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ABSTRACT 

 
Habitat loss and fragmentation continue to threaten the persistence of forest carnivores in 

the contiguous US. The recovery of federally threatened species, such as the Canada lynx (Lynx 
canadensis), will be greatly enhanced by identifying a demographic-based definition of lynx 
habitat based on habitat analyses of animals with differential reproductive success. We collected 
field data on denning and offspring survival in northwestern Montana from 1998–2012. We used 
these data to define four response variables as measures of female Canada lynx reproductive 
success: (1) potential reproductive events, (2) initial litter size, (3) litter success (≥1 survivor), 
and (4) surviving litter size. We used mixed models to evaluate the effects of habitat and 
maternal condition on these response variables. Specifically, we tested a-priori hypotheses of 
relationships between reproductive success parameters and various habitat covariates 
representing the abundance and spatial configuration of five simplified forest structure types 
within occupied female lynx home ranges. Additional a-priori hypotheses were tested on the 
relationships between reproductive success parameters and maternal covariates, including female 
body condition, age, and previous reproductive performance. The most important predictors for 
overall lynx reproductive success within occupied female home ranges were the connectivity of 
mature forest, intermediate (10–15%) amounts of young regenerating forest, young regenerating 
forest patches with low perimeter-area ratios, and the adjacency of mature forest to young 
regenerating forest types. Female lynx home ranges that contain greater than 50% mature forest 
and approximately 10–15% young regenerating forest appear to be the optimal composition of 
forest structure types. Additionally, greater connectivity of mature forest, when combined with 
young regenerating forest patches with low perimeter-area ratios, appears to be the optimal 
configuration of forest structure types. Incorporating these results into current and long-term land 
management plans will provide a valuable conservation tool to ensure the persistence of 
threatened Canada lynx populations in the western US.  
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INTRODUCTION 

Habitat loss and fragmentation threaten the persistence of wildlife (Wilcove et al. 1998, Fahrig 

2003, Yiming and Wilcove 2005, Hanski 2011) by negatively affecting species’ abundance and 

distribution (Gehring and Swihart 2002, Crooks and Sanjayan 2006). Species with naturally low 

population densities and fecundity, and large individual and population-level ranges, such as 

forest carnivores, are especially sensitive to habitat loss and fragmentation (Andrén 1994, Noss 

et al. 1996, Weaver et al. 1996, Crooks 2002). In the northern US Rocky Mountains, 

anthropogenic habitat fragmentation has altered the spatial configuration of historical habitats, 

resulting in a mosaic of remnant forest patches interspersed with altered patches of various forest 

successional stages (USFWS 2000). Forest mosaics can impact the biotic and abiotic 

characteristics of remnant forest patches (Saunders et al. 1991) by increasing edge-to-area ratios 

of forested patches and decreasing connectivity and proximity between remnant patches 

(Saunders et al. 1991, Prugh et al. 2008). Changes to forest connectivity can directly impact the 

ability of wildlife to move within and across the landscape to access resources necessary for 

survival and reproduction (Taylor et al. 1993).   

Wildlife habitat quality has primarily been evaluated using estimates of species 

occurrence, abundance, or habitat selection (VanHorne 1983, Garshelis 2000, Bock and Jones 

2004, Prugh et al. 2008). However, these metrics can sometimes be misleading measures of 

population performance, especially in systems with strong source-sink dynamics (Murphy 2001, 

Kreuzer and Huntley 2003, Mosser et al. 2009). Instead, measures of reproductive success (i.e. 

probability of reproducing, number of offspring, offspring survival) are considered better 

indicators of source-sink dynamics and overall habitat quality (Beckmann and Berger 2003a, 

2003b), based on the assumption that an individual’s reproductive success will be higher in 
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better quality habitats. For example, for lions (Panthera leo) in Serengeti National Park, 

reproductive success (yearling cubs per female) proved a more sensitive and accurate measure of 

“source” habitats than measures of density, which included “sink” habitats occupied by non-

reproductive females (Mosser et al. 2009).  

Reproductive success is often easier to measure for smaller organisms (i.e. birds); 

assessing reproductive success for mammalian carnivores poses a significant challenge because 

long-term data collection is expensive, time intensive, and often yields small sample sizes. As a 

result, few long-term datasets containing multiple reproductive success parameters have been 

incorporated into habitat evaluations for most species of mammalian carnivores. While 

reproductive success of mammalian carnivores can be difficult to measure, it is essential for 

highly effective management to relate reproductive success to habitat quality, especially in the 

recovery of threatened and endangered species.  

In the contiguous US, the Canada lynx (Lynx canadensis) is a federally threatened, rare 

forest carnivore. Canada lynx, as well as their primary prey species, the snowshoe hare (Lepus 

americanus), are predominantly associated with dense mature subalpine coniferous forest types 

in the western US (Koehler et al. 2008, Squires et al. 2010, Ivan et al. 2014) and dense young 

mixed conifer/deciduous forest types in the eastern US (Burdett 2008, Vashon et al. 2008, 

McCann and Moen 2011). At the southern extent of their range, Canada lynx habitat is 

historically patchy and is subject to loss and fragmentation by some forest management practices 

(i.e. regeneration harvests, pre-commercial and commercial thins, prescribed burns), wildfires 

and insect infestations, and climate change (Aubrey et al. 2000, Hornseth et al. 2014, Koen et al. 

2014). Research on Canada lynx (hereafter lynx) habitat has considered abundance, occurrence, 

habitat selection, and movement, but has yet to connect habitat with reproductive success. There 
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is a pressing management need to understand this connection and gain further insight into the 

particular habitat resources and spatial configurations that support and enhance lynx populations.  

Occupied lynx habitat in the western US occurs primarily on National Forest System 

(NFS) lands managed by the United States Forest Service (USFS). Within NFS lands, current 

conservation measures for managing lynx habitat limit the amount of combined human and 

natural disturbance within areas that represent approximate female lynx home ranges (USFS 

2007). However, data gaps remain regarding the abundance and spatial arrangement of lynx 

habitat and how these habitats contribute to reproductive success and population persistence. The 

recovery of imperiled species, such as the lynx, will be greatly enhanced by land management 

practices supported by demographic-based definitions of habitat.  

Our objective was to evaluate the effects of habitat and maternal covariates on 

reproductive success of female lynx within a portion of the species’ southern range in 

northwestern Montana. Specifically, we (1) tested a-priori hypotheses (Table 1) of relationships 

between reproductive success parameters and habitat covariates representing the abundance and 

configuration of forest structure types and vegetation density within occupied female lynx home 

ranges. In addition to habitat, we (2) tested a-priori hypotheses (Table 1) of relationships 

between reproductive success parameters and maternal covariates representing female body 

condition, age category, and previous reproductive performance. 

STUDY AREA 

Our research focused on two primary study areas in northwestern Montana located in the 

Swan and Mission Mountains near Seeley Lake, MT and in the Purcell Mountains near Libby, 

MT (Figure 1). Elevations ranged from 1200 to 2400 m in the Seeley Lake study area (hereafter 

Seeley) and 800 to 2300 m in the Purcell Mountain study area (hereafter Purcells). Both study 
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areas featured a diversity of montane habitats ranging from low to mid-elevation ponderosa pine 

(Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii) forests to high-elevation forests 

dominated by subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea engelmanii), and 

lodgepole pine (Pinus contorta). The Purcells consisted almost entirely (>95%) of NFS lands, 

whereas Seeley contained approximately 48% NFS lands, 37% Plum Creek Timber Company 

lands [ownership of most Plum Creek Timber Company lands was transferred to state and 

federal agencies during the study in 2009–2010 (www.themontanalegacyproject.org, accessed 

06/05/2014)], and lesser amounts of state, tribal, Bureau of Land Management, and private land 

(Squires et al. 2010).  

METHODS 

Field Data Collection and Response Variables 

We trapped and collared female lynx in Seeley from 1998–2012, and in the Purcells from 2003–

2012. We captured, handled, and collected morphological data, including body mass, from 

female lynx according to Squires et al. (2008), using methods approved by the Institutional 

Animal Care and Use Committee (IACUC permits 4–2008 and TE053737–1). We collared 

females with Very High Frequency (VHF) radio collars (Advanced Telemetry Solutions, Isanti, 

MN) from 1998–2004, and with store-on-board GPS collars (Lotek Wireless, Newmarket, 

Ontario, Canada and Sirtrack Ltd., Havelock North, New Zealand) from 2005–2012. We located 

females with VHF collars every 1–2 weeks using aerial telemetry, and GPS collars collected a 

location every 30 minutes for 24 hours, every other day for 6–8 months. We monitored females 

until they died, disappeared from the study area, radio collars failed, or until the end of the study 

period. We used telemetry to locate natal dens of females within 1–2 weeks of parturition and 

http://www.the/
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recorded the number of kittens per litter. Females exhibit central place foraging behavior from 

natal (parturition) and maternal (rearing) dens during the first 6–8 weeks of kittens’ lives (Olson 

et al. 2011, Vashon et al. 2012); therefore, we likely detected all reproductive events of radio 

collared females where kittens survived the perinatal period. When possible, we backtracked 

females with known litters to determine survival of kittens to 8–10 months old 

(January/February).  

We used denning and backtracking data to define four response variables as measures of 

reproductive success: (1) potential reproductive events, (2) initial litter size, (3) litter success, 

and (4) surviving litter size. We defined potential reproductive events as a binary variable where 

a female either produced a litter or did not produce a litter that year. We then removed all 

observations in which a female did not produce a litter and subsequently defined initial litter size 

as the number of offspring in natal dens. We defined litter success as a binary variable where at 

least one offspring survived until 8–10 months old (January or February), or where none of the 

offspring survived to this age. We then removed all observations in which none of the offspring 

survived until 8–10 months old to define surviving litter size, which is the number of offspring 

that survived to 8–10 months old.  

Covariate Data Collection and Predictions 

We created female home ranges using location data to analyze habitat composition and spatial 

configuration within female home ranges. Because core areas represent the most intensively used 

portions of a home range (Bingham and Noon 1997, Seaman et al. 1999), we estimated home 

ranges at two spatial extents to determine whether 50% annual core areas (hereafter core areas) 

were potentially more predictive of lynx reproductive success than 90% annual home ranges 

(hereafter home ranges). We used ArcGIS® 9.3.1 [Environmental Systems Research Institute 
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(ESRI), Inc., Redlands, CA, USA] and the Home Range Tools Extension (HRT; Rodgers et al. 

2007) to estimate core areas and home ranges using the fixed-kernel density method (Worton 

1989) and a reference smoothing factor (href, Worton 1995) of 1.0. We considered females with 

sufficient location data (≥30 locations, Seaman et al. 1999) and whose home ranges were 

covered by our vegetation data layer. Detailed methods for core area and home range estimation 

are included in Appendix A.  

We used the US Forest Service’s Vegetation Mapping Program (VMap) layer (Brewer et 

al. 2004) as a repeatable method to delineate forest patches within female home ranges based on 

their spectral signature and we visually assigned 5 forest structural types to these patches: 1) 

open—trees not present; 2) thin forest—naturally sparsely stocked or mechanically thinned 

stands with a discontinuous canopy and a visible forest floor; 3) young regenerating forest—trees 

generally <10 cm diameter at breast height (DBH), with continuous canopy or dense deciduous 

shrub understory; 4) old regenerating forest—previously harvested or thinned with trees 

generally >10 cm DBH, continuous canopy or dense deciduous shrub understory; and 5) mature 

forest—large trees, continuous canopy, and no evidence of recent disturbance. We tested the 

accuracy of the layer by ground-truthing 187 random test locations stratified by study area and 

forest structure type. Overall accuracy was 93% with 87 of 93 locations classified correctly in 

Seeley and 87 of 94 locations classified correctly in the Purcells. We used the raster version of 

Fragstats software (v.4.2; McGarigal et al. 2012) to quantify all habitat covariates that described 

forest structure type composition and spatial configuration within female home ranges.  

Home range composition describes the variety and abundance of forest structure types, 

whereas home range configuration describes the spatial character and arrangement of forest 

structure types within a home range (McGarigal and Marks 1994). We estimated two covariates 
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representing home range composition (Table 2): percent composition, and area-weighted mean 

patch size; and five covariates representing home range configuration (Table 2): patch density, 

edge-contrast, contagion (fragmentation), correlation length (connectivity), and area-weighted 

mean perimeter-area ratio (patch area and shape).  

Because we did not assess snowshoe hare abundances or densities within female home 

ranges, we assumed snowshoe hare densities varied by forest structure type. Dense mature forest 

and dense young forest types in the western US have been consistently identified as capable of 

supporting the highest snowshoe hare densities relative to other forest types across multiple 

regions and seasons (Griffin 2004, Griffin and Mills 2009, Berg et al. 2012, Ivan et al. 2014). 

Therefore, based on existing knowledge of important forest types for lynx and snowshoe hares, 

we predicted (Table 1) reproductive success would be positively related to mature forest 

(Koehler et al. 2008, Squires et al. 2008, 2010), old regenerating forest (Squires et al. 2008, 

2010) and young regenerating forest (Burdett 2008, Griffin and Mills 2009, McCann and Moen 

2011); and negatively related to thin forest and open areas (Squires et al. 2010). 

We considered percent composition for all five forest structure types and also considered 

collapsed categories [i.e. forest (mature + old regenerating), open/sparse (open + thin)], because 

percent composition is often the most useful information that can be derived for fragmentation 

analyses (McGarigal and Marks 1994). For all other habitat covariates, unless otherwise 

specified, we only included mature forest and young regenerating forest structure types because 

of their known importance to lynx and snowshoe hares in the contiguous US (Ruggiero et al. 

2000, Burdett 2008, Koehler et al. 2008, Squires et al. 2010, McCann and Moen 2011). We 

selected area-normalized metrics or area-normalized the data before analysis because occupied 

core areas and home ranges varied in total area.  
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We considered connectivity of mature forest patches within each female home range 

using “correlation length”, a landscape metric based on the average extensiveness of connected 

patches of a focal habitat type within a given landscape (Fragstats; McGarigal and Marks 1994). 

This can be interpreted as the average distance a female lynx can traverse her home range 

without exiting mature forest, starting from a random point and moving in a random direction 

(Keitt et al. 1997). Because this metric is sensitive to area, we area-normalized correlation length 

(Kevin McGarigal, University of Minnesota, personal communication) by (1) quantifying the 

“potential” correlation length for each home range if the entire home range was one contiguous 

patch of mature forest; (2) quantifying “realized” correlation length for each home range, or the 

ability for the female to traverse her home range without exiting mature forest given the existing 

forest mosaic within the home range; (3) dividing the “realized” correlation length by the 

“potential” correlation length for each home range, resulting in a traversability index scaled 0–1, 

with values closer to 0 representing low traversability of home ranges and values closer to 1 

representing high traversability. We predicted reproductive success would be positively related 

to home ranges with high traversability (hereafter connectivity) of mature forest. We also 

evaluated connectivity of mature and old regenerating forest patches combined to test the 

importance of overall forest connectivity within female home ranges.  

We considered perimeter-area ratio for mature forest and young regenerating forest types 

because patches of equal area may vary significantly in the amount of their area exposed to edge. 

Patches with elongated or irregular shapes have higher perimeter-area ratios than patches of the 

same area with simple compact shapes (i.e. circle or square). Additionally, small patches 

generally have higher perimeter-area ratios than larger patches (Helzer and Jelinski 1999). We 

predicted reproductive success would be negatively correlated to perimeter-area ratio, a strong 
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correlate of fragmentation (McGarigal and Marks 1994). Additionally, we considered edge-

contrast density for forest (mature and old regenerating forest combined) and non-forest (open 

and thin forest combined). We predicted reproductive success would be negatively related to 

forest and non-forest edge density. We considered the potential importance of edge density 

between mature forest and young regenerating forest (Griffin and Mills 2009, Lewis et al. 2011). 

We predicted reproductive success would be positively related to mature forest and young 

regenerating forest edge density because these forest structure types are considered “source” 

populations for snowshoe hares (Griffin and Mills 2009). Additionally, the adjacency of these 

forest structure types could enhance snowshoe hare population growth (Griffin and Mills 2009, 

Lewis et al. 2011).  

Dense vegetation is an important habitat component for both lynx (Murray 2003, Moen et 

al. 2008, Fuller and Harrison 2010, Squires et al. 2010) and snowshoe hares (Griffin 2004, Fuller 

and Harrison 2005, Griffin and Mills 2009, Scott 2009). Therefore, we predicted reproductive 

success would be positively related to vegetation density in female home ranges. To assess 

vegetation density, we used the normalized difference vegetation index (NDVI) using ArcGIS® 

9.3.1 [Environmental Systems Research Institute (ESRI), Inc., Redlands, CA, USA]. This index 

is constructed from remotely sensed data that measures reflected light from the earth’s surface, 

and provides an assessment of the relative density and condition of vegetation. As such, Squires 

et al. (2013) suggested NDVI is a potential surrogate for horizontal cover. The advantage to 

using NDVI is that the entirety of each home range’s vegetative cover could be assessed without 

the extensive cost and effort of performing surveys on the ground. Low values of NDVI correlate 

with open, non-vegetated or low-productivity areas, whereas high values of NDVI correlate with 

densely vegetated areas, such as thick shrubs and intact forests (Gamon et al. 1995). We 
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estimated mean NDVI values for each female home range using composites derived from 

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) during the peak-growing 

season (July 9–July 30, 2007). 

Additionally, another habitat covariate we utilized to assess vegetation density was the 

Compound Topographic Index (CTI), a steady state wetness index that is strongly correlated 

with soil moisture (Moore et al. 1991). We assumed vegetation in more moist areas would 

regenerate and produce more biomass (i.e. potential horizontal cover) than drier areas following 

disturbances. Therefore, we predicted reproductive success would be positively related to mean 

soil moisture. We estimated the mean and range of CTI values for each home range using the 

Geomorphometry and Gradient Metrics extension (version1.01; Evans and Oakleaf accessed 

02/20/2013) for ArcGIS® 9.3.1.  

We analyzed variation in lynx reproductive success parameters relative to three measures 

of maternal condition: body mass, maternal age category, and an individual’s reproductive 

performance the previous year (reproductive event, initial litter size, litter success, and surviving 

litter size).  

We chose body mass as a surrogate for maternal fitness because starvation is a leading 

cause of mortality for lynx in both northern (Poole et al. 1996, Slough and Mowat 1996) and 

southern populations (Devineau et al. 2010, John Squires personal communication, Vashon et al. 

2012) and generally occurs during the winter in our study areas (John Squires, USFS-Rocky 

Mountain Research Station, personal communication). We only considered body mass 

measurements that were collected during the winter prior to each reproductive event, when the 

potential effect of diminished body condition on the reproductive capacity of an individual 

would be most pronounced. Body mass has been positively correlated with various reproductive 
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success parameters in other mammals (Stearns 1992); therefore, we predicted lynx reproductive 

success would be positively related to body mass. We also considered a standardized measure of 

body mass by dividing body mass by body length (tip of the nose to tip of the tail) to account for 

potential physiological differences between female lynx.  

We assigned females to three age categories (2, 3, and >3 years old) based on known age 

for females first observed as kittens and/or an analysis of tooth annuli collected from mortalities, 

and assigned unknown aged females to the >3 years old age category after we had monitored a 

female >3 years. We selected these age categories based on our ability to distinguish age in the 

field and for comparison with other studies (Mowat et al. 1996, Palomares et al. 2005, Nilsen et 

al. 2012, Gaillard et al. 2014). We predicted reproductive success would be positively related to 

female age categories and reproductive performance the previous year, a common relationship in 

mammals (Fisher 1930, Pianka and Parker 1975, Clutton-Brock 1984, Sydeman et al. 1991, 

Hadley et al. 2007).  

Statistical Analysis 

We used generalized linear mixed models (GLMM; Bolker et al. 2009) with a binomial 

distribution and a logit link function to test the effects of all covariates on 1) potential 

reproductive events and 2) litter success. We used linear mixed models with a normal Gaussian 

distribution to test the effects of all covariates on 3) initial litter size and 4) surviving litter size. 

All statistical analyses were performed in R version 2.15.2 (R Core Team 2013) using the lme4 

package (Bates et al. 2014). We included the identity of individual females as a random effect to 

control for repeated measures of the same individuals over time. We constructed candidate 

models from important (P <0.25) habitat covariates (Appendix B) that we identified using 

univariate linear regression (following Hosmer and Lemeshow 2000). For comparison and 
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consistency, we used the same set of candidate models for all four reproductive success analyses. 

For maternal covariate analysis, we used univariate models only due to high variation in sample 

sizes (Table 3). We evaluated covariates for normality and tested covariates for collinearity, 

retaining the covariate with greater univariate significance when variables were correlated (| r | > 

0.7; Menard 1995). For example, connectivity of mature forest was correlated with connectivity 

of all forest (mature and old regenerating forest combined, r = 0.76) and percent composition of 

mature forest (r = 0.92). We retained connectivity of mature forest in our models because it was 

more significant in all analyses. Perimeter-area ratio of young regenerating forest patches was 

inversely correlated with mean area of young regenerating forest patches (r = –0.71). We 

retained perimeter-area ratio because it reflects both area and shape of patches and it was more 

significant in all analyses.  

We used the Akaike Information Criterion corrected for small sample sizes (AICc: 

Burnham and Anderson 2002) to rank models. We interpreted models with 2 AICc of the top 

model to have similar support, and evaluated Akaike weights (wi) as evidence of the relative 

likelihood of the model given the set of candidate models (Burnham and Anderson 2002). We 

provide coefficient estimates (β), standard errors (SE), and 95% confidence intervals (CI) as 

indicators of direction and strength of covariate relationships.   

RESULTS 

We monitored 36 females (Purcells = 17, Seeley = 19) of reproductive age (≥2 years old) for an 

average of 2.7 ± 1.9 years (mean ± SD, range = 1–7) from 1998–2012. These females produced 

61 litters (150 kittens) out of 97 potential reproductive events, a proportion of 0.63. Older 

females (>3 years) were more likely to produce a litter than 2 year olds (β = 1.482, SE = 0.723, P 

= 0.055) with a proportion of 0.71 (n = 61) of older females producing a litter, but were only 
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marginally more likely to produce a litter than 3 year olds (β = 1.148, SE = 0.855, P = 0.161). 

The proportion of 3 year olds producing a litter was 0.5 (n = 12), and 2 year olds was 0.42 (n = 

12), which was not statistically different (β = 0.338, SE = 0.908, P = 0.709).  

Average litter size was 2.46 ± 0.8 kittens (mean ± SD, n = 61 litters). Litter sizes varied 

from 1 to 5 kittens per litter with 2 or 3 kittens being the most frequently observed in both study 

areas (Table 4). Average female body mass was 9.04 ± 0.8 kg (mean ± SE, n = 65, range = 7.25–

11). Body mass, and body mass divided by body length, were not strong correlates of 

reproductive success in any analyses (Tables 5–8). 

Our analysis of litter success consisted of 16 females that produced 40 litters (98 kittens) 

with known survival data. Thirty-two litters had ≥1 kitten survive to 8–10 months old resulting in 

an overall litter success rate of 80%. Fifty-seven of the 98 kittens survived to 8–10 months old, 

resulting in an individual survival rate of 58.2%. Females that produced a litter the previous year 

were marginally more likely to have ≥1 kitten survive to 8–10 months old the present year (β = 

0.703, SE = 0.385, P = 0.077). 

Mature forest was the dominant forest structure type in both annual core areas and annual 

home ranges. Mature forest comprised an average 49 ± 13% (mean ± SD, range = 7–79, n = 23) 

of core areas and an average 50 ± 15% (range = 18–69) of home ranges. Young regenerating 

forests comprised an average 13 ± 6% (range = 1–26) of core areas and an average 11 ± 4% 

(range = 4–24) of home ranges. Old regenerating, naturally or mechanically thinned, and open 

forest structure types comprised the remaining area. Average percent compositions of the 

different forest structure types did not vary substantially by study area or spatial extent 

(Appendix C).   
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Females that produced litters had core areas with intermediate amounts of young 

regenerating forest (10–15%, Figure 3), greater connectivity of mature forest (Figure 2), and 

greater edge density between mature and young regenerating forest (Figure 2) than core areas of 

females that did not produce litters (Tables 9–10). Specifically, the percentage of young 

regenerating forest had a strong positive linear appearance until the composition reached 

approximately 10–15% of the core area. Above this level of composition, the probability of 

producing a litter declined (Figure 3). Hereafter, we refer to this relationship as “intermediate 

amounts of young regenerating forest”. Similar to our core area results, females that produced 

litters had home ranges with intermediate amounts of young regenerating forest, greater 

connectivity of mature forest, and greater edge density between mature and young regenerating 

forest than home ranges of females that did not produce litters (Tables 11–12).  

Females with larger initial litter sizes had core areas with greater connectivity of mature 

forest, and young regenerating forest patches with low perimeter-area ratio as compared to core 

areas of females with smaller initial litter sizes (Figure 4, Tables 13–14). At the home range 

extent, females with larger initial litter sizes had home ranges with higher densities of young 

regenerating forest patches, higher percent composition of mature forest, lower percent 

composition of old regenerating forest, young regenerating forest patches with low perimeter-

area ratios, lower moisture variance and were less fragmented than home ranges of females with 

smaller initial litter sizes (Tables 15–16).  

For litter success, at both spatial extents, all 95% confidence intervals for model 

covariates overlapped zero, indicating that no habitat covariates were strongly significant at the 

given confidence level (Table 18; Table 20). This suggests either high model selection 

uncertainty, none of the covariates were important predictors for litter success, or our limited 
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sample size (n = 38) constrained opportunities to evaluate the robustness of factors that affected 

litter success (Tables 17–20).  

Females with larger surviving litter sizes had core areas with higher mean vegetation 

density (NDVI), young regenerating forest patches with low perimeter-area ratio, and lower 

moisture variance than core areas of females with smaller surviving litter sizes (Figure 5, Tables 

21–22). At the home range extent, females with larger surviving litter sizes had less fragmented 

home ranges, lower moisture variance, young regenerating forest patches with low perimeter-

area ratio, and lower percent composition of old regenerating forest than home ranges of females 

with smaller surviving litter sizes (Tables 23–24).  

Habitat covariates were better predictors of reproductive events at the core area (AICc = 

74.53, Table 9) than at the home range (AICc = 83.18, Table 11) extent. To a lesser degree, 

habitat covariates were better predictors of initial litter sizes at the core area (AICc = 124.44, 

Table 13) than at the home range (AICc = 126.62, Table 15) extent. Habitat covariates were 

similarly predictive of litter success at the core area (AICc = 39.21, Table 17) and the home range 

(AICc = 38.32, Table 19) extent, and also similarly predictive of surviving litter sizes at the core 

area (AICc = 75.59, Table 21) and the home range (AICc = 75.07, Table 23) extent. 

DISCUSSION 

Our results supported our hypotheses about the effects of maternal age category on lynx 

reproductive success (Table 1) in that older females (>3 years) had a higher probability of 

producing a litter than 2 year old females. This suggests that female lynx in our study areas may 

delay reproduction similar to northern lynx populations when snowshoe hare abundances are low 

(Brand and Keith 1979, Poole 1994, Slough and Mowat 1996). The average litter size in our 
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study (2.46 kittens; Squires in prep) was similar to average litter sizes for lynx in other areas of 

the contiguous US (Vashon et al. 2005, Moen et al. 2008, Shenk 2008, Vashon et al. 2012).  

Contrary to our predictions, maternal body mass was not a good predictor for 

reproductive success possibly because body mass measurements were recorded whenever 

females were captured in the winter, when lynx are potentially more resource-limited and female 

body mass may vary naturally (i.e. higher body mass in early winter, lower body mass in late 

winter). Similarly, maternal body mass was not predictive of litter size in Eurasian lynx (Lynx 

lynx) (Gaillard et al. 2014).  

Many of our hypotheses about the effects of forest structure type composition and 

configuration on female lynx reproductive success were supported (Table 1). We found that 

connectivity of mature forest, percent composition of young regenerating forest and young 

regenerating forest patches with low perimeter-area ratio, and adjacency of mature to young 

regenerating forest types were the most important predictors for overall lynx reproductive 

success in our study areas.  

Landscapes containing a heterogeneous mix of forest structure types provide lynx 

foraging habitat throughout the year (Poole et al. 1996, McKelvey et al. 2000, Hoving et al. 

2004, Squires et al. 2010). We found production of litters, larger initial litter sizes, and larger 

surviving litter sizes occurred where home ranges contained a relatively contiguous mature forest 

background with intermediate amounts (10–15%) of young forest patches with low perimeter-

area ratio. 

All female home ranges within our study areas were altered to a large degree by land 

management actions (i.e. regeneration harvests, pre-commercial and commercial thinning, 

prescribed burns, etc.). Female home ranges ranged from relatively contiguous mature forest 
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background among a mixture of different forest structure types (Figure 2), to those with smaller 

and more isolated mature forest patches surrounded by different forest structure types. The 

contiguous mature forest component, which we have referred to as greater connectivity of mature 

forest within female home ranges, was the only home range configuration metric that was 

strongly related to both successful reproduction and larger initial litter sizes.  

We suggest a threshold may exist for the positive effect of young regenerating forest, and 

that intermediate amounts (10–15%) are most conducive for lynx reproductive events (Figure 3). 

This positive relationship may be related to higher densities of snowshoe hares in young 

regenerating forest patches during summer (Griffin and Mills 2009). However, home ranges with 

greater proportions of young forest (i.e. >15%) may compromise foraging habitat for lynx in the 

winter. Mature forest is the most stable and consistent annual forest structure type for snowshoe 

hares and lynx in the western U.S. (Griffin 2004, Griffin and Mills 2009, Squires et al. 2010, 

Berg et al. 2012, Ivan et al. 2014).  

Although mature forest is the most crucial and limiting forest structure type for lynx (due 

to its long regeneration time) and provides high-quality, year-round snowshoe hare habitat, our 

findings suggest young regenerating forest in conjunction with mature forest may further 

enhance the reproductive success of lynx. Mature forest with low tree limbs and a substantial 

understory can provide lynx foraging habitat for long periods of time (Murray et al. 1994, 

Koehler et al. 2008, Squires et al. 2010), whereas habitat for hares in young regenerating forest 

habitat is temporary; trees eventually grow taller and become inaccessible to snowshoe hares. 

When this happens, the trees shade out the understory, resulting in unsuitable habitat for an 

extended period of time before the stand develops mature forest charachteristics. The duration of 
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time in suitable versus unsuitable habitat will vary, depending on the species composition of the 

regenerating stand and site characteristics.  

We further suggest the potential benefit of the adjacency of “source” forest structure 

types (i.e. mature forest and young regenerating forest) for snowshoe hares and thus lynx 

foraging. Female home ranges with greater adjacency of mature and young regenerating forest 

types were positively associated with both probability of producing a litter and litter success. 

Overall population growth of snowshoe hares in Montana was higher in dense mature and dense 

young forest types and in open young and open mature forest types (Griffin and Mills 2009). 

They further proposed that dense mature forest adjacent to dense young forest would likely be 

more valuable than the adjacency of either forest structure type to an open or thin forest structure 

type. In Washington, landscapes with contiguous snowshoe hare habitat or those surrounded by a 

mosaic of similar habitat quality supported higher snowshoe hares abundances than more 

fragmented landscapes (Lewis et al. 2011). Potential explanations for the importance of the 

adjacency between mature forest and young regenerating forest could be related to snowshoe 

hare daily movements among forest structure types (Walker 2005, Griffin and Mills 2009), 

dispersal (Griffin and Mills 2009), or seasonal shifts of snowshoe hares between mature forests 

and adjacent young regenerating forests (Ivan et al. 2014). Ivan et al. (2014) evaluated intra- and 

inter-seasonal snowshoe hare movement patterns in Colorado for 3 forest types (young 

lodgepole, old lodgepole, and mature spruce-fir forest). They discovered that snowshoe hares 

shifted from young lodgepole forests into older adjacent forests during winter and reversed this 

movement in the summer. Similar to previous studies of snowshoe hare movement, the authors 

proposed this seasonal shift could be due to an interaction between snow depth and tree canopy, 
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suggesting that snow could make younger forests less available or less secure for hares in the 

winter (Ivan et al. 2014). 

We found that female lynx with home ranges containing 10–15% composition of young 

regenerating forest patches with low perimeter-area ratio had larger litter sizes. These patches of 

young regenerating forest may provide higher densities of prey for female lynx and kittens 

during the summer, especially when females are strongly associated with den sites and are 

restricted in foraging movements. For example, female lynx use natal (parturition) and multiple 

maternal den locations for rearing their offspring over a period of 6–8 weeks during early 

summer (mid-May–mid July) (Slough 1999, Moen et al. 2008, Olson et al. 2011) and exhibit a 

central place foraging behavior with movement restricted to a small foraging radius [2–3 km 

from den sites in Minnesota (Moen et al. 2008); 2.1 km in Montana (Olson et al. 2011)]. Lynx 

den most frequently in mature forest stands in the western US; for example, all lynx dens in 

Washington (n = 3) and 80% of lynx dens in Montana (n = 55) were located in mature forest 

stands (Koehler et al. 2008, Squires et al. 2008). We suggest female lynx may benefit from 

“source” patches of young regenerating forest adjacent to mature forest within their home ranges. 

Existing literature regarding the importance of old regenerating forest to lynx is 

equivocal, suggesting old regenerating forest without a dense understory (i.e. during stem-

exclusion period) will only become high quality lynx habitat once a dense understory develops 

(USFS 2007). We suggest that higher amounts of old regenerating forest with lesser amounts of 

mature forest may be negatively associated with lynx reproductive success. Females with home 

ranges containing higher amounts of old regenerating forest had smaller initial litter sizes than 

females with home ranges containing lesser amounts of old regenerating forest. However, we 

interpret these results with caution because our sample size was small and because once a dense 
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understory has developed, older regenerating forests will transition into snowshoe hare and thus 

lynx foraging habitat once again (USFS 2007).   

Future Research Recommendations   

To improve and expand upon these findings, we recommend future studies consider tree species 

composition within female home ranges to refine our current understanding of lynx habitat. For 

example, within the mature forest component of a female’s home range, the amount of spruce-fir 

forest is likely more important than other tree species compositions (Squires and Ruggiero 2007, 

Squires et al. 2008, 2010).  

Furthermore, future investigations that incorporate a continuous landscape gradient 

framework (i.e. pixels) instead of the classic categorical patch-mosaic framework may provide 

additional insight into the realized niche (McGarigal et al. 2009, Cushman et al. 2010) of lynx in 

the contiguous U.S. For example, the frequency and distribution of dense pockets of high quality 

lynx habitat within forested stands could be an important consideration. Finally, developing 

models that project forest structure types through time may provide valuable guidance for current 

and future land management actions. This would ensure these actions are sensitive to lynx 

habitat needs, a critical step for recovery planning.   

MANAGEMENT IMPLICATIONS 

We suggest that lynx reproductive success is related to forest structure type abundance and 

spatial configuration within female home ranges. A habitat mosaic comprised of higher 

percentages and connectivity of mature forest interspersed with patches of young regenerating 

forest will likely support and enhance lynx reproductive success within our study areas. Female 

lynx home ranges consisting of >50% mature forest and approximately 10–15% young 

regenerating forest at both home range extents appears to be the optimal composition of forest 
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structure types. Additionally, greater connectivity of mature forest combined with young 

regenerating forest patches with low perimeter-area ratios appears to be the optimal 

configuration of forest structure types.       

Current management of US Forest Service lands that contain lynx habitat allows for no 

greater than 30% young forest within a predefined lynx analysis unit (Ruediger et al. 2000, 

USFS 2007). We suggest 10–15% composition of young regenerating forest may be more 

appropriate, and suggest that lesser amounts (<10%) and greater amounts (>15%) may 

negatively affect lynx reproductive output.  

In the short term, timber harvest and natural disturbances can create high quality summer 

habitat for snowshoe hares. However, there is also a long period of time when these stands will 

no longer retain high quality snowshoe hare/lynx habitat characteristics, as they progress through 

seral stages from young regenerating to mature stands. Therefore, we suggest current forest 

management practices retain existing mature forest patches that provide year-round snowshoe 

hare habitat, and maintain connectivity of those patches within lynx habitat by avoiding further 

fragmentation. Land management practices should be carefully evaluated and planned at the 

home range level; long-term management plans should be developed that will favor maintaining 

and enhancing the connectivity and abundance of mature forest spatially and temporally within 

lynx habitat.   
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Figure 1.  Purcell Mountains and Seeley Lake study areas in the range of Canada lynx (Lynx canadensis) 
in northwestern Montana, USA. Region is highlighted in grey in the inset map.  
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Figure 2.  Two female Canada lynx (Lynx canadensis) home ranges (left) with associated core areas 
(right) in the Purcell Mountains and Seeley Lake study areas in northwestern Montana, USA which 
illustrate the importance of connectivity of mature forest (dark green) and the importance of young 
regenerating forest (yellow) adjacency to mature forest. Core areas of females that produced litters had 
higher connectivity of mature forest and higher adjacency between mature forest and young regenerating 
forest types. Forest structure categories include: mature forest (dark green), old regenerating forest (light 
green), young regenerating forest (yellow), thin (orange), and open areas (red).  
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Figure 3.  Predicted probability plots for potential reproductive events as functions of individual 
covariates from generalized linear mixed effects models of Canada lynx (Lynx canadensis) reproductive 
success in northwestern Montana, USA, 1998–2012. Plots depict relationships between individual 
covariates and parameters with other covariates fixed at mean values. Numerical covariate relationships 
are illustrated as functions (black lines) with 95% CIs (gray shading). Model selection results are 
presented in Tables 9–12. Covariates are defined in Table 2.  
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Figure 4.  Predicted probability plots for initial litter size as functions of individual covariates from linear 
mixed effects models of Canada lynx (Lynx canadensis) reproductive success in northwestern Montana, 
USA, 1998–2012. Plots depict relationships between individual covariates and parameters with other 
covariates fixed at mean values. Numerical covariate relationships are illustrated as functions (black lines) 
with 95% CIs (gray shading). Model selection results are presented in Tables 13–16. Covariates are 
defined in Table 2.  
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Figure 5.  Predicted probability plots for surviving litter size as functions of individual covariates from 
linear mixed effects models of Canada lynx (Lynx canadensis) reproductive success in northwestern 
Montana, USA, 1998–2012. Plots depict relationships between individual covariates and parameters with 
other covariates fixed at mean values. Numerical covariate relationships are illustrated as functions (black 
lines) with 95% CIs (gray shading). Model selection results are presented in Tables 21–24. Covariates are 
defined in Table 2. 
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Table 1.  Summary of hypotheses and predictions for all response variables representing measures of 
reproductive success: Covariates included in top models are identified in bold and covariates with 
confidence intervals that did not overlap zero are identified by an asterisk (*). Definitions of maternal 
covariates

a 
are provided below and definitions of habitat covariates are provided in Table 2.  

Covariates
 a
 Predictions Summary of major findings 

Maternal   

body mass β >0  

mass_body length β >0  

age category β >0 >3 years old compared to 2 year olds 

reproductive event previous year β >0  

litter size previous year β >0  

litter success previous year β >0  

survival size previous year β >0  

Forest structural types   

open β <0  

thin β <0  

young β >0* %*, patch density*, patch shape* 

old β >0* %* 

mature β >0* %*, connectivity* 

forest (mature +old) β >0  

sparse (thin +open) β <0  

young and mature β >0* edge density* 

all forest types combined β <0* contagion* (fragmentation) 

Vegetation density   

mean NDVI β >0* vegetation density* 

mean CTI (soil moisture) β >0  

range CTI (soil moisture) β <0* moisture variance* 
a
Maternal covariates are defined as follows: body mass, female weight in kilograms; mass_body length, 

body mass in kilograms divided by body length in centimeters; age category, categorical variable [2 year 
olds, 3 year olds or >3 year olds]; reproductive event previous year, reproductive event recorded the 
previous year (binary); litter size previous year, initial litter size recorded the previous year; litter success 
previous year, litter survival (≥1 survivor) recorded the previous year (binary); survival size previous 
year, the number of kittens that survived to 8–10 months old the previous year. 
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Table 2.  Landscape metrics used to analyze home range composition and configuration by forest 
structure types within female Canada lynx (Lynx canadensis) home ranges in northwestern Montana, 
USA, from 1998−2012.  

Covariates Units Description 
   
percent composition  % Percentage of the home range comprised of the 

corresponding habitat type 
   
area-weighted mean patch  ha Similar to mean patch area, however emphasis is 

placed on the mean patch area of larger patches  
   
correlation length (connectivity) 0−1 index A measure of patch extent, how far across the 

landscape a patch extends until it reaches a boundary 
with another patch type 

   
patch density  # per  

100 ha 
Number of patches per hectare (class level) 

   
patch shape edge/ha Shape complexity of patches, where shape is defined 

by perimeter-area relationships 
   
edge contrast  m/ha The total length of edge per hectare, weighted by the 

contrast between different habitat types  
   
contagion   % Measure of the aggregation of habitat types, 

approaches 100 when all patch types are equally 
adjacent to other patch types 
 

*For complete descriptions and algorithms see McGarigal and Marks (1994). 
 

 

 

 

 

 

 

 

 

 

 



29 
 

Table 3.  Number of observations and unique females included in statistical analyses for Canada lynx 
(Lynx canadensis) in northwestern Montana, USA, from 1998–2012.  Definitions of maternal covariatesa 

are provided below. Sample sizes (n) and number of females included in each analysis are identified. 

Covariatesa  
Potential 

reproductive 
events 

Initial litter 
size Litter success Surviving 

litter size 

 n Females n Females n Females n Females 
         
body mass 65 33 42 20 26 13 19 10 
         
mass_body length 52 30 33 18 20 12 15 9 
         
age category 85 34 54 21 36 16 28 14 
         
litter size present year 61 22 61 22 40 16 32 14 
         
litter previous year 61 23 45 18 29 13 23 12 
         
litter size previous year 61 23 45 18 29 13 23 12 
         
survival previous year 35 14 29 12 25 11 20 10 
         
survival size previous year 29 13 24 11 21 10 17 9 
         
all habitat covariates 78 23 54 17 38 15 32 13 
         

a
Maternal covariates are defined as follows: body mass, female weight in kilograms; mass_body length, 

body mass in kilograms divided by body length in centimeters; age category, categorical variable [2 year 
olds, 3 year olds or >3 year olds]; reproductive event previous year, reproductive event recorded the 
previous year (binary); litter size previous year, initial litter size recorded the previous year; litter success 
previous year, litter survival (≥1 survivor) recorded the previous year (binary); survival size previous 
year, the number of kittens that survived to 8−10 months old the previous year.  
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Table 4.  Baseline information for initial litter sizes and initial litter sizes subset by litters with known 
survival data for female Canada lynx (Lynx canadensis) in northwestern Montana, USA, from 
1998−2012.   

Litter sizes Litter sizes with known survival 

Litter 
size n Total 

kittens 
Litter 
size n Total 

kittens 
Total 

survivors 
Probability of 

survival 

Number of kittens 
that survive at each 

litter size 
1 6 6 1 4 4 4 1.000 1.00 
2 27 54 2 20 40 23 0.575 1.15 

3 24 72 3 12 36 17 0.472 1.42 

4 2 8 4 2 8 7 0.875 3.50 

5 2 10 5 2 10 6 0.600 3.00 

Total 61 150 Total 40 98 57 0.582  
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Table 5.  Univariate models tested to explain variation in *potential reproductive events (binary) for 
female Canada lynx (Lynx canadensis) in northwestern Montana, USA, from 1998−2012. Definitions of 
maternal covariatesa are provided below. Beta coefficients (β), standard errors (SE), 95% confidence 
intervals (95% CI), p-values, sample size (n) and number of females are identified.  

Covariatesa β SE 95% CI p-value n Females 

body mass  0.184 0.4427 −0.838, 1.211 0.677 65 33 

mass_body length −18.227 16.379 −57.701, 16.539 0.266 52 30 

age category          2 yr (dummy) −0.619 0.6875 −2.333, 0.824 0.368 85 34 

                        3 yr: 2 yr 0.338 0.9083 −1.624, 2.364 0.709   

                      >3 yr: 2yr 1.482 0.7232 −0.125, 3.393 0.055   

                        3 yr: >3 yr −1.148 0.8547 −2.94, 0.434 0.161   

reproductive event previous year 0.455 0.7172 −2.075, 2.076 0.526 61 23 

litter size previous year  0.079 0.5239 −1.036, 1.265 0.881 44 17 

litter success previous year  −0.142 1.3630 −4.459, 3.393 0.917 35 14 

survival size previous year −0.248 0.6407 −1.628 1.636 0.699 29 13 
a
Maternal covariates are defined as follows: body mass, female weight in kilograms; mass_body length, 

body mass in kilograms divided by body length in centimeters; age category, categorical variable [2 year 
olds, 3 year olds or >3 year olds]; reproductive event previous year, reproductive event recorded the 
previous year (binary); litter size previous year, initial litter size recorded the previous year; litter success 
previous year, litter survival (≥1 survivor) recorded the previous year (binary); survival size previous 
year, the number of kittens that survived to 8−10 months old the previous year.  
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Table 6.  Univariate models tested to explain variation in *initial litter size for female Canada lynx (Lynx 
canadensis) in northwestern Montana, USA, from 1998−2012. Beta coefficients (β), standard errors (SE), 
95% confidence intervals (95% CI), p-values, sample size (n), and number of females are identified. 
Definitions of maternal covariatesa are provided below.   
 

Covariatesa  β SE 95% CI p-value n Females 

body mass  −0.113 0.1657 −0.446, 0.275 0.500 42 20 

mass_body length −5.908 6.4390 −18.904, 7.086 0.362 33 18 

age category          2 yr (dummy) 2.817 0.3556 2.107, 3.527 ≤0.001 54 21 

                        3 yr: 2 yr −0.463 0.4642 −1.395, 0.465 0.321   

                      >3 yr: 2yr −0.415 0.3742 −1.161, 0.333 0.271   

                        3 yr: >3 yr −0.048 0.3439 −0.739, 0.639 0.889   

reproductive event previous year 0.385 0.2599 −0.139, 0.906 0.143 45 18 

litter size previous year  −0.038 0.1244 −0.364, 0.226 0.803 35 15 

litter success previous year  0.542 0.3411 −0.157, 1.233 0.124 29 12 

survival size previous year −0.072 0.1659 −0.462, 0.267 0.665 24 11 
a
Maternal covariates are defined as follows: body mass, female weight in kilograms; mass_body length, 

body mass in kilograms divided by body length in centimeters; age category, categorical variable [2 year 
olds, 3 year olds or >3 year olds]; reproductive event previous year, reproductive event recorded the 
previous year (binary); litter size previous year, initial litter size recorded the previous year; litter success 
previous year, litter survival (≥1 survivor) recorded the previous year (binary); survival size previous 
year, the number of kittens that survived 8−10 months old the previous year.  
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Table 7.  Univariate models tested to explain variation in the probability of *litter success for female 
Canada lynx (Lynx canadensis) in northwestern Montana (1998−2012).  Beta coefficients (β), standard 
errors (SE), and 95% confidence intervals (95% CI), p-values, sample size (n), and number of females are 
identified. Definitions of maternal covariatesa are provided below. 

Covariatesa  β SE 95% CI p-value n Females 

body mass  −0.187 0.5590 −1.720, 1.197 0.738 26 13 

mass_body length −2.986 19.502 −83.152, 101.46 0.878 20 12 

age category          2 yr (dummy) 1.119 1.1682 −1.014, −4.765 0.338 36 16 

                        3 yr: 2 yr −1.156 1.5349 −6.566, 1.813 0.451   

                      >3 yr: 2yr 0.428 1.2718 −2.758, 3.217 0.737   

                        3 yr: >3 yr −1.584 1.3825 −6.836, 0.766 0.252   

reproductive event previous year 0.288 1.2583 −2.829, 2.589 0.819 29 13 

litter size previous year  −0.229 0.4699 −1.246, 0.781 0.626 25 11 

litter success previous year  0.348 1.2815 −2.808, 2.739 0.786 25 11 

survival size previous year 0.091 0.6268 −1.086, 1.607 0.884 21 10 
aMaternal covariates are defined as follows: body mass, female weight in kilograms; mass_body length, 
body mass in kilograms divided by body length in centimeters; age category, categorical variable [2 year 
olds, 3 year olds or >3 year olds]; reproductive event previous year, reproductive event recorded the 
previous year (binary); litter size previous year, initial litter size recorded the previous year; litter success 
previous year, litter survival (≥1 survivor) recorded the previous year (binary); survival size previous 
year, the number of kittens that survived to 8−10 months old the previous year.  
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Table 8.  Univariate models tested to explain variation in *surviving litter size per litter for female 
Canada lynx (Lynx canadensis) in northwestern Montana, USA, from 1998−2012.  Beta coefficients (β), 
standard errors (SE), and 95% confidence intervals (95% CI), p-values, sample size (n), and number of 
females are identified. Definitions of maternal covariatesa are provided below. 
 

Covariatea  β SE 95% CI p-value n Females 

body mass  0.054 0.2545 −0.571, 0.589 0.845 19 10 

mass_body length −4.584 9.229 −23.957, 14.727 0.621 15 9 

age category  2 yr (dummy) 2.044 0.3920 1.249, 2.839 ≤0.001 28 14 

                        3 yr: 2 yr −0.363 0.5404 −1.528, 0.734 0.505   

                      >3 yr: 2yr −0.364 0.4088 −1.197, 0.464 0.376   

                        3 yr: >3 yr 0.002 0.4537 −0.967, 0.922 0.997   

reproductive event previous year 0.703 0.3845 −0.083, 1.490 0.077 23 12 

litter size previous year  −0.081 0.1415 −0.376, 0.294 0.613 20 10 

litter success previous year  0.536 0.4410 −0.391, 1.469 0.244 20 10 

survival size previous year −0.144 0.1825 −0.556, 0.339 0.507 17 9 
aMaternal covariates are defined as follows: body mass, female weight in kilograms; mass_body length, 
body mass in kilograms divided by body length in centimeters; age category, categorical variable [2 year 
olds, 3 year olds or >3 year olds]; reproductive event previous year, reproductive event recorded the 
previous year (binary); litter size previous year, initial litter size recorded the previous year; litter success 
previous year, litter survival (≥1 survivor) recorded the previous year (binary); survival size previous 
year, the number of kittens that survived to 8−10 months old the previous year.  
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Table 9.  Model selection results for predicting potential reproductive events (binary) for female Canada 
lynx (Lynx canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. Provided are 
number of parameters (K), Akaike Information Criterion corrected for small sample sizes (AICc), ΔAICc, 
Akaike weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top model. Covariates 
are described in Table 2. Analysis included 78 total observations from 23 female lynx.  
Model  K AICc ΔAICc wi LL 
connectivity of mature forest + 
percent young forest2 5 74.53 0.00 0.72 −31.85 

edge density mature to young + 
percent young forest2  5 76.46 1.93 0.27 −32.81 

percent young forest2  5 83.70 9.18 0.01 −37.58 
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Table 10.  Top model parameter estimates for predicting potential reproductive events (binary) of female 
Canada lynx (Lynx canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. 
Provided are coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and p-values for 
all models within 2 AICc of the top model. Covariates are described in Table 2. Analysis included 78 
observations from 23 female lynx.  
Top models β SE 95% CI p-value 
connectivity of mature forest + percent 
young forest2      

     connectivity of mature forest 4.560 1.5345 1.552, 7.568 0.003 

     percent young forest 1.019 0.2614 0.507, 1.532 ≤0.001 

     percent young forest2  –0.029 0.0081 −0.045, −0.014 ≤0.001 
edge density mature to young + percent 
young forest2      

     edge density mature to young 0.093 0.0322 0.030, 0.156 0.004 

     percent young forest  0.875 0.2359 0.412, 1.337 ≤0.001 

     percent young forest2  –0.030 0.0082 −0.046, −0.014 ≤0.001 
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Table 11.  Model selection results for predicting potential reproductive events (binary) for female Canada 
lynx (Lynx canadensis) at the 90% home range extent in northwestern Montana, 1998−2012. Provided are 
number of parameters (K), Akaike Information Criterion corrected for small sample sizes (AICc), ΔAICc, 
Akaike weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top model. Covariates 
are described in Table 2. Analysis included 78 observations from 23 female lynx.  
Models K AICc ΔAICc wi LL 
connectivity of mature forest + percent 
young forest2  5 83.18 0.00 0.38 −36.17 

edge density mature to young + 
percent young forest2  5 84.51 1.34 0.19 −36.84 

percent young forest2  4 84.60 1.42 0.19 −38.02 

contagion + percent young forest2   5 86.67 3.49 0.07 −37.92 
edge density mature to young + shape 
of mature forest patches 4 89.60 6.42 0.01 −40.52 

patch density young forest + shape of 
young forest patches 4 89.97 6.79 0.01 −40.71 

patch density young forest 5 90.22 7.04 0.03 −41.95 

edge density mature to young 3 90.64 7.47 0.03 −42.16 

mean moisture 3 90.74 7.56 0.03 −42.21 

mean moisture + moisture variance 3 90.77 7.72 0.03 −42.22 

intercept only 2 92.29 9.11 0.00 −44.06 
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Table 12.  Top model parameter estimates for predicting potential reproductive events (binary) of female 
Canada lynx (Lynx canadensis) at the 90% home range extent in northwestern Montana, 1998−2012. 
Provided are coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and p-values for 
all models within 2 AICc of the top model. Covariates are described in Table 2. Analysis included 78 
observations from 23 female lynx.  

Top models β SE 95% CI p-value 
connectivity of mature forest + percent 
young forest2      

     connectivity of mature forest  3.038 1.6227 −0.143, 6.218    0.061 

     percent young forest  1.336 0.3759 0.599, 2.073  ≤0.001 

     percent young forest2  −0.047 0.0136 −0.073, −0.019  ≤0.001 
edge density mature and young + percent 
young forest2      

     edge density mature to young  0.066 0.0434 −0.019, 0.151    0.129 

     percent young forest   0.969 0.3011 0.379, 1.559    0.001 

     percent young forest2  −0.038 0.0116 −0.061, −0.015    0.001 

percent young forest2      

     percent young forest   1.121 0.3203 0.493, 1.748  ≤0.001 

     percent young forest2  −0.039 0.0119 −0.076, −0.016    0.001 
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Table 13.  Model selection results for predicting initial litter size (range = 1−5 kittens) for female Canada 
lynx (Lynx canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. Provided are 
number of parameters (K), Akaike Information Criterion corrected for small sample sizes (AICc), ΔAICc, 
Akaike weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top model. Covariates 
are described in Table 2. Analysis included 54 observations from 23 female lynx.  

Models K AICc ΔAICc wi  LL 
connectivity of mature forest + shape of 
young forest patches 5 124.44 0.00 0.67 −56.60 

shape of young forest patches 4 128.22 3.78 0.10 −59.70 
percent old regenerating forest + shape 
of young forest patches 5 128.55 4.11 0.09 −58.65 

vegetation productivity (NDVI) + shape 
of young forest patches 5 129.03 4.58 0.07 –58.89 

edge density mature to young + shape of 
young forest patches 5 129.57 5.13 0.05 −59.16 

vegetation productivity (NDVI) 4 133.19 8.74 0.01 −62.18 
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Table 14.  Top model parameter estimates for predicting initial litter size (range = 1−5 kittens) for female 
Canada lynx (Lynx canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. 
Provided are coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and p-values for 
all models within 2 AICc of the top model. Covariates are described in Table 2. Analysis included 54 
observations from 23 female lynx.  

Top models β SE 95% CI p-value 
connectivity of mature forest + shape of 
young forest patches     

     connectivity of mature forest 0.959 0.3739 0.214, 1.705 0.013 

     shape of young forest patches −0.006 0.0011 −0.008, −0.003 ≤0.001 
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Table 15.  Model selection results for predicting initial litter size (range = 1−5 kittens) for female Canada 
lynx (Lynx canadensis) at the 90% home range extent in northwestern Montana, 1998−2012. Provided are 
number of parameters (K), Akaike Information Criterion corrected for small sample sizes (AICc), ΔAICc, 
Akaike weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top model. Covariates 
are described in Table 2. Analysis included 54 total observations from 23 female lynx.  

Models K AICc ΔAICc wi LL 

contagion + percent mature forest 5 126.62 0.00 0.18 −57.68 
shape of young forest patches + 
moisture variance 5 126.67 0.05 0.18 −57.71 

shape of young forest patches + patch 
density young forest  5 127.10 0.48 0.14 −57.93 

contagion + percent old regenerating 
forest 5 127.18 0.56 0.14 −57.96 

shape of young forest patches 4 128.99 2.38 0.06 −60.09 

contagion  4 133.09 5.98 0.01 −62.13 
percent mature forest + percent open 
areas 5 133.30 6.20 0.01 −61.03 

vegetation productivity (NDVI) 4 134.21 7.11 0.01 −62.70 
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Table 16.  Top model parameter estimates for predicting initial litter size (range = 1−5 kittens) for female 
Canada lynx (Lynx canadensis) at the 90% home range extent in northwestern Montana, 1998−2012. 
Provided are coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and p-values for 
all models within 2 AICc of the top model. Covariates are described in Table 2. Analysis included 54 
observations from 23 female lynx.  

Top models β SE 95% CI p-value 

contagion + percent mature forest     

          contagion  −0.078 0.0167 −0.111, −0.044 ≤0.001 

          percent mature forest 0.026 0.0084 0.009, 0.043 0.003 
shape of young forest patches + moisture 
variance     

          shape of young forest patches −0.004 0.0011 −0.007, −0.002 ≤0.001 

          moisture variance −0.149 0.0671 −0.284, −0.016 0.029 

shape and density of young forest patches     

          patch density young forest 0.463 0.2184 0.028, 0.910 0.038 

          shape of  young forest patches −0.006 0.0012 −0.008, −0.003 ≤0.001 

contagion + percent old regenerating forest     

          contagion   −0.053 0.0129 −0.079, −0.027 ≤0.001 

          percent old regenerating forest −0.033 0.0109 −0.055, −0.011 0.004 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



43 
 

Table 17.  Model selection results for predicting litter success (binary) for female Canada lynx (Lynx 
canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. Provided are number of 
parameters (K), Akaike Information Criterion corrected for small sample sizes (AICc), ΔAICc, Akaike 
weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top model. Covariates are 
described in Table 2. Analysis included 38 total observations from 15 female lynx.  
Models K AICc ΔAICc wi LL 
edge density mature to young + shape of 
mature forest patches 4 39.21 0.00 0.11 −15.00 

edge density mature to young + 
connectivity of mature forest 4 39.88 0.67 0.08 −15.33 

percent young forest 3 40.52 1.31 0.06 −16.91 

intercept only 2 40.65 1.44 0.05 −18.15 

edge density mature to young  3 40.86 1.65 0.04 −17.07 

shape of mature forest patches 3 41.23 2.02 0.04 −17.26 
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Table 18.  Top model parameter estimates for predicting litter success (binary) of female Canada lynx 
(Lynx canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. Provided are 
coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and p-values for all models 
within 2 AICc of the top model. Covariates are described in Table 2. Analysis included 38 total 
observations from 15 female lynx.  

Top models β SE 95% CI p-value 
edge density mature to young + shape of 
mature forest patches     

          edge density mature to young 0.123 0.0686 −0.011, 0.258 0.072 

          shape of mature forest patches 0.012 0.0087 −0.005, 0.029 0.168 
edge density mature to young + connectivity 
of mature forest     

          edge density mature to young 0.118 0.0634 −0.006, 0.242 0.062 

          connectivity of mature forest −3.541 2.0852 −7.628, 0.546 0.089 

percent young forest 0.149 0.1062 −0.032, 0.462 0.160 

intercept only 1.488 0.4185 0.727, 2.393 ≤0.001 

edge density mature to young 0.061 0.0434 −0.021, 0.164 0.157 

shape of mature forest patches 0.009 0.0084 −0.003, 0.035 0.305 
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Table 19.  Model selection results for predicting litter success (binary) for female Canada lynx (Lynx 
canadensis) at the 90% home range extent in northwestern Montana, 1998−2012. Provided are number of 
parameters (K), Akaike Information Criterion corrected for small sample sizes (AICc), ΔAICc, Akaike 
weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top model. Covariates are 
described in Table 2. Analysis included 38 total observations from 15 female lynx.  

Models K AICc ΔAICc wi  LL 

connectivity of mature forest 3 38.32 0.00 0.11 −15.81 
edge density mature to young + 
connectivity of mature forest 4 38.70 0.37 0.08 −14.74 

edge density mature to young + shape of 
mature forest patches 4 39.21 0.88 0.07 −15.00 

connectivity of mature forest + percent 
young forest 4 39.53 1.20 0.06 −15.16 

percent young forest 3 40.27 1.94 0.04 −16.78 
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Table 20.  Top model parameter estimates for predicting litter success (binary) of female Canada lynx 
(Lynx canadensis) at the 90% home range extent in northwestern Montana, 1998−2012. Provided are 
coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and p-values for all models 
within 2 AICc of the top model. Covariates are described in Table 2. Analysis included 38 total 
observations from 15 female lynx.  

Top models β SE 95% CI p-value 

connectivity of mature forest −7.365 4.801 −19.894, −0.494 0.125 
edge density mature to young + connectivity 
of mature forest      

     edge density mature to young 0.059 0.046 −0.029, 0.149 0.191 

     connectivity of  mature forest −8.075 5.259 −18.385, 2.234 0.125 
edge density mature to young + shape of 
mature forest patches     

     edge density mature to young 0.064 0.0476 −0.029, 0.157 0.177 

     shape of mature forest patches 0.012 0.0128 −0.007, 0.044 0.148 
connectivity of mature forest + percent 
young forest     

     connectivity of mature forest −7.159 5.355 −17.655, 3.337 0.181 

     percent young forest 0.148 0.134 −0.115, 0.412 0.269 

percent young forest 0.211 0.133 −0.049, 0.472 0.112 
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Table 21.  Model selection results for predicting surviving litter size (range = 1−4 kittens) for female 
Canada lynx (Lynx canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. 
Provided are number of parameters (K), Akaike Information Criterion corrected for small sample sizes 
(AICc), ΔAICc, Akaike weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top 
model. Covariates are described in Table 2. Analysis included 31 total observations from 13 female lynx.  

Models K AICc ΔAICc wi LL 
shape of young forest patches + 
moisture variance  5 75.59 0.00 0.31 −31.60 

vegetation productivity (NDVI) + 
moisture variance 5 77.59 2.00 0.12 −32.60 

contagion+ moisture variance 5 78.61 3.02 0.08 −33.11 

moisture variance 4 78.86 3.27 0.06 −34.66 

shape of young forest patches 4 79.09 3.50 0.05 −34.78 

intercept only  3 82.68 7.09 0.01 −37.90 
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Table 22.  Top model parameter estimates for predicting surviving litter size (range = 1−4 kittens) for 
female Canada lynx (Lynx canadensis) at the 50% core area extent in northwestern Montana, 1998−2012. 
Provided are coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and p-values for 
all models within 2 AICc of the top model. Covariates are described in Table 2. Analysis included 31 total 
observations from 13 female lynx.  

Top models β SE 95% CI p-value 
shape of young forest patches + moisture 
variance     

     shape of young forest patches −0.003 0.0013 −0.006, −0.0008 0.013 

     moisture variance −0.309 0.1166 −0.546, −0.074 0.012 

vegetation productivity + moisture variance     

     vegetation productivity (NDVI) 7.827 3.7248 0.296, 15.359 0.042 

     moisture variance −0.286 0.1240 −0.537, −0.035 0.027 
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Table 23.  Model selection results for predicting surviving litter size (range = 1−4 kittens) for female 
Canada lynx (Lynx canadensis) at the 90% home range extent in northwestern Montana, 1998−2012. 
Provided are number of parameters (K), Akaike Information Criterion corrected for small sample sizes 
(AICc), ΔAICc, Akaike weights (wi), and log-likelihood (LL) for all models within 10 AICc of the top 
model. Covariates are described in Table 2. Analysis included 31 total observations from 13 female lynx.  

Models K AICc ΔAICc wi LL 

contagion + moisture variance 5 75.07 0.00 0.33 −31.33 
shape of young forest patches + 
moisture variance 5 76.77 1.70 0.14 −32.19 

contagion  4 77.42 2.35 0.10 −33.94 

moisture variance 4 78.20 3.13 0.07 −34.33 
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Table 24.  Top model parameter estimates for predicting surviving litter size (range = 1−4 kittens) for 
female Canada lynx (Lynx canadensis) at the 90% home range extent in northwestern Montana, 
1998−2012. Provided are coefficients (β), standard errors (SE), 95% confidence intervals (95% CI), and 
p-values for all models within 2 AICc of the top model. Covariates are described in Table 2. Analysis 
included 31 total observations from 13 female lynx.  

Top models β SE 95% CI p-value 

contagion + moisture variance     

     contagion −0.043 0.0166 −0.076, −0.009 0.014 

     moisture variance −0.225 0.0945 −0.416, −0.033 0.022 
shape of young forest patches + moisture 
variance      

     shape of  young forest patches −0.003 0.0014 −0.006, −0.0001 0.008 

     moisture variance −0.262 0.0943 −0.454, −0.071 0.038 
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APPENDIX A 

Home Range Estimation  

We used ArcGIS®  9.3.1 (Environmental Systems Research Institute (ESRI), Inc., Redlands, CA, USA) 

and the Home Range Tools Extension (HRT; Rodgers et al. 2007) to estimate annual home ranges using 

the fixed-kernel density method (Worton 1989). We used a grid cell size of 100 m and an href smoothing 

parameter (Worton 1995) of 1.0.  We estimated multi-annual home ranges for 23 female lynx using GPS 

and VHF telemetry data.  We used 43,539 GPS locations and 1,057 VHF locations to estimate 90% and 

50% kernel multi-annual home ranges for 23 female lynx. We used 50% kernel home ranges to evaluate 

the importance of core use areas. We used the kernel method to minimize inclusion of unused areas in the 

analysis (Girard et al. 2002) and to minimize home range overestimation concerns (Seaman et al. 1999). 

When available, multi-annual home ranges were constructed combining GPS and VHF telemetry data for 

each female over multiple years. Only females whose home range size had become asymptotic given their 

number of locations were included in the analysis.  The average number of locations per female was 

1,893 (range = 36−3,416). Telemetry locations that were recorded during the process of initializing GPS 

collars, and locations after the collar dropped were removed.  Additionally, locations that were considered 

outside of the animals normal movements such as exploratory movements were removed. To validate the 

use of annual home ranges as representative for each female lynx, we subset winter and summer home 

range and annual home ranges by year for females with multiple years of telemetry data. Consistent with 

existing literature (Ruediger et al. 2000), these home ranges did not vary substantially by year. Two 

young females utilized a larger than average geographical area until their first reproductive event in which 

the home range area became much smaller and stabilized. We checked all females’ telemetry data for this 

type of behavior and removed locations that were collected prior to first reproductive events.     
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APPENDIX B 

 
Home Range Composition by Forest Structure Type 

Table B.1.  Mean composition (%) by forest structure type in home ranges and core areas for female 
Canada lynx (Lynx canadensis) in northwestern Montana, 1998−2012. Presented are mean percent values 
for Purcell Mountains and Seeley Lake study areas combined, and for each study area individually by 
forest structure type. Median percent composition is presented in parentheses and standard deviation (SD) 
is provided.   

Forest structure type % Composition 
(50% core area) SD 

% Composition 
(90% home range) SD 

Forest (mature forest + 
old regenerating forest) 73  13 73  10 

          Seeley 76  14 74  12 

          Purcells 69  12 72  9 

     Mature forest 49  18 50  15 

          Seeley 50  22 52  15 

          Purcells 48  14 48  16 

     Old regenerating forest 24  13 23  10 

          Seeley 26  10 22  4 

          Purcells 22  15 24  14 
Sparse (Young forest + 
Thin + Open) 27  13 27  10 

          Seeley 24  13 26  12 

          Purcells 31  12 28  9 

     Young forest 13  6 11  4 

          Seeley 11  4 9  4  

          Purcells 15  7 12  5 

     Thin 10  7 11  5 

          Seeley 10  7 12  6 

          Purcells 10  7 9  4 

      Open 4  4 6  4 

          Seeley 3  4 5  5 

          Purcells 5  4 7  3 
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APPENDIX C 

 
Complete Univariate Analysis for Reproductive Success Models 

Table C.1.  Parameter estimates for univariate models from a mixed effects logistic regression analysis of 
the effects of habitat composition and configuration on potential reproductive events for female Canada 
lynx (Lynx canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard errors 
(SE), and 95% confidence intervals (95% CI) are identified. Parameters include a variety of landscape 
metrics at the core area extent (50% KDE). Covariates are described in Table 2. Confidence intervals that 
do not overlap zero are identified in bold. Analysis included 78 total observations from 23 female lynx. 

 50% core areas β SE p-value 95% CI 

 percent mature forest 0.024 0.0258 0.360 −0.032, 0.096 

 percent old regenerating forest −0.076 0.0354 0.031 −0.179, −0.007 

 percent young + percent young 
forest2     

               percent young  0.832 0.2224 0.0002 0.412, 1.337 

               percent young forest2 −0.026 0.0073 0.0004 −0.049, −0.012 

 percent thin −0.004 0.0766 0.959 −0.198, 0.173 

 percent open 0.054 0.1248 0.667 −0.252, 0.344 

 percent forest (mature forest + old 
regenerating forest) −0.029 0.0345 0.394 −0.111, 0.053 

 percent thin/open 0.008 0.0540 0.885 −0.128, 0.133 

 percent thin/open/young  0.029 0.0345 0.393 −0.053, 0.112 

 edge density mature to young  0.093 0.0345 0.007 0.026, 0.195 

 edge density forest to non-forest 0.002 0.0167 0.907 −0.041, 0.039 

 patch density young forest 1.684 0.7069 0.017 0.525, 3.721 

 patch density mature forest −0.156 0.3664 0.671 −0.998, 0.748 

 mean moisture  3.529 1.655 0.033 0.214, 8.307 

 moisture variance −0.676 0.3732 0.070 −1.776, 0.066 

 vegetation productivity (NDVI) 6.950 13.561 0.608 −23.208, 41.351 

 connectivity of mature forest  2.628 1.602 0.101 −0.659, 7.452 

 shape of young forest patches −0.008 0.0047 0.105 −0.020, 0.002 

 contagion −0.045 0.0433 0.301 −0.149, 0.057 
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Table C.2.  Parameter estimates for univariate models from a mixed effects logistic regression analysis of 
the effects of habitat composition and configuration on potential reproductive events for female Canada 
lynx (Lynx canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard errors 
(SE), and 95% confidence intervals (95% CI) are identified.  Parameters include a variety of landscape 
metrics at the home range (90% KDE) extent. Covariates are described in Table 2. Confidence intervals 
that do not overlap or barely overlap zero are identified in bold. Analysis included 78 total observations 
from 23 female lynx. 

90% home range  β SE p-value 95% CI 

percent mature forest 0.006 0.0313 0.851 −0.066, 0.083 

percent old regenerating forest −0.041 0.0419 0.330 −0.149, 0.053 
percent young forest + percent young 
forest2      

              percent young forest 1.121 0.3203 0.0005  

              percent young forest2 −0.039 0.0119 0.001 −0.076, −0.016 

percent thin −0.049 0.0951 0.602 −0.293, 0.164 

percent open 0.113 0.1070 0.289 −0.121, 0.382 
percent forest (mature forest + old 
regenerating forest) −0.032 0.0438 0.463 −0.138, 0.069 

percent thin/open 0.013 0.0571 0.820 −0.122, 0.149 

percent thin/open/young 0.034 0.0438 0.438 −0.068, 0.140 

edge density mature to young 0.074 0.0375 0.049 −0.0004, 0.175 

edge density forest to non-forest 0.012 0.0232 0.590 −0.041, 0.071 

patch density young forest 2.192 1.0930 0.045 0.114, 5.000 

patch density mature forest −0.289 1.0515 0.783 −2.957, 2.094 

mean moisture  3.562 1.7960 0.047 −0.68, 8.868 

moisture variance −0.392 0.3294 0.234 −1.325, 0.298 

vegetation productivity (NDVI) 11.249 14.907 0.450 −21.313, 50.847 

connectivity of mature forest  1.028 1.9739 0.602 −3.396, 6.140 

shape of young forest patches −0.006 0.0054 0.267 −0.019, 0.006 

contagion −0.075 0.0532 0.158 −0.209, 0.041 
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Table C.3.  Parameter estimates for univariate models from a mixed effects linear regression analysis for 
the effects of habitat composition and configuration on litter size for female Canada lynx (Lynx 
canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard errors (SE), and 
95% confidence intervals (95% CI) are identified.  Parameters include a variety of landscape metrics at 
the core area extent (50% KDE). Covariates are described in Table 2. Confidence intervals that do not 
overlap zero are identified in bold. Analysis included 54 total observations from 23 female lynx. 

 50% core areas β SE p-value 95% CI 

 percent mature forest 0.003 0.0078 0.738 −0.015, 0.019 

 percent old regenerating forest −0.022 0.0108 0.052 −0.047, 0.0002 

 percent young forest 0.039 0.0221 0.082 −0.005, 0.088 

 percent thin 0.006 0.0207 0.770 −0.038, 0.053 

 percent open 0.030 0.0378 0.427 −0.046, 0.118 

 percent forest (mature forest + old 
regenerating forest) −0.013 0.0111 0.252 −0.039, 0.009 

 percent thin/open 0.008 0.0146 0.607 −0.023, 0.042 

 percent thin/open/young 0.015 0.0111 0.191 −0.008, 0.041 

 edge density mature to young 0.015 0.0123 0.238 −0.012, 0.042 

 edge density forest to non-forest −0.007 0.0050 0.162 −0.018, 0.003 

 patch density young forest 0.279 0.2034 0.181 −0.151, 0.739 

 patch density mature forest −0.039 0.1155 0.738 −0.295, 0.194 

 mean moisture  0.783 0.5113 0.138 −0.287, 1.941 

 moisture variance −0.192 0.0933 0.063 −0.400, 0.012 

 vegetation productivity (NDVI) 10.121 3.1990 0.004 3.742, 16.907 

 connectivity of mature forest  0.172 0.4941 0.729 −0.907, 1.232 

  shape young forest patches −0.004 0.0011 0.0002 −0.007, −0.002 

 contagion −0.031 0.0138 0.028 −0.064, −0.004 
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Table C.4.  Parameter estimates for univariate models from a mixed effects linear regression analysis for 
the effects of habitat composition and configuration on litter size for female Canada lynx (Lynx 
canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard errors (SE), and 
95% confidence intervals (95% CI) are identified.  Parameters include a variety of landscape metrics at 
the home range extent (90% KDE). Covariates are described in Table 2. Confidence intervals that do not 
overlap zero are identified in bold. Analysis included 54 total observations from 23 female lynx. 

 90% home range β SE p-value 95% CI 

 percent mature forest −0.0003 0.0090 0.970 −0.021, 0.019 

 percent old regenerating forest −0.023 0.0134 0.099 −0.052, 0.005 

 percent young forest 0.073 0.0315 0.028 0.009, 0.142 

 percent thin −0.005 0.0258 0.855 −0.059, 0.053 

 percent open 0.065 0.0297 0.033 0.006, 0.134 

 percent forest (mature forest + old 
regenerating forest) −0.022 0.0135 0.114 −0.053, 0.005 

 percent thin/open 0.015 0.0159 0.355 −0.017, 0.052 

 percent thin/open/young 0.022 0.0135 0.103 −0.005, 0.054 

 edge density mature to young 0.012 0.0113 0.316 −0.013, 0.037 

 edge density forest to non-forest −0.007 0.0069 0.341 −0.022, 0.009 

 patch density young forest 0.079 0.3032 0.795 −0.588, 0.750 

 patch density mature forest −0.110 0.3202 0.732 −0.832, 0.549 

 mean moisture 0.478 0.6038 0.434 −0.813, 1.790 

 moisture variance −0.187 0.0742 0.022 −0.356, −0.033 

 vegetation productivity (NDVI) 10.345 3.4850 0.006 3.381, 18.595 

 connectivity of mature forest  0.097 0.5509 0.860 −1.100, 1.305 

 shape of young forest patches −0.005 0.0012 0.0004 −0.007, −0.002 

 contagion −0.044 0.0142 0.003 −0.078, −0.016 
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Table C.5.  Parameter estimates for univariate models from a mixed effects logistic regression analysis of 
the effects of habitat composition and configuration on litter success (binary) for female Canada lynx 
(Lynx canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard errors (SE), 
and 95% confidence intervals (95% CI) are identified.  Parameters include a variety of landscape metrics 
at the core area extent (50% KDE). Covariates are described in Table 2. Confidence intervals that do not 
overlap zero are identified in bold. Analysis included 38 total observations from 15 female lynx. 

 50% core areas β SE p-value 95% CI 

 percent mature forest −0.015 0.0269 0.566 −0.110, 0.035 

 percent old regenerating forest −0.009 0.0399 0.817 −0.092, 0.092 

 percent young forest 0.149 0.1062 0.160 −0.032, 0.462 

 percent thin 0.022 0.0742 0.764 −0.124, 0.249 

 percent open 0.094 0.1422 0.508 −0.157, 0.505 

 percent forest (mature forest + old 
regenerating forest) −0.052 0.0499 0.295 −0.215, 0.031 

 percent thin/open 0.026 0.0548 0.638 −0.075, 0.200 

 percent thin/open/young 0.053 0.0494 0.286 −0.030, 0.219 

 edge density mature to young 0.061 0.0434 0.157 −0.021, 0.164 

 edge density forest to non-forest 0.025 0.0232 0.285 −0.017, 0.105 

 patch density young forest 0.465 0.6985 0.506 −1.076, 2.051 

 patch density mature forest 0.283 0.3970 0.477 −0.446, 1.233 

 mean moisture −0.155 1.7841 0.931 −4.258, 3.822 

 moisture variance −0.126 0.3804 0.741 −1.019, 0.633 

 vegetation productivity (NDVI) 2.300 12.7549 0.857 −26.811, 31.427 

 connectivity of mature −2.046 1.8470 0.268 −9.437, 1.382 

  shape of young forest patches −0.003 0.0044 0.557 −0.013, 0.006 

 shape of mature forest patches 0.009 0.0085 0.305 −0.003, 0.035 

 contagion −0.036 0.0516 0.482 −0.186, 0.064 
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Table C.6.  Parameter estimates for univariate models from a mixed effects logistic regression analysis of 
the effects of habitat composition and configuration on litter success (binary) for female Canada lynx 
(Lynx canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard errors (SE), 
and 95% confidence intervals (95% CI) are identified.  Parameters include a variety of landscape metrics 
at the home range extent (90% KDE). Covariates are described in Table 2. Confidence intervals that do 
not overlap zero are identified in bold. Analysis included 38 total observations from 15 female lynx. 

90% home range  β SE p-value 95% CI 

percent mature forest −0.054 0.0458 0.240 −0.219, 0.019 

percent old regenerating forest 0.055 0.0647 0.396 −0.052, 0.287 

percent young forest 0.211 0.1330 0.112 −0.038, 0.508 

percent thin 0.021 0.0916 0.818 −0.149, 0.347 

percent open 0.083 0.1133 0.465 −0.121, 0.397 
percent forest (mature forest + old 
regenerating forest) −0.067 0.0629 0.285 −0.236, 0.038 

percent thin/open 0.030 0.0581 0.604 −0.073, 0.229 

percent thin/open/young 0.068 0.0629 0.281 −0.038, 0.235 

edge density mature to young 0.040 0.0401 0.320 −0.041, 0.131 

edge density forest to non-forest 0.033 0.0334 0.318 −0.027, 0.125 

patch density young forest 0.751 0.9688 0.438 −1.359, 3.111 

patch density mature forest 1.663 1.1820 0.159 −0.503, 4.327 

mean moisture  −0.444 1.9828 0.823 −5.336, 3.820 

moisture variance 0.010 0.3272 0.975 −0.674, 0.783 

vegetation productivity (NDVI) 8.259 14.6430 0.573 −22.880, 41.869 

connectivity of mature forest  −7.365 4.8010 0.125 −19.894, −0.494 

shape of young forest patches −0.0003 0.0049 0.951 −0.012, 0.010 

shape of mature forest patches 0.015 0.0123 0.220 −0.004, 0.048 

contagion −0.065 0.0612 0.284 −0.229, 0.048 
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Table C.7.  Parameter estimates for univariate models from a mixed effects linear regression analysis of 
the effects of habitat composition and configuration on surviving litter size (range=1−4 kittens) for female 
Canada lynx (Lynx canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard 
errors (SE), and 95% confidence intervals (95% CI) are identified.  Parameters include a variety of 
landscape metrics at the core area extent (50% KDE). Covariates are described in Table 2. Confidence 
intervals that do not overlap zero are identified in bold. Analysis included 31 total observations from 13 
female lynx.  

 50% core area β SE p-value 95% CI 

 percent mature forest −0.0002 0.0095 0.984 −0.020, 0.021 

 percent old regenerating forest −0.016 0.0158 0.331 −0.051, 0.017 

 percent young forest 0.058 0.0248 0.038 0.004, 0.108 

 percent thin −0.004 0.0253 0.873 −0.058, 0.050 

 percent open 0.028 0.0449 0.531 −0.065, 0.126 

 percent forest (mature forest + old 
regenerating forest) −0.013 0.0135 0.367 −0.041, 0.017 

 percent thin/open 0.002 0.0178 0.895 −0.035, 0.041 

 percent thin/open/young 0.016 0.0134 0.239 −0.012, 0.046 

 edge density mature to young 0.022 0.0149 0.153 −0.009, 0.054 

 edge density forest to non-forest −0.007 0.0079 0.404 −0.024, 0.009 

 patch density young forest 0.240 0.2641 0.367 −0.306, 0.825 

 patch density mature forest 0.193 0.1121 0.146 −0.097, 0.420 

 mean moisture 1.239 0.6472 0.098 −0.300, 2.761 

 moisture variance −0.361 0.1269 0.011 −0.621, −0.098 

 vegetation productivity (NDVI) 10.305 3.8600 0.017 2.284, 18.112 

 connectivity of mature forest  −0.092 0.6052 0.883 −1.329, 1.296 

  shape of young forest patches −0.004 0.0014 0.012 −0.007, −0.001 

  shape of mature forest patches −0.0002 0.0014 0.879 −0.003, 0.003 

 contagion −0.027 0.0165 0.118 −0.063, 0.008 
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Table C.8.  Parameter estimates for univariate models from a mixed effects linear regression analysis of 
the effects of habitat composition and configuration on surviving litter size (range=1−4 kittens) for female 
Canada lynx (Lynx canadensis) in northwestern Montana from 1998−2012. Beta coefficients (β), standard 
errors (SE), and 95% confidence intervals (95% CI) are identified.  Parameters include a variety of 
landscape metrics at the home range extent (90% KDE). Covariates are described in Table 2. Confidence 
intervals that do not overlap zero are identified in bold. Analysis included 31 total observations from 13 
female lynx.  

 90% home range β SE p-value 95% CI 

 percent mature forest −0.008 0.0112 0.511 −0.031, 0.017 

 percent old regenerating forest −0.008 0.0187 0.675 −0.048. 0.031 

 percent young forest 0.085 0.0488 0.092 −0.015, 0.194 

 percent thin 0.0002 0.0336 0.995 −0.072, 0.071 

 percent open 0.074 0.0312 0.036 0.006, 0.138 

 percent forest (mature forest + old 
regenerating forest) −0.026 0.0162 0.137 −0.059, 0.009 

 percent thin/open 0.019 0.0189 0.317 −0.021, 0.059 

 percent thin/open/young 0.027 0.0162 0.125 −0.009, 0.060 

 edge density mature to young 0.009 0.0149 0.553 −0.022, 0.044 

 edge density forest to non-forest −0.007 0.0114 0.572 −0.030, 0.018 

 patch density young forest 0.155 0.3556 0.668 −0.587, 1.009 

 patch density mature forest 0.220 0.3971 0.588 −0.666, 1.045 

 mean moisture  0.642 0.7847 0.430 −1.091, 2.294 

 moisture variance −0.299 0.1030 0.008 −0.516, −0.089 

 vegetation productivity (NDVI) 10.944 4.4250 0.027 1.500, 19.912 

 connectivity of mature forest  −0.445 0.7176 0.550 −1.925, 1.159 

 shape of young forest patches −0.004 0.0016 0.034 −0.007, −0.0004 

 shape of mature forest patches 0.0007 0.0027 0.809 −0.005, 0.006 

 contagion  −0.055 0.0173 0.005 −0.089, −0.019 
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