel densities above zero. Note that

excluding areas where vertical fuel density equalled zero resulted in a gradation of fuel density with increased fuel

variance. Domain fuel density equalled 0.083 kgm�3 for all ensembles, and variation of canopy fuel density plotted

was due to differences in tree density for the areas with trees. (c) Ensemble-average u wind (streamwise velocity)

profiles to 50m above the surface before ignition. (d) Example fuel domains for each of the six ensembles. Red lines

denote the fire ignition locations.

Table 1. Domain fuel load characteristics

Representation

class (Ensemble)

Fuel density

variance

Fuel density correlation

length (m)

Average Fuel 0 0

Average Tree (1) 0.188 1

Forest Data (2) 0.299 2

15-m Gaps (3) 0.359 10

30-m Gaps (4) 0.364 27

45-m Gaps (5) 0.377 40
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Forest Data cases. Because there was no spatial variation in the
Average Fuel realisation, only one ensemble member was used.
For the 15-, 30- and 45-mGap ensembles, we randomly selected

locations for gap creation. All trees within the gap were then
moved to a new random location, whichmight be placed back in
the gaps, thus ensuring that the overall fuel load and canopy

density was maintained among ensembles. This approach effec-
tively decreased the fuel density within the designated patches
and increased the fuel density in other areas (Fig. 1b), which

mimics the structure found in forests with natural disturbances
(Lindenmayer and Franklin 2002; Mitchell et al. 2006).

We parameterised surface fuels assuming that grass dom-
inates in the spaces between trees, and litter accumulates and

diminishes grass loads beneath trees. We used a grass fuel
density of 0.35 kg m�3, which had a height of 0.7 m, and a litter
fuel density of 0.5 kg m�3, which had a maximum litter depth

of 10 cm under dense trees. The spatial distribution of grass and
litter contributed to the overall domain fuel density variance
and spatial gradients of fuel density variance. As described in

Linn et al. (2005), the total fuel loads in surface cells included
contributions from grass, litter, and short trees that reached into
the lowest computational cell. The aggregated fuel properties of

the combined surface fuels (e.g. moisture and height) were
determined via a mass-weighted average. We observed no
difference in domain surface fuel density between ensembles
(Fig. 1a; all lines overlap below 2 m).

Fire simulations

To represent wind conditions characteristic of a given ensemble,
turbulent structures need to develop in response to the simulated
forest structure from an initial inflow boundary condition, which

generally requires simulations to include a long fetch area. To
reduce the size of the computational domain, we used the meth-
odology described in Pimont et al. (2020). A large-scale pressure
gradient force and cyclic boundary conditions, where winds

exiting the domain are cycled back as inflow into the domain,
create the long fetch necessary for turbulence to adjust to the
ensemble fuel structure. This results in turbulent structures

evolving within the model domain to be spun up and used as
inflow boundary conditions during the fire simulation. We
developed ensemble-specific wind fields using a single repre-

sentative fuel arrangement for each ensemble. A 3-m s�1

streamwise wind speed (u) was specified at 25 m above the
ground,,10 m above the canopy that accompanied an initial log

profile wind speed with height. This fairly low wind speed was
chosen to representmarginal fire spread conditions. Thewinds and
turbulencewere spun up in thismanner for 500 s, atwhich time the
mean vertical velocity profile and the turbulence profiles ceased to

change with time. Using the cyclic boundary condition mode, we
simulated turbulentwinds for each ensemble type for an additional
20 min as forcing conditions for the combustion simulations.

Each realisation within a given ensemble used the same
representative forcing conditions but resulted in different wind
profiles, as determined by the specific drag imparted by the

characteristic spatial fuel arrangement of that ensemble (Fig. 1).
These forcing conditions were applied for an additional 400 s
before the time of ignition so that the flow field could adjust to
the specific vegetation distribution. Ignition in each simulation

was achieved by bringing surface and canopy fuels up to
combustion temperatures (1000 K) for 3 s in a 100-m-long
and 4-m-deep rectangular area located 100 m from the upwind

domain boundary. The idealised ignition method is intended to
ensure each realisation starts with a similar region of combus-
tion. Not including the model spin up, each realisation required

64 processors and 16 h of wall-clock time to simulate combus-
tion, resulting in 103 524 CPU hours for all combustion simula-
tions. Spinning up wind fields for all ensembles required an

additional 12 288 CPU hours.

Fire and wind behaviour metrics

For each ensemble and realisation, we calculated the forward
rate of fire spread, heat release per unit area and the total area

burned. We calculated the spread distance for each fire to be the
farthest distance of the fire front from the ignition line along
the streamwise wind direction (u) and plotted it against time to

evaluate the forward rate of fire spread. Heat release per unit
area is the total amount of energy released by combustion per
second divided by the area of the fire, and therefore has units of

kilowatts per metre squared. The area burned was estimated as
the total area of the domain where combustion (i.e. loss of fuel
mass) occurred projected onto a 2D plane. We quantified

domain wind conditions in terms of turbulence kinetic energy
(TKE), which is a measure of the energy associated with
fluctuations in the wind field shear stress. TKE was calculated
by summing the variances of the directional wind component:

TKE ¼ 1

2
u0u0ð Þ þ v0v0ð Þ þ w0w0ð Þð Þ ð1Þ

where:

u0u0 ¼ 1

t

Z t

0

u t;i;jð Þ � u i;jð Þ
� �2

dt

v0v0 ¼ 1

t

Z t

0

v t;i;jð Þ � v i;jð Þ
� �2

dt

w0w0 ¼ 1

t

Z t

0

w t;i;jð Þ � w i;jð Þ
� �2

dt

ð2Þ

Here, u is the streamwise horizontal wind component, v is the

cross-stream horizontal wind component, w is the vertical wind
component, i and j are the indices of specific cells, and t is the
time index.

Results and discussion

The Average Fuel simulation had the greatest forward spread,
heat release rate per unit area and area burned (Fig. 2). The

Average Tree ensemble with randomly placed trees slowed
the forward spread and decreased fire intensity compared
with the Average Fuel simulation. Increasing the level of detail

in the representation of fuels resulted in added variations in
fuel density, such as small gaps between trees that caused the
fire to slow and reduced heat per unit area. Likewise,
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increasing the variation of sizes and shapes of trees to that of

the Forest Data and 15-m Gap ensembles further reduced heat
released, rate of spread and area burned. Conversely, increas-
ing local canopy density and the length scale of sparse forest
gaps from the 15-m to the 30- and 45-m ensembles resulted in

simulated fire behaviour metrics to rebound compared with the
simulated results of the Average Tree, Forest Data and 15-m
Gap ensembles. The increase in fire behaviour metrics for the

30- and 45-m Gap ensembles demonstrates that increasing
variability in spatial fuel density does not necessarily act to
slow fire progression and that fire behaviour is a result of

complex interactions with fuel structure.

Ensemble results (Fig. 2) show a range of fire outcomes

within each characteristic fuel representation, except for the
Average Fuel simulation, which did not have any replicates.
The range in fire behaviour outcomes for each ensemble was
determined by the variation between details of specific fuel

representations, fuel arrangement for given realisations and the
associated wind variability. Interestingly, the range in fire
behaviour metrics did not increase along the gradient of fuel

density variability because the Forest Data and the 15-m Gap
ensembles generally did not propagate fire and extinguished
quickly. However, when scaled by the mean fire behaviour, the

coefficient of variability for the Forest Data remained high.
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Fig. 2. Time series of fire intensity (left), area burned (centre), and forward progress of fire (right) highlight

variability in fire metrics for all ensembles except for Average Fuel, which only has one ensemble member.

The coefficient of variation, Cv ¼ s
X
(s is the standard deviation and X is the mean), is also provided for each

ensemble.
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Furthermore, one Forest Data realisation carried 200 m, which
contributed to the observed variability in that ensemble (Fig. 2).

This suggested that while there is a high probability that fires in
the Forest Data ensemble will not spread under the conditions
simulated, there is also the possibility that some fires will act

outside the ensemble characteristic. Similarly, the large fuel
density correlation lengths in the large-gap ensembles also
contributed to variability in fire size and behaviour, similar to

what Parsons et al. (2017) observed.

Emergent fire behaviour from characteristic fuel variability

Differences between ensembles indicated that both the repre-

sentation and heterogeneity of fuel density influenced fire
behaviour. How fuel arrangement characteristics influenced
probable fire behaviour in these marginal conditions was shown

by plotting summarised fire behaviour metrics for each
ensemble against the domain variance of fuel density and the
correlation length of that variability (Fig. 3). As fuel density

variability increased, all fire behaviour metrics (forward spread,
heat released and area burned) decreased linearly for correlation
lengths less than 10m.However, as the correlation length of fuel

density increased beyond 10 m, the fire behaviour metrics
rebounded (Fig. 3). In the 30- and 45-m Gap ensembles, which
correspond to correlation lengths of 27 and 40 m respectively,
all fire behaviour metrics increased compared with the other

ensembles except for the Average Fuel case. The 45-m Gap
ensemble had slightly greater spread rates and area burned than

the 30-m Gap ensemble, whereas the 30-m Gap ensemble had a
slightly greater heat release. However, these changes were also
associated with an increased variance for both the 30- and 45-m

Gap ensembles, and distinguishing ensemble trends from each
other was difficult.

These results have three implications for simulating fires in a

forest with heterogeneous fuels using process-based modelling:
(1) there can be significant differences associated with repre-
senting the canopy and surface fuels as a homogeneous layer for
ecosystems that naturally include gaps between trees; (2) the

variability between sizes and shapes of trees in the forest can
have significant impacts on fire behaviour by slowing spread;
and (3) the length scales of heterogeneity in fuel density also

influenced fire behaviour, where length scales greater than 10 m
increased rate of spread and area burned. The sensitivity of fire
behaviour to fuel fidelity and variability highlighted in these

results suggests the need for increased fuel description detail.
Historically, fuels were characterised using stand-scale spatially
averaged descriptors (i.e. canopy bulk density, canopy base

height), often without considering the within-stand variability
(Hoffman et al. 2016). However, rapidly evolving remote
sensing and machine learning techniques can now characterise
three-dimensional fuel structure, including tree-scale spatial
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Fig. 3. Mean and the 95th confidence interval of spread rate, heat release rate, and area burned for each

ensemble plotted against variation in fuel density and correlation length of fuel density. Numbered

ensembles are cross-referenced in Table 1.
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heterogeneity (Liao et al. 2018; Massetti et al. 2019; Narine
et al. 2019) and three-dimensional below-canopy fuel density

(Hudak et al. 2020). Furthermore, the ability to quantify fuel
structure andmodel physically based fire dynamicsmotivates an
in-depth understanding of the three-dimensional wind and fuel

interactions that influence fire behaviour. Combining three-
dimensional wind and fuel interactions with quickly assessed
remote sensing and machine learning techniques could increase
the application and accuracy of data-driven wildfire models

(Coen and Schroeder 2013; Coen et al. 2013).

Influence of changing the level of detail in fuels descriptions

The Average Fuel realisation had the least amount of fuel detail,
where the horizontal fuel mass was spread evenly, creating a
continuous layer of low-density fuel rather than individual trees.

Conversely, when representing individual trees, the same
amount of canopy mass was concentrated into localised areas –
‘trees’ – leaving gaps in the canopy. Similarly, surface fuel also
shifted to denser litter under trees and less dense grass in spaces

between trees. Gaps between trees acted as barriers to crown fire
spread, which required stronger andmore consistent local winds

to bridge the gaps. Additionally, the representation of individual
trees and litter, in which the fuel density was higher than in the

homogenised Average Fuel, slowed fire spread because it took
longer to consume fuels of higher densities and push forward
spread, behaviour previously observed by Pimont et al. (2006).

Areas with higher fuel densities also released more heat,
resulting in a stronger local vertical motion, which, coupledwith
longer combustion residence time, resulted in longer periods of
updrafts that impeded the forward propagation due to winds in

the along-stream direction.
Canopy structure impacted winds because randomly

arranged trees imposed variable aerodynamic drag. It is not

surprising that winds would be slower within or right behind
dense vegetation compared with lower-density vegetation.
Although there were gaps in the Average Tree canopy, those

gaps were not large enough for the wind to efficiently penetrate
and reestablish, and thus the average wind speeds within the
canopy were lower (Fig. 1). The lower wind speed within the
canopy combined with canopy gaps and higher localised fuel

densities of trees all worked to slow or stop canopy fire spread
because the weak winds could not push the simulated fire across

U Windspeed (m s–1)

Forest data

Ave. tree

Ave. fuel

45-m Gaps

30-m Gaps

15-m Gaps

–2.0 1.5 5.0

Fig. 4. Horizontal fuel profiles from a sample realisation of each ensemble, a u velocity

snapshot at mid-canopy height (11m) before ignition and after ignition showing the interaction

of wind flowwith the fire. Note the disaggregated u velocities in the Forest Data and 15-mGaps

ensembles.
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the gaps and the buoyancy-induced flow was less likely to lean

enough to the side to ignite a neighbouring tree.

Describing the variation among the trees

When considering differences between the Forest Data and

Average Tree ensembles, the additional representation of fuel
fidelity and therefore variation among trees resulted in a further
decrease in fire spread, heat release per unit area and area

burned. Using heterogeneous tree sizes and shapes meant trees
were interacting with the wind field over a larger vertical extent
than an averaged canopy or as a characteristic tree. This

essentially broke up the larger-scale wind patterns into tree and

gap-scale patterns. The level of explicit detail related to the

canopy structure influenced simulated winds and turbulence;
similarly to Boudreault et al. (2014), greater canopy represen-
tation resulted in a higher level of fine-scale turbulence (Fig. 4).
For example, the presence of low hanging branches or smaller

trees in the forest data ensemble disrupted dominant winds,
especially near the surface, resulting in the lowest subcanopy
wind speeds (Fig. 1b). Low wind speeds below the canopy

hindered both surface and crown fire spread. Interestingly,
complex canopy-driven disruptions to dominant wind flowwere
noticeable without fire as well as with fire when buoyant wind

dynamics caused high-speed horizontal winds to feed the fire
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from multiple directions (Fig. 4). These findings contrast with
earlier studies that reported little change in overall turbulent
kinetic energy associated with small-scale heterogeneity

because vertical shear instabilities typically dominated (Patton
1997; Pimont et al. 2011). Our results suggest that even if the
fine-scale turbulence was only a marginal contribution to the

total kinetic energy budget, the turbulent features associated
with small-scale heterogeneity can impact fire behaviour
through their influence on both instantaneous local flows and

reaction rates.

Influences of fuel density heterogeneity

The wind and fire behaviour also responded to a heterogeneous
density of canopy fuel, suggesting that including canopy fuel
heterogeneity in forest inventory databases or fuel class descrip-

tions may help fire behaviour forecasts. The increased continuity
of canopy fuel in densely forested regions and the increased sur-
face and canopy wind speeds generated by the large gaps resulted

in increased forward spread and area burned. The small distance
betweenadjacent trees in aggregated canopies reduced the barriers
to active crown fire spread. Likewise, surface fuel continuity

increased with less-dense and faster-burning grasses. In addition,
as canopy gap size increased, winds could penetrate through the
canopy, resulting in increased wind velocity and fire spread.

Our results show that large openings in the canopy allow

large-scale wind entrainment below the canopy, similarly to
Dupont et al. (2011) and Pimont et al. (2011), and push the fire
front along despite the increased fuel heterogeneity. To visualise

how these openings allowed wind turbulence to pass vertically
through the canopy, we examined the magnitude of the vertical
variance of velocity (w0w0) 2.5 min before the fire was ignited

and 2.5 min after ignition (Fig. 5). Using w0w0 allowed us to
visualise the persistence of positive and negative vertical fluc-
tuations from themean and to identify areas of strong variations.
The areas of large w0w0 corresponded to large canopy openings.
Moreover, there was a larger increase of w0w0 and TKE during
the fire (Fig. 5) for the 30- and 45-m Gap ensembles. Corre-
sponding increases in u0u and v0v0 (not shown) accompanied

increases in w0w0. Large gaps in the canopy acted to increase
wind entrainment, shear stress above the canopy shown as
increased windspeed in Fig. 1c, and therefore TKE before and

especially during combustion, thus allowing larger and consis-
tent wind structures to interact with the fire (Fig. 5). This ability
to move air in and out of the openings and an increase in the

cross-stream wind turbulence (v0v0) also helped to maintain a
larger fire line width (Hilton et al. 2015).

The non-monotonic relationship between correlation length
of fuel variability and fire behaviour metrics, which rebounded

at large length scales, illustrated that below a certain gap size,
changes to canopy and subcanopywinds were not strong enough
to change fire behaviour. Studies of wind interaction with forest

canopies suggest that for winds to re-equilibrate to the absence
of trees, a length of,22 to 30 times the average canopy height is
needed (Lee 2000; Pimont et al. 2018). To induce canopy and

subcanopy turbulent wind structures, a length of 1 to 5 times the
canopy height appears to be necessary (Pimont et al. 2011;
Parsons et al. 2017). At 1.8 to 2.6 times the average canopy
height, the 30- and 45-m Gap ensembles resulted in the canopy

and subcanopy wind turbulence structures that influenced fire
behaviour. In contrast, the ratio between gap length and canopy
height for the 15-m Gap ensemble was not enough for the

canopy and subcanopy turbulent winds to develop.
We note that we have focused on a ponderosa pine forest with

circular canopy gaps of different sizes under low-velocity wind

conditions, which demonstrated the dominant role that forest
canopy heterogeneity has on effective wind conditions driving
fire behaviour. However, many different forest types and condi-

tions will likely impart unique signatures on fire behaviour such
as the level of surface fuel homogenisation. A supplementary
analysis (see supplementary material) comparing a homogenised
surface fuel configuration with our heterogenous grass and litter

surface fuel conditions demonstrates a strong influence of surface
fuel conditions.Yet for our simulations, surface fuel homogeneity
or heterogeneity does not significantly affect the relationship

between fire behaviour metrics and fuel density variability or the
length scales of that variability. We therefore hypothesise that
fuel variability and the spatial length scales of that variability will

influence fire behaviour in predictableways. For example, greater
wind velocities associated with more extreme burning conditions
would dampen the effects of spatial variability on fire behaviour

(e.g. Sieg et al. 2017). In contrast, increased canopy height could
strengthen the relationship. Additionally, the overall domain
canopy density could play a role in the strength of this relation-
ship, where lower forest densities could weaken the effects of

spatial fuel variability on fire behaviour.

Conclusions

We demonstrated that fuel variability and spatial characterisation
of fuel density influenced simulated fire behaviour. Greater detail

in fuel representation resulted in increasingly fine-scale wind
discontinuities, which reduced fire spread and area burned.
Likewise, when introducing variability in tree size and shape, the
strength of fire behaviour metrics decreased. Spatial scales of

fuel variability were also instrumental in the interaction of wind
and fuel variability in determining fire spread. We observed a
non-monotonic relationship between correlation length of fuel

variability and firemetrics, all ofwhich decreasedwith increasing
correlation length up to 10 m but increased with correlation
lengths above 10 m. Wind entrainment associated with large,

sparse canopy patches resulted in both mean and localised wind
speeds and faster fire spread. Furthermore, the turbulent wind
conditions in large openings resulted in a disproportional increase

in TKE and crosswinds that maintain fire line width.
The use of ensembles with equally probable spatial fuel

distributions to characterise fire behaviour was necessary given
the range of outcomes. Although mean behaviour for each

ensemble was identified, significant overlap existed among
individual realisations from different ensembles, highlighting
the limitation of drawing conclusions from a single model

realisation. Nevertheless, this research clearly shows how both
the level of detail used to represent fuels and the inherent
aggregation in canopy fuels influenced potential fire behaviour.

Fuel characterisation that moves beyond spatially averaged
descriptions to include increased spatial fidelity and effective
wind description associated with characteristic fuel heterogene-
ity will better constrain fire behaviour uncertainty.
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