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Abstract 

Post project audits reveal that a large portion of the predictions generated by groundwater models are 
at significant error.  Since these models are often used by environmental managers for making 
decisions, the cost of such predictive errors may be substantial.  This represents a considerable 
problem, and sensitivity analysis alone is not considered to be an acceptable approach to address it.  
Some emerging approaches and technologies, like a “Null Space Monte Carlo” (or “Calibration-
Constrained Monte Carlo”), indicate the direction for future developments.  However, many 
practitioners, who are currently constrained by time and budget, find those technologies rather difficult 
to implement.  To overcome this, a simple protocol termed “qualitative model predictive error analysis” 
is proposed.  This paper presents the application of this protocol using a simple, synthetic model as an 
example.  The outcome of the analysis is compared to the results of a more systematic procedure 
implementing the concept of “Calibration-Constrained Monte Carlo”.  

1. INTRODUCTION  

Predictions generated by groundwater models are often at significant error.  Predictive errors can be 
attributed to a variety of factors, including: insufficient data for characterizing hydraulic properties (over 
a large enough area), or system’s states / responses to stress (over sufficient range of values over 
sufficient time) on which the model predictions depend (Hunt et al, 2007); inaccurate conceptual 
models / assumptions (Stewart & Langevin, 1999; Roadcap & Wilson, 2002); inadequate geometrical 
representation of a complex system and its heterogeneities; errors resulting from spatial interpolations 
(Tonkin et al, 2005); errors in measurements; poor test data collection designs and inadequate 
interpretation of the collected data (Andersen & Silong, 2003); not representing relevant processes; 
limitations of models and numerical methods used; and finally, unpredictable natural and human 
factors (Konikow, 1986). 
 
Model users are increasingly aware of the need to evaluate uncertainties; and a variety of approaches 
have been proposed to address this.  Prominent examples include sensitivity analysis, which is a 
prevailing approach (ASTM, 2008); “Bayesian model averaging” applied to multiple conceptual models 
and multiple parameter estimation methods (Li & Tsai, 2008); parallel testing of several viable 
conceptual models, combined with parametric uncertainty analysis carried out for each conceptual 
model (Ye et al, 2010); ‘the use of “pilot points” in conjunction with nonlinear parameter estimation 
software that incorporates advanced regularization functionality’; ‘Calibration-Constrained Monte-
Carlo’, also called ‘Null Space Monte Carlo’ (Doherty, 2003); ‘Subspace Monte Carlo’ that allows 
calibration-constrained random heterogeneity and/or related approaches (Tonkin & Doherty, 2005; 
Tonkin et al, 2005; Tonkin & Doherty, 2008). 
 
Sensitivity analysis alone is not considered to be a substitute approach, as varying the values of 
model parameters often results in a significant model “de-calibration”, and de-calibrated models 
should not be used for predictions.  However, sensitivity analysis is still considered an important part 
of uncertainty analysis.  In turn, some of the other, more sophisticated approaches can be quite 
involved and practitioners often find them difficult to implement. 
 
This paper outlines a qualitative error analysis procedure and presents the results of a numerical 
experiment carried out to test it and compare it with a more quantitative approach using the 
‘Calibration-Constrained Monte-Carlo’ method. Both the proposed approach and the Monte-Carlo 
procedure, can be used to evaluate parametric uncertainty.  Such uncertainty is related to what is 
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called a non-uniqueness of the solution to ill-posed inverse problems (Ne-Zheng Sun, 1999).  Given a 
set of targets (derived from field measurements), an infinite number of calibrated models can be 
produced – each generating a somewhat different prediction. 
 

2. PROCEDURE FOR QUALITATIVE MODEL PREDICTIVE ERROR ANALYSIS 

The proposed procedure was developed in an attempt to find an approach to parametric uncertainty 
analysis that is both practical and relatively easy to implement.  It is referred to as a “qualitative model 
predictive error analysis” and consists of the following steps: 
 

- Conduct preliminary, manual model calibration 
- Conduct a systematic sensitivity analysis  
- Conduct automatic model calibration to obtain a “baseline model version” 
- Develop several model versions by fixing the most sensitive parameters at their lower and 

upper value in a range of values derived using “previous knowledge” or professional judgment 
- Calibrate each model version – if fixing the parameter value results in an inability to calibrate 

the model, adjust that value stepwise, until the calibration can be achieved 
- Run predictive simulations using each model version and tabulate the results 

 
The reminder of this article documents a numerical experiment designed and carried out to test this 
proposed procedure and summarizes its results. 

3. A SYNTHETIC MODEL CREATED FOR COMPARATIVE ERROR ANALYSIS 

A simple, synthetic, two-dimensional, steady-state numeric finite-difference MODFLOW model was 
established (see Figure 1 and Table 1) in order to carry out comparative error analysis: qualitative 
analysis (described in Section 4.1) vs. semi-quantitative analysis (described in Section 4.2).  The 
model was intended to represent a hypothetical alluvial aquifer located between two lakes (east and 
west of the aquifer) and bound by impermeable bedrock (present south and north of the aquifer and at 
the base of the aquifer). 
 

 

 

 

 

 

 

 

 

 

 

Figure 1 MODFLOW Model Set-up 
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The model grid consists of one layer, fifty rows and fifty columns, defining 2,500 cells, each 50 m x 50 
m in size.  Elevation of the grid base was set at 0 m and the top at 100 m.  The lakes are represented 
using constant head boundaries, set at 90 m and 80 m on the west and east sides of the model  
domain, respectively.  A 20 m wide river connecting the lakes is represented in the model with the 
stage changing linearly from cell to cell, from 90 m in the west to 80 m in the east.  The 1 m thick river 
bed was assigned a 5 m/day vertical hydraulic conductivity.  One well was set in the central-western 
part of the model domain, pumping at a rate of 3,000 m3/day.  A uniform recharge over the entire 
model domain was set to 0.00067 m/day (see Table 1).   
 
Five hydraulic conductivity zones were delineated, with initial values as shown in Table 1.  Six head 
targets (water level observation points), MB-1 through MB-6, were placed in various parts of the 
model’s domain for use in the model calibration, with assigned target values of 88.9, 88.3, 86.0, 86.1, 
83.2 and 82.5 m. 

Table 1.  Model Parameters, Calibration and Predictions 

 

Unit Qualitative Analysis Model Versions Semi-Quantitative Analysis Model Versions 
Producing Extreme Predictions 

Parameters: 
 

  Baseline 
Model 

High 
Recharge 

Low 
Recharge 

High 
Kxy 

Zone 3 

Low Kxy 
Zone 3 

High 
Kxy 

Zone 4 

Low 
Kxy 

Zone 4 
Minimum Prediction Maximum 

Prediction 

                  Monte Carlo Realization Number 

                  Re.: 97 Re.: 56 Re.: 
102 Re.: 14 

Kxy Zone 1 m/day 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 
Kxy Zone 2 m/day 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 
Kxy Zone 3 m/day 7.37 14.74 3.69 14.74 3.68 13.75 4.19 4.44 13.73 13.59 4.45 
Kxy Zone 4 m/day 12.23 24.46 6.12 20.07 7.32 24.47 6.12 11.37 12.13 19.82 13.65 
Kxy Zone 5 m/day 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 
Recharge m/day 0.00067 0.00135 0.00034 0.00103 0.00043 0.00110 0.00041 0.00041 0.00067 0.00114 0.00069 

    Measures of Calibration 

RSS m 0.12 0.68 0.39 0.14 0.31 0.18 0.32 0.67 0.50 0.34 0.54 
RMS m 0.14 0.34 0.25 0.15 0.23 0.17 0.23 0.34 0.29 0.23 0.30 

RMS / Range of 
Target 

Observations 
% 2.2% 5.3% 3.9% 2.3% 3.6% 2.7% 3.6% 5.3% 4.5% 3.6% 4.7% 

    Model Predictions 

Inflow into Drain m3/day 4995 5772 4532 5326 4684 5366 4675 4559   5550   
Drawdown at 

MB-3 m 2.3 2.1 2.6 2.0 2.7 2.0 2.6   2.0   2.7 

 

Note: RSS and RMS are commonly used measures of a model calibration.  RSS signifies Residual 
Sum of Squares; RMS signifies the Root Mean Squared Error.  The information presented in Table 1 
will be discussed in the following sections of this paper. 

4. MODEL PREDICTIVE ERROR ANALYSIS 

4.1. Qualitative Model Predictive Error Analysis 

The model described in Section 3 was calibrated manually by varying the values of recharge and 
hydraulic conductivity.  The level of calibration accomplished is characterized by RSS and RMS values 
of 0.15 m and 0.16 m, respectively. 
 
Systematic model sensitivity analysis was carried out by varying values of the seven model 
parameters: namely hydraulic conductivity for each of the five zones, vertical hydraulic conductivity of 
the river’s bed, and recharge.  It was essential to calculate the model sensitivity (and also, later, to 
calibrate the model) using the model-generated values that are related (directly or, as a minimum, 
indirectly) to the category of prediction required.  For example, to predict the change in water level at a 
point, the sensitivity should be calculated as a “change in calibration” calculated from the differences 
between the model-calculated and measured groundwater levels.  It is also important to note that the 
value of such analysis diminishes, as the model-predicted value and/or location of the point of 
prediction move further from the range and/or area of measurements available for model calibration. 
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The model was run eleven times for each of the seven parameters, giving a total of 77 runs, with the 
parameter values changed for each run using the following ratios (with regard to the parameter’s 
baseline value): 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7 and 2.0.  The simulations were carried out 
using the “Automatic Sensitivity Analysis” routine provided by the Groundwater Vistas platform 
(Rumbaugh & Rumbaugh, 2011).  The three most sensitive parameters were found to be: recharge, 
and hydraulic conductivities for zones 4 and 3 (see Table 2).  A general note: it is often the case that 
some parameters can vary over a much larger range of values than others, like hydraulic conductivity 
vs. recharge.  Then, the sequence of values used in a systematic sensitivity analysis should be 
calculated (consistently for all parameters subject to analysis) as varying percentages of viable ranges 
(or varying fractions of standard deviations, in case normal distributions are assumed), rather than 
ratios of base values, as used in this experiment (following a common approach). 
 
The model was then calibrated using the Parameter ESTimation (PEST) program by varying the three 
most sensitive parameters.  The range of values for each of those parameters and distributional 
assumptions are provided in Table 3.  The range of values adopted for model parameters were set to 
represent an assumed prior knowledge (such as a range of values calculated from aquifer test data) 
and/or professional judgment.  The resulting automatically calibrated model was considered a baseline 
model with parameters as presented in Table 1.  The RSS and RMS of the baseline model are 0.12 m 
and 0.14 m, respectively. 
 

Table 2.  Results of Model Sensitivity Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 3.  Set-Up for PEST and Stochastic MODFLOW Runs 

 
 
 
 
 
 
 
 
In the next phase of this analysis, versions of a baseline model were developed (in addition to a 
baseline model).  Each version was set for PEST calibration with the value of one of the three most 
sensitive parameters fixed at the lower or upper end of the range of values used during the automatic 
calibration of the baseline model.  The values of parameters and measures of calibration for all seven 
models (baseline model and its six versions) are presented in Table 1.  Those models can be 

  Sum of Squared Residuals 

Parameters: 
   

Kxy 
Zone 1 

Kxy 
Zone 2 

Kxy 
Zone 3 

Kxy 
Zone 4 

Kxy 
Zone 5 Recharge 

Kv of 
River 
Bed  

Parameter 
Multiplier               

0.5 0.287 0.143 1.040 1.592 0.273 1.550 0.155 
0.6 0.201 0.120 0.695 0.991 0.216 0.984 0.155 
0.7 0.155 0.116 0.463 0.603 0.183 0.561 0.155 
0.8 0.136 0.124 0.309 0.362 0.165 0.283 0.155 
0.9 0.137 0.137 0.211 0.222 0.157 0.148 0.155 
1 0.155 0.155 0.155 0.155 0.155 0.155 0.155 

1.1 0.184 0.174 0.129 0.140 0.157 0.304 0.155 
1.3 0.268 0.215 0.139 0.212 0.169 1.025 0.155 
1.5 0.375 0.256 0.202 0.364 0.186 2.305 0.155 
1.7 0.495 0.295 0.294 0.558 0.205 4.141 0.155 
2 0.688 0.348 0.459 0.879 0.234 7.923 0.155 

                
Total of Sum of 

Squared 
Residuals: 

3.080 2.085 4.096 6.077 2.099 19.378 1.703 

                
Ranking of 
Parameter 
Sensitivity 

4 6 3 2 5 1 7 

      PEST Stochastic MODFLOW 

    Parameter Bounds Transformation Limit Std. 
Dev. Distribution 

  Unit Lower Upper   (PARCHGLIM)     
Parameter                
Kxy Zone 3 m/day 0.00034 0.00136 None Relat. 0.00034 Uniform 
Kxy Zone 4 m/day 3.5 14 Log Factor 3.5 Normal 
Recharge m/day 6 24 Log Factor 6 Normal 
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considered a sample drawn from a population of an infinite number of calibrated models that can be 
developed, given a set of targets. 
 
Finally, all the seven model versions were modified for carrying out predictive simulations.  A drain 
element was added to one of the model cells, about mid distance between MB-3 and MB-4, to 
simulate mine (or construction) dewatering to elevation of 80 m (set as drain stage).  
 
The one meter thick drain bed was assigned a vertical hydraulic conductivity of 10 m/day.  Each of the 
seven models was then run, and two results from each of the predictive runs were noted, as shown in 
Table 1: the rate of groundwater inflow into the drain and drawdown at a nearby observation point, 
MB-3.  The results of the predictive simulations are shown in Table 1 (the bottom rows) and represent 
a subset of a theoretically infinite number of predictions obtained with the use of an infinite number of 
calibrated models that can be developed, given a set of targets. 

4.2. Semi-Quantitative Model Predictive Error Analysis using the 
“Calibration-Constrained Monte Carlo Procedure” 

The baseline model was then used to set-up and carry out what can be called a “semi-quantitative 
model predictive error analysis”.  Such analysis represents a more quantitative, thorough and 
systematic approach, compared with the “qualitative” analysis outlined in the previous section.  The 
term “semi-quantitative”, rather than “quantitative”, is used as several important uncertainties (about 
this more systematic “uncertainty” analysis) still remain, including distributional assumptions and other 
uncertainty and predictive error generating factors. 
 
The semi-quantitative analysis described below, utilizes the concept of “Calibration-Constrained Monte 
Carlo” (Doherty, 2003) and was implemented with the use of the Stochastic MODFLOW program 
(Ruskauff, 1998) executed from within the Groundwater Vistas platform (Rumbaugh & Rumbaugh, 
2011).  This approach can also be implemented using advanced functionalities of the PEST suite (like 
PREDUNC program), which compared to Stochastic MODFLOW, offers more sophistication, flexibility 
and efficiency, but the set-up is more involved. 
 
Stochastic MODFLOW generates a large number of models, some of them calibrated, and some not 
calibrated.  Thus, using Stochastic MODFLOW necessitates one extra step – the screening 
(conditioning) of the resulting models to retain only the calibrated models.  The baseline model was 
set for stochastic MODFLOW simulations by allowing only the three most sensitive parameters 
(determined during sensitivity analysis described previously) to be subject to “random sampling”.  The 
distributional assumptions and lower and upper bounds were set the same as for model calibration 
during the qualitative analysis described in section 4.1 (see Table 3). 
 
The Stochastic MODFLOW was set to run 300 simulations (realizations).  Figure 2 shows the 
“cumulative average of sums of squares”.  This is one of the tools that can be used to determine if the 
number of realizations is sufficient. 
 

 
Figure 2 Cumulative Average of Sums of 
Squares for all Realizations 

 

Figure 3 Sum of Squares (SSRs) for All 
Realizations 
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In the next phase of this analysis, a cut-off Sum of Squares (SSR) value of 0.675 was selected to 
separate the calibrated models from the non-calibrated models (see Figure 3).  An SSR of 0.675 
equals the largest SSR calculated for all seven alternative models developed as part of the qualitative 
error predictive analysis described in Section 4.1.  It corresponds to about 5.3% of the range of 
groundwater levels set for the model’s six targets. 
 
Applying the “0.675 SSR filter” resulted in retaining 76 models, out of original 300 models, that were 
judged to be calibrated.  Those models were then prepared for predictive simulations (by adding a 
drain) to calculate the groundwater inflow into the drain and subsequent drawdown at MB-3. 

4.3. Comparison between the Results of Qualitative and Semi-Quantitative 
Error Analysis 

The combined results of predictive model simulations (using both qualitative and semi-quantitative 
analysis) are plotted as cumulative distribution functions in Figures 4 and 5.  The plots demonstrate 
that the model predictions are similar for both approaches to predictive error analysis – qualitative and 
semi-quantitative.   
 
The inflow and drawdown predictions generated by the semi-quantitative analysis were then ranked 
into classes of predictions and plotted as histograms shown in Figures 6 and 7.  These figures also 
include the normal distribution curves that were fitted to the data (by minimizing the sum of squares of 
differences between the values of the theoretical curve and the values of the rank classes). 
 
The values of mean and standard deviation of the fitted normal distributions were used to calculate the 
probability that the responses of the hypothetical-real system (subject to modelling) can be smaller / 
larger than the minimum/maximum model predictions derived from the qualitative and semi-
quantitative analysis.  The results of such calculations, when using 5% significance level, are shown in 
Table 4. 
 
Table 4, together with Figures 6 and 7, are provided to summarize results of the comparing the two 
methods – qualitative vs. semi-quantitative.  However, considering all the remaining uncertainties, it is 
safer not to attribute statistical significance to the results of such simulations/analysis and simply 
report ranges of predictions. 

Figure 4 Percentage of Models Predicting a 
Given Groundwater Inflows into Drain 
 

Figure 5 Percentage of Models Predicting a 
Given Drawdown at MB-3 

Figure 6 Histogram of Model Inflow 
Predictions and Fitted Normal Distribution 
 
 
 

 Figure 7 Histogram of Model Drawdown 
Predictions and Fitted Normal Distribution 
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Table 4.  Probabilities that Inflow into Drain and Drawdown at MB-3 is Outside of Predicted 
Ranges 

Fitted Normal Distributions: 

Inflow Mean = 5,087 m3/day, St. Dev. = 229 m3/day 

Drawdown Mean = 2.33 m, St. Dev. = 0.162 m 
Probability 

Distance from 
Mean 

Measured in 
Std. Devs. 

Qualitative Analysis 

Probability that Inflow Will Be Smaller than: 4532 m3/day 0.7% 2.4 

Probability that Inflow Will Be Larger than : 5772 m3/day 0.1% 3.0 

Probability that Drawdown Will Be Smaller than: 1.96 m 0.9% 2.3 

Probability that Drawdown Will Be Larger than : 2.66 m 2.0% 2.0 

Semi-Quantitative Analysis 

Probability that Inflow Will Be Smaller than: 4559 m3/day 0.9% 2.3 

Probability that Inflow Will Be Larger than : 5550 m3/day 2.0% 2.0 

Probability that Drawdown Will Be Smaller than: 2.01 m 2.0% 2.0 

Probability that Drawdown Will Be Larger than : 2.70 m 0.9% 2.3 

 

5. CONCLUSIONS 

The results of this numerical experiment indicate that the proposed procedure for “qualitative model 
predictive error analysis” may be a promising, less time and budget consuming alternative to the more 
systematic and resource intensive “Calibration Constrained Monte Carlo” procedure.  However, 
confirmation of such conclusion would require more similar experiments conducted on more complex, 
“real-world” models.   
 
It is important to stress, again, that the proposed procedure addresses only parametric uncertainty.  
There are other kinds of uncertainty that also can be analysed.  For instance, where several 
conceptual models are plausible, a more complete analysis would require repeating this qualitative 
procedure for each conceptual model. 
 
Among the many limitations of the proposed qualitative procedure is the fact that it is applied to 
models using rigid ‘zones of piecewise parameter uniformity’.  Such an approach may be acceptable 
when applied to many water resources problems, but is likely to be less effective when tackling some 
fate and transport modelling problems.  Model predictions regarding fate and transport are often very 
sensitive to small scale heterogeneities. 
 
Finally, in case time and budget limitations are strong factors, which they are most of the time, an 
even more simplified version of the qualitative analysis could be implemented, using just three parallel 
models (derived using the upper and lower bounds of the one or two most sensitive parameters), 
instead of seven, as described in this paper.  Such analysis would still represent a significant 
improvement over reporting just a single prediction, qualified by the results of a (“de-calibrating”) 
sensitivity analysis. 
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