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The transport of hazardous materials is an important strategic and tactical decision problem. Risks associated with this activity make
transport planning difficult. Although most existing analytical approaches for hazardous materials transport account for risk, there is
no agreement among researchers on how to model the associated risks. This paper provides an overview of the prevailing models,
and addresses the question “Does it matter how we quantify transport risk?” Our empirical analysis on the U.S. road network
suggests that different risk models usually select different “optimal” paths for a hazmat shipment between a given origin-destination
pair. Furthermore, the optimal path for one model could perform very poorly under another model. This suggests that researchers
and practitioners must pay considerable attention to the modeling of risks in hazardous materials transport.

The transportation of hazardous materials (hazmats) is
an important problem in industrialized societies, due

to the pervasiveness of these materials. Hazardous materi-
als, or dangerous goods, include explosives, gases, flamma-
ble liquids and solids, oxidizing substances, poisonous and
infectious substances, radioactive materials, corrosive sub-
stances, and hazardous wastes. For most members of in-
dustrial societies, life without hazmats is inconceivable.
Unfortunately, most hazmats are not used at their point of
production, and they are transported over considerable
distances. It is estimated that between 250,000 and 500,000
hazmat shipments take place in the United States every
day, resulting in an annual total shipment volume of be-
tween 1.5 and 4 billion tons. To put this number into
perspective, according to the U.S. Department of Com-
merce (1994), roughly every fifth truck on U.S. highways is
a hazmat truck.

What differentiates shipments of hazmats from ship-
ments of other materials is the risk associated with an
accidental release of these materials during transportation.
Hazmats can be extremely harmful to the environment and
to human health, since exposure to their toxic chemical
ingredients could lead to the injury or death of plants,
animals, and humans. This risk is recognized by society,
and in many instances strict regulations govern the move-
ment of hazmats. Consequently, hazmat carriers have bet-
ter accident records than other carriers. Nevertheless, even
if they are a rare occurrence, accidents do happen during
the transportation of hazmats. For example, in 1979 a train
carrying toxic chemicals was derailed in Mississauga,

Ontario, and chlorine leaking from damaged tank cars
forced the evacuation of 200,000 people. In a particularly
gruesome accident in 1982, 2,700 fatalities were reported
due to a gasoline truck explosion in a tunnel in Afghani-
stan. Major gasoline shipments by truck were prohibited in
Germany after a 1987 six-fatality accident involving a gas-
oline truck and an ice cream parlor. Although the average
annual number of fatalities due to hazmat transport acci-
dents is dwarfed by the annual number of fatalities due to
regular traffic accidents (10 vs. 35,000 in the United
States), hazmat transport accidents receive special atten-
tion by the media, which sensitizes the public, and conse-
quently the regulators, to the danger of transporting
hazmats.

The modeling of transport problems is a popular appli-
cation area in OR. In most transport planning models, the
objective is to move products from origins to destinations
at minimal cost. However, for hazmat shipments, a cost-
minimizing objective is usually not suitable. The risk asso-
ciated with hazmats makes these problems more
complicated (and more interesting) than many other trans-
port problems. Consideration of risk in hazmat transport
models is not merely an academic exercise. The Hazardous
Materials Transportation Uniform Safety Act of 1990 re-
quires the U.S. Department of Transportation to deter-
mine standards for designating the routes to be used for
hazmat shipments. Clearly, a consideration of societal risks
is important in such strategic decisions.

In our opinion, OR can play a significant role in the
strategic and tactical decision processes surrounding

Subject classifications: Transportation: travel route choice, risk.
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hazmat transport. This is not a revelation; there is already
a considerable amount of OR literature in this area. How-
ever, there is no agreement among researchers on the
proper representation of the associated transport risks.
The goal of this paper is to provide some insight into
hazmat transport modeling by considering different ways
of modeling transport risk and attempting to answer the
question “Does it matter how we model transport risk?”
We begin our paper by discussing the application of the
traditional definition of risk to hazmat transport in an OR
context. Then we present alternative risk models from the
literature and provide a bicriterion approach for hazmat
route selection. In the empirical part of the paper, we
compare the hazmat routes selected by different risk mod-
els and discuss similarities and dissimilarities between
these routes.

1. MODELING OF RISK FOR HAZMAT
TRANSPORT

Although risk is a popular term in the media, and a popu-
lar topic with many authors, there is no universally ac-
cepted definition of risk. Most people would agree that
risk has to do with the probability and the consequence of
an undesirable event. Although some authors define risk
as only one of these terms (i.e., probability or conse-
quence), it is more common to define risk as the product
of both the probability of and the consequence of the
undesirable event (Covello and Merkhofer 1993). Note
that this is an “expected consequence” definition, and it is
the definition that we refer to as “traditional risk” in this
paper (primarily for the reason that it is the definition
used in the U.S. Department of Transportation 1989
guidelines for transporting hazmats, which have influenced
many researchers in this area). We emphasize that, de-
pending on the circumstances, it might make sense to use
other definitions of risk. In fact, the primary objective of
this paper is to explore the different ways in which risk can
be modeled in the context of hazmat transport.

In the case of hazmat transport, an undesirable event is
an accident that results in the release of a hazardous sub-
stance. This is usually called an incident. Although there
can be many undesirable consequences of an incident
(such as damage to wildlife, economic losses, and injuries),
almost all the literature in this area is concerned with
fatalities. Hence, it is common to assume that the undesir-
able consequence is proportional to the size of the popu-
lation in the neighborhood of the incident, where the size
of the neighborhood depends on the substance carried.
Furthermore, the probability of an incident occurring de-
pends on the substance carried and the road type.

Clearly, the risk associated with transporting a hazard-
ous material depends not only on the substance being
transported but also on the road network characteristics,
such as road type and population, along the chosen route.
Hence, we develop a traditional risk model for hazmat

transport by beginning with its building blocks, namely the
unit road segment risk and the edge risk.

1.1. Unit Road Segment Risk

Using the traditional risk definition, the risk of transport-
ing hazmat B over a unit road segment A (such as a one-
mile stretch) can be written as:

R AB 5 p AB C AB , (1)

where

pAB 5 probability of an incident on the unit road
segment A for hazmat B, and

CAB 5 population along the unit road segment A within
the neighborhood associated with hazmat B.

For most hazmats, estimates of incident probabilities are
between 0.1 and 0.8 per million miles. The consequence
depends on population density near the road segment and
can be estimated by using the impact area for the hazmat
under consideration. The impact area can be represented
as a circle and the radius of the circle can be anywhere
from 0 to 7 miles. (CANUTEC 1992 suggests an initial
evacuation radius of 0.5 to 1 mile for most hazmat fires.) If
we view the impact area as a “danger circle”, we can visu-
alize the hazmat transport activity as the movement of this
danger circle along a path in a road network from an
origin to a destination, as illustrated in Figure 1. Clearly,
the movement of the danger circle carves out a band, on
both sides of a road, which is the region of possible
impacts.

The use of this danger circle in estimating the conse-
quence of a hazmat incident requires some justification.
This is, in fact, a simplification necessitated by data limita-
tions. To illustrate this, consider the modeling of the effect
of a ruptured container of pressurized ammonia at a given
location and time. To accurately estimate the number of
fatalities that could result from this rupture, we need to
first estimate the concentration of the gas as a function of
the rate and type of release, the distance from the con-
tainer, the existing winds, and the topography. Depending
on the velocity and the density of the gas, three different
dispersion models must be applied to estimate the concen-
tration at different distances (Glickman and Raj 1991). We
then need to estimate the probability of human fatality as

Figure 1. Depiction of hazmat transport between an origin
(O) and a destination (D) as the movement of a
danger circle on a network.

626 / ERKUT AND VERTER



a function of ammonia concentration. Finally, multiplying
these probabilities with the number of people residing at
different distances from the container and aggregating, we
can find an expected number of fatalities as a result of this
incident.

It is easy to see that this estimation process requires a
lot of information. It requires an accurate knowledge of
meteorological conditions and topography, the effect of
ammonia on humans, and the location of individuals at the
time of the release. Although it might be possible to esti-
mate the risk for a specific incident (by fixing the model
parameters, such as the rate of release and wind direc-
tion), it is quite unrealistic to expect the generation of this
information for all links of a transport network for route
planning purposes. Furthermore, the human dose-
response relationship for many toxic chemicals is not
known, making it difficult to estimate under what condi-
tions fatalities will occur. Hence, although theoretically
possible, it is practically impossible to produce accurate
estimates of incident consequences. This is why we need to
use the concept of “danger circle” in the above risk model.
This can be viewed as a worst-case scenario, where we
assume that every individual residing in the danger circle
will be subject to the same undesirable consequence
(death, in the worst case) regardless of the distance to the
incident, meteorological conditions, topography, etc.

If we use the danger circle approximation, we must esti-
mate the population within a certain distance of the road.
This is difficult since the exact population in an area de-
pends on the time of the day, as considerable population
shifts occur due to travel to-and-from work. Since most
population estimates are based on census counts, they
might not provide accurate estimates for daytime popula-
tion. Hence, if a hazmat shipment is scheduled to pass
through a region during the day, then the population-at-
risk estimate of the danger circle will be inaccurate. This is
not a limitation imposed by the danger circle approxima-
tion, but a limitation imposed by the availability of data.
Nevertheless, it is worth mentioning here since it could
introduce inaccuracies to models based on the danger cir-
cle concept or, in general, to models that require location-
specific population estimates. (If daytime population data
are available, or they can be estimated accurately, they
should be used instead of census counts when dealing with
daytime hazmat shipments. If hazmat shipments can occur
during the day or night, then it may be best to use a
weighted combination, or the maximum, of the daytime
and nighttime populations.)

Having argued for the necessity of the danger-circle ap-
proximation, we now turn to the use of the above model
for unit road segment risk in route evaluation and selec-
tion models. Such models are network optimization mod-
els, where roads are represented as edges of the network.
In the context of hazmat routing it is desirable for an edge
to be relatively uniform in its two important attributes:
incident probability and population density around the

road. For example, a long stretch of a highway that goes
through a series of population centers and farmland
should not be represented as a single edge, but as a series
of edges. Thus, a network to be used for hazmat routing is
usually different from a network to be used for other trans-
port planning purposes. This difference is quite important
since it limits the portability of network databases between
different transport applications.

1.2. Edge Risk

Noting that (1) is valid for a unit road segment, we now
move on to the computation of risk along an edge of a
hazmat routing network. Due to the construction of the
network, it is safe to assume that an edge is a collection of
n unit road segments (e.g., miles) each with the same inci-
dent probability p and population in (the danger circle) C.
(For simplicity, we suppress the indices for the hazmat
type and road type.) The vehicle will either have an inci-
dent in the first mile, or it will make it safely to the second
mile. If it makes it safely to the second mile, it will either
have an incident in the second mile, or it will not, and so
on. We assume that the trip ends if an incident occurs. The
tree in Figure 2 displays all possible outcomes of a trip
along this edge.

The expected consequence (risk) associated with this
edge would be expressed as follows:

pC 1 ~1 2 p! pC 1 ~1 2 p! 2pC 1 · · · 1 ~1 2 p! n21pC .

(2)

Note that, given p, n, and C, we can easily compute (2)
and attach this value to the edge as an edge attribute
(impedance) to be used in route selection problems. How-
ever, it is possible to simplify (2) considerably by using an
approximation:

p s > 0, for s . 1. (3)

This approximation is very reasonable since p is at most on
the order of one-in-a-million-miles. With this approxima-
tion, the risk associated with a trip on this edge becomes:

~ pn!C . (4)

Figure 2. Partial probability tree displaying possible out-
comes of a hazmat transport along an edge,
where p 5 incident probability per mile and C 5
population impacted in the case of an incident.
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Defining

pi 5 probability of an incident on edge i 5 (prob. of an
incident on a unit segment of edge i)(no. of unit
segments in edge i), and

Ci 5 the number of people within the danger circle along
edge i, we can express the risk of one trip along
edge i as

R i 5 p i C i . (5)

Note that we need uniform incident probability and uniform
population density along an edge to express the edge risk in
this simple form. (If the network is designed in a way that
these two attributes are not uniform on the edges, then the
computation of edge risk becomes more complicated, and it
may become impossible to use other definitions of risk, such
as perceived risk, which is introduced in the next section.)
This limitation on edge definition is why the construction of a
hazmat transport network is more complicated than the con-
struction of a transport network for cost minimization to
be used in the case of ordinary (nonhazardous) materials.

Although the approximation in (3) simplifies the calcu-
lation of edge risks, it is not crucial since we can use (2)
directly to calculate edge risks. However, it becomes cru-
cial when we simplify the path-risk minimization problem
to that of a shortest path problem, as we will see next.

1.3. Path Risk

Having expressed the risk associated with travel on a unit
road segment and on an edge in (1) and (5), we now
address the following question: How would we express the
risk for an entire path between an origin and a destina-
tion? A path is a collection of edges, and we can view the
travel on the path as a probabilistic experiment, as dis-
played in Figure 3.

The expected consequence (risk) associated with this
trip would be expressed as follows:

p 1 C 1 1 ~1 2 p 1 ! p 2 C 2 1 ~1 2 p 1 !~1 2 p 2 ! p 3 C 3 1 . . ..

(6)

We can view (1 2 p1)(1 2 p2) . . . (1 2 pk21)pkCk as the
edge attribute (impedance) of the kth edge. Note that the

edge attributes are path-dependent. To clarify this, con-
sider a very small path selection problem with four edges
(Figure 4).

Defining xj 5 1 if edge j is on the path, 0 otherwise, we
can write the following path selection problem with a risk-
minimization objective:

min ~ p 1 C 1 ! x 1 1 ~ p 2 C 2 ! x 2

1 @~1 2 p 1 ! x 1 1 ~1 2 p 2 ! x 2 #~ p 3 C 3 ! x 3

1 @~1 2 p 1 ! x 1 1 ~1 2 p 2 ! x 2 #~ p 4 C 4 ! x 4 , (7)

subject to x 1 1 x 2 5 1, (8)

x 1 1 x 2 5 x 3 1 x 4 , (9)

x 3 1 x 4 5 1, (10)

x j 5 ~0, 1! for j 5 1, . . . , 4. (11)

Note that the objective function contains products of the
decision variables. This is necessary since the incident
probabilities (and hence the risks) of edges 3 and 4 depend
on whether the vehicle takes edge 1 or edge 2 in the first
part of the trip. However, it is also undesirable since it
results in a nonlinear integer programming (NIP) problem.
This problem can be rewritten as an linear integer (LIP)
programming problem using a substitution of variables.
However, the resulting LIP will have considerably more
variables than the NIP, and it does not offer a particularly
attractive way to solve the route selection problem. On the
other hand, an assumption similar to (3) (namely pipj > 0,
for all i, j) is sufficient to achieve a considerable reduction
in problem difficulty. Using this approximation (and the
constraint set), the objective function can be rewritten as:

min O
j51

4

~ p j C j ! x j . (12)

Thus, the risk minimization problem can be (approximate-
ly) solved by using a shortest path algorithm. Note that
(12) is merely the sum of expected values of incident con-
sequences (expected number of people impacted per trip).

As pointed out in Erkut and Verter (1995a), almost all
the papers on hazmat transport use this approximation,
without always explicitly stating it. (Sometimes this approx-
imation is stated as (1 2 pi) > 1, for all i.) We would like
to focus on this approximation since it is so crucial in
making the risk minimization problem tractable. How
large an error is introduced into the solution by this ap-
proximation? By ignoring the higher-order terms from the
analysis, we are overestimating incident probabilities. In

Figure 3. Partial probability tree displaying possible out-
comes of a hazmat transport along a path, where
pi 5 incident probability along the ith edge of
the path and Ci 5 population impacted by an
incident on the ith edge.

Figure 4. Example demonstrating path-dependency of
edge attributes in hazmat transport problems.
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fact, the further the trip stretches the larger the overesti-
mation. Does the overestimation ever become sufficiently
large to invalidate the results found using this approxima-
tion?

We attempt to answer this question using a numerical
example. Consider a path that consists of 2,500 unit road
segments (miles). Assume pi 5 p for all i. Figure 5a shows
a plot of the actual and the approximated incident proba-
bilities on this path as a function of the trip length. The
incident probability used is 1024 per mile, and the dis-
tance, d, varies from 0 to 2,500 miles. The approximated
probability is a linear function of distance, namely pd, and
the actual probability is a concave function of d.

Figure 5a suggests that the errors introduced may be
significant. However, actual incident probabilities are
much smaller than 1024 per mile. In fact, when we use a
probability of 1026 per mile, the two functions become
indistinguishable when plotted (which is why we used 1024

per mile in Figure 5a). With a unit incident probability of
1026 the actual probability of an incident on a 2,500-mile
path is 0.00249688 while the linear approximation yields
0.0025 (a difference of only 0.125%). Furthermore, the
largest unit road segment incident probability error (which
is made on the last mile of the trip) is only 0.25%. Hence,
it seems that the errors introduced by the approximation
are negligible for all relevant trip lengths and incident
probabilities. Figure 5b shows percentage errors in esti-
mating the incident probability on a 2,500-mile path as a
function of per-mile incident rates. Note that for incident
probabilities below 1025, the percentage error is under
2%.

In the above paragraph we concentrated on errors intro-
duced by our approximation of incident probabilities and
found them to be insignificant. Yet there is another source
of error in the edge incident probability calculations: the
discretization of the incident process. Note that in Figure
2, the hazmat transport activity is viewed as a probabilistic
experiment, where there are two outcomes at each stage.

The probabilities are attached to unit road segments and
the experiment is repeated as many times as there are unit
road segments on the edge. However, in reality the trans-
portation of hazmats is a continuous activity, and the inci-
dent probabilities should be interpreted as incident
“rates.” The discrete probabilistic model estimates the
probability of having one incident along a 2,500-mile path
as: p 1 (1 2 p)p 1 (1 2 p)2p 1 . . . 1 (1 2 p)2499p. Note
that this is a finite geometric series that is equal to 1 2
(1 2 p)2,500. Suppose that we wish to increase the accuracy
of the probability estimate through a finer discretization of
the trip that uses shorter (and more) road segments. If we
increase the number of road segments by a factor of k (to
nk), the incident probability on each segment becomes
( p/k), and the geometric series becomes 1 2 (1 2 p/k)nk.
To compute the exact probability, we need to take the
limit of this series as k goes to infinity. This limit is 1 2
e2pn, which can be expressed as pn 2 ( pn)2/2! 1 ( pn)3/3!
1 . . . by using a Taylor’s series expansion. Clearly, the first
term is the only significant one, and higher-order terms are
near zero. Using the first two terms, the “exact” probabil-
ity is computed to be 0.00249688, which is the same as the
discrete approximation to eight significant digits. Thus, we
can conclude that, even for very long trips, the discretiza-
tion does not introduce significant errors into the calcula-
tion of incident probabilities since the relevant incident
probabilities are very small (around one incident per mil-
lion miles).

To summarize, with an incident probability of 1026 inci-
dents per mile and a trip length of 2,500 miles, the contin-
uous and the discrete probabilistic models both compute an
incident probability of 0.00249688 for the trip. The linear
approximation results in a slight overestimation, computing a
probability of 0.0025. Note that using the linear model
amounts to taking into account only the first term of the
Taylor’s series resulting from the continuous model and
ignoring the higher-order terms. Thus, the error is limited
to the sum (with alternating signs) of the higher-order
terms of the Taylor series expansion. Given the magnitude

Figure 5a. Plot of actual incident probability and approxi-
mated (simplified) incident probability as a
function of distance.

Figure 5b. Plot of percentage error in estimation of path
incident probability (for 2,500-mile path) as a
function of per-mile incident probability.

629ERKUT AND VERTER /



of the incident probabilities, this seems reasonable. Hence,
we can express the (traditional) risk of transporting a pre-
specified hazmat along path P as follows:

TR~P! 5 O
i[P

p i C i . (13)

2. ALTERNATIVE RISK MODELS FOR HAZMAT
TRANSPORT:

Having discussed the approximations necessary for the use
of the traditional risk model in hazmat-path selection
models, we now turn to the validity of this model in the
context of hazmat transport. One objective of modeling is
to accurately represent the underlying problem environ-
ment. While risk is an issue in hazmat transport, due to the
disutility imposed on society, it is not clear that the tradi-
tional definition of risk provides a proper representation of
this disutility. The multiplication of a probability with a
population figure, and the resulting “expected value,”
might not mean much to the population at large. A sim-
pler concept may be “population exposure,” the total num-
ber of people exposed to risks during a transport activity.
Another relevant concept is simply “incident probability.”
(Note that these two concepts can be thought of as ex-
treme points of a “risk spectrum” that includes the tradi-
tional risk model.)

It could be argued that the population exposure model
is one proper way to model the public’s perceived risk. This
model has been used by ReVelle et al. (1991) in a study
commissioned by the U.S. Department of Energy. It may
be particularly relevant if the hazmat being carried im-
poses an exposure risk, rather than an incident risk, on the
population near the route (for example, radiation from
high-level nuclear waste). In this scenario, we can think of
p as the probability of exposure for people living near the
road, and we can assume that it is equal to one (i.e.,
exposure to minimal radiation with certainty). Although
exposure to minute amounts of radiation for very short
periods of time is not likely to pose health risks, public
perceptions surrounding nuclear risks are quite different
from the assessments of scientists. It is reasonable to ex-
pect that public opposition to shipments will be propor-
tional to the size of the population exposed. Hence,
selecting routes that minimize exposure may, in turn, re-
sult in the minimization of public opposition.

At the other end of the spectrum, if we ignore the vari-
ation in population density, or assume that all population
densities are equal to some constant (in the danger circle),
then the traditional risk model simplifies to the incident
probability model. This version may be suitable if the
hazmat carried has a very small danger radius. In this case,
a relevant objective may be to minimize the incident prob-
ability in order to minimize risks imposed on drivers on
the road, as well as incident-related costs. This model has
been adopted by Saccomanno and Chan (1985). In defense
of this approach, one may suggest that each hazmat inci-
dent receives a considerable amount of negative publicity

independent of its consequences, and hence the likelihood
of an incident should be minimized to mitigate public
opposition.

In addition to these three closely related models, alter-
native models have been suggested in the literature to
more precisely model the risk in hazmat transport. The
traditional “expected consequence” representation of risk
might be deemed inappropriate for hazmat logistics since
this representation assumes a risk-neutral public. Most
people, however, would judge a low-probability–high-
consequence event as more undesirable than a high-
probability–low-consequence event even if the expected
consequences of the two events are equal. This risk-averse
attitude is not reflected by the traditional representation of
risk, although it is prevalent in the decisions involving
hazmats. Abkowitz et al. (1992) suggested modeling per-
ceived risk (for a unit road segment), PR, by using a risk
preference parameter q in the following form:

PR 5 pC q. (14)

Using this approach, the perceived risk associated with one
trip along path P, PR(P), can be expressed as follows:

PR~P! 5 O
i[P

p i ~C i !
q. (15)

A risk-averse attitude regarding the consequences of po-
tentially hazardous activities can be represented by using
q . 1. When q . 1, the edge impedances in the route
selection problem would be increased in proportion to the
population along the edges, and edges with larger popula-
tion densities would become less attractive. Consequently,
the model would tend to select edges that go through
sparsely populated regions.

The above model can also be thought of as a simple
disutility function for perceived societal risk. It provides us
with a pragmatic way of accounting for risk aversion; for a
given value of q, the perceived risk of an action can be
quantified and used as data in an optimization model.
Note that this model reduces to the traditional risk model
when q 5 1, which is sometimes also referred to as the
“technical risk.” Clearly, it is possible to develop other
models for modeling the disutility of risk. However, this
approach has not been popular with researchers who deal
with hazmat route-selection problems. In fact, we know of
only two papers that use a proper risk disutility function
(from a multiattribute utility theory perspective) for
hazmat route selection (Kalelkar and Brooks 1978, Mc-
Cord and Leu 1995).

The traditional representation of risk is also criticized
for not being appropriate in the case of multiple hazmat
shipments between an origin and a destination. The ex-
pected consequence definition assumes that a selected
path can be taken as many times as necessary regardless of
the number of accidents on that path. However, if a cata-
strophic accident should occur during the transportation of
an extremely hazardous substance, further shipments may
be suspended to allow for a reevaluation of the routing
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policy. Sivakumar et al. (1993a, 1993b, 1995) proposed the
use of conditional risk (i.e., expected consequence given
the occurrence of the first accident) to deal with this type
of routing problem. Using our notation, the conditional
risk for path P, CR(P), can be expressed as:

CR~P! 5

O
i[P

p i C i

O
i[P

p i

. (16)

By minimizing CR(P) we would minimize the expected
consequence at the time of the first incident.

As the above discussion shows, researchers have at-
tempted to model the risks associated with hazmat trans-
port in many different ways. We summarize the five
different risk models discussed so far in Table I. Tradition-
ally, these models have been justified by intuition. To pro-
vide a more structured basis for discussion, we offer three
axioms in the next section.

We should point out that there is a fundamental differ-
ence between the first four models in Table I and the
conditional risk model. The first four models are single-
attribute models. (Although the traditional risk model and
the perceived risk model contain two attributes, these two
attributes are preprocessed, and a new attribute is defined
for each edge.) In contrast, the conditional risk model can
be viewed as a multiplicative multiattribute model, where
the first attribute is traditional risk and the second at-
tribute is incident probability. Unlike the first four models,
this model does not result in an additive objective func-
tion.

3. AN AXIOMATIC APPROACH TO THE
MODELING OF HAZMAT TRANSPORT RISK

We now state two general axioms for general path evalua-
tion and selection models, and one axiom for transport risk
models. We suggest that a credible hazmat path selection
model should satisfy all three of these axioms. At the end
of this section, we point out an exception where a credible
multiattribute model (that combines risk and cost, for ex-
ample) may violate one of these axioms. Figure 6 may help
to clarify the ideas behind the first two axioms.

Let P1 denote the set of all paths between O9 and D9,
and P2 denote the set of all paths between O and D. Let
P1 [ P1 and P2 [ P2 such that P2 5 {PA, P1, PB} as in

Figure 6. Define V to be an evaluation function that oper-
ates on paths (such as the distance function).

Axiom 1. Monotonicity axiom for path evaluation models
(Erkut 1995):

V~P1! < V~P2!.

Axiom 2. Optimality principle for path selection models:

V~P2! 5 min
P[P2

V~P!fV~P!1 5 min
P[P1

V~P!.

For the third axiom, we assume that the evaluation func-
tion in question is a measure of risk. Let V(P) 5
R( p(P),C(P)), where R( z ) is a risk function, p( z ) is the
vector of edge incident probabilities, and C( z ) is the
vector of edge consequences for the hazmat of concern.

Axiom 3. Monotonicity axiom for risk models:

p~P! < p9~P! and C~P! < C9~P!

f R~ p~P!, C~P!! < R~ p9~P!, C9~P!! .

One immediate implication of the first axiom can be
phrased in a nontechnical way as follows: As we add one
(or more) link(s) to an existing path, the total impact (val-
ue) of the path can get no smaller. This seems like a
reasonable requirement for all path evaluation models.
The second axiom requires that all subpaths of an optimal
path should themselves be optimal. It is merely a restate-
ment of Bellman’s optimality principle in the context of
path selection models. The third axiom states that path
risk is a nondecreasing function of edge incident probabil-
ities and edge consequences. This implies that in a valid
risk model, increased probability or consequence on an
edge cannot result in reduced path risk.

Among the five models given in Table I, four of them
(namely the traditional risk model, the perceived risk

Table I
Summary of the Five Risk Models Suggested in the Literature for Hazmat Transport Risk

Approach Model Sample References

Traditional Risk TR(P) 5 ¥i[P piCi Alp 1995, Erkut and Verter 1995b
Population Exposure PE(P) 5 ¥i[PTi ReVelle et al. 1991, Batta and Chiu 1988
Incident Probability IP(P) 5 ¥i[P pi Saccomanno and Chan 1985, Abkowitz et al. 1992
Perceived Risk PR(P) 5 ¥i[P pi(Ci)

q Abkowitz et al. 1992
Conditional Risk CR(P) 5 ¥i[P piCi/¥i[P pi Sivakumar et al. 1993a, 1993b, 1995

Note that we use Ti in the second model, which is the total population in the impact region along edge i. Ti 5 2Cidi/pr, where di is the length
of edge i and r is the radius of the danger circle.

Figure 6. Graphical representation of notation used in ax-
ioms 1 and 2.
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model, the incident probability model, and the population
exposure model) satisfy all three of these axioms, while the
conditional risk model violates all three of them. The vio-
lation of these axioms is not merely a theoretical matter, as
it may result in unreasonable solutions to hazmat route
selection problems. Erkut (1995) provides illustrative ex-
amples where the violation of the axioms stated above by
the conditional risk model results in indefensible hazmat
route selections. The difficulty with this model is apparent
in its functional form. Since the denominator is equal to
incident probability, routes with high incident probabilities
will tend to have low conditional risks. Consider a hypo-
thetical case where all routes between an origin and a
destination have the same expected consequence (the nu-
merator). In this case, this model would act in a suicidal
manner and choose the route with the highest incident
probability. Furthermore, increasing the incident probabil-
ity along an edge with zero population (for example, by
sabotaging a bridge) will make routes that use this edge
more desirable. Since we find the behavior of the condi-
tional risk model unreasonable, we do not consider it in
the remainder of this paper, and we suggest that it be used
with great care for hazmat route selection, if it is used at
all.

In developing the risk models in Table I, we used as-
sumption (3) ( ps > 0, for s . 1). It is possible to develop
close relatives (more accurate versions) of these models
without using (3). However, the versions of the traditional
risk model and the perceived risk model without assump-
tion (3) would violate all three axioms (see Erkut 1997 for
a discussion and numerical examples). In particular, the
violation of Axiom 1 gives rise to an interesting phenome-
non in the selection of routes, namely looping. Figure 7
provides a very simple example that demonstrates the vio-
lation of Axiom 1 by the traditional risk model if assump-
tion (3) is not made.

In this example, the risk of taking edge 2 is 100, whereas
the risk of taking edges 1 and 2 in succession can be com-
puted, using (6), as (0.1)10 1 (0.9)(0.1)1000 5 91. In fact,
this risk can be further reduced to 82.9 if one loops on edge
1 twice before tracing edge 2. Clearly, each additional loop
on edge 1 further reduces the risk. This happens since the
trip through the loop is reducing the incident probability
on edge 2, where the consequence is much higher than that
of edge 1 (the loop).

Boffey and Karkazis (1995) point out that looping may
reduce transportation risks if one does not make assump-

tion (3). A looping hazmat route is clearly undesirable.
Thus, if one wanted to use a model which is prone to
looping, one would have to restrict the feasible set to loop-
less paths (as in Sivakumar 1993a and Boffey and Karkazis
1995). However, if one makes assumption (3), there is no
need to be concerned about looping. Since this assumption
reduces the route selection problem to a shortest path
problem (and since probabilities and consequences are
nonnegative), any route that contains a loop cannot be
optimal. This can be viewed as a fringe benefit of using the
simplifying assumption (3).

We now discuss an exception where Axiom 2 can be
violated by a credible hazmat routing model, if it is a
multiattribute model. Evaluation functions that satisfy Ax-
iom 2 are called order-preserving functions. Caraway et al.
(1990) show that an additive two-attribute utility function
may be non-order-preserving if one of the utility functions
is additive and the other is multiplicative. Nembhard and
White (1997) build on this result and demonstrate that an
additive two-attribute hazmat routing model consisting of
a linear cost attribute and an exponential population expo-
sure attribute may be non-order-preserving. To provide
some intuition for this interesting behavior, we use an in-
formal example. Suppose an optimal trip from Miami to
Washington, DC, takes path P1, with a given total cost and
total population exposure. Now consider extending this
route to Boston. It is possible that the Washington-Boston
leg adds so much to the population exposure attribute that
(given the exponential nature of the population exposure
attribute) the optimal Miami-Boston route may follow a
different path, say P2, for the Miami-Washington leg,
which costs more than P1 but exposes fewer people. Note
that if the utility function is not order-preserving, then a
shortest path algorithm is not guaranteed to find an opti-
mal solution. Nembhard and White (1997) report that
non-order-preservation may occur with some regularity on
actual road networks, and that ignoring this nature of the
model may result in poor route selections on real transport
networks. They propose an enumeration algorithm based
on artificial intelligence to deal with this property. We
finish this section by noting that while the two-attribute
utility model used by Nembhard and White violates Axiom
2, it does satisfy Axioms 1 and 3.

4. A BICRITERION APPROACH TO MODELING
OF RISK

The models discussed in the previous section use incident
probabilities or population exposure or both to quantify
risk. One can argue that lower incident probabilities
should be preferred to higher ones, and lower population
exposures should be preferred to higher ones. Thus, we
can view the risk minimization problem as a bicriterion
optimization problem: one of minimizing incident proba-
bility and population exposure. (These two objectives were
included in the multiobjective schemes of List and Turn-
quist 1994 and Abkowitz et al. 1992.) The efficient frontier

Figure 7. Simple example demonstrating the effect of
looping on the total expected consequence of a
hazmat trip.
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of the bicriterion risk minimization problem would, in gen-
eral, have the above form, where each letter denotes a
different hazmat route.

The generation of this efficient frontier is not a trivial
task. While it is possible to generate the entire efficient
frontier by using a bicriterion shortest path algorithm, such
as the one proposed by Hansen (1980), the potential num-
ber of efficient solutions is not polynomial in the number
of network nodes, and attempting to generate all efficient
solutions may be quite cumbersome. As a shortcut, a sub-
set of the efficient frontier can be easily generated by using
weighted combinations of probability and consequence.
The optimization problem to be solved is a shortest path
problem, and the weights can be varied parametrically to
generate many efficient solutions.

We note that the optimal solutions of the incident prob-
ability model and the population exposure model repre-
sent the extreme points of the efficient frontier (points A
and F, respectively, in Figure 8). However, optimal solu-
tions to the traditional risk and the perceived risk models
might not be on the efficient frontier. Note that the two
criteria for the bicriterion path selection problem are to
minimize the sum of incident probabilities and the sum of
population exposures. However, the traditional risk model
is not a function of these two sums; it is the sum of pair-
wise products of the incident probabilities with population
exposures. This is why the point minimizing the traditional
risk might not be on the efficient frontier. Clearly, this is
also true for the points minimizing the perceived risk. In
the next section we give a numerical example where this is
the case.

We believe that the bicriterion approach to modeling of
risk can be useful in hazmat routing decisions. Instead of
choosing one of the two extreme models of risk, a
decision-maker can use the bicriterion approach to gener-
ate a number of efficient alternatives. This would allow the
decision-maker to select a compromise solution based on
the trade-offs between the two criteria and other attributes
(such as cost or length). It is, of course, possible (even
advisable) to pose the hazmat routing problem as a multi-
criteria decision problem, where cost, and possibly other

criteria, are considered alongside population exposure and
incident probability. As long as each criterion is additive in
its edge attributes, the weighting method can be used to
generate a subset of efficient points. Although this is a
potentially useful area of research, we do not discuss it
further here since we focus only on the modeling of risk in
this paper and not on the modeling of the entire hazmat
routing problem.

5. EMPIRICAL ANALYSIS

In this section, we report the results of our computational
analysis with different risk models. The tool we used in this
comparison is a professional software package:
PC*HazRoute (ALK Associates 1994). (ALK Associates
has loaned a copy of PC*HazRoute to E. Erkut for aca-
demic research purposes; the authors have no financial or
legal association with the company or the software.) This
software has a database which contains information about
0.5 million miles of roads in the continental United States.
For each road segment, the length and the population
density in the neighborhood of the road segment are
stored. Accident and release probabilities are determined
by the road type. The impact radius can be selected de-
pending on the hazmat under consideration. This decision-
support-system finds optimal hazmat transport paths for a
given origin-destination pair and a selected objective. We
selected the following six objectives for our study:

1. Shortest travel distance,
2. Minimum population exposure,
3. Minimum societal risk,
4. Minimum DoT risk,
5. Minimum accident probability, and
6. Minimum incident probability.

The shortest path might not be a good choice for trans-
porting hazmats. However, we used it as a benchmark to
compare the optimal solutions found by the other five cri-
teria. Objective 2 ignores incident probabilities and finds
the path that exposes the fewest number of people to the
hazmats. Objective 3 is the traditional definition of risk. It
uses the following formula to find the risk associated with
each edge:

Societal risk 5

length of the edge (in miles)
3 accident rate (probability) on the edge (per mile)
3 conditional release probability given an accident
3 population density in the neighborhood of the edge

(persons per mile-sq)
3 (p)(impact radius)2 (in miles-sq).

Thus, the societal risk of an edge is the expected number
of people to be impacted in one trip of the hazmat truck
on that edge.

Objective 4 is the definition of risk suggested by the U.S.
Department of Transportation (1989). This definition is

Figure 8. Efficient frontier of a typical bicriterion risk min-
imization problem.
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similar to the definition of societal risk with two differ-
ences: it ignores conditional release probabilities, and it
computes population impacted by using a rectangle instead
of a circle. For these two reasons, we believe that this
definition is not particularly suitable. However, we include
it in the comparison since this is the measure promoted by
the DoT. Objective 5 finds the path that minimizes the
accident probability, ignoring all other information. Fi-
nally, Objective 6 concentrates on incident probabilities
and finds the path that minimizes the probability of a
hazmat accident involving a release.

In all our computations, we used the default values of
the software for accident and release probabilities, and we
used an impact radius of one mile. The default values for
the probabilities are given in Table II. These values, re-
ported by Harwood et al. (1993), are weighted averages of
data from three states (California, Illinois, and Michigan)
in the United States.

We used each one of the six objectives for all possible
pairs of the following eight cities in the eastern United
States: Chicago, Detroit, Boston, Nashville, Atlanta, Hous-
ton, New Orleans, Jacksonville. We selected these cities
for the following reasons: all of these cities are major pop-
ulation centers, they “span” the eastern United States, and
there is considerable variation in the resulting trip lengths.
In all, we found six paths for every one of the 28 pairs in
our experiment. These paths contain anywhere from 175
edges (Jacksonville-New Orleans) to 1158 edges (Boston-
Houston). We stored each of the 168 paths generated by
PC*HazRoute and processed these solutions to obtain the
results reported in this section.

We were interested in two separate questions in this
analysis. First we wanted to answer the question “How
similar are the paths found by different risk objectives for a
given origin-destination pair?” If it turns out that the dif-
ferent risk models select the same path consistently, then
the issue of which risk model to use would be a moot one.
If on the other hand, different risk models select very dif-
ferent paths, then this would imply that researchers and
practitioners should pay a lot of attention to the modeling

of risk in hazmat transport. The second question we dealt
with was “How does the optimal solution for one objective
perform under the other objectives?” If, for example, all
optimal solutions with respect to objective i are always
near-optimal with respect to objective j, then we would
conclude that using objective i instead of objective j is not
such a bad strategy. This would be true even if the paths
found under the two objectives are very different. If on the
other hand, some of the optimal solutions under objective
i perform very poorly under objective j, then we would
conclude that the proper selection of the objective is very
important indeed.

To answer the first question, we developed several simi-
larity indices. All of our similarity indices are between zero
and one, where one indicates perfect similarity and zero
indicates perfect dissimilarity. To compute a similarity in-
dex for two paths, we process the edge lists of the two
paths. Suppose we have two paths, A and B. If these two
paths share no common edges, then the similarity index for
this pair is zero. At the other extreme, if the two paths are
identical, then the index is equal to one. If paths A and B
have some common edges, but are not identical, then the
similarity index quantifies the similarity between them. We
used four indices for similarity measurement. Denoting the
length of a path (or a subpath) by L( z ), the indices are:

Index 1:
L~ A ù B!

2L~ A!
1

L~ A ù B!

2L~B!
;

Index 2: ÎL~ A ù B! 2

L~ A! L~B!
;

Index 3:
L~ A ù B!

max $L~ A!, L~B!%
;

Index 4:
L~ A ù B!

L~ A ø B!
.

All indices use L( A ù B), the total length of the common
edges between the two paths. We call this the intersection
length. The first index is the arithmetic average of two
ratios: the intersection length divided by the length of path
A, and the intersection length divided by the length of
path B. The second index is the geometric average of the
same two ratios. The third index is the ratio of the inter-
section length divided by the length of the longer of the
two paths. Finally, the fourth index is a ratio between the
intersection length and the length of the union of the two
paths. This fourth index is a weighted variant of a popular
tool for similarity measurement in statistics, namely Jac-
card’s coefficient (Jobson 1992).

The next two tables contain aggregate statistics over the
28 OD-pairs for the first and fourth similarity indices only,
since we found that there is a very strong correlation be-
tween the first three similarity indices considered. In fact,
the first two indices resulted in almost always the same
number, and were never off by more than 0.01. The corre-
lation between the first index and the third index was al-
most perfect, with a correlation coefficient of 0.997. As

Table II
Accident and Conditional Release Probabilities Used

in the Analysis

Road Type
Accident Rate

(per million miles)

Conditional
Release

Probability

Rural
Two-lane 2.19 0.086
Multilane undivided 4.49 0.081
Multilane divided 2.15 0.082
Limited access 0.64 0.090

Urban
Two-lane 8.66 0.069
Multilane undivided 13.92 0.055
Multilane divided 12.47 0.062
Limited access 2.18 0.062

634 / ERKUT AND VERTER



well, the numbers for Indices 1 and 3 were always very
close to one another. In the instances where they were not
the same, Index 3 was slightly smaller. In contrast, Index 4
was quite different from Index 1; using logarithmic regres-
sion we found that the relationship between Indices 1 and
4 was approximately as follows: Index 4 5 (Index 1)1.5.
Index 4 measurements were consistently lower than Index
1 measurements. We provide aggregate statistics for Index
4 (in addition to Index 1) due to the significant differences
between Index 4 and the other three indices.

Each table has six rows and columns, one for each crite-
rion in the study. Table III contains averages and standard
deviations for Indices 1 and 4, whereas Table IV contains
the minimums and maximums for Indices 1 and 4, based
on the 28 OD-pairs. All indices are multiplied by 100 for
ease of exposition.

These tables indicate that there are very few instances of
high similarities between paths selected by different crite-
ria. In fact, of the 15 pairs of criteria considered, there are
only two instances of high similarity: between the accident
and incident probability minimization, and between soci-
etal risk and DoT risk minimization. In addition, there are
a few more cases of mild similarity, as indicated by average
indices of around 0.34–0.40 for Index 1: between popula-
tion exposure minimization and the societal risk (and DoT
risk) minimization, and between shortest paths and acci-
dent (and incident) probability minimization. In all other
instances, similarity indices are below 0.12.

In all instances the standard deviations are quite high
(relative to the means), indicating considerable deviations
around the means. This conclusion is further substantiated
in Table IV, where the ranges are quite high for most
pairs. Table IV indicates that, even for pairs of criteria
with high average similarity indices, there exist pairs of

paths that are very dissimilar (which is indicated by low
minimum similarity indices). For pairs that do not exhibit a
high similarity in Table III, even the maximum similarity
indices are below 0.41 for Index 1 and 0.25 for Index 4.

We now move on to the second question of interest:
“How does the optimal solution for one objective perform
under the other objectives?” To answer this question, we
evaluated each of the six optimal paths for an OD-pair
using all six criteria. We then normalized the six evalua-
tions under each criterion by dividing all of them by the
smallest of the six evaluations under that criterion. Table
V contains average and standard deviation information for
all OD-pairs, whereas Table VI contains minimum and
maximum information. The rows correspond to optimal
paths, and the columns correspond to the criteria.

These two tables indicate that the two special cases of
the traditional risk model, namely population exposure
minimization and incident probability minimization are in
conflict. The population exposure minimizing paths usually
follow secondary roads and are associated with much
higher incident probabilities (4 to 7 times) than the inci-
dent probability minimizing paths. In return, incident
probability minimizing paths usually follow highways, and
expose 2 to 4 times as many people as the population
exposure minimizing paths.

These tables also imply that the shortest path is usually a
poor choice under most other criteria. For example short-
est paths can result in a nine-fold increase in population
exposure and a 13-fold increase in societal risk. Even for
the two criteria that exhibit a relatively high similarity with
the shortest path in Tables I and II, namely accident and
incident probabilities, selection of the shortest paths re-
sults in an average deterioration of 71% to 84% over the
optimal paths with respect to these two criteria. On the

Table III
Averages and Standard Deviations (in Parentheses) of Similarity Index Values (Multiplied by 100) Between All

Pairs of Criteria Using Index 1 (Upper Triangle) and Index 4 (Lower Triangle) Based on 28 OD-pairs

Shortest Popul. Soc. Risk DoT Risk Acc. P. Inc. P.

Shortest 2 (3) 7 (9) 6 (8) 34 (29) 34 (29)
Population 1 (1) 35 (19) 40 (19) 3 (3) 2 (3)
Soc. Risk 3 (5) 23 (13) 82 (21) 12 (12) 9 (10)
DoT Risk 3 (4) 26 (15) 74 (26) 11 (11) 9 (9)
Accident P. 25 (29) 1 (2) 6 (7) 6 (6) 92 (20)
Incident P. 25 (29) 1 (1) 5 (5) 5 (5) 89 (25)

Table IV
Minima and Maxima of Similarity Index Values (Multiplied by 100) Between All Pairs of Criteria Using Index 1

(Upper Triangle) and Index 4 (Lower Triangle) Based on 28 OD-pairs

Shortest Popul. Soc. Risk DoT Risk Acc. P. Inc. P.

Shortest 0–12 0–29 0–29 0–100 0–100
Population 0–6 2–63 2–75 0–12 0–12
Soc. Risk 0–16 1–45 8–100 0–41 0–29
DoT Risk 0–16 1–60 4–100 0–40 0–29
Accident P. 0–100 0–6 0–25 0–24 36–100
Incident P. 0–100 0–6 0–16 0–16 22–100

635ERKUT AND VERTER /



other hand, the optimal paths with respect to these two
criteria are usually not much longer than the shortest
paths. For example, the selection of the minimum incident
probability path would increase the trip length by an aver-
age of 9% (and a maximum of 21%) over the shortest
path.

The minimum societal risk paths do not perform very
well under several of the other criteria. They are on the
average 70% longer than the shortest paths and are asso-
ciated with incident probabilities that are on the average
3.5 times as high as the minimum incident probability
paths. On the positive side, the minimum societal risk
paths perform relatively well in terms of population
exposure.

It is not surprising that the pairs of criteria that resulted
in the highest similarities (namely societal risk vs. DoT
risk, and accident vs. incident probability) also exhibit a
very high tolerance for one another in Tables V and VI.

6. ILLUSTRATIVE EXAMPLES

In this section, we provide four illustrative examples of
path selections using the risk minimization criteria de-
scribed earlier. We first display the optimal paths for two
OD-pairs from the analysis summarized above to provide
some spatial insight into the similarity between pairs of
risk criteria. For this purpose we selected the Jacksonville-
New Orleans pair and the Chicago-Atlanta pair. We use
the Boston-Houston pair for the third and fourth exam-
ples. In the third example, we generate a number of paths
for this trip by using the perceived risk model with differ-
ent risk-aversion factors. Finally, in the fourth example, we
generate a subset of the efficient frontier of the bicriterion
risk minimization problem using the weighting method.

For the Jacksonville-New Orleans pair, the shortest path
also minimizes the accident and the incident probabilities,

and the minimum societal risk path also minimizes the
DoT risk. We display the shortest path and the minimum
population path in Figure 9a; Index 1 for the two paths
shown is 0.12. In Figure 9b we display the shortest path
and the minimum societal risk path, with an Index 1 value
of 0.29. The value of Index 1 between the minimum popu-
lation path and the minimum societal risk path is 0.54.
This is an example where many similarities exist between
paths that are optimal with respect to different objectives.

For the Chicago-Atlanta pair, the minimum societal risk
path is the same as the minimum DoT risk path, and the
minimum accident probability path is the same as the min-
imum incident probability path. In Figure 10a we display
the shortest path and the minimum societal risk path. In
Figure 10b, we display the shortest path, the minimum
population path and the minimum accident probability
path. The Index 1 between the minimum accident proba-
bility path and the shortest path is 0.21. For all other pairs
where the optimal paths do not coincide, the values of
Index 1 are below 0.05. This is an example where there are
few similarities between pairs of optimal paths.

In Figures 9 and 10, we observe that some of the paths
selected (particularly the minimum population paths) con-
tain a large number of twists and turns. The computed risk
on these paths may in fact be understated, since it is well-
known that accident probabilities are much higher at inter-
sections (particularly due to left turns of vehicles) than on
straight stretches of highways. The software we used does
not explicitly model the additional risk at highway intersec-
tions, and the user cannot edit the road network database
to incorporate such risks. It is possible to model intersec-
tions explicitly when designing a software for transporta-
tion problems. However, such detailed modeling would
increase the size of the database considerably and would

Table V
Averages and Standard Deviations (in Parentheses) of Normalized Objective Function Values of Optimal Paths

(Rows) Based on 28 OD-pairs

Length Popul. Soc. Risk DoT Risk Accid. P. Incid. P.

Shortest Path 1.00 (0.00) 3.77 (2.19) 4.65 (3.51) 5.09 (4.07) 1.71 (0.37) 1.84 (0.45)
Min. Pop Path 1.72 (0.24) 1.00 (0.00) 1.49 (0.43) 1.46 (0.49) 3.99 (0.50) 5.04 (0.66)
Min. Soc. Risk P. 1.71 (0.31) 1.21 (0.09) 1.00 (0.00) 1.01 (0.02) 2.84 (0.62) 3.48 (0.81)
Min. DoT Risk P. 1.73 (0.33) 1.15 (0.06) 1.01 (0.01) 1.00 (0.00) 3.09 (0.73) 3.83 (0.98)
Min. Acc. P. P. 1.10 (0.06) 2.71 (0.58) 1.84 (0.21) 2.06 (0.28) 1.00 (0.00) 1.00 (0.00)
Min. Inc. P. P. 1.09 (0.06) 2.82 (0.55) 1.94 (0.25) 2.18 (0.32) 1.00 (0.01) 1.00 (0.00)

Table VI
Minima and Maxima of Normalized Objective Function Values of Optimal Paths (Rows) Based on 28 OD-pairs

Length Popul. Soc. Risk DoT Risk Acc. P. Inc. P.

Shortest Path 1.00–1.00 1.64–9.09 1.66–13.3 1.73–15.3 1.00–2.26 1.00–2.67
Min. Pop Path 1.42–2.63 1.00–1.00 1.07–2.39 1.03–2.52 3.18–5.57 3.96–7.26
Min. Soc. Risk P. 1.28–2.64 1.05–1.42 1.00–1.00 1.00–1.05 1.17–4.77 1.27–5.98
Min. DoT Risk P. 1.28–3.02 1.05–1.29 1.00–1.02 1.00–1.00 1.17–5.49 1.27–6.93
Min. Acc. P. P. 1.00–1.21 1.89–4.36 1.33–2.23 1.42–2.62 1.00–1.00 1.00–1.01
Min. Inc. P. P. 1.00–1.21 1.91–4.36 1.33–2.54 1.42–2.87 1.00–1.03 1.00–1.00
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slow down the programs. Hence, as usual, there is a cost
associated with increased model realism.

We now move on to the Boston-Houston example,
where we first demonstrate the use of the perceived risk
model in (15). Although this is not one of the default risk
models in PC*HazRoute, the “custom risk model” option
of the software allows for a limited experiment where the
risk-aversion factor (q) can be varied between 1 and 2. In
Table VII we report the results of the experiment for the
Boston-Houston pair for q values between 1 and 2 in in-
crements of 0.1. For q 5 1, the path selected is the mini-
mum societal (traditional) risk path. As one would expect,
with higher q values the model tends to choose paths with
lower population exposure figures, but higher incident
probabilities and higher societal risks. However, it is en-
tirely possible for an increase in q to result in higher total
population exposure, or a lower total incident probability.
Furthermore, the length of the optimal path can increase
or decrease as q is changed.

In our final illustrative example, we pose the risk mini-
mization problem as a bicriterion optimization problem
and generate a subset of the efficient frontier by minimiz-
ing weighted combinations of the incident probability and
the population exposure for the Boston-Houston pair.
PC*HazRoute has a “weighted risk model” option that
allows the user to minimize a weighted combination of

several objectives. One can use weights between 0 and 1
(in increments of 0.01) for each criterion. We note here
that there is an almost 10 orders-of-magnitude difference
between population exposure figures and incident proba-
bilities. The software takes this significant difference into
account and scales the weights before the optimization.
Table VIII displays the results of 20 runs with different
weights. Figure 11 displays the efficient frontier summa-
rized in Table VIII, as well as the solutions to the per-
ceived risk model summarized in Table VII.

As Table VIII indicates, the analysis results in a large
number of efficient paths—18 distinct paths in 20 attempts
(although some of these paths differ only slightly from one
another). This is due to the high density of the U.S. road
network, and fewer efficient paths might exist in less dense
road networks such as Canada’s. In some decision settings,
a large number of efficient paths might in fact be desirable,
as they make it easier to select a compromise solution.

At one end of the efficient path spectrum, we have the
minimum population path (for w1 5 0). As expected, this
path has a relatively high incident probability. As w1 is
increased, the incident probability of the efficient path de-
creases and the population exposed increases. For w1 5 1,
the efficient path is identical to the minimum incident
probability path. The incident probability of this path is
only one-fifth that of the minimum population path, but

Figure 9a. Shortest path and minimum population path for the Jacksonville-New Orleans pair (Index 1 5 0.12).
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the population exposure of this path is over three times
higher than for the minimum population path. This dem-
onstrates that the range of objective function values over
all efficient solutions can be quite substantial.

In general, as w1 is increased, the length of the efficient
paths decrease. This is due to the high similarity between
the shortest path and the minimum incident probability
path for many pairs in our analysis. However, in a few
instances, a larger w1 results in a longer path (for example
w1 5 0.40, or w1 5 0.80).

Note that the societal risk values of many of the efficient
solutions are relatively close to one another. Hence, many
of these solutions are almost equally desirable from a so-
cietal risk perspective. However, the path that minimizes
the societal risk (see Table VII, q 5 1) is not on the
efficient frontier. This path has a societal risk of 0.086,
which is considerably lower than the societal risk values in
Table VIII. Its incident probability is 3.2 3 1024, and it
exposes a population of 606,057. Hence, it is dominated by
the efficient solutions generated using w1 5 0.20, 0.25, and
0.30. We do not imply here that these three paths should
be preferred to the societal risk minimizing path; we state
only that these three paths expose a smaller total popula-
tion and result in a lower total incident probability than
the minimum societal risk path. (Recall that the minimum
societal risk does not minimize the product of these two

sums, but a sum of the pairwise products of incident prob-
abilities and population figures.) It is entirely conceivable
that a rational decision-maker may reject the bicriterion
model in favor of the traditional risk model.

7. SUMMARY AND CONCLUSIONS

The routing of hazardous materials is an important deci-
sion problem that is of interest to hazmat producers and
consumers, hazmat carriers, local governments, insurance
companies, and the people exposed to the risks from the
shipments. Although accident probabilities are quite low
for any given trip, the sheer volume of hazmat shipments
almost guarantees that there will be some accidents over a
sufficiently long period of time. Risks imposed on the res-
idents living near transport routes can be reduced by ex-
plicitly taking the risk of the shipments into account in the
planning and the selection of routes.

Most risk models in the hazmat transport literature use
the concept of a danger zone. The assumption is that res-
idents living inside a circle centered at the incident site,
with a given impact radius, will experience the same unde-
sirable consequence, and residents living outside this circle
will experience no undesirable consequence. In this paper
we argued that, although not very realistic, this assumption

Figure 9b. Shortest path and minimum societal risk path for the Jacksonville-New Orleans pair (Index 1 5 0.29).
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is inevitable since the data necessary for an accurate as-
sessment of risks to humans simply do not exist for many
hazmats. As long as one is interested only in the relative
risks of different paths, the danger circle approximation
will provide valid comparisons.

All hazmat transport risk models we know of use an
approximation to make the route-selection problem tracta-
ble. The approximation involves assuming that the prod-
ucts of incident probabilities are equal to zero. We
demonstrated that this approximation does not result in
significant inaccuracies in the estimation of path incident
probabilities. We conclude that this approximation is justi-
fied and it is not necessary to develop more sophisticated
risk models that do not use this approximation.

Although most researchers agree on the need to include
risks in route selection for hazmat transport, they do not
agree on how transport risk should be modeled. We dis-
cussed five different models: traditional risk, population
exposure, incident probability, perceived risk, and condi-
tional risk. We stated three axioms that we believe should
be satisfied by a risk model for hazmat transport. We ar-
gued against using the conditional risk model, since it vio-
lates all three of these axioms. The remaining four models
satisfy all three axioms (given the approximation stated in
the above paragraph). In fact, each one is reduced to a
shortest path problem after a processing of the data to
compute edge impedances.

The hazmat route selection problem can also be viewed
as a bicriterion shortest path problem, where the objec-
tives are the minimization of total incident probability and
total population exposure. This representation of the prob-
lem is useful for generating a number of efficient solutions,
which can then be presented to a decision-maker for selec-
tion based on their performances on the two criteria, or on
other criteria such as cost or the traditional definition of
risk. We note that the path with the minimum traditional
risk may not be on the efficient frontier of the bicriterion
problem.

In our empirical analysis, we searched for answers to the
following two questions: “How similar are the paths found
by different objectives for a given origin-destination pair?”
and “How does the optimal solution for one objective per-
form under the other objectives?” Our analysis was per-
formed using a professional decision-support system for
hazmat route selection. We generated optimal paths for 28
pairs of cities in the eastern United States using six differ-
ent objectives for each pair. We found that the optimal
paths with respect to the three fundamental risk models—
namely, minimizing the traditional definition of risk, mini-
mizing total incident probability, and minimizing total
population exposed—do not exhibit strong similarities.
For many of the pairs studied, these three paths were quite
different. In general, incident-probability-minimizing paths
seem to take fairly short paths and use highways as much

Figure 10a. Shortest path and minimum societal risk path for the Chicago-Atlanta pair.
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as possible. On the other hand, population-exposure-
minimizing paths seem to wind through secondary roads
that do not go though densely populated areas and are
considerably longer than the shortest paths. There seemed
to be a mild similarity between the population-exposure-
minimizing paths and risk-minimizing paths. In addition to
the spatial dissimilarities between the three optimal paths,

the optimal path under one of the criteria was usually not
a near-optimal path under the other two criteria. In fact, in
most instances there were significant trade-offs among the
optimal solutions with respect to these three criteria.

The risk disutility model (which we did not include in
the comparison) can be used to address the issue of risk
aversion. A high value of the “risk-aversion parameter” in
the model would result in the selection of road segments
with low population densities, reducing the undesirable
consequences in the case of an incident. However, increas-
ing the risk-aversion parameter does not necessarily result
in a reduction in the total number of people placed at risk
during the transport. As well, this model requires the se-
lection of a risk-aversion parameter, which may be difficult.
A potential use for this model is in the generation of a set
of desirable solutions by varying the risk aversion factor
parametrically. We caution that one can run into numeri-
cal problems when using this model since the population
figures are raised to a power (the risk aversion parameter)
that can make them very large.

Based on our analysis, we conclude that considerable
attention should be paid to the modeling of risk for
hazmat transport since the different objectives that are
suggested in the literature cannot be used interchangeably.
Different models result in different paths, and the models
do not tolerate one another very well. Unfortunately, it is

Figure 10b. Shortest path, minimum population path, and minimum accident probability path for the Chicago-Atlanta pair.
(Index 1 value between minimum accident probability path and shortest path is 0.21.)

Table VII
Statistics of Optimal Risk Paths Generated Using the

Perceived Risk Model (15) with q Values Varying
from 1 to 2 in Increments of 0.1 for the Boston-

Houston Pair

q
Population
Exposure

Incident
Prb.

(3 1024) Soc. Risk
Length
(Miles)

1 606,057 3.20 0.086 2792.1
1.1 593,292 3.30 0.086 2818.8
1.2 566,652 3.70 0.087 2918.3
1.3 567,037 3.70 0.087 2932.3
1.4 557,135 3.90 0.088 2976.8
1.5 548,601 4.00 0.088 2919.8
1.6 542,629 4.00 0.089 2925.0
1.7 540,043 4.30 0.092 3116.2
1.8 549,158 4.80 0.096 3337.2
1.9 612,652 4.80 0.110 3346.5
2.0 612,806 4.80 0.110 3351.5
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impossible to suggest one risk model for all instances of
hazmat transport; the objectives of the decision-maker and
the nature of the hazmat in question are important in the
selection of the appropriate model. (For example, one may
just use incident probabilities when transporting PCBs, but
use both probabilities and population when transporting
chlorine.) Instead of using one risk model, which would
find one “optimal” path, we recommend the generation of

a manageable number of good (efficient) solutions using
the different single-criterion risk models, as well as using
weighted combinations of the different criteria, for the fi-
nal decision. Availability of decision-support systems, such
as the one we used in this paper, makes this a fairly simple
exercise. This would allow a decision-maker to select one
of the solutions based on his/her utility function. If this
exercise is repeated a number of times with different OD-
pairs, it may be possible to make certain inferences about
the preferences of the decision-maker, and incorporate
these preferences into a decision-maker-specific model for
hazmat route selection. However, the real strength of a
decision-support system is not in its extraction potential of
utility functions, but in its ability to provide a wealth of
information to the decision-maker and create an environ-
ment for informed decision-making.
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