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Cover figure  Processing steps required for generation of a 
sequence of calibration-constrained parameter fields by use 
of the null-space Monte Carlo methodology
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Predictive-Uncertainty Analysis

By John E. Doherty1, 2, Randall J. Hunt3, and Matthew J. Tonkin4 

Abstract

Analysis of the uncertainty associated with parameters 
used by a numerical model, and with predictions that depend 
on those parameters, is fundamental to the use of modeling in 
support of decisionmaking. Unfortunately, predictive uncer-
tainty analysis with regard to models can be very computa-
tionally demanding, due in part to complex constraints on 
parameters that arise from expert knowledge of system proper-
ties on the one hand (knowledge constraints) and from the 
necessity for the model parameters to assume values that allow 
the model to reproduce historical system behavior on the other 
hand (calibration constraints). 

Enforcement of knowledge and calibration constraints on 
parameters used by a model does not eliminate the uncertainty 
in those parameters. In fact, in many cases, enforcement of 
calibration constraints simply reduces the uncertainties associ-
ated with a number of broad-scale combinations of model 
parameters that collectively describe spatially averaged system 
properties. The uncertainties associated with other combina-
tions of parameters, especially those that pertain to small-scale 
parameter heterogeneity, may not be reduced through the 
calibration process. To the extent that a prediction depends on 
system-property detail, its postcalibration variability may be 
reduced very little, if at all, by applying calibration constraints; 
knowledge constraints remain the only limits on the variability 
of predictions that depend on such detail. Regrettably, in many 
common modeling applications, these constraints are weak.

Though the PEST software suite was initially developed 
as a tool for model calibration, recent developments have 
focused on the evaluation of model-parameter and predictive 
uncertainty. As a complement to functionality that it provides 
for highly parameterized inversion (calibration) by means of 
formal mathematical regularization techniques, the PEST suite 
provides utilities for linear and nonlinear error-variance and 

uncertainty analysis in these highly parameterized modeling 
contexts. Availability of these utilities is particularly important 
because, in many cases, a significant proportion of the uncer-
tainty associated with model parameters—and the predictions 
that depend on them—arises from differences between the 
complex properties of the real world and the simplified repre-
sentation of those properties that is expressed by the calibrated 
model. 

This report is intended to guide intermediate to advanced 
modelers in the use of capabilities available with the PEST 
suite of programs for evaluating model predictive error and 
uncertainty. A brief theoretical background is presented on 
sources of parameter and predictive uncertainty and on the 
means for evaluating this uncertainty. Applications of PEST 
tools are then discussed for overdetermined and underdeter-
mined problems, both linear and nonlinear. PEST tools for 
calculating contributions to model predictive uncertainty, as 
well as optimization of data acquisition for reducing parameter 
and predictive uncertainty, are presented. The appendixes list 
the relevant PEST variables, files, and utilities required for the 
analyses described in the document.

Introduction

Suppose that the algorithmic basis of a numerical model 
is such that the model’s ability to simulate environmental pro-
cesses at a site is perfect. Such a model would, of necessity, be 
complex. Furthermore, it would need to account for the spatial 
variability of hydraulic and other properties of the system 
that it is to simulate. If these properties were all known and 
the model was parameterized accordingly, the model would 
predict with perfect accuracy the response of the system under 
study to a set of user-supplied inputs.

In this document, the word “parameter” is used to 
describe a number specified in a model that represents a 
property of the system that the model purports to represent. 
For spatially distributed models such as those used to describe 
movement of groundwater and surface waters and/or contami-
nants contained therein, many hundreds, or even hundreds 
of thousands, of such numbers may be required by a model. 
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Furthermore, in many models, parameters show 
time as well as spatial dependence, this adding 
further to the number of parameters that models 
may require. To the extent that any one of these 
numbers is wrong, so too may be any model 
outcome that depends on it.

Inevitably, the model is not a perfect simu-
lator as the parameter field used by a model 
is a simplified representation of real-world 
system property variability. This parameter-
field simplification is partly an outcome of 
simplifications required for model algorithmic 
development and/or for numerical implementa-
tion of the model algorithm. For example, there 
is a computational limit to the number of active 
nodes that a two- or three-dimensional dis-
cretized numerical model can employ, system 
property averaging is implicit in the algorith-
mic design of lumped-parameter hydrologic 
models, and time-stepping schema used by 
transient models require temporal averaging of 
model inputs and the time-varying parameters 
through which those inputs are processed. To 
the extent that a model’s predictions depend on 
finer spatial or temporal parameter detail than is 
represented in a model, those predictions have 
a potential for error. As used here, “error” refers 
to the deviation of the best estimate possible 
of the quantity compared to the true value; 
recognition of this potential for error constitutes 
acceptance of the fact that model predictions 
are uncertain.

Rarely, however, is the potential for 
parameterization-based model predictive error 
limited by the inability of a model to repre-
sent spatial and temporal heterogeneity of its 
parameters— especially in modern computing 
environments where computational limits on 
cell and element numbers are rapidly shrinking. 
Instead, in most cases, the potential for model 
predictive error is set by an inability on the part 
of the modeler to supply accurate parameteriza-
tion detail at anything like the fine spatial and 
temporal scale that most models are capable 
of accommodating. Expert site knowledge, 
supported by point measurements of system 
properties, simply cannot furnish knowledge 
of these properties at the level of detail that a 
model can represent. Hence, the assignment of 
parameters to a complex, distributed parameter 
model is not an obvious process. Moreover, 
meeting some minimum level of parameter 
complexity is critical because model oversim-
plification can confound uncertainty analyses, 
and the appropriate level of simplification can 
change as a model objective changes (Box 1). 

Box 1: The Importance of Avoiding Oversimplification  
 in Prediction Uncertainty Analysis

2  Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis

Simplified models can be appropriate for making environmental 
predictions that do not depend on system detail and for exploration of the 
uncertainty associated with those predictions. However, to the extent that 
the model’s simplification misrepresents or omits salient details of the 
system simulated, the prediction is not only susceptible to error: in fact, 
the extent of this possible error cannot be quantified (Moore and Doherty, 
2005). Given the direct relation to the model objective, there is a concern 
that a model might be simplified appropriately for one modeling objective 
but then misused in subsequent analysis that depends on parameteriza-
tion or process detail omitted. 

For example, one robust approach for extracting the greatest value 
from limited monitoring resources is linear analysis of the difference in 
prediction uncertainty with or without specified observation data. Be-
cause of its linear basis, this evaluation does not require that the actual 
observation values are known at proposed monitoring locations. Rather, it 
requires only that the sensitivities of proposed observations to model pa-
rameter perturbation be known. This sensitivity can be calculated at any 
stage of the calibration process (even before this process commences). 
Such an analysis can thus be done during either an early or late phase 
of an environmental investigation. Misapplication of the simple model, 
however, can lead to error when assessing the worth of data collection, 
because confounding artifacts in the calculated sensitivities that result 
from oversimplification can cloud insight resulting from inclusion of data 
sensitive to unrepresented detail. For example, how can the subtle infor-
mation contained in a series of closely spaced proposed observation well 
locations “be heard above the clamor of misinformation encapsulated in 
the requirement that large parts of a model domain possess spatially in-
variant properties, that the boundaries between these parts are at exactly 
known locations, and that these boundaries are marked by abrupt hydrau-
lic property changes” (Doherty and Hunt, 2010)? The concern centers on 
the possibility that outcomes of data-worth analysis in such oversimplified 
models are more reflective of parameter-simplification devices than of the 
true information content of hypothetical data collected. 

To illustrate this issue, Fienen and others (2010) used a model devel-
oped by Hoard (2010) to optimize future data-collection locations in order 
to maximize reduction in the uncertainty of a prediction on the amount 
of groundwater level change in area of interest (containing, for example, 
an endangered species) in response to regional pumping. For the case 
discussed by Fienen and others, the goal of the monitoring is to assess 
the effect of a new high-capacity pumping well (500 gal/min) situated near 
a headwater stream in an ecologically sensitive area (figure B1–1). The 
value of future data is estimated by quantifying the reduction in prediction 
uncertainty achieved by adding potential observation wells to the existing 
model-calibration dataset. The reduction in uncertainty is calculated for 
multiple potential locations of observations, which then can be ranked for 
their effectiveness for reducing uncertainty associated with the specified 
prediction of interest. In Fienen and others (2010), a Bayesian approach 
was implemented by use of the PEST PREDUNC utility (Doherty, 2010). 
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Figure B1–1. Local model domain and the locations of the pumping well, head prediction (H115_259), and 
streamgage. (Figure modified from Hoard, 2010).

investigated (fig. B1-2): (1) a hydraulic conductivity (K ) layer-multiplier (“1-parameter”) approach in which a single multiplier is ap-
plied to all horizontal and vertical hydraulic-conductivity values in each layer inherited from the regional model, (2) a 25-parameter 
version of the K  field (“25-parameter”) in which the 5 × 5 zone parameterization inherited from the regional model was used to di-
rectly define 25 K zones, and (3) a 400-parameter approach using a 20 × 20 grid of pilot points to represent hydraulic-conductivity 
parameterization. It is important to note that only the parameter flexibility specified for the data-worth analysis was being varied 
in the three cases described above; the actual hydraulic conductivity values input into the hydrologic model were exactly the 
same in all three cases, and equal to those inherited from the calibrated regional model. 

The 1-parameter case represents an end extreme of oversimplification, as might happen when the model used for data-
worth analysis adheres closely to the parameterization scheme obtained through regional model calibration; that is, the inset 
model allows the surface-water features to be more refined, but the local aquifer properties are not. The 25-parameter case was 
chosen as the more typical case; that is, the parameter flexibility appropriate for the regional model is assumed to be appropriate 
for the data-worth calculation, when used in conjunction with the additional surface-water-feature refinement of the higher grid 
resolution of the inset model. This level of parameterization can be thought of as typifying the number of zones that might be used 
in a traditional calibration approach. The 400-parameter case represents a highly parameterized example typical of a regular-
ized inversion approach that aims to interject sufficient parameter flexibility such that the confounding artifacts associated with 
oversimplification of a complex world are minimized. 

The results of data-worth calculations pertaining to the addition of new head observations for the head prediction by the 
model are contoured and displayed on a map in figure B1–2. The extent of the map is the same as the model domain and panels in 
figure B1–1 depict results for the first layer for all three parameterization strategies. The differences in the displayed values from 
left panel to right reflect the progressively more flexible parameterization of hydraulic conductivity, from a single layer multiplier 
at left (1 parameter) through a 5 × 5 grid of homogeneous zones (25 parameters) to a 20 × 20 grid of pilot points (400 parameters) 
at the right. Two major trends are evident when comparing the parameterization scenarios: first, counterintuitive artifacts are 
encountered in the low level (1-parameter) and intermediate levels (25-parameter) of parameter flexibility. These artifacts are 

To demonstrate the effect of parameterization flexibility on data-worth analyses, three parameterization resolutions were 



counterintuitive results because the areas reported as most important for reducing the prediction 
uncertainty of groundwater levels between the well and the headwater stream are distant from both 
the stress and the related prediction. Inspection of the locations of greatest data worth suggests that 
high reported data worth is associated with zone boundaries and intersections—a factor introduced by 
the modeler when the parameter flexibility was specified. When same data-worth analysis is performed 
by using the highly parameterized 400-parameter case, locations of higher values of data worth are in 
places where intuition suggests—the area near both the stress and the prediction. In other words, the 
parameter flexibility afforded by the 400-parameter case reduces structural noise sufficiently so that 
one can discern the difference in importance of a potential head location. 

This work demonstrates that the resolution of the parameter flexibility required for a model is 
a direct result of the resolution of the question being asked of the model. When the model objective 
changed to the worth of future data collection and became smaller scale (ranking the data-worth of 
one observation well location over a nearby location), a parameter flexibility level was needed that was 
commensurate with the spacing of the proposed observation wells, not the regional model calibration 
targets. Note that it is the parameterization flexibility that is required, not different parameter values 
specified in the model input (because the actual parameter values were identical in all three cases). 

Box 1: The Importance of Avoiding Oversimplification  
	 in Prediction Uncertainty Analysis (continued)

Figure B1–2.  Parameter 
discretization (top row), 
hydraulic conductivity 
field seen by model 
(middle row), and results 
of data-worth analysis 
(bottom row; warm colors 
= higher reduction in 
prediction uncertainty). 
Figure modified from 
Fienen and others (2010).
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The uncertainty associated with model parameteriza-
tion can often be reduced by constraining parameters such 
that model outputs under historical system stresses repro-
duce historical measurements of system state. However, as is 
widely documented, these constraints can be enforced only 
on the broad-scale spatial or temporal variability of a limited 
number of parameter types; meanwhile, the typical calibration 
process exercises few, if any, constraints on fine-scale spatial 
or temporal parameter variability. To the extent that a model 
prediction is sensitive to parameter detail, its uncertainty may 
therefore be reduced very little by the need for model outputs 
to replicate historical system behavior as observed at a few, or 
even many, locations and times.

Because parameter and predictive uncertainty is unavoid-
able, justification for the use of a model in environmental 
management must not rest on an assumption that the model’s 
predictions will be correct. Rather, justification for its use must 
rest on the premises that its use (a) enables predictive error 
and/or uncertainty to be quantified and (b) provides a compu-
tational framework for reducing this predictive error and/or 
uncertainty to an acceptable level, given the information that 
is available. As such, by quantifying the uncertainty associated 
with predictions of future environmental behavior, associated 
risk can be brought to bear on the decisionmaking process.

Purpose and Scope

The intent of this document is to provide its reader with 
an overview of methods for model-parameter and predictive-
uncertainty analysis that are available through PEST and its 
ancillary utility software. PEST is public domain and open 
source. Together with comprehensive documentation given by 
Doherty (2010a,b), it can be downloaded from the following 
site:

http://www.pesthomepage.org

As is described in Doherty and Hunt (2010), PEST is 
model-independent in the sense that it communicates with a 
model through the model’s input and output files. As a result, 
no programming is required to use a model in conjunction 
with PEST; furthermore, the “model” that is used in conjunc-
tion with PEST can be a batch or script file of arbitrary com-
plexity, encompassing one or a number of discrete executable 
programs. Other software suites implement model-indepen-
dent parameter estimation, and to some extent, model predic-
tive-uncertainty analysis; see for example OSTRICH (Matott, 
2005) and UCODE-2005 (Poeter and others, 2005). However, 
PEST is unique in that it implements model calibration and 
uncertainty analysis in conjunction with highly parameterized 
models. A unique solution to the inverse problem of model 
calibration is achieved through the use of mathematical regu-
larization devices that can be implemented individually or in 
concert (see, for example, Hunt and others, 2007). Some ben-
efits of a highly parameterized approach to model calibration 

and uncertainty analysis versus more traditional, overdeter-
mined approaches include the following:
1.	 In calibrating a model, maximum information can be 

extracted from the calibration dataset, leading to param-
eters and predictions of minimized error variance.

2.	 The uncertainty associated with model parameters and 
predictions is not underestimated by eliminating param-
eter complexity from a model to achieve a well-posed 
inverse problem.

3.	 The uncertainty associated with model parameters and 
predictions is not overestimated through the need to 
employ statistical correction factors to accommodate the 
use of oversimplified parameter fields.
As a result, the tendency for predictive uncertainty to rise 

in proportion to its dependence on system detail is accom-
modated by the explicit representation of parameter detail in 
highly parameterized models, notwithstanding the fact that 
unique estimation of this detail is impossible.

The topic of model-parameter and predictive uncertainty 
is a vast one. Model-parameter and predictive-uncertainty 
analyses encompass a range of important factors such as errors 
introduced by model-design and process-simulation imper-
fections, spatial- and/or temporal-discretization artifacts on 
model outputs and, perhaps most unknowable, contributions 
to predictive uncertainty arising from incomplete knowledge 
of future system stresses (Hunt and Welter, 2010). Therefore, 
comprehensive coverage of this topic is outside of our scope. 
Rather, we present tools and approaches for characterizing 
model-parameter and predictive uncertainty and model-
parameter and predictive error that are available through the 
PEST suite. In general terms, predictive-error analyses evalu-
ate the potential for error in predictions made by a calibrated 
model using methods based upon the propagation of variance, 
whereas predictive-uncertainty analysis is used herein as a 
more encompassing and intrinsic concept, which acknowl-
edges that many realistic parameter sets enable the model to 
reproduce historic observations. 

Strictly speaking, many of the methods described in this 
document constitute error analysis rather than uncertainty 
analysis, because the theoretical underpinnings of the meth-
ods are based upon error-propagation techniques; however, 
the application of some of these methods blurs the distinc-
tion between error and uncertainty analysis. In particular, the 
null-space Monte-Carlo technique described later incorporates 
several developments that render it more akin to uncertainty 
analysis than error analysis. Throughout this document, the 
term “predictive uncertainty” is used as a catchall term; 
however, we have tried to use the terms “predictive error” 
and “predictive uncertainty” appropriately when discussing 
specific methods of analysis.

The PEST software suite is extensively documented by 
Doherty (2010a,b); as such, lengthy explanation of all PEST 
functions and variables is beyond the scope of this report. 
Rather, the focus is on guidelines for applying PEST tools to 
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groundwater-model calibration. The presentation is intended 
to have utility on two levels. Advanced PEST users can go 
directly to specific sections and obtain guidelines for specific 
parameter-estimation and uncertainty-analysis operations; 
intermediate users can read through a logical progression of 
typical issues faced during calibration and uncertainty analysis 
of highly parameterized groundwater models. Appendixes 
document the relation of PEST variables and concepts used 
in the report body to the broader PEST framework, terminol-
ogy, and definitions given by Doherty (2010a,b). Thus, this 
document is intended to be an application-focused companion 
to the full scope of PEST capabilities described in the detailed 
explanations of Doherty (2010a,b) and theory cited by refer-
ences included therein. Given the similar presentation style 
and approach, it can also be considered a companion to the 
regularized inversion guidelines for calibration of groundwater 
models given by Doherty and Hunt (2010).

Summary and Background of 
Underlying Theory

Descriptions given herein are necessarily brief, and 
mathematical foundations are referenced rather than derived, 
so that we may focus on appropriate application rather than 
already published theoretical underpinnings of regularized 
inversion. Detailed description of the theoretical basis of the 
approach described herein can be found in Moore and Doherty 
(2005), Christensen and Doherty (2008), Tonkin and others 
(2007), Tonkin and Doherty (2009), and Doherty and Welter 
(2010). For convenience, a summary mathematical description 
of the material discussed below is presented in appendix 4. 

In general, errors associated with important predictions 
made by the model derive from two components:	
1.	 Effects of measurement noise.—Exact estimation of 

appropriate parameter values is not possible because of 
noise inherent in measurements used for calibration. Thus, 
uncertainty in predictions that depend on these parameter 
combinations can never be eliminated—it can only be 
reduced. 

2.	 Failure to capture complexity of the natural world salient 
to a prediction.—This component represents the contri-
bution to error that results from the conceptual, spatial, 
and temporal simplifications made during modeling and 
model calibration. Predictive uncertainty from uncaptured 
complexity reflects heterogeneity that is beyond the abil-
ity of the calibration process to discern. 
This second term is often the dominant contributor to 

errors in those predictions that are sensitive to system detail 
(Moore and Doherty, 2005).

In order to develop representative estimates of parameter 
and predictive uncertainty, both of the above components 
must be considered. In the brief overview presented here, the 
focus is on estimates in which a linear relation between model 

parameters and model outputs is assumed. Linear approaches 
are more computationally efficient than nonlinear approaches; 
however, linear approaches have the disadvantages that they 
(a) rely on differentiability of model outputs with respect to 
adjustable parameters and (b) can introduce errors into the 
uncertainty-analysis process of nonlinear systems. 

General Background

The foundation for most methods of linear uncertainty 
analysis is the Jacobian matrix, a matrix that relates the sen-
sitivity of changes to model parameters to changes in model 
outputs. Model outputs are those for which field measurements 
are available for use in the calibration process, or those that 
constitute predictions of interest. The model is parameterized 
to a level of appropriate complexity, defined here as a level 
of parameter density that is sufficient to ensure that mini-
mal errors to model outputs of interest under calibration and 
predictive conditions are incurred through parameter sim-
plification. Thus, all parameter detail that is salient to model 
predictions of interest has been incorporated into the model’s 
parameterization scheme. In practice, this condition is often 
not met, of course. Because a high level of parameterization 
is needed to reach this appropriate complexity thus defined, 
it is unlikely that unique estimates for all parameters can be 
obtained on the basis of the calibration dataset. As a result, the 
inverse problem of model calibration is underdetermined, or ill 
posed. 

Before calibration begins, a modeler can estimate the 
precalibration uncertainty associated with parameters, often 
by using a geostatistical framework such as a variogram. More 
often than not, however, estimated precalibration uncertainty 
will be the outcome of professional judgment made by those 
with knowledge of the site modeled. This information can be 
encapsulated in a covariance matrix of uncertainty associ-
ated with model parameters. This matrix referred to herein as 
the “C(p) covariance matrix of innate parameter variability.” 
This estimate of uncertainty should reflect the fact that exact 
parameter values are unknown but that some knowledge of 
the range of reasonable values of these properties does exist. 
Precalibration predictive uncertainty can then be calculated 
from precalibration parameter uncertainty through linear 
propagation of covariance (if the model is linear) or through 
Monte Carlo analysis based on many different parameter sets 
generated on the basis of the C(p) matrix of innate parameter 
variability.

Parameter and Predictive Uncertainty

Calculation of predictive uncertainty in this way does 
not account for the fact that parameter sets that do not allow 
the model to replicate historical measurements of system state 
should have their probabilities reduced in comparison with 
those that do. The idea of calibration-constrained param-
eter variability is formally expressed by Bayes’ equation 
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(Eq. A4.4 - see appendix 4 for further details). It is interesting 
to note that Bayes’ equation makes no reference to the term 
“calibration,” notwithstanding the ubiquitous use of “cali-
brated model” in environmental management. In fact, Bayes’ 
equation suggests that use of a single parameter set to make 
an important model prediction should be avoided because this 
practice does not reflect the degree of parameter and predic-
tive uncertainty inherent in most modeling contexts. It is 
more conceptually consistent with Bayes’ equation to make a 
prediction from many different parameter sets, all of which are 
plausible on the basis of the user-specified C(p) matrix and all 
of which provide an acceptable replication of historical system 
behavior by providing an adequate fit to historical observation 
data (where “adequate” is judged on the basis of errors associ-
ated with these observations). Nevertheless, justification for 
use of a single parameter set in the making of model predic-
tions of interest may be based on the premise that this set is of 
minimum error variance. However, minimum error variance 
does not necessarily mean small error variance. As Moore and 
Doherty (2005; 2006) point out, predictions made by means of 
a calibrated model can be considerably in error, even though 
they are of minimum error variance and hence constitute “best 
estimates” of future system behavior.

The goal of the calibration process is then to find a 
unique set of parameters that can be considered to be of mini-
mum error variance and that can be used to make predictions 
of minimum error variance. Formal solution of the inverse 
problem of model calibration in a way that attains parameter 
fields that approach this condition can be achieved by using 
mathematical regularization techniques. These techniques 
often incorporate soft knowledge of parameters, thereby mak-
ing reference to the prior-probability term of Bayes’ equation. 
However, because the parameter field so attained is unlikely to 
be correct, even though it has been tuned to reduce its wrong-
ness to the level possible, predictions made on the basis of this 
parameter field will probably be in error. Quantification of this 
error requires that parameter values be explicitly or implic-
itly varied over a range that is dictated by their C(p) matrix 
of innate parameter variability while maintaining acceptable 
replication of historical system behavior. The means by which 
this can be achieved is the subject matter of this document. 
Furthermore, as has been stated above, it will be assumed that 
in quantifying the strong potential for error associated with 
predictions made on the basis of a complex parameter field, 
the uncertainty of those predictions as described by Bayes’ 
equation will be approximately quantified. Though computa-
tionally intensive, this result will be achieved at a far smaller 
computational cost than through direct use of Bayes’ equation.

The Resolution Matrix 
The exact values of parameters attained through regu-

larized inversion depend on the means through which math-
ematical regularization is implemented. Some regularization 
methodologies are better used in some modeling contexts than 

in others; the “correct” method in any particular context is 
often a compromise between attainment of strictly minimum 
error variance solution to the inverse problem on one hand and 
maintenance of numerical stability on the other. Regardless 
of the regularization methodology used, the postcalibration 
relations between estimated parameters and their real-world 
counterparts is given by the so-called resolution matrix, 
which is available as a byproduct of the regularized inversion 
process; see appendix 4, as well as texts such as Aster and 
others (2005). For a well-posed inverse problem, the resolu-
tion matrix is in fact the identity matrix. Where the inverse 
problem is ill-posed and parameters cannot be estimated 
uniquely, the resolution matrix is rank-deficient (that is, there 
is not perfect knowledge of all estimated parameters and their 
real-world equivalents). In most cases of practical interest, 
the resolution matrix will have diagonal elements that are less 
than unity and will possess many off-diagonal elements. In 
such cases, each row of the resolution matrix is composed of 
factors by which real-world parameters are multiplied and then 
summed in order to achieve the estimated parameter corre-
sponding to that row. As such, the resolution matrix depicts the 
manner in which the complex parameter distribution within 
the real world is simplified or “smudged” in order to attain the 
unique set of parameters that is associated with the calibrated 
model. 

Where regularization is achieved through singular value 
decomposition, the resolution matrix becomes a projection 
operator onto a subset of parameter space comprising combi-
nations of parameters that can be estimated uniquely on the 
basis of the current calibration dataset (Moore and Doherty, 
2005); this subset is referred to as the “calibration solution 
space” herein. Orthogonal to the solution space is the “cali-
bration null space,” which can be thought of as combinations 
of parameters that cannot be estimated on the basis of the 
calibration dataset. Their inestimabilty is founded in the fact 
that any parameter set that lies entirely within the null space 
can be added to any solution of the inverse problem with no 
(or minimal) effects on model outputs that correspond to field 
measurements; hence, the addition of these parameter com-
binations to a calibrated parameter maintains the model in a 
calibrated state. Figure 1 depicts this situation graphically. 

So-called “singular values” are associated with unit 
vectors defined by the singular-value-decomposition process 
that collectively span parameter space. Those associated with 
high singular value magnitudes span the calibration solution 
space, whereas those associated with low or zero singular 
value magnitudes span the calibration null space. “Truncation” 
of low singular values provides a demarcation or a threshold 
between solution and null spaces. Including parameters associ-
ated with low singular values in the solution space would lead 
to an increase, rather than a decrease, in the error variance of 
parameter or prediction of interest due to the amplification of 
measurement noise in estimating parameter projections into 
unit vectors associated with small singular value (Moore and 
Doherty, 2005; Aster and others, 2005).



 
p “real” parameters

projection of p onto solution space
(estimated during calibration)

SOLUTION  SPACE

N
U

LL
 S

PA
CE

8    Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis

Figure 1.  Relations between real-world and estimated 
parameters where model calibration is achieved through 
truncated singular value decomposition.
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Figure 2.  Schematic depiction of parameter identifiability,  
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As stated above, each row of the resolution matrix defines 
the averaging or integration process through which a single 
estimated parameter is related to real-world parameters. In 
most real-world calibration contexts, the resolution matrix is 
not strongly diagonally dominant, and it may not be diagonally 
dominant at all. As a result, each estimated parameter may, in 
fact, reflect real-world properties over a broad area, or even 
properties of entirely different type. This “bleed” between 
parameters is an unavoidable consequence of the need for 
uniqueness that is implicit in the notion of model calibration 
(Moore and Doherty, 2006; Gallager and Doherty, 2007a). 

The threshold between the null and solution spaces is a 
general mathematical construct that allows a formal investiga-
tion of model error and uncertainty. This general concept can 
be used to explore the tension between the need for model 
uniqueness and a world that often cannot be constrained 
uniquely. A useful insight gained from singular value decom-
position of a resolution matrix is its implicit definition of the 
“identifiability” of each model parameter. As Doherty and 
Hunt (2009a) discuss, the identifiability of a parameter can be 
defined as the direction cosine between each parameter and its 
projection into the calibration solution space; this is calculable 
as the diagonal element of the resolution matrix pertaining 
to each parameter. Where this value is zero for a particular 
parameter, the calibration dataset possesses no information 
with respect to that parameter. Where it is 1, the parameter is 
completely identifiable on the basis of the current calibration 
dataset (though cannot be estimated without error because its 
estimation takes place on a dataset that contains measurement 
noise). These relations are diagrammed in figure 2.

Moore and Doherty (2005) demonstrate that even where 
regularization is implemented manually through precalibra-
tion parameter lumping, a resolution matrix must inevitably 
accompany the requirement for uniqueness of model calibra-
tion. In most cases, however, the resolution matrix achieved 
through this traditional means of obtaining a tractable param-
eter-estimation process will be suboptimal, in that its diago-
nal elements will possess lower values, and its off-diagonal 
elements higher values, than those achieved through use of 
mathematical regularization. See Moore and Doherty (2005) 
for a more complete discussion of this issue.

Parameter Error

Where calibration is viewed as a projection operation 
onto an estimable parameter subspace, it becomes readily 
apparent that postcalibration parameter error is composed of 
two terms, irrespective of how regularization is achieved. The 
concept is most easily pictured when implemented by means 
of truncated singular value decomposition, where these two 
terms are orthogonal. Using this construct, the two contribu-
tors to postcalibration parameter error are the “null-space 
term” and the “solution-space term” (see fig. 3). As detailed in 
Moore and Doherty (2005), the “null-space term” arises from 
the necessity to simplify when seeking a unique parameter 
field to calibrate a model. The “solution-space term” expresses 

the contribution of measurement noise to parameter error. It is 
noteworthy that uncertainty analysis performed as an adjunct 
to traditional parameter estimation based on the solution of a 
well-posed inverse problem cannot encompass the full extent 
of the null-space term (Doherty and Hunt, 2010), notwith-
standing that regularization is just as salient to attainment of 
parameter uniqueness, because it is implemented manually 
rather than mathematically.

Because the parameter set that characterizes reality 
cannot be discerned, parameter error (that is, the difference 
between the estimated and true parameter set) cannot be 
calculated. However, the potential for parameter error can be 
expressed in probabilistic terms, as can the potential for error 
in predictions calculated on the basis of these parameters. As 
stated previously, these are loosely equated to parameter and 
predictive uncertainty herein. It is thus apparent that model 
predictive uncertainty (like parameter uncertainty) also has 
two sources: that which arises from the need to simplify 
(because of an inability to estimate the values of parameter 
combinations composing the calibration null space) and that 
which arises from measurement noise within the calibration 
dataset.

The need to select a suitable singular value truncation 
point where regularization is implemented via truncated 
singular value decomposition has already been mentioned. 
Moore and Doherty (2005), Hunt and Doherty (2006) and 
Gallagher and Doherty (2007b) discuss this matter in detail. 
Conceptually, selection of a suitable truncation point repre-
sents a tradeoff between reduction of structural error incurred 
through oversimplification on the one hand and contamination 
of parameter estimates through overfitting on the other hand. 
The damaging effect of overfitting arises from the fact that the 
contribution of measurement noise to potential predictive error 
rises as the truncation point shifts to smaller and smaller sin-
gular values; the ratio of measurement noise to potential pre-
dictive error eventually becomes infinity where singular values 
become zero. However, the temptation to overfit results from 
the fact that more parameter combinations can be included in 
the solution space as the truncation point moves to higher and 
higher singular values, with the result that the contribution 
of the null-space term to overall predictive error decreases as 
the truncation point shifts to smaller singular values. The sum 
of these two terms (that is, the total error variance associated 
with the prediction) typically falls and then rises again (fig. 4). 
Ideally, truncation should occur where the total error variance 
associated with predictions of interest is minimized. 

The predictive error that is associated with a singular 
value of zero is equal to the precalibration uncertainty of 
that prediction. The difference in error variance between this 
error variance and that associated with the minimum of the 
predictive-error-variance curve is a measure of the benefits 
gained through calibrating the model. In most circumstances 
the total predictive-error-variance curve will show a mono-
tonic fall to its minimum value, then a monotonic rise with 
increasing singular value. In some circumstances, however, 
the total predictive-error-variance curve can rise before it falls. 
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Figure 4.  Contributions to total predictive error variance calculated by use of the PEST PREDVAR1 
and PREDVAR1A utilities from Hunt and Doherty (2006).  Total predictive error variance is the sum of 
simplification and measurement error terms; both of these are a function of the singular value truncation 
point.

This behavior can occur where parameters have appreciably 
different innate variabilities. Under these circumstances, the 
calibration process may actually transfer a potential for error 
from parameters whose precalibration uncertainty is high to 
those for which it is not, thereby endowing the latter with a 
potential for error after calibration that they did not possess 
before calibration. 

Though not common, this phenomenon can be prevented 
if the calibration is formulated in such a way that it estimates 
scaled rather than native parameter values, with scaling being 
such as to normalize parameters by their innate variabilities 

(Moore and Doherty, 2005). Alternatively, if regularization 
is achieved manually through precalibration fixing of certain 
parameters, those whose pre-calibration uncertainty is smallest 
should be fixed, leaving those with greater innate variability 
to be estimated through the calibration process. If parameters 
with greater innate variability are fixed, those with less innate 
variability may inherit error from those with more, and the 
calibration process may fail to achieve a minimum-error-vari-
ance parameter field, which is needed for making minimum-
error-variance predictions. 
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Linear Analysis

Many of the concepts discussed above have their roots in 
linear analysis, where a model is conceived of as a matrix act-
ing on a set of parameters to produce outputs. Some of these 
outputs are matched to measurements through the process of 
model calibration. Others correspond to forecasts required 
of the model. Equations relevant to this type of analysis are 
presented in the appendix 4. 

Reference has already been made to several outcomes of 
linear analysis; for example, the resolution matrix, parameter 
identifiability, and—indeed—the concept of solution and null 
spaces. The concepts that underpin these linear-analysis out-
comes are just as pertinent to nonlinear analysis as they are to 
linear analysis. However, the actual values associated with the 
outcomes of linear analysis will not be as exact as those forth-
coming from nonlinear analysis. Nevertheless, linear analysis 
provides the following advantages:
1.	 It is, in general, computationally far easier than nonlinear 

analysis.

2.	 The outcomes of this analysis provide significant insights 
into the sources of parameter and predictive error, as they 
do into other facets of uncertainty analysis (as will be 
demonstrated shortly).

3.	 The outcomes of the analysis are independent of the value 
of model parameters and hence of model outcomes. As 
will be discussed shortly, this makes outcomes of the 
analysis particularly useful in assessing such quantities as 
the worth of observation data, for the data whose worth is 
assessed do not need to have actually been gathered.
Much of the discussion so far has focused on parameter 

and predictive error and their use as surrogates for parameter 
and predictive uncertainty. By focusing in this way, insights 
are gained into the sources of parameter and predictive uncer-
tainty. Linear formulations presented in appendix 4 show how 
parameter and predictive error variance can be calculated. 
Other formulations presented in the appendix demonstrate 
how the variance of parameter and predictive uncertainty also 
can be calculated. As is described there, as well as requiring 
a linearity assumption for their calculation, they require an 
assumption that prior parameter probabilities and measure-
ment noise are described by Gaussian distributions. In spite 
of these assumptions, these uncertainty variance formulas 
(like their error variance counterparts) can provide useful 
approximations to true parameter and predictive uncertainty, 
at the same time as they provide useful insights. Of particular 
importance is that parameter and predictive uncertainties cal-
culated with these formulas are also independent of the values 
of parameters and model outcomes. Hence, they too can be 
used for examination of useful quantities such as the observa-
tion worth, and they hence form the basis for defining optimal 
strategies for future data acquisition.

Parameter Contributions to Predictive 
Uncertainty/Error Variance

Each parameter is not expected to contribute equally to 
error variance and prediction uncertainty. By use of formulas 
derived from linear analysis, the uncertainty or error vari-
ance associated with a prediction can be calculated both with 
and without assumed perfect knowledge of one or a number 
of parameters used by the model. The reduction in predic-
tive uncertainty/error variance accrued through notionally 
obtaining perfect knowledge of one or more parameters in 
this manner can be designated as the “contribution” that the 
parameter or parameters make to the uncertainty or error vari-
ance of the prediction in question. Such perfect knowledge can 
be ascribed to an individual parameter (such as the hydraulic 
conductivity associated with a single pilot point), or to a suite 
of parameters (such as all hydraulic conductivities associ-
ated with a particular model layer). It can also be ascribed to 
quantities that would not normally be considered as model 
parameters (for example, imperfectly known values associated 
with particular model boundary conditions).

Figure 5 illustrates the outcome of a study of this type. 
The back row of this graph shows precalibration contributions 
to predictive uncertainty variance made by different types of 
parameters, inputs, and boundary conditions used in the water 
resources model prediction shown in figure 4. The front row 
shows postcalibration contributions to the uncertainty variance 
of this same prediction.

Observation Worth

Beven (1993), among others, has suggested that an ancil-
lary benefit accrued through the ability to compute model 
parameter and predictive uncertainty/error variance is an 
ability to assess the “worth” of individual observations, or of 
groups of observations, relative to that of other observations. 
This process becomes particularly easy if uncertainty/error 
variance is calculated by using formulas derived from linear 
analysis. 

One means by which the worth of an observation or 
observations can be assessed is through computing the uncer-
tainty/error variance of a prediction of interest with the cali-
bration dataset notionally composed of only the observation(s) 
in question. The reduction in uncertainty/error variance below 
its precalibration level then becomes a measure of the infor-
mation content, or worth, of the observation(s) with respect to 
the prediction. A second means by which worth of an observa-
tion or observations can be assessed is to compute the uncer-
tainty/error variance of a prediction of interest twice—once 
with the calibration dataset complete, and once with the perti-
nent observation(s) omitted from this dataset. The increase in 
predictive uncertainty/error variance incurred through omis-
sion of the observation(s) provides the requisite measure of its 
(their) worth.
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Figure 5.  Precalibration and postcalibration contribution to uncertainty associated with the drought lake-stage 
prediction shown in figure 4. Parameter types used in the model are the following: man=Manning’s n, por=porosity, lk 
leakance=lakebed leakance, rstage=far-field river stage boundary condition, inc=stream elevation increment boundary 
condition, rchg=recharge, k1 through k4=Kh of layers 1 through 4, kz1 through kz4=Kz of layers 1 through 4. Note that 
reduction in the prediction uncertainty accrued through calibration was due primarily to reduction in uncertainty in 
the lakebed leakance parameter. Thus, less gain is expected from future data-collection activities targeting only this 
parameter (modified from Hunt and Doherty, 2006).

Optimization of Data Acquisition

As has already been stated, linear analysis is particu-
larly salient to the evaluation of observation worth because 
the evaluation of the worth of data is independent of the 
actual values associated with these data. Hence, worth can be 
assigned to data that are yet to be gathered. This evaluation is 
easily implemented by computing the reduction in uncertainty/
error variance associated with the current calibration dataset 
accrued through acquisition of further data (for example, Box 
1 fig. B1–2). Different data types (including direct measure-
ments of hydraulic properties) can be thus compared in terms 
of their efficacy of reducing the uncertainty of key model 
predictions. 

Dausman and others (2010) calculated the worth of mak-
ing both downhole temperature and concentration measure-
ments as an aid to predicting the future position of the saltwa-
ter interface under the Florida Peninsula. They demonstrated 
that in spite of the linear basis of the analysis, the outcomes 
of data-worth analysis did not vary with the use of different 
parameter fields, thus making the analysis outcomes relatively 
robust when applied to this nonlinear model. 

Nonlinear Analysis of Overdetermined Systems

Vecchia and Cooley (1987) and Christensen and Cooley 
(1999) show how postcalibration predictive uncertainty analy-
sis can be posed as a constrained maximization/minimization 
problem in which a prediction is maximized or minimized 
subject to the constraint that the objective function rises no 
higher than a user-specified value. This value is normally 
specified to be slightly higher than the minimum value of the 
objective function achieved during a previous overdetermined 
model calibration exercise. 

The principle that underlies this methodology is illus-
trated in figure 6 for a two-parameter system. In this figure, 
the shaded contour depicts a region of optimized parameters 
that correspond to the minimum of the objective function. The 
solid lines depict objective function contours; the value of 
each contour defines the objective function for which param-
eters become unlikely at a certain confidence level. Each con-
tour thus defines the constraint to which parameters are subject 
as a prediction of interest is maximized or minimized in order 
to define its postcalibration variability at the same level of 
confidence. The dashed contour lines depict the dependence of 
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Figure 6.  Schematic description of calibration-constrained predictive maximization/minimization.

a prediction on the two parameters. The constrained maximi-
zation/minimization process through which the postcalibration 
uncertainty of this prediction is explored attempts to find the 
two points marked by circles on the constraining objective-
function contour. These points define parameter sets for which 
the prediction of interest is as high or as low as it can be, while 
maintaining respect for the constraints imposed by the calibra-
tion process. See appendix 4 for further details.

Structural Noise Incurred Through Parameter 
Simplification

In environmental modeling, calibration problems are 
overdetermined only because a modeler has done the param-
eter simplification necessary to achieve this status prior to 
embarking on the calibration process (Hunt and others, 2007). 
However, there is a cost associated with this mechanism of 
obtaining a well-posed inverse problem: a rigorous assessment 
of postcalibration parameter or predictive error variance must 
include an assessment of the cost of precalibration regulariza-
tion that is embodied in this simplification. 

Cooley (2004) and Cooley and Christensen (2006) dem-
onstrate a methodology through which one can calculate the 
potential for nonlinear model predictive error incurred through 
manual precalibration simplification of complex parameter 
fields. This methodology constitutes an expansion of the con-
strained maximization/minimization process described above. 
They take as their starting point a model domain in which 
hydraulic properties are assumed to be characterized by a 
known covariance matrix of innate parameter variability. This 
matrix will generally include off-diagonal terms to describe 
continuity of hydraulic properties over appropriate distances. 
Prior to embarking on model calibration, they first complete a 
large number of paired model runs. In each case, one of these 
pairs employs a stochastic realization of the model param-
eter field generated by use of the assumed covariance matrix 
of innate parameter variability. The other parameter field is 
the lumped or averaged counterpart to the complex field. By 
undertaking many such runs on the basis of many such pairs 
of parameter fields, they empirically determine the covariance 
matrix, that forms the “structural noise” induced by parameter 
simplification under both calibration and predictive condi-
tions. The former is added to measurement noise and used in 
overdetermined uncertainty analyses formulation thereafter; 
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hence the constraining objective function of figure 6 includes 
the contribution of structural noise to calibration model-to-
measurement misfit. The structural noise affecting the predic-
tion is also taken into account when its potential for error is 
computed through the constrained maximization/minimization 
process. 

Highly Parameterized Nonlinear Analysis 

The PEST suite provides two methodologies through 
which nonlinear uncertainty analysis can be done in the highly 
parameterized context; as Doherty and Hunt (2010) point 
out, this is the most appropriate context for environmental 
modeling. Strictly speaking, these methods constitute error 
analysis rather than uncertainty analysis, because the meth-
odologies discussed above (and elaborated upon in appendix 
4) for computation of linear parameter and predictive error 
provide a basis for their formulation. However, the distinction 
between error and uncertainty analysis becomes somewhat 
blurred when applying these methodologies in the nonlinear 
context. Implementation of both of these methodologies com-
mences with a calibrated model. In both cases, the uncertainty/
error analysis process is therefore best served if care is taken 
in implementing the calibration process to ensure that the 
calibrated parameter field approaches that of minimum error 
variance. 

Constrained Maximization/Minimization 

 Tonkin and others (2007) present a methodology for 
model predictive error analysis through constrained maximiza-
tion/minimization in the highly parameterized context. Once a 
model has been calibrated, predictive maximization/minimiza-
tion takes place in a similar manner to that described previ-
ously for the overdetermined context. However, it is different 
from the overdetermined context because: 
1.	 the maximization/minimization problem is formulated in 

terms of parameter differences from their calibrated values 
rather than in terms of actual parameter values, and 

2.	 the effect that these parameter differences have on model 
outputs is also expressed in terms of differences between 
those outputs and those that correspond to the calibrated 
parameter set. 
As predictive maximization/minimization takes place, 

differences between current parameter values and their 
calibrated counterparts are projected onto the calibration null 
space. These differences constitute a “null-space objective 
function” where projected parameter departures from cali-
brated values are informed by the null-space formulation of 
Moore and Doherty (2005). Projected differences are weighted 
by use of a null-space-projected parameter covariance matrix 
of innate variability C(p) supplied by the modeler. At the same 
time, a “solution-space objective function” is calculated such 
that when the model employs the calibrated parameter field, 

the total objective function is zero. As in the overdetermined 
case, a prediction of interest is then maximized or minimized 
subject to the constraint that the total objective function rises 
no higher than a predefined value. See Tonkin and others 
(2007) for additional discussion. 

Null-Space Monte Carlo

Null-space Monte Carlo analysis (Tonkin and Doherty, 
2009) is a more robust explanation of the constrained maximi-
zation/minimization process described above. Prior to imple-
mentation of null-space Monte Carlo analysis, it is assumed 
that a model has been calibrated, this resulting in computation 
of an optimal parameter field (that is, a parameter field that 
approaches that of minimum error variance). Similar to stan-
dard Monte Carlo approaches, stochastic parameter fields are 
then generated by using an appropriate C(p) matrix of innate 
parameter variability supplied by the modeler. In each case, 
the calibrated parameter field is then subtracted from the sto-
chastically generated parameter field. The difference between 
the two is then projected onto the calibration null space. Next, 
the solution-space component of the stochastically generated 
parameter field is replaced by the parameter field arising from 
the previous regularized-inversion calibration. Ideally, because 
(by definition) null-space parameter components do not appre-
ciably affect model outputs that correspond to elements of the 
calibration dataset, the null-space processing of the optimal 
parameter set in this manner should result in a similar model 
calibration. However, in practice, the null-space-processed 
parameters commonly result in a slightly decalibrated model, 
this being an outcome of model nonlinearity and the fact that 
the cutoff between calibration solution and null spaces does 
not equate with the location of zero-valued singular values. 
Recalibration of the model is then effected by adjusting only 
solution-space parameter eigencomponents until the objective 
function falls below a user-specified level. 

The choice of the target or threshold objective function 
level at which the model is deemed to be “calibrated” is often 
subjective. Generally, choice of a higher objective-function 
threshold can reduce the computational effort required to 
achieve it. Another factor that may influence the choice of 
a high objective-function threshold over a low one is that in 
most modeling contexts, “measurement noise” is dominated 
by structural noise of unknown stochastic character. Because 
of this, the “theoretically correct” objective function threshold 
is difficult, if not impossible, to determine. Moreover, in most 
modeling circumstances, parameter error is dominated by 
the null-space term; hence, errors incurred by selection of an 
inappropriately high objective function threshold in computa-
tion of the solution-space contribution to overall parameter 
and predictive error degrade the assessment of overall model 
predictive uncertainty to only a small degree.

Figure 7 illustrates the sequence of steps required to 
compute calibration-constrained stochastic fields by use of the 
null-space Monte Carlo methodology. 
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Recalibration of null-space-projected stochastic fields by 
solution-space adjustment ensures that variability is introduced 
to solution-space components. This adjustment is necessary 
because a potential for error in solution-space parameter com-
ponents is inherited from noise associated with the calibration 
dataset. Although performed on highly parameterized models, 
the numerical burden of stochastic field recalibration is nor-
mally negligible for the following reasons:
1.	 Null-space projection, followed by replacement of 

solution-space components of stochastically generated 
parameter fields by that obtained through the anteced-
ent regularized-inversion process, guarantees a near-
calibrated status of all parameter fields produced in this 
manner.

2.	 As the dimensionality of the solution space is normally 
considerably smaller than that of parameter space, reca-
libration normally requires only a fraction of the number 
of model runs per iteration as there are adjustable param-
eters; recalibration can be efficiently attained by use of 
PEST’s SVD-Assist functionality (Tonkin and Doherty, 
2005).

3.	 The first iteration of each SVD-assisted recalibration 
process does not require that any model runs be done 
for computation of superparameter derivatives, because 
the derivatives calculated on the basis of the calibrated 
parameter field are reused for all stochastic fields.

Hypothesis Testing

One useful means through which a model can be used 
to test the likelihood or otherwise of a future (unwanted) 
environmental occurrence is to incorporate that occurrence as 
a member of an expanded calibration dataset. If a prediction-
specific recalibration exercise can then find a parameter field 
that:
1.	 is defined by the modeler to be reasonable through terms 

of an explicit or implicit C(p) covariance matrix of innate 
parameter variability and

2.	 allows the model to respect the tested predictive occur-
rence without incurring excessive misfit with the calibra-
tion dataset as assessed by using an explicit or implicit 
C(ε) covariance matrix of measurement noise,

then the hypothesis that the undesireable occurrence will be 
realized cannot be rejected on the basis of currently available 
knowledge and data pertaining to the study site.

In practice, many hypotheses cannot be unequivocally 
rejected; however, they can be rejected at a certain level of 
confidence. The confidence level may be judged on the basis 
of a composite objective function that includes both the C(p) 
covariance matrix of innate parameter variability and the C(ε) 
covariance matrix of measurement noise. Furthermore, in 
many instances the concept of what constitutes an unwanted 
future occurrence is not a binary condition but is rather a mat-
ter of degree. Hence, a modeler will be interested in relating, 
for example, the increasing magnitude of the value of a predic-
tion to the decreasing likelihood of its occurrence. 

Analyses of predictive value versus likelihood are most 
easily made where PEST’s Pareto functionality is invoked 
(Figure 8). The Pareto concept is borrowed from optimiza-
tion theory. The so-called “Pareto front” defines an optimal 
tradeoff between two competing objectives whereby neither 
objective can be better met without simultaneously degrad-
ing the success of meeting the other. Moore and others (2010) 
show that it also represents a locus of solutions to a succession 
of constrained optimization problems whereby a prediction is 
maximized/minimized subject to the constraints of respect-
ing a specified objective function. As such, the Pareto concept 
can be used to explore predictive uncertainty. However, its 
use in this context can be more rewarding than methodologies 
presented above that are based on similar principles for the 
following reasons:
1.	 Because Pareto analysis solves a succession of con-

strained optimization problems, a modeler is able to relate 
a continuous series of predictive outcomes to a continuous 
series of confidence limits.

2.	 Where the covariance matrix of innate parameter variabil-
ity is unknown, and where model-to-measurement misfit 
is dominated by structural noise of unknown covariance 
matrix, the continuous nature of PEST’s outputs when 
run in Pareto mode provide a sound basis for qualitative 
assessment of predictive confidence intervals. 
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Figure 8.  A Pareto-front plot of the tradeoff between best fit between simulated and observed 
targets (objective function, x-axis) and the prediction of a particle travel time. The correct 
prediction is 3,256 days, which requires an appreciable degradation of the calibrated model in 
order to be simulated (modified from Moore and others, 2010).

Uncertainty Analysis: Overdetermined 
Systems 

	










Linear Analysis Reported by PEST

Upon completion of a parameter-estimation process 
PEST automatically records the following information to its 
run record (*.rec) file:
1.	 the parameter covariance matrix,

2. the parameter correlation coefficient matrix,

3. eigenvectors and eigenvalues of the parameter covariance 
matrix, 

4. the standard deviations of estimated parameters (the 
square roots of respective diagonal elements of the param-
eter covariance matrix), and

5. the 95-percent individual linear confidence interval for 
each estimated parameter, calculated under the assump-
tion that measurement noise (and hence estimated param-
eters for a linear model) is normally distributed.
If requested, this information is also recorded in a matrix 

(*.mtt) file at the end of each iteration of the parameter-esti-
mation process. When viewing this information, it is important 
that the following points be kept in mind. 

First, the validity of these results is predicated on the 
assumption that the user has supplied observation weights that 
represent the covariance matrix of measurement noise. How-
ever, as Cooley (2004) points out, the process of precalibration 
parameter lumping necessary to achieve well-posedness of the 
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inverse problem of model calibration induces structural noise 
with a complex spatial (and temporal) covariance structure. 
Rarely will this structure be known; thus, rarely can a weight 
matrix be selected that fulfills these requirements. 

Secondly, even if an appropriate weight matrix is deter-
mined by using, for example, the precalibration Monte Carlo 
procedure described by Cooley (2004), parameter uncertain-
ties calculated as an adjunct to overdetermined parameter 
estimation pertain to properties that are necessarily averaged 
over large areas and/or large times. This coarseness incurs 
unquantified errors in quantities that are sensitive to smaller 
scale parameter detail (Doherty and Hunt, 2010; Fienen and 
others, 2010). 

Thirdly, for the sake of attaining well-posedness of the 
inverse problem of model calibration, insensitive parameters, 
and/or those parameters that are highly correlated with other 
parameters, are generally fixed by the user at values that are 
deemed to be reasonable so that they do not take part in the 
calibration process. Because these particular parameters are 
fixed, the associated uncertainties cannot be recorded by 
PEST. Furthermore, the fact that values estimated for param-
eters that are retained in the calibration process may depend 
on the values at which some of these parameters are fixed is 
not accommodated in computation of parameter or predictive 
uncertainty.

Linear Analysis Using PEST Postprocessors

The PCOV2MAT utility reads a PEST run record (*.rec) 
file, or a matrix (*.mtt) file that contains a parameter covari-
ance matrix. It rewrites this matrix in PEST matrix file format. 
Once in this format, the covariance matrix can be subjected 
to matrix manipulation of any type supported by PEST matrix 
manipulation utilities. (See appendix 2 for a list of processing 
options offered by these utilities.)

Linear computation of predictive uncertainty/error vari-
ance requires that the sensitivity of a prediction of interest to 
all parameters be available. This can be computed by includ-
ing the prediction as a dummy observation (an arbitrary value 
specified) in a PEST input dataset and by then obtaining the 
Jacobian matrix by running PEST with NOPTMAX set to −1 
or −2. Sensitivities for any number of predictions can be com-
puted in this manner. The command cited in the “model com-
mand line” section of the PEST control file must be such that 

the model reads input files that contain stresses on which basis 
the prediction of interest is calculated. If these are the same as 
calibration stresses, then one or a number of predictions can be 
“carried” throughout a calibration exercise by including them 
in the calibration dataset with weights of zero. PEST records 
sensitivities of model outputs to adjustable parameters in its 
Jacobian matrix (*.jco) file. An individual row of this matrix 
can be extracted and written in PEST matrix file format using 
the JROW2VEC or JROW2MAT utilities supplied with PEST. 
Predictive error variance can then be computed by using the 
MATQUAD matrix manipulation utility. (See appendix 4 for 
computational details.)

Other Useful Linear Postprocessors

The INFSTAT (INFluence STATistic) utility computes a 
number of observation influence statistics including observa-
tion leverage, Cook’s D (see Cook and Weisberg; 1982), an 
influence statistic proposed by Hadi (1992), and “difference 
in Betas” or DFBETAS. Belsley and others (1980) and Hunt 
and others (2006) demonstrate the use of these statistics in the 
groundwater-modeling context; Yager (1998) and Hadi (1992) 
provide calculation details for these statistics. 

Statistics computed by INFSTAT are designed for use 
in the overdetermined parameter-estimation context where 
well-posedness is achieved through precalibration parameter 
lumping. Thus, in practice insights given by these statistics 
should often be considered more qualitative than quantitative. 
Moreover, the integrity of information given by them depends 
on use of a C(ε) matrix that, in practice, includes the substan-
tial contribution made to measurement noise by precalibration 
simplification. 

Like INFSTAT, the EIGPROC (EIGen PROCessor) util-
ity is designed for use following an overdetermined PEST-
based parameter-estimation exercise. This utility reads files 
written by PEST during the estimation process, accumulating 
information recorded in these files that is pertinent to one or 
more parameters whose estimation is most prone to uncer-
tainty. This information is then recorded in a single output file. 
Thus, all information calculated during the parameter-estima-
tion process that pertains to all parameters whose estimation 
has been identified as problematic is immediately available for 
inspection by the modeler.
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Nonlinear Analysis—Constrained Optimization

When PEST is run in “predictive analysis” mode (by 
setting the PESTMODE variable in the “control data” section 
of the PEST control file to “prediction”; see appendix 1), it 
implements constrained predictive maximization/minimization 
as described above and in appendix 4. The following features 
of PEST’s operation in this mode are notable:
1.	 If PEST is run in “predictive analysis” mode, the PEST 

control file must possess a “predictive analysis” section 
(see appendix 1).

2.	 The model output that PEST must maximize or minimize 
must be the sole member of an observation group whose 
name is “predict.”

3.	 Maximization or minimization as an optimization alterna-
tive is selected by using the NPREDMAXMIN variable in 
the “predictive analysis” section of the PEST control file.

4.	 The objective function constraint is supplied as the PD0 
variable in the “predictive analysis” section of the PEST 
control file.

5.	 Predictive noise is optionally taken into account in the 
constrained predictive maximization/minimization pro-
cess through use of the PREDNOISE variable.

6.	 Termination criteria, specific to this mode of PEST’s 
operation, must also be supplied in the “predictive analy-
sis” section of the PEST control file.
Experience with the Gauss-Marquardt-Levenberg (GML) 

method of objective function minimization during calibration 
has shown that it can work reasonably well in contexts where 
model outputs are contaminated by numerical noise (provided 
that the level of this contamination is not unduly high). How-
ever, the same cannot be said for the constrained predictive 
maximization/minimization process implemented by PEST 
when run in “predictive analysis” mode because this is a much 
more numerically demanding procedure. Problematic model 
derivatives lead to “serrated” objective-function contours. The 
geometry of these contours can become even more irregular 
where they are long and narrow as a result of a high degree of 
parameter correlation or insensitivity. Contours of model pre-
diction values can also become serrated. The locations where 
these sets of contours intersect (especially where intersection 
takes place at a shallow angle) may thus be difficult to com-
pute without error.

The following advice may prove useful when working in 
numerically troublesome environments:

1. Like parameter estimation, the constrained maximization/
minimization process implemented by PEST when it is 
run in “predictive analysis” mode is an iterative process 
that requires successive linearizations of the constrained 
optimization problem. Each iteration requires that at 
least as many model runs be done as there are adjustable 
parameters for the purpose of finite-difference deriva-
tives calculation; hence, the process can be numerically 
expensive. In general, it is best to commence the process 
by using parameter values that coincide with the objec-
tive-function minimum. Following a parameter estimation 
run in which this minimum is determined, the PARREP 
(PARameter REPlacement) utility can be used to build a 
PEST control file in which optimized parameter values 
become initial parameter values for an ensuing predictive 
maximization/minimization run. 

2. Where it is suspected that the constrained maximization/
minimization process may not have raised/lowered the 
prediction as much as it is possible to do, alternative start-
ing points (some of which may lead to objective functions 
that are considerably higher than the constraining objec-
tive function) should be tested.

3. Implementation of the optional predictive maximization/
minimization line-search option may allow progress to be 
made in difficult numerical circumstances where prog-
ress would not otherwise be possible. However the line 
search is numerically expensive and is not parallelizable. 
If implemented, useful settings for the INITSCHFAC, 
MULSCHFAC and NSEARCH variables that control the 
line-search process have been found to be 0.3, 1.3 and 15 
respectively.

Nonlinear Analysis—Random Parameter 
Generation for Monte Carlo Analyses

A fast but approximate method of generating a suite 
of null-space-processed parameter sets that approximately 
calibrate a model is to generate these fields by using the 
postcalibration parameter error covariance matrix. This 
matrix can be extracted from a PEST run record (*.rec) file 
by means of the PCOV2MAT utility; it can then be cited in a 
parameter uncertainty file (see Doherty 2010a) for access by 
the RANDPAR (RANDom PARameter) utility supplied with 
PEST. When deployed in this way, RANDPAR generates a 
sequence of parameter-value files, each containing a parameter 
set that approximately calibrates the model; the approximation 
deteriorates with increasing model nonlinearity and with the 
degree of ill-posedness of the inverse problem. 
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Linear Analysis for Underdetermined 
Systems

This section provides a brief description of tasks per-
formed by PEST utilities that implement linear uncertainty/
error analysis, and processing related thereto, in the highly 
parameterized context. Some of these utilities are designed 
for use in a calibration postprocessing capacity. Others can be 
used independently of the calibration process. 

Postcalibration Analysis

Figure 9 is a schematic description of utilities available 
in the PEST suite for postcalibration analysis of parameter and 
predictive error variance. A summary of their use is given in 
the text that follows.

 PEST highly parameterized inversion

jco rec rsd par etc PEST output files

RESPROC

binary R and G matrices

REGWRIT

text R and G matrices

SURFER R and G matrices

MAT2SRF MATSVD
MATROW
MATDIAG

etc

matrix - related data

PREDERR
PREDERR1
PREDERR2
PREDERR3

predictive error variance

PARAMERR

parameter error variance

REGERR

regularization -induced observation error variance

Figure 9. Utilities available for postcalibration parameter and predictive error variance analysis. (See appendix 2 for 
additional description of these utilities.)
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Regularized Inversion and Uncertainty

As is discussed in Doherty and Hunt (2010), PEST offers 
various means through which mathematical regularization can 
be implemented in highly parameterized model calibration. 
These include the following:

•	 Tikhonov regularization,

•	 truncated singular value decomposition (SVD),

•	 PEST’s “SVD-Assist” methodology, and

•	 the LSQR methodology of Paige and Saunders  
(1982a, 1982b).

These can often be used in combination. For example, 
Tikhonov regularization can be used in an inverse problem 
in which parameters are estimated through truncated SVD. 
Superparameters used in SVD-assisted inversion can be 
estimated by using the Gauss Marquardt Levenberg solution 
method, truncated SVD, or LSQR. 

Whenever PEST runs any kind of regularized inversion, 
it records a resolution data (*.rsd) file. This is a binary file that 
contains information required to build the resolution matrix; 
the construction details of this matrix are a function of type of 
regularization implemented in solving the inverse problem of 
model calibration. 

Regularized Inversion Postprocessing

Regularized inversion postprocessing is a multistep 
procedure. Where many parameters are featured in the inver-
sion process, calibration postprocessing can be numerically 
burdensome, and memory requirements can be high. By 
subdividing postprocessing activities into discrete tasks, and 
by storing the outcomes of these discrete tasks as individual 
files, these outcomes can be used in different ways by different 
application-specific postprocessors without the need to repeat 
common steps.

The first step in regularized-inversion postprocessing 
is the running of the RESPROC (RESolution matrix PROC-
cesor) utility. This utility reads a PEST control file, as well as 
the resolution data (*.rsd) file and the corresponding Jaco-
bian matrix (*.jco) file produced during a previous inversion 
exercise. RESPROC writes its own binary output file, which 
contains the resolution matrix that results from solution of the 
highly parameterized problem. This file contains intermediate 
data that are then read by other utility programs that compute 
quantities of direct interest to the modeler.

The RESWRIT (RESolution matrix WRITing) util-
ity reads the resolution-data matrices stored in a RESPROC 
binary output file, rewriting these matrices in PEST’s ASCII 
matrix file format. These matrices (and the files that hold 
them) can be very large where a parameter-estimation pro-
cess employs many parameters and/or observations. The 
MAT2SRF matrix manipulation utility can be used to rewrite 
these matrices in SURFER (http://www.goldensoftware.

com/products/surfer/surfer.shtml) grid format; SURFER can 
then be used to inspect the resolution matrix for presence or 
absence of diagonal dominance. 

Once stored in matrix file format, other options for pro-
cessing the resolution matrix become available. These include 
the following:
1.	 The MATROW (MATrix ROW) utility can be used 

to extract a row of the resolution matrix. As stated in 
section 2 of this document, each row of the resolution 
matrix depicts the averaging weights through which each 
estimated parameter is related to real-world hydraulic 
properties.

2.	 Diagonal elements of the resolution matrix can be 
extracted by using the MATDIAG (MATrix DIAGonal) 
utility. This allows an inspection of the degree to which 
these do, or do not, approach unity for different param-
eters and/or for different parameter types.
Like RESWRIT, the PARAMERR (PARAmeter ERRor) 

utility reads a RESPROC output file. It also requires a “param-
eter uncertainty file” that reflects the modeler’s estimate of the 
innate parameter variability. This estimate can consist of user-
supplied standard deviations for the parameterization scheme 
used (that is, the more lumped the parameters, the larger the 
likely standard deviation of the properties within that entity) 
or a formally calculated covariance matrix constructed by 
means of a variogram or other geostatistical information. This 
estimate of innate parameter uncertainty is then handled with 
mathematical rigor via the C(p) matrix (see appendix 4); this 
matrix, along with an observation uncertainty file required to 
obtain the C(ε) matrix describing measurement noise, provide 
the fundamental information for uncertainty analysis. Doherty 
(2010a) describes the format of these two files. PARAMERR 
then computes the null-space and solution-space components 
of the parameter error covariance matrix C(p-p). The modeler 
can add these matrices together to obtain the overall parameter 
error covariance matrix using the MATADD (MATrix ADD) 
utility. Further manipulation of any of these matrices can be 
run by use of matrix utilities supplied with the PEST suite 
(appendix 2).

The covariance matrix of regularization-induced struc-
tural noise (see equation A4.33, appendix 4) can be computed 
by using the REGERR (REGularization ERRor) utility. Like 
other utilities discussed above, REGERR reads a RESPROC 
output file. It obtains a C(p) matrix of innate parameter vari-
ability from a user-prepared parameter uncertainty file; it also 
reads the Jacobian matrix (*.jco) file recorded by PEST during 
the previous parameter-estimation process.

 Predictive Error Analysis 

PREDiction ERRor Utilities (PREDERR, PREDERR1, 
PREDERR2, and PREDERR3) are also available to compute 
the error variance of a prediction (by means of equation A4.27 
in appendix 4). In order to accomplish this, they must employ 
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 PEST

error uncertainty

PREDVAR1 PREDVAR4 PREDVAR5 PREDUNC1 PREDUNC4 PREDUNC5

• predictive error 
• solution and null space contributions 

to predictive error
• reduction in predictive error 

achieved through calibration

parameter contributions to total 
predictive error

observation worth in 
reducing predictive error

• predictive uncertainty
• reduction in predictive uncertainty 

achieved through calibration

parameter contributions to total 
predictive uncertainty

observation worth in reducing 
predictive uncertainty

jco file

SCALEPAR

vs SVD truncation

 Figure 10. PEST utilities available for calibration-independent error and uncertainty analysis.

the predictive-sensitivity matrix read from a Jacobian matrix 
(*.jco) file. This file may have been written during a previous 
calibration exercise, in which case the prediction will prob-
ably have appeared as an observation of zero weight in the 
corresponding PEST control file. Alternatively, the Jacobian 
matrix (*.jco) file may have been written by PEST on a special 
run in which no calibration was actually done but in which the 
model was run under predictive conditions m times, where m 
is the number of adjustable parameters featured in the previ-
ous parameter-estimation process; optimized parameter values 
should have been used in this PEST run. 

Each member of the PREDERR suite of programs differs 
slightly from other members of this suite in how it obtains in-
put and in the nature of the calculations that it performs. PRE-
DERR and PREDERR3 read the resolution and G matrices of 
appendix 4 equation A4.27 from a binary RESPROC output 
file, whereas PREDERR1 and PREDERR2 read these matri-
ces from ASCII matrix files (that were presumably written by 
RESWRIT). PREDERR2 and PREDERR3 can compute error 
variances for multiple predictions, whereas PREDERR and 
PREDERR1 compute the error variance associated with just a 
single model prediction.

Calibration-Independent Analysis

The utility programs discussed in the preceding section 
are designed for use as an adjunct to model calibration. In 
contrast, utilities discussed in the present section are designed 
for use independently of the calibration process. Their use 
depends only on the existence of a PEST control file, an asso-
ciated Jacobian matrix (*.jco) file, and a parameter uncertainty 
file that contains the user-specified matrix of innate parameter 
variability C(p). There is no requirement for a PEST calibra-
tion operation, because these programs do not need the resolu-
tion data (*.rsd) file that results from calibration. If desired, 
parameter values cited in the PEST control file can be those 
estimated through a previous calibration exercise; alterna-
tively, the PEST control file can list parameter values that are 
considered by the modeler to be reasonable.

A major distinction between approaches is shown in 
figure 10. In practice, the uncertainty utilities (PREDUNC) re-
quire less user input and are easier to apply. The error utilities 
(PREDVAR) are able to handle larger numbers of parameters 
using singular value decomposition but require the user to 
provide additional information. Figure 10 shows the relations 
between and within these utilities schematically. A summary 
of their capabilities is given in the subsequent text.
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The PREDVAR Suite

Each member of the PREDVAR (PREDictive VARiance) 
suite of programs differs slightly from other members of this 
suite in the nature of the calculations that it performs.

PREDVAR1

The PREDVAR1 utility reads a PEST control file, its 
corresponding Jacobian matrix (*.jco) file, a user-supplied 
parameter uncertainty file, and a PEST matrix file containing 
sensitivities of a single prediction to all model parameters. 
PREDVAR1 computes the error variance of that prediction 
under the assumption that calibration is effected by use of 
truncated singular value decomposition. The user provides 
a suite of integers denoting singular value numbers at which 
truncation may occur; the lowest of these numbers should be 
no lower than zero, whereas the highest should be no higher 
than the maximum number of adjustable parameters featured 
in the PEST control file. PREDVAR1 computes the error vari-
ance of a user-specified prediction at all such truncation levels. 
On the basis of these calculations, graphs such as that depicted 
in figure 4 can be produced. As was discussed previously, from 
graphs such as this the following information can be gleaned:
1.	 the minimum attainable error variance expected for the 

prediction,

2.	 the singular value number at which predictive error vari-
ance minimization occurs,

3.	 the contributions made by null- and solution-space terms 
to predictive error variance,

4.	 precalibration predictive error variance (equivalent to 
precalibration predictive uncertainty), and

5.	 the efficacy of the calibration process in reducing predic-
tive error variance below its precalibration level.
As discussed previously, where the C(p) covariance 

matrix of innate parameter variability contains very different 
precalibration uncertainties, graphs such as that shown in fig-
ure 4 can sometimes rise before they fall as the singular-value-
truncation number is increased. Though not common, this can 
be avoided by reformulating the inverse problem in terms of 
normalized parameters, rather than native parameters, with 
normalization taking place with respect to the innate variabil-
ity of each parameter. Reformulation of the inverse problem 
in terms of normalized parameters can be accomplished by 
using the SCALEPAR (SCALE PARameter) utility. SCALE-
PAR reads an existing PEST control file and corresponding 
Jacobian matrix (*.jco) file and writes a new version of each 
of these based on an inverse problem in which parameters are 
normalized by their innate variability. Utility programs of the 
PREDVAR suite should then be directed to read these files 
instead of those pertaining to native parameters. If the inverse 
problem is posed in terms of normalized parameters, predic-
tive sensitivities should also pertain to normalized parameters. 

Hence, SCALEPAR should be used to do a transformation 
of predictive sensitivities, as well as calibration sensitivi-
ties. Moreover, once parameters have been normalized, the 
C(p) matrix supplied to PREDVAR1 must be revised so that 
it describes the innate variability of normalized parameters 
rather than of native parameters. 

PREDVAR4

PREDVAR4 computes the contribution made to the error 
variance of a particular prediction by individual parameters 
or by groups of parameters. For this purpose, “contribution” 
is defined as the fall in predictive error variance accrued 
through notionally acquiring perfect knowledge of the value(s) 
of the parameter(s) in question. Using a “parameter list file” 
(Doherty, 2010b), the user defines one or multiple sets of 
parameters for which such contributions to predictive error 
variance are sought. In each case, PREDVAR4 minimizes the 
error variance of the nominated prediction with respect to sin-
gular value number when calculating predictive error variance 
with and without inclusion of the nominated parameters in the 
predictive error variance calculation process.

Graphs such as that shown in figure 5 are readily created 
on the basis of PREDVAR4 analysis. The back row of figure 
5 depicts precalibration contributions by different parameter 
types to the error variance of a particular prediction; these 
are computed for truncation at zero singular values. The front 
row depicts postcalibration contributions to the error variance 
of the same prediction made by the same parameters; these 
are computed for minimized (with respect to singular value) 
error variance. Graphs such as this can provide a modeler with 
valuable insights into the role of the model-calibration process 
in enhancing (or not) the reliability of predictions of inter-
est. In addition, they may suggest strategies for future data 
acquisition aimed at reducing the error with which predictions 
are made. Alternatively, if postcalibration contributions to the 
error variance of predictions of a certain type are dominated 
by parameters whose contributions are unlikely to be reduced 
either by direct measurement of system properties or by mea-
surements of system state, the recalcitrant nature of the error 
variance associated with predictions of that type will have 
been identified.

As discussed previously, parameters included in an analy-
sis of this type do not need to be restricted to those that are 
adjusted through the calibration process. Any facet of the mod-
eled system that is imperfectly known can be included in the 
analysis, including boundary conditions for which pertinent 
values would otherwise be assumed (for example, rstage in fig. 
5). If an analysis shows that contributions to the error vari-
ance of certain predictions accruing from uncertain knowledge 
of such boundary conditions is minimal or low compared to 
contributions made by other facets of the system under study, 
this indicates that reasonable values can be assigned to such 
boundary conditions without adversely affecting the use of the 
model in making those predictions.
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In rare circumstances, use of PREDVAR4 can yield 
results that suggest that the postcalibration contribution to pre-
dictive error variance made by a particular parameter is greater 
than its precalibration contribution. This seemingly illogical 
result arises from the definition of “contribution to predictive 
error variance” as the loss in predictive error variance accrued 
through acquiring perfect knowledge of a parameter’s value 
through means outside of the calibration process. If the value 
of a certain parameter can only be estimated through the cali-
bration process in conjunction with that of another parameter 
(that is, if the parameters have a high degree of correlation 
based on currently available data), then acquisition of perfect 
knowledge of the first parameter can yield better estimates for 
the second parameter. Hence, acquisition of perfect knowl-
edge of the first parameter will yield better estimates of any 
prediction that is sensitive to that second parameter, even if the 
prediction is not sensitive to the first parameter.

As was described above for PREDVAR1, parameters 
should be scaled with respect to their innate variabilities 
before using PREDVAR4. This is most easily achieved by 
using the SCALEPAR utility.

PREDVAR5

PREDVAR5 is used to assess the worth of individual 
or grouped observations. PREDVAR5 assesses “worth” in 
two ways. First, the worth of an observation, or group of 
observations, can be assessed as the increase in predictive 
error variance incurred through omitting the observation(s) 
from the current calibration dataset. Second, the worth of an 
observation, or group of observations, can be assessed as the 
decrease in predictive error variance from its precalibration 
level accrued through including the observation(s) as the sole 
member(s) of a calibration dataset. PREDVAR5 can also com-
pute the reduction in predictive error variance accrued through 
adding to the current observation dataset one or more new 
observations. Because linearity is assumed, it is not necessary 
for these observations to have actually been made, for only the 
sensitivities of model outputs corresponding to these observa-
tions, together with an assessment of the noise with which 
they are likely to be associated, are required. PREDVAR5 
can thus form a basis for optimizing the acquisition of future 
data. As for PREDVAR1 and PREDVAR4, parameters should 
be scaled with respect to their innate variabilities before use 
of PREDVAR5. This is most easily achieved by using the 
SCALEPAR utility.

The PREDUNC Suite
The PREDiction UNCertainty utilities PREDUNC1, 

PREDUNC4, and PREDUNC5 perform similar roles as the 
PREDVAR1, PREDVAR4, and PREDVAR5 utilities, respec-
tively. However, their calculations are based on Bayes’ equa-
tion (appendix 4, equation A4.10) for predictive uncertainty 
rather than for predictive error variance (appendix 4, equation 
A4.27). Their use requires identical input files to those of their 

respective PREDVAR counterparts. However, there are some 
important differences between these two suites of utilities:
1.	 Uncertainty is an intrinsic quality of a prediction and the 

data used to support that prediction, whereas error variance 
is not (and is always higher than uncertainty variance). 
PREDUNC4 should be used in preference to PREDVAR4 
for computation of parameter contributions to predictive 
variability. Similarly, PREDUNC5 should be used in pref-
erence to PREDVAR5 for assessment of observation worth.

2.	 There is no need to scale parameters with respect to their 
innate variability before using members of the PREDUNC 
suite; hence, use of SCALEPAR is unnecessary.

3.	 Unlike members of the PREDVAR suite, PREDUNC utili-
ties do not need to minimize predictive uncertainty with 
respect to number of singular values, because singular val-
ues do not feature in calculation of predictive uncertainty.

Identifiability and Relative Uncertainty/Error 
Variance Reduction

Through use of the IDENTPAR (INDENTifiability 
PARameter) and GENLINPRED (GENeral LINear PREDiction) 
utilities supplied with PEST, parameter identifiability and rela-
tive parameter error reduction are readily computed. Doherty 
and Hunt (2010) provide the derivation of these statistics. Plots 
based on outputs from these utilities are given in figures 11A 
and 11B. A map-view of identifiability is given in James and 
others (2009).

 In figure 11A, identifiability bars are color coded accord-
ing to the magnitude of their projection onto different solution-
space eigenvectors (columns of the V1 matrix of appendix 
4 equation A4.14). Warmer colors indicate projection onto 
eigenvectors associated with higher singular values. Cooler 
colors indicate projections onto eigenvectors associated with 
lower singular values. (Values for the former are estimated with 
a smaller potential error than are those for the latter.)

Relative parameter error variance reduction is computed 
with the prediction being the value of a parameter normal-
ized by its standard deviation. Relative parameter uncertainty 
variance reduction can be computed in a similar fashion (using 
appendix 4, equation A4.10). Graphs of relative parameter-
uncertainty-variance reduction are similar to those of relative 
parameter-error-variance reduction. In general, use of relative 
parameter-uncertainty-variance reduction is preferable to that of 
relative parameter-error-variance reduction because
1.	 parameter uncertainty does not depend on the number of 

pre-truncation singular values,

2.	 minimization of parameter error with respect to number of 
pre-truncation singular values is not required, and

3.	 unlike relative parameter-error-variance reduction, the 
relative uncertainty-variance reduction of a parameter can 
never become negative; the latter can occur if the number 
of pre-truncation singular values is set too high.
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Results from GSFLOW modeling Trout Lake Basin, WI

Figure 11A. Identifiability of parameters used by a composite groundwater/surface-water model (modified from 
Doherty and Hunt, 2009a).
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Figure 11B.  Relative error reduction of parameters used by a composite groundwater/
surface-water model (modified from Doherty and Hunt, 2009a).
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The GENLINPRED Utility

The GENLINPRED utility can be used for computation 
of parameter identifiability, relative parameter- and prediction-
error variance reduction, and relative parameter- and predic-
tion-uncertainty-variance reduction. It calls the IDENTPAR, 
SCALEPAR, PREDVAR1A, and PREDUNC1 utilities.  

If specified by the user, GENLINPRED can also run the  
PREDUNC4 and PREDVAR4 utilities to compute parameter 
contributions to predictive uncertainty/error variance, as well 
as the PREDUNC5 and PREDVAR5 utilities to compute 
observation worth. GENLINPRED outputs are recorded in 
a series of tables written to its single text output file. These 
tables can be pasted into a spreadsheet for immediate plotting.

Box 2: GENLINPRED—Access to the Most Common Methods for 	
	 Linear Predictive Analysis within PEST

GENLINPRED—the GENeral LINear PREDictive uncertainty/error analyzer—is a master utility program that  

enables a modeler to undertake many of the linear parameter and predictive error (uncertainty) analyses described in 

this chapter. GENLINPRED accomplishes this by automatically executing other PEST utilities—including SCALEPAR, 

JROW2VEC, SUPCALC, IDENTPAR, PREDUNC1/4/5 and/or PREDVAR1/4/5. GENLINPRED saves the modeler the task of 

running each of these utilities individually by automatically piping intermediate results from one utility to the next utility 

in sequence and, at the end, gathering information produced by these utilities into a single output file. The contents of 

this output file are readily pasted into Microsoft Excel and other programs for numerical and graphical postprocessing.

From a computational standpoint, use of GENLINPRED can sometimes be inefficient because of some redundancy 

in the actions performed by the various utilities that GENLINPRED executes. From the modeler’s perspective, however, 

GENLINPRED performs a multitude of tasks necessary to error/uncertainty analysis with minimal user input and/or input 

file preparation. GENLINPRED accomplishes all of these operations on the basis of a conventional PEST input dataset 

supplied by the user.

Default operations carried out by GENLINPRED reflect those that are most likely to be requested (IDENTPAR 

to calculate parameter identifiability and PREDUNC to calculate relative parameter uncertainty reduction), but these 

defaults can be overridden by the user to select more comprehensive processing options. Depending on the user’s 

requests, GENLINPRED will calculate some or all of the following quantities:

•	 the optimum dimensionality of the calibration solution and null spaces (using SUPCALC);

•	 parameter identifiability (IDENTPAR), relative error variance reduction (PREDVAR1), and relative  
uncertainty variance reduction (PREDUNC1); 

•	 the solution-space and null-space components of the total error variance of a prediction (or parameter)  
at different singular value truncation levels (PREDVAR1); 

•	 precalibration and postcalibration uncertainties of a nominated prediction (PREDUNC1);

•	 contributions to precalibration and postcalibration error and/or uncertainty variance of a prediction (or 
parameter) made by different parameter groups, or by different individual parameters (using PREDVAR4 and/or 
PREDUNC4, respectively); and/or

•	 the worth of individual, or groups of, observations in lowering the postcalibration error or uncertainty variance 
of a prediction (or parameter) (using PREDVAR5 and/or PREDUNC5).
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Nonlinear Analysis for 
Underdetermined Systems 

Constrained Maximization/Minimization 

As is discussed by Doherty and Hunt (2010), when 
calibrating a model by means of mathematical regulariza-
tion, an “appropriate” fit, rather than the best possible fit, is 
sought between model outputs and field measurements. Where 
Tikhonov regularization is used, an appropriate target mea-
surement objective function is set by the user before starting 
the regularized inversion process (using the PEST control 
file variable PHIMLIM; see appendix 1, Doherty, 2003, and 
Fienen and others, 2009, for more information). If regulariza-
tion is implemented by use of truncated SVD, or SVD-Assist 
without Tikhonov regularization, the singular value truncation 
level and/or the number of estimated superparameters is set 
below that which would achieve too good a fit, thereby achiev-
ing a level of fit that is commensurate with measurement 
noise. On many occasions, assessment of the level of measure-
ment noise is made through inspection of parameter fields 
that are realized through the calibration process; if too much 
heterogeneity is introduced to a calibrated parameter field, the 
level of measurement/structural noise is judged to be higher 
than originally thought, and a higher level of model-to-mea-
surement misfit is sought in an ensuing calibration exercise.

In contrast to this, where parameter estimation is per-
formed in the overdetermined context, the objective function 
is minimized. Where the level of postcalibration uncertainty 
associated with a particular model prediction is then explored, 
a threshold objective function (Φ0 of equations A4.43 and 
A4.46) is selected according to a desired level of predictive 
confidence; the prediction of interest is then maximized or 
minimized subject to the constraint that the previously mini-
mized objective function rises no higher than this threshold. 

Where constrained predictive maximization/minimization 
follows highly parameterized inversion (where the objective 
function is not minimized but reduced to an appropriate level), 
the objective function constraint that is applied in the maximi-
zation/minimization process must be expressed not in terms of 
misfit between model outputs and corresponding field mea-
surements but in terms of changes to model outputs, as well 
as changes to model parameters, that are incurred through this 
process. As when undertaking a traditional (overdetermined) 
minimization/maximization, the value of this objective func-
tion threshold will depend on the confidence limit that is to be 
associated with the maximized/minimized prediction.

The sequence of processing steps required for exploration 
of predictive error variance through constrained maximiza-
tion/minimization is depicted schematically in figure 12 and 
described briefly in the following text.

Model calibrationPEST

PEST calibration output files

PEST control file: initial parameter values are 
optimized parameter values

PEST control file: observation values are model 
outputs computed using optimized parameter values

PEST input dataset for constrained 
maximization/minimization

PARREP

OBSREP

REGPRED

Figure 12.  Processing steps required for exploration of predictive 
error variance through constrained maximization/minimization.
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Problem Reformulation

As for overdetermined predictive maximization/minimi-
zation, the prediction to be maximized or minimized must be 
included in the PEST input dataset as the sole member of an 
observation group named “predict.” Furthermore, PEST must 
be run in “predictive analysis” mode in order to run con-
strained predictive maximization/minimization.

Upon completion of the preceding highly parameterized 
calibration process, the PARREP utility should be used to 
build a new PEST control file in which initial parameter values 
are actually optimized parameter values estimated through the 
previous calibration exercise. The OBSREP utility must then 
be used to build yet another PEST control file in which obser-
vation values are replaced by model outputs corresponding to 
these estimated parameter values. No Tikhonov regularization 
must appear in this file. Thus, if NOPTMAX is set to zero and 
PEST is invoked in order to run the model once and simply 
compute an objective function, that objective function will be 
zero (or very close to it). 

The REGPRED utility must then be run. It performs the 
following tasks.

1.	 It writes a PEST control file in which PEST is instructed 
to run in “predictive analysis” mode. A target objective 
function (PD0) of the user’s choice is included in this file; 
a value of 9.0 (REGPRED’s default) is suggested.

2.	 It adds a new template file to those already listed in the 
“model input/output” section of the existing PEST control 
file. This new file contains a list of parameter names; the 
model input file that is written on the basis of this tem-
plate file thus contains a list of parameter values.

3.	 It modifies the model batch or script file by adding com-
mands to compute the projection of parameter-value dif-
ferences (with respect to calibrated parameter values) onto 
the calibration null space. 

4.	 It adds a new instruction file to the modified PEST control 
file through which these null-space-projected parameter 
differences are read as “observations.” These are assigned 
to their own observation group to which a covariance 
matrix C(p–p) computed through equation A4.48 is 
assigned (in the “observation groups” section of the modi-
fied PEST control file).

5.	 Measurement weighting is assigned as C-1(ε), where C(ε) 
is the covariance matrix of measurement noise, as sup-
plied by the user.

6.	 If desired, the PEST control file is configured to allow 
noise associated with the prediction that is to be maxi-
mized/minimized to feature as an adjustable element 
within this process. 
The REGPRED-generated PEST input dataset is ready 

for use. With PD0 set to 9.0, the two-sided confidence interval 
associated with a maximized and then minimized predic-

tion is 99.7 percent. Null-space parameter components are 
constrained by the C(p–p) covariance matrix of projected 
parameter difference variability (calculated from C(p) by 
GENPRED), while solution-space components are constrained 
by the necessity for model-to-measurement misfit to remain 
“statistically similar” (as assessed using C(ε)) to that attained 
through the previous calibration. See Tonkin and others (2007) 
and Doherty (2010b) for a further discussion of this method. 

Practical Considerations

Drawbacks of this approach to constrained prediction 
maximization/minimization in the highly parameterized con-
text include the following;

1.	 The constrained maximization/minimization technique 
enables evaluation of the uncertainty of a single predic-
tion only: the analysis must be repeated in order to evalu-
ate the uncertainties associated with multiple predictions.

2.	 Constrained maximization/minimization based on equa-
tions A4.41, A4.42, and A4.44 requires a high level of 
numerical integrity on the part of the model. Any numeri-
cal granularity of model outputs will degrade the accuracy 
of finite-difference derivatives calculation and, with it, 
PEST’s ability to maximize/minimize a specified predic-
tion.

3.	 Where many parameters are used in the parameter-esti-
mation process, the number of model runs required for 
predictive maximization/minimization can be very large. 
Tonkin and others (2007) discuss how this burden can be 
reduced (a) by employing superparameters, in much the 
same way that the burden of calibration can be reduced 
through the use of SVD-assisted parameter estimation 
and/or (b) by employing predictive superparameters com-
puted on the basis of “surrogate predictions.” Although 
use of these schemes can speed the constrained maximiza-
tion/minimization process, the prediction maximum/mini-
mum computed by PEST may, unfortunately, be greater/
smaller than that which would have been computed in the 
absence of these numerical conveniences.

Null-Space Monte Carlo

The null-space Monte Carlo methodology presents an 
efficient means of generating many different parameter fields, 
all of which (a) respect parameter soft-knowledge “reality con-
straints” as expressed by the C(p) matrix of innate parameter 
variability and (b) respect the fact that the model must repli-
cate historical measurements of system state to within a misfit 
margin set by the C(ε) matrix of measurement noise.

Presently, null-space Monte Carlo analysis can be 
implemented at two different levels of parameterization. 
Implementation at the first level allows generation of a suite of 
calibration-constrained parameter sets where parameterization 
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PEST calibration output files

RANDPAR

random parameter sets

PNULPAR

“almost calibrated” random parameter sets
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PPSAMP

2-D parameter field

random parameter sets 2-D difference fields

PEST (using SVD-Assist)

calibrated parameter sets

TWOARRAY

calibrated 2-D parameter fields

Model re calibration-

Figure 13.  Schematic of null-space Monte-Carlo methodologies. Note that in method 2, maximum effectiveness is achieved 
if the boxed segment through which parameters and two-dimensional difference fields are recombined is included in the 
model because it is subject to recalibration.

density is the same as that represented in the calibrated model. 
Implementation at the second level is applicable to spatial 
models with continuous or semicontinuous parameter fields; 
for example, finite-difference groundwater models such as 
MODFLOW and MT3DMS, where a different value of any 
property can be assigned to every cell or element within the 
model domain. Even though parameters are not represented to 
this level of detail in a governing PEST input dataset (where 
devices such as pilot points may be used), the null-space 
Monte Carlo process can explore the effect of cell-by-cell 
stochastic fields at little additional computational cost.

Practical implementation of both of these methodolo-
gies will now be discussed; see figure 13 for a schematic 
representation. In both cases, it is assumed that calibration has 
already taken place through highly parameterized, regularized 
inversion using any (or all) of the regularization techniques 
available through PEST. It is also assumed that

1. a new PEST control file has been created in which initial 
parameter values are previously optimized parameter val-
ues (the PARREP utility can be used to achieve this);

2. no Tikhonov regularization is used in the new PEST 
control file;

3. a corresponding Jacobian matrix (*.jco) file has been 
produced (either though running PEST with NOPTMAX 
set to −1  or −2, or through use of the JCO2JCO utility to 
build it from an existing Jacobian matrix file), and

4. the user is able to make a reasonable estimate of the 
dimensionality of the calibration solution and null spaces; 
this estimate does not have to be exact, and help in this 
regard can be obtained by using the SUPCALC utility. 
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Monte Carlo methods have a wide appeal for analysis of predictive uncertainty. Unfortu-
nately, the computational burden of calibration-constrained Monte Carlo usually restricts Monte 
Carlo analysis to problems involving a small number of parameters: as such, the parameter 
ensembles cannot reproduce or interrogate fine-scale detail. Null-Space Monte Carlo (NSMC) 
was developed to overcome this shortcoming. As a result, it can be employed when model run 
times are long and/or where large numbers of parameters are included. 

NSMC analysis takes advantage of the calibration efficiency of the “SVD-Assist” technique 
(Tonkin and Doherty, 2005; Doherty and Hunt, 2010). It uses the null space defined by singular 
value decomposition to define stochastic parameter sets that maintain calibration. It honors 
calibration constraints by projecting differences between stochastic and calibrated parameter 
values onto the calibration null space before adding each of them to the calibrated parameter 
field. Thus, rather than postconditioning Monte Carlo results by removing runs that do not meet 
a calibration criteria, null-space projection of the stochastic parameter set acts to precondition 
them such that they have the same projection onto the calibration solution space as does the 
parameter set obtained through the previous calibration process (Figure B3-1). 

Unfortunately, because of the nonlinear nature of underlying models, null-space projec-
tion of stochastically generated parameter fields does not ensure that such fields provide as 
good a fit to the calibration dataset as does the field obtained through the preceding calibration 
process. This problem, however, can be rectified through polishing the original calibration with 
recalibration. Adjustment of these fields during recalibration is highly efficient because only 
solution-space components of these fields need to be adjusted by using the SVD-Assist meth-
odology. Therefore, nonlinearity in the underlying model can be accounted for with a minimal 
computational burden. Reuse of the existing superparameter sensitivities (derived during the 
original calibration process) allows for further enhancements to computational efficiency. 

The NSMC technique is well suited to include fine-scale (even node- scale) parameter de-
tail in the predictive uncertainty analysis process, with reduced computational overhead associ-
ated with inclusion of this detail. Including such high levels of parameter flexibility is important if 
calibration-constrained Monte Carlo analysis is to serve its purpose, because it is this very detail 
that is generally unconstrained by the calibration process. To the extent that a prediction of 
interest may be sensitive to this detail, its full range of variability must therefore be represented 
in the uncertainty analysis process. 

The ability of the NSMC to accommodate high-dimensional null spaces is the source of its 
strength, for in the environmental modeling context, this is often the primary source of predic-
tive uncertainty. Alternative methods such as Markov Chain Monte Carlo often face difficulties 
in exposing the full extent of the null-space contribution to parameter and predictive uncertainty 
because of the reliance they place on random-number generation to explore tightly constrained, 
though nevertheless complex and pervasive, null spaces. The problem is severely compounded 
where a model takes more than a few seconds to run; hence, making use of the NSMC meth-
odology becomes especially attractive, because other methodologies cannot currently accom-
modate the numerical burden required in varying a prediction, and the parameters on which it 
depends, while ensuring a good fit with field data.

Despite NSMC’s computational advantage, the modeler must still balance the number 
of runs performed with the need to more fully explore the extent of nonuniqueness-generated 
parameter and predictive uncertainty. The following guidelines can help the modeler decide 
on the sufficient number of calibration-constrained parameter sets for robust exploration of 
parameter and predictive uncertainty with a manageable computational burden: 



•	 Take advantage of NSMC’s ability to accommodate different parameterization scales: use enough 
parameters to fit the field data well during the calibration process. Introduce extra parameters only 
when needed to explore postcalibration (yet calibration-constrained) predictive uncertainty. 

•	 Employ the Broyden Jacobian update algorithm implement in PEST (see Doherty, 2010b; and Doherty 
and Hunt, 2010): doing so incurs limited additional computational cost but has demonstrable benefits in 
effecting reconditioning of null-space-projected parameter fields, particularly during the first recondi-
tioning iteration. 

•	 Increase the number of superparameters employed in this reconditioning process: if NSMC recondition-
ing results in unsatisfactory recalibration of the new parameter sets, or fails to attain a satisfactory fit to 
the observed data (that is, a sufficiently low objective function), specification of more superparameters 
interjects more parameter flexibility into the problem.

In spite of these measures, very long runtimes may sometimes preclude NSMC analysis from providing a 
full characterization of calibration-constrained predictive uncertainty. If this is the case, the following measures 
may be considered.

•	 If the interest is the central tendency, recondition the best-fit parameter sets obtained through null-
space projection.

•	 If the interest is the upper and lower predictive limits (that is, the tails of the distribution), recondition 
only those parameter sets that lead to predictions that are far from the central tendency after null-
space projection.
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Figure B3-1.  Distribution of objective functions computed with 100 stochastic parameter realizations  (a) before null-space 
projection and recalibration; (b) after null-space projection. Generally, the post-null-space projected parameter sets can be 
reconditioned with only a small computational burden.
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Method 1—Using the Existing Parameterization 
Scheme 

As stated above, it is supposed that a model has been 
calibrated and that the set of parameters estimated by PEST 
has been placed into a new PEST control file as the initial 
parameter values featured in this file. It is also supposed that a 
corresponding Jacobian matrix file exists. 

RANDPAR

The RANDom  PARameter (RANDPAR) utility can be 
used to generate random parameter sets based on a covariance 
matrix of innate parameter variability (that is, C(p)) specified 
in a user-supplied parameter uncertainty file; see PEST docu-
mentation for options available for design of this file. RAND-
PAR places these random parameter sets into a series of PEST 
parameter value (*.par) files. This is a convenient storage 
mechanism for these parameter sets, because any one of them 
can then be deposited into a new PEST control file as an initial 
parameter set by using the PARREP utility. If NOPTMAX 
is set to zero in that PEST control file and PEST is initiated, 
PEST will run the model once using that parameter set, com-
pute the objective function, and then cease execution. If this is 
done, the objective function will normally be found to be far 
higher than that computed by using the optimized parameter 
values attained through the previous calibration exercise. 

PNULPAR

The Prepare NULl-space PARameter (PNULPAR) util-
ity should then be used to produce a set of parameter value 
(*.par) files that complement those produced by RANDPAR. 
In production of these new files, parameter values stored 
in the RANDPAR-generated parameter value files undergo 
null-space projection, excision of solution-space parameter 
components, and replacement of these components by those 
pertaining to the calibrated parameter field. The outcomes of 
PNULPAR execution are multiple parameters sets stored in 
parameter value files that “almost calibrate” the model: this 
result can be verified through use of the PARREP utility to 
repeat the procedure described in the previous paragraph.  
Each PNULPAR-modified parameter-set counterpart should 
give rise to a much lower objective function than its RAND-
PAR-produced counterpart.

SVD-Assisted Parameter Adjustment

SVDAPREP should then be run to produce an input 
dataset for SVD-assisted parameter estimation based on the 
PEST control file whose initial parameter values are cali-
brated parameter values. A copy of this base PEST control file 
should be kept. Let it be assumed for explanatory purposes 
that case_base.pst is the name of the base parameter PEST 
control file containing calibrated parameter values, and that 
case_base.pst.copy is the name given to the copy of this file. 
Let it also be assumed that the name of the superparameter 

PEST control file produced by SVDAPREP is case_svda.pst. 
When SVDAPREP is asked whether superparameter sensi-
tivities for the first iteration of the SVD-assisted parameter 
estimation process should be calculated from existing base 
parameter sensitivities, the response should be affirmative (as 
is the default). Although the second iteration will require one 
model run for each superparameter, the computational cost 
of the second and subsequent iterations will be still compara-
tively light because there are fewer superparameters than base 
parameters.

The modeler must now decide how much effort PEST 
should devote to recalibrating each null-space-projected ran-
dom parameter field and at what objective function the model 
can be deemed to be recalibrated. The NOPTMAX and PHIS-
TOPTHRESH termination variables in the “control data” sec-
tion of the super parameter PEST control file (case_svda.pst 
in this example) should be set accordingly. Often it is useful to 
set NOPTMAX to 2. This setting allows the first iteration to be 
completed at minimal computational cost and a second to be 
completed at somewhat greater cost. If the objective function 
has not yet fallen below the designated threshold, recalibration 
of that parameter field is then abandoned, and recalibration of 
the next parameter field is commenced. More complex “aban-
donment schedules” can be programmed by using the PHIA-
BANDON control variable and/or an “abandonment schedule 
file.” See PEST documentation for further details. 

The following control settings are recommended for the 
superparameter PEST control file (case_svda.pst in this above 
example).

1.	 JACUPDATE should be set to 999 so that the Broyden 
update will be used to improve the Jacobian matrix on 
each parameter upgrade attempt.

2.	 A “singular value decomposition” section should be 
given in the superparameter PEST control file, and the 
EIGTHRESH variable set to between 10−7 and 10−6 in that 
section. This setup prevents numerical instability if the 
number of superparameters is set too high.

3.	 The initial Marquardt lambda (RLAMBDA1) should be 
set to 0.01 and the lambda multiplier (RLAMFAC) set to 
−3 or −4. These settings enable broad changes to be made 
to the Marquardt lambda during each optimization itera-
tion, if necessary, thus increasing the opportunities for 
objective-function reduction.

The Processing Loop

Sequential recalibration of null-space-projected param-
eter fields is implemented by undertaking repeated PEST runs 
by use of a batch file such as that illustrated in figure 14; a 
similar procedure can be embodied in a script file in the UNIX 
environment. The result is a sequence of parameter-value 
files, many of which result in an objective function that is low 
enough for the model to be considered calibrated. However, 
each of these parameter-value files will contain a appreciably 
different set of parameters. 
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rem ###########################################################
rem Delete an existing record file.
rem ###########################################################

del /P record.dat
echo > record.dat
pause

rem ###########################################################
rem Do all the PEST runs.
rem ###########################################################

for /L %%i in (1,1,100) do (
parrep nsp_random%%i.par case_base.pst.copy case_base.pst
pest case_svda
find /I “Sum of squared weighted residuals” case_svda.rec >> record.dat
copy case_svda.rec case_svda.rec.%%i
copy case_base.bpa case_base.bpa.%%i)

Figure 14. A batch process that implements successive recalibration of 100 null-space-projected 
parameter fields

The batch process illustrated in figure 14 commences 
with deletion of a file named record.dat. This file is reinitiated, 
and then regularly updated, as the sequential recalibration 
process continues. Regular inspection of this file allows the 
modeler to monitor the progress of the sequential recalibration 
processes implemented by the batch process. (Initial deletion 
of record.dat prevents old records from being mistaken for 
new ones because information is appended to this file at the 
completion of each recalibration exercise.) The processing 
loop then encompasses the following steps:
1.	 Null-space-projected parameter values contained in 

a PNULPAR-produced parameter value file (named 
nsp_random1.par, nsp_random2.par, etc.) are used to 
make a new base PEST control file, the name of which is 
case_base.pst. In each case, the newly created case_base.
pst cites initial parameter values that are in null-space-
projected parameter values that should “almost calibrate” 
the model.

2.	 SVD-assisted parameter estimation is initiated on the 
basis of the SVDAPREP-produced superparameter PEST 
control file case_svda.pst. The superparameter adjustment 
process alters the solution-space component of the initial 
parameter field to achieve recalibration.

3.	 Once each calibration process is terminated according  
to user-defined criteria, the find command is used to 
append the initial and final objective functions pertaining 
to each completed recalibration exercise to file record.dat. 
As stated above, this file is always available for user 
inspection.

4. The SVDA run record file is copied to a file whose name 
includes the index of the null-space-projected parameter 
set subjected to recalibration.

5. Updated base parameter values are copied to a similarly 
indexed parameter-value file for safekeeping.
Each recalibration process can employ serial or parallel 

PEST. In the latter case, execution of PEST’s slaves should be 
initiated before beginning the batch-file processing. Further-
more, slaves should be run by using the “/i” command-line 
switch so that they do not shut down at the completion of each 
parallel PEST run.

Postprocessing 

Parameters recorded in the parameter value files pro-
duced through the process depicted in figure 14 can be col-
lected into a single table by using the MULtiple PARameter 
TABle (MULPARTAB) utility. Options available through this 
utility can exclude parameter sets that do not achieve an objec-
tive function that is low enough for the model to be considered 
calibrated. The resulting table can then be imported into a 
spreadsheet or plotting program where parameter frequency 
histograms can be produced.

 The COMbine FILeNaME (COMFILNME) utility can 
be used to resequence indexed parameter-value filenames to 
omit rejected parameter sets if desired.
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Making Predictions 

The outcome of a null-space Monte Carlo exercise is a 
sequence of parameter sets that (a) calibrate the model and (b) 
can be considered to be “reasonable.” When the model is used 
to predict system behavior, predictions should be made from 
all of these parameter sets. Simulated predictions can then be 
collected into tables for plotting as histograms or correlograms 
or for generating plots of other types that allow easy visualiza-
tion of their statistical properties.

Multiple model runs based on different parameter sets 
can be made by using a batch processing loop that is similar 
to that depicted in figure 14. In that loop, the PARREP utility 
can be used to sequentially place parameter sets into a PEST 
control file that is set up for a dummy calibration exercise but 
that actually runs the model just once under prediction condi-
tions. Alternatively, through a series of TEMPlate CHEcK 
(TEMPCHEK) commands, model input files can be written on 
the basis of parameter values stored in a sequence of param-
eter-value files and the model then run on the basis of each 
parameter set. After each PEST or model run, model output 
files containing predictions of interest should be copied to run-
indexed files for later processing.

The ReaD MULtiple RESults (RDMULRES) utility can 
be used to read a sequence of model output files produced in 
this manner, obtaining from those files model outputs of inter-
est. These outputs are tabulated in a single file that can then be 
imported into a spreadsheet or plotting program for histogram 
generation or for undertaking other statistical analyses.

Method 2—Using Stochastic Parameter Fields

General

Where spatial models such as groundwater models are 
subject to calibration, parameterization devices such as pilot 
points are often used to represent spatially varying property 
fields. As is described in Doherty, Fienen, and Hunt (2010), 
values are assigned to these pilot points through the calibration 
process. Property values are then assigned to cells or elements 
composing a model grid or mesh through spatial interpola-
tion from these points. This interpolation process results in 
smoother parameter fields than the property fields that exist in 
reality. However, because simplification-induced smoothness 
is a natural outcome of the quest for uniqueness that is integral 
to the model calibration process, nothing is lost to the calibra-
tion process through the use of pilot points that is not already 
lost through the need to regularize in order to attain parameter 
uniqueness of the calibrated parameter field. See Moore and 
Doherty (2006) and Doherty, Fienen, and Hunt (2010) for 
further details. 

When using the null-space Monte Carlo methodology to 
produce a suite of parameter fields which, on the one hand, 
calibrate a model while, on the other hand, are hydrogeologi-
cally realistic, one can legitimately expect that such parameter 

fields include not only components of the null space that are 
lost through the calibration process (and that can be repre-
sented by use of pilot points or a similar parameterization 
scheme) but also the components of the null space that are 
lost through the use of the specific parameterization scheme. 
Fortunately, these components can be included by using a 
slight modification of the procedure discussed in the previous 
subsection.

Generation of Stochastic Parameter Fields

The FIELD GENeration (FIELDGEN) utility supplied 
with the PEST Groundwater Data Utilities suite (Doherty, 
2008) is a MODFLOW/MT3D-compatible stochastic field 
generator. It is based on the sgsim algorithm supplied with the 
GSLIB geostatistical software library (Deutsch and Journel, 
1998). By use of FIELDGEN, stochastic fields can be gener-
ated for model grids of arbitrary complexity. If desired, differ-
ent stochastic fields can be generated within different user-
defined zones within a model domain on the basis of different 
variograms. 

Using FIELDGEN, a modeler can generate any number 
of stochastic hydraulic-property field realizations. These fields 
are stored in MODFLOW-compatible array files whose names 
include the field index.

Pilot-Point Sampling (PPSAMP) 

The PPSAMP utility (another Groundwater Data Util-
ity) assigns values to pilot-point parameters through sampling 
of FIELDGEN-generated stochastic fields. Two methods of 
pilot-point value assignment are given: the first, through direct 
sampling; the second, through assignment of values such that 
the grid-based field that is interpolated from the pilot points 
shows minimum differences with the sampled stochastic field. 
The latter is the better alternative to use in the present context.

For each sampled stochastic field, PPSAMP writes a 
parameter value file in which sampled pilot-point values are 
recorded. It also records a MODFLOW-compatible array file 
that houses a “difference field”; this difference field is formed 
by computing differences on a cell-by-cell basis between the 
sampled stochastic field and the hydraulic-property field that 
is interpolated between pilot-point values sampled from this 
field. If pilot-point spatial density is sufficiently high, this dif-
ference field lies within the calibration null space. 

Null-Space Projection

Once a sequence of pilot-point parameter sets have been 
obtained and stored in parameter-value files, the PNULPAR 
utility can be used for null-space projection of these parameter 
sets and replacement of their solution-space components with 
those obtained through the calibration process in the manner 
discussed above. As before, the outcome of PNULPAR pro-
cessing is a revised set of parameter-value files.
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Model Recalibration

For each sampled parameter set, recalibration is imple-
mented in a similar manner to that described above using 
SVD-assist in conjunction with base PEST control files 
containing null-space-projected pilot-point parameter values 
as initial parameter values. However, the batch model that 
is undergoing calibration is altered slightly such that after 
interpolation from pilot points to the model grid is complete, 
the difference field pertinent to the current sampled pilot-point 
parameter set is added to the pilot-point-interpolated field to 
produce a new property array that is then used by the model. 
Thus, model recalibration is effected with this difference field 
“riding on the back” of the sampled (and adjusted through 
recalibration) pilot-point parameter set. At the end of the reca-
libration process, the resulting parameter field thus calibrates 
the model while retaining cell-by-cell detail present in the 
original FIELDGEN-generated stochastic field.

This sampling and recalibration process is repeated for 
each FIELDGEN stochastic field.

Some Practical Considerations

In many modeling contexts, generation of a sequence of 
calibration-constrained parameter fields by use of either of the 
methods outlined above can be implemented with moderate to 
high levels of model-run efficiency. Aspects of the above pro-
cedures that contribute to this efficiency include the following:
1.	 Null-space projection of a random parameter field to 

remove solution-space components that differ from 
those of the calibrated parameter field results in a param-
eter field that may be very different from that achieved 
through the calibration process but that decalibrates the 
model to only a small extent.

2.	 Parameter-field recalibration is achieved by adjusting a 
limited number of superparameters that collectively span 
the calibration solution space.

3.	 Reuse of existing parameter sensitivities for the first itera-
tion of all parameter-field recalibration processes reduces 
the numerical burden of this first iteration to that of under-
taking only one or two model runs. 
In some modeling contexts, however, particularly those 

where nonlinearity is high, the numerical burden of recalibrat-
ing many null-space-projected random parameter fields may 
present obstacles to the use of the null-space Monte Carlo 
methodology. This will occur in modeling contexts that require 
more than one optimization iteration for recalibration. In such 
cases, compromise is warranted. The following strategies can 
reduce this burden; albeit, the cost of reducing this burden 
may be underestimation or overestimation of postcalibration 
parameter-field variability, depending on the strategy chosen:
1.	 The threshold objective function at which a model is 

deemed to be calibrated could be raised.

2. When using RANDPAR or FIELDGEN to generate ran-
dom parameter fields, a relatively small variance can be 
assigned to each parameter in the C(p) matrix on which 
field generation is based.

3. When using PNULPAR to perform null-space projection 
of parameter sets, a user can inform this program that the 
dimensionality of the calibration solution space is larger 
than it really is. With parameter sets projected onto a 
smaller dimensional null space, the likelihood of violating 
calibration constraints can be reduced, as will the burden 
of recalibrating these parameter sets.
Choice of the value of the threshold objective function at 

which model recalibration can be considered to have occurred 
is normally a matter of some subjectivity. In theory, an 
objective-function threshold should be applied to model output 
differences rather than to model-to-measurement residuals, as 
was discussed for the constrained predictive maximization/
minimization methodology; alternatively, equation A4.43 can 
be used as a guide. However, in almost all calibration contexts, 
the dominance of structural noise over measurement noise 
makes the quest for mathematical rigor somewhat irrelevant. 
Added to this is the fact that choice of an appropriate C(p) 
matrix of innate variability as a basis for stochastic field gen-
eration will always be a matter of some subjectivity.

Pareto-Based Hypothesis Testing

Predictive hypothesis testing by means of the Pareto 
methodology is implemented by running PEST in Pareto 
mode. This is done by setting the PESTMODE variable in 
the control data section of the PEST control file to “pareto.” 
A “pareto” section must also be added at the end of the PEST 
control file, this providing PEST with the values of control 
variables that are required for implementation of this kind 
of analysis. As is discussed in Moore and others (2010) and 
Doherty (2010b) PEST’s Pareto functionality can be deployed 
as an aid to evaluate regularized inversion and as an aid to pre-
dictive uncertainty analysis; only its role in the latter context is 
considered here.

Hypothesized Predictive Value

As was documented previously, use of PEST in a 
hypothesis-testing capacity requires that a prediction of inter-
est be “observed.” The calibrated parameter field, as well as 
the capacity of the model to realize adequate replication of his-
torical system behavior, is then tested for its compatibility with 
this prediction. In many cases, the prediction will pertain to an 
undesirable environmental occurrence; the “observed value” 
of the prediction will then represent a relatively extreme event. 
However, because it traverses the Pareto front, PEST actually 
assesses the credibility of all values of the prediction between 
the user-depicted worst case and the value of the prediction 
yielded by the (hopefully minimum-error-variance) parameter 
set that is deemed to calibrate the model.
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The hypothesized prediction should be introduced to a 
PEST control file in which parameters are set to their previ-
ously calibrated values. When adding the hypothesized predic-
tion to the “observation data” section of this PEST control file, 
one should assign it to an observation group that contains no 
other observations. The prediction should be assigned a weight 
that is sufficiently high for the contribution of this single-
member observation group to the overall objective function 
to be commensurate with that of all other groups when the 
model is run on the basis of the calibrated parameter set. Thus, 
if PEST were rerun after introduction of this prediction to 
the calibration process, it would have a reasonable chance of 
assigning values to parameters that would allow this predic-
tion to be respected.

Pareto Control Variables

As described by Doherty (2010b), when run in Pareto 
mode, PEST traverses the Pareto front by assigning ever-
increasing weights to a user-specified observation group. 
When undertaking Pareto-based hypothesis testing, the initial 
weight factor assigned to the observation group whose sole 
member is the hypothesized prediction should be zero (PEST 
variable PARETO_WTFAC_START). The final weight factor 
(PARETO_WTFAC_FIN) should be 1.0; however a modeler 
may review this setting on an ensuing PEST run if the hypoth-
esized prediction is not achieved or is achieved too readily. 
The number of weight-factor increments should be set accord-
ing to the computing power to which the modeler has access. 
Ideally, it should be set to a high value (anything between 40 
and 100), because the use of a high number of increments gen-
erally promulgates close PEST adherence to the Pareto front 
during its traversal. However, acceptable results can often be 
obtained with only 10 weight-factor increments.

The modeler must also decide how many PEST iterations 
should be devoted to each weight-factor increment (PEST 
variable NUM_ITER_GEN). A value of 2 or 3 is suitable 
on most occasions. In most hypothesis-testing contexts, the 
number of iterations to devote to the final weight factor (PEST 
variable NUM_ITER_FIN) should be the same as that devoted 
to other weight factors (that is, NUM_ITER_GEN), whereas 
the number of iterations devoted to the initial weight factor 
(variable NUM_ITER_START) should be zero.

Model-run efficiency can be gained if PEST is instructed 
to cease its traversal of the Pareto front if a threshold value is 
reached for the hypothesized prediction. This functionality can 
be implemented through use of the ALT_TERM Pareto control 
variable.

Mapping the Pareto Front

When run in Pareto mode, PEST writes a Pareto objective 
function (*.pod) file that is available for inspection at all stages 
of the Pareto-front traversal process. Data columns within this 
file can be pasted into plotting software in order to provide the 

user with a current view of the Pareto front as it is mapped. 
At the end of the Pareto run, the binary Pareto parameter data 
(*.ppd) file contains parameters and model outputs pertaining 
to all parameter sets that PEST has encountered because it has 
attempted to traverse the Pareto front. Data can be extracted 
from this file by using the PPD2ASC and PPD2PAR utilities 
listed in appendix 1 and described in Doherty (2010b).

Multiple Recalibration

This section finishes with a brief description of a simple 
but effective means by which parameter and predictive uncer-
tainty can be at least partially explored.

In many instances of practical model calibration, only a 
fraction of the many values that must be assigned to proper-
ties and boundary conditions used by a model are adjusted. 
Where calibration is performed by means of methodologies 
based on overdetermined parameter estimation, precalibration 
parameter simplification, lumping, and wholesale fixing are 
necessary to ensure well-posedness of the inverse problem 
of model calibration. Where model calibration is based on 
regularized inversion, such wholesale parameter simplification 
and eradication is no longer necessary. Nevertheless, such sim-
plification is often done to some extent for convenience, either 
to reduce the numerical burden of calculating derivatives with 
respect to many parameters or to account for model-output 
numerical granularity, which may accompany small changes 
made to certain of its parameters and/or boundary conditions 
for the purpose of calculating finite-difference derivatives with 
respect to these parameters.

We pointed out earlier in this document that a param-
eter can be fixed during the calibration process yet declared 
adjustable for the purpose of linear uncertainty analysis. The 
potential for error that is accrued through fixing a parameter 
or boundary condition (or a suite of parameters or boundary 
conditions) at uncertain value(s) can then be assessed by using 
the PREDVAR4 and PREDUNC4 utilities. If a modeler does 
not wish to do linear uncertainty analysis in this fashion, a 
simple but effective means of assessing the consequences of 
assigning an erroneous value to a particular unadjusted param-
eter or boundary condition is to recalibrate the model with the 
parameter or boundary condition fixed at an alternative value. 
This process can be repeated (while varying the same or dif-
ferent parameters or boundary conditions) as many times as 
necessary. When using the model for environmental manage-
ment, a prediction may then be made by using parameter fields 
emanating from all of these separate calibration processes. 
Although this strategy cannot provide a basis for quantitative 
analysis of the uncertainty of that prediction, it can provide a 
basis for assessment of the importance or otherwise of one or 
a number of assumptions that underpins the model’s construc-
tion, at the same time allowing a qualitative exploration of the 
uncertainty associated with one or multiple predictions to be made.
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Uses and Limitations of Model 
Uncertainty Estimates

A summary of uncertainty methodologies available 
through the PEST suite has been presented, together with a 
brief description of the theoretical underpinnings of these 
methodologies and of the software through which they can be 
implemented. Many of the methodologies discussed in this 
document can be implemented in conjunction with highly 
parameterized models. They therefore adhere to the prin-
ciple that, to the extent that a prediction depends on property 
detail that is beyond the capacity of the calibration process to 
constrain, that prediction will owe much of its uncertainty to 
variability/heterogeneity of property fields for that character-
ization. Further, variability constraints must be supplied by 
the modeler’s soft-knowledge, for these constraints cannot 
be obtained from the calibration dataset. It follows that for 
some predictions, calibration can inform and lower predictive 
uncertainty while in other cases it will not. A rigorous method 
for assessing postcalibration predictive uncertainty should 
therefore recognize and accommodate the weaknesses of the 
calibration process. It should inform the modeler where it is 
reasonable to expect reduction of predictive uncertainty below 
its precalibration level and where uncertainty must be main-
tained at its precalibration level because calibration using the 
current dataset cannot be expected to reduce it.

Both the linear and nonlinear methods described herein 
for assessment of parameter and predictive uncertainty in the 
highly parameterized context have utility. Central to both of 
these methods are two stochastic distributions. The first of 
these, represented by the C(p) matrix herein, describes the 
innate variability of parameters. This must be supplied by the 
modeler based on their expert knowledge of the system. The 
second of these distributions, represented by the covariance 
matrix C(ε), characterizes the noise associated with measure-
ments of system state; traditional uncertainly based on overde-
termined problems considers only this term.

A problem in undertaking model-parameter and predic-
tive uncertainty analysis is that neither C(p) nor C(ε) can be 
known with a high degree of accuracy. To the extent that a 
modeler assumes a level of uncertainty regarding properties 
at a site, the C(p) matrix expresses that assumption. If the 
level of hydraulic-property variability is greater than assumed, 
predictive uncertainty may be underestimated; this applies 
especially to transport predictions that are sensitive to spatial 
continuity of relatively high or low properties within a model 
domain. Similar problems pertain to selection of an appropri-
ate C(ε) matrix. In most cases, model outputs that are assumed 
to be equivalent to field observations of a system are, in fact, 
accompanied by a large degree of structural noise, in addi-
tion to measurement error. This structural noise arises from 
the imperfect nature of model simulation algorithms, use of 
a coarse grid or time discretization, approximations involved 
in the assignment of boundary conditions, use of erroneous 
inputs of quantities such as recharge and rainfall, and the 

implicit and/or explicit regularization required for obtaining 
an estimated parameter field with a level of simplification that 
guarantees its uniqueness. Such structural noise invariably 
shows a high degree of spatial and/or temporal correlation. 
Failure to recognize this correlation can lead to the conclusion 
that there is more information in the calibration dataset than 
there actually is or that can be transferred to the model through 
values assigned to its parameters. This can lead to underesti-
mation of the degree to which predictions made by a calibrated 
model may be wrong.

The uncertainty associated with user-supplied estimates 
of C(p) and C(ε) should ideally be incorporated into the analy-
sis of model predictive uncertainty. Where parameter estima-
tion takes place in the overdetermined calibration context, this 
occurs through calculation of the reference variance (Draper 
and Smith, 1998) from the value of the minimized objective 
function. In the underdetermined context, Moore and Doherty 
(2006) demonstrate that the magnitude of C(p) can be traded 
off against that of C(ε), depending on whether a modeler feels 
more comfortable with a high degree of parameter heterogene-
ity within a calibrated parameter field or with a high degree 
of model-to-measurement misfit. Unfortunately, it is unlikely 
that uncertainty analysis will achieve a level of quantifica-
tion that complements that associated with other aspects of 
model use. As a result, whereas the methods for assessing 
model parameter and predictive uncertainty presented herein 
provide a powerful mechanism for assessing the credibility 
of model predictions, rigorous quantification of confidence 
limits around values of predicted model outputs will remain a 
worthy, but unreachable, goal. 

Despite the fact that predictive confidence limits can only 
be approximate, assessment of postcalibration model predic-
tive variability still has value. For example, an assessment of 
the uncertainty associated with a model prediction facilitates 
use of that prediction in the decisionmaking process. More-
over, based on the premise that the best data to gather are 
those that are most effective in decreasing the uncertainty of 
one or a number of key model predictions, the development 
of optimal and cost-efficient strategies for data acquisition is 
best based on an assessment of current predictive uncertainty 
together with an assessment of the extent to which this uncer-
tainty can be reduced. Central to any decisionmaking process 
is an assessment of risk. Such an assessment is impossible 
without some assessment of predictive uncertainty. If analy-
sis reveals that certain unwanted environmental occurrences 
are possible given the current state of system knowledge, 
then the mechanisms through which such occurrences may 
eventuate can often be exposed through model-based uncer-
tainty analysis. This, in turn, can lead to optimal design of a 
monitoring network. Finally, knowledge of the contributions 
made by different facets of a modeled system to current levels 
of predictive uncertainty can further a modeler’s understand-
ing of the strengths and weaknesses of that model, as well as 
ways in which it may be improved in order to better serve the 
decisionmaking process. 
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Routine analysis of model predictive uncertainty will 
hopefully lead to a better recognition of what is, and is not, 
possible for models to achieve. This insight, in turn, may 
lead to better-informed decisions on whether the approach 
to modeling taken at a particular study site should be com-
plex and expensive or simple and inexpensive. If underlying 
information pertaining to critical model predictions is weak, 
that information may be just as efficiently extracted from the 
current environmental dataset by using a simple model as a 
complex one. In many cases, both simple and complex models 
can be assigned parameter sets that lead to predictions of 
minimum error variance. However, what a complex model can 
achieve that a simpler model cannot achieve is quantification 
of the magnitude of that variance, as well as an indication of 
those aspects of the system that are contributing most to its 
current magnitude. If such information is important in its own 
right and/or is important for designing a monitoring network, 
a strategy for future data acquisition, or for quantification of 
risk, then use of a complex model is not optional. However, 
if predictive uncertainty is already taken into account through 
implementation of representative engineering safety factors, 
then use of a simple model may suffice. It is possible there-
fore, that routine use of complex models in exploration of 
model predictive uncertainty may lead to greater use of simple 
models, as modelers gain enough understanding of the predic-
tive strengths and weaknesses of the modeling process that can 
then support “the courage to be simple.”
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Appendix 1.  Basic PEST Input

Structure of the PEST Control File

This appendix supplies a short description of all PEST variables. First, a list of all of these variables is provided, with each 
located in its proper place within the PEST Control File (variables enclosed in brackets are optional). This listing is followed by 
a series of tables that describe the role of each variable.

pcf
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM] [JACFILE] [MESSFILE]
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND]
PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] [PHIABANDON]
ICOV ICOR IEIG [IRES] [JCOSAVEITN] [REISAVEITN]
* automatic user intervention
MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN
AUISENSRAT AUIHOLDMAXCHG AUINUMFREE
AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT
* singular value decomposition
SVDMODE
MAXSING EIGTHRESH
EIGWRITE
* lsqr
LSQRMODE
LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM
LSQRWRITE
* svd assist
BASEPESTFILE
BASEJACFILE
SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC
* sensitivity reuse
SENRELTHRESH SENMAXREUSE
SENALLCALCINT SENPREDWEIGHT SENPIEXCLUDE
* parameter groups
PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD 

	  [SPLITTHRESH SPLITRELDIFF SPLITACTION]
(one such line for each of NPARGP parameter groups)
* parameter data
PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
(one such line for each of NPAR parameters)
PARNME PARTIED
(one such line for each tied parameter)
* observation groups
OBGNME [GTARG] [COVFLE]
(one such line for each of NOBSGP observation group)
* observation data
OBSNME OBSVAL WEIGHT OBGNME
(one such line for each of NOBS observations)
* derivatives command lineDERCOMLINE
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EXTDERFLE
* model command line
COMLINE
(one such line for each of NUMCOM command lines)
* model input/output
TEMPFLE INFLE
(one such line for each of NTPLFLE template files)
INSFLE OUTFLE
(one such line for each of NINSLFE instruction files)
* prior information
PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
(one such line for each of NPRIOR articles of prior information)
* predictive analysis
NPREDMAXMIN [PREDNOISE]
PD0 PD1 PD2
ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH
ABSPREDSWH RELPREDSWH
NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP 
* regularisation
PHIMLIM PHIMACCEPT [FRACPHIM] [MEMSAVE] 
WFINIT WFMIN WFMAX [LINREG] [REGCONTINUE]
WFFAC WFTOL IREGADJ [NOPTREGADJ REGWEIGHTRAT [REGSINGTHRESH]]
* pareto
PARETO_OBSGROUP 
PARETO_WTFAC_START PARETO_WTFAC_FIN NUM_WTFAC_INC 
NUM_ITER_START NUM_ITER_GEN NUM_ITER_FIN
ALT_TERM
OBS_TERM ABOVE_OR_BELOW OBS_THRESH NUM_ITER_THRESH (only if ALT_TERM is non-zero)
NOBS_REPORT
OBS_REPORT_1 OBS_REPORT_2 OBS_REPORT_3.. (NOBS_REPORT items)

Figure 1–1.  Structure of the PEST Control File.
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The following tables include a column labelled “usage,” which contains an index whose value is between 1 and 3. An index 
value of 3 indicates that the variable is likely to vary in value from PEST Control File to PEST Control File, this reflecting either 
the different nature of different parameter estimation problems, or the fact that, as a control variable, it is one that often re-
quires “tuning” to a particular calibration problem. On the other hand, a usage index value of 1 indicates that the variable rarely 
requires alteration from the value suggested in PEST documentation. A usage value of 2 indicates potential variability that is 
between these two extremes

Variables in the “control data” section of the PEST Control File.—Continued

Variable Type Values Usage Description

RSTFLE text “restart” or “norestart” 1 Instructs PEST whether to write restart data.
PESTMODE text “estimation”, “prediction”,  

“regularization”, “pareto”
3 PEST’s mode of operation.

NPAR integer greater than 0 3 Number of parameters.
NOBS integer greater than 0 3 Number of observations.
NPARGP integer greater than 0 3 Number of parameter groups.
NPRIOR integer 0 or greater 3 Number of prior-information equations.
NOBSGP integer greater than 0 3 Number of observation groups.
MAXCOMPDIM integer optional; 0 or greater 1 Number of elements in compressed Jacobian matrix.
NTPLFLE integer greater than 0 3 Number of template files.
NINSFLE integer greater than 0 3 Number of instruction files.
PRECIS text “single” or “double” 1 Format for writing parameter values to model input files.
DPOINT text “point” or “nopoint” 1 Omit decimal point in parameter values if possible.
NUMCOM integer optional; greater than 0 1 Number of command lines used to run model.
JACFILE integer optional; 0 or 1 1 Indicates whether model provides external derivatives file.
MESSFILE integer optional; 0 or 1 1 Indicates whether PEST should write PEST-to-model mes-

sage file.
RLAMBDA1 real 0 or greater 2 Initial Marquardt Lambda.
RLAMFAC real positive or negative, but not 0 2 Dictates Marquardt Lambda adjustment process.
PHIRATSUF real between 0 and 1 1 Fractional objective function sufficient for end of  

current iteration.
PHIREDLAM real between 0 and 1 1 Termination criterion for Marquardt Lambda search.
NUMLAM integer 1 or greater 2 Maximum number of Marquardt Lambdas to test.
JACUPDATE integer optional; 0 or greater 2 Activation of Broyden’s Jacobian update procedure.
RELPARMAX real greater than 0 2 Parameter relative change limit.
FACPARMAX real greater than 1 2 Parameter factor change limit.
IBOUNDSTICK integer optional; 0 or greater 1 Instructs PEST not to compute derivatives for parameter at 

its bounds.
UPVECBEND integer optional; 0 or 1 1 Instructs PEST to bend parameter upgrade vector if param-

eter hits its bounds.
PHIREDSWH real between 0 and 1 1 Sets objective function change for introduction of  

central derivatives.
NOPTSWITCH integer optional; 1 or greater 1 Iteration before which PEST will not switch to central 

derivatives computation.
SPLITSWH real optional; 0 or greater 1 The factor by which the objective function rises to invoke 

split slope derivatives analysis until end of run.
DOAUI text “aui,” “auid,” or “noaui” 2 Instructs PEST to implement automatic user  

intervention.
DOSENREUSE text “senreuse” or “nosenreuse” 1 Instructs PEST to reuse parameter sensitivities
NOPTMAX integer −2, −1, 0, or any number greater 

than 0
3 Number of optimization iterations.
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Variables in the “control data” section of the PEST Control File.—Continued

Variable Type Values Usage Description

PHIREDSTP

NPHISTP

NPHINORED

RELPARSTP

NRELPAR

PHISTOPTHRESH
LASTRUN

PHIABANDON

ICOV
ICOR
IEIG
IRES
JCOSAVEITN

REISAVEITN

real

integer

integer

real

integer

real
integer

real or text

integer
integer
integer
integer
text

text

greater than 0

greater than 0

greater than 0

greater than 0

greater than 0

optional; 0 or greater
optional; 0 or 1

optional

0 or 1
0 or 1
0 or 1
0 or 1
“jcosaveitn” or “nojcosaveitn”

“reisaveitn” or “noreisaveitn”

2

2

2

2

2

1
1

1

1
1
1
1
1

1

Relative objective function reduction triggering  
termination.

Number of successive iterations over which  
PHIREDSTP applies.

Number of iterations since last drop in objective  
function to trigger termination.

Maximum relative parameter change triggering  
termination.

Number of successive iterations over which  
RELPARSTP applies.

Objective function threshold triggering termination.
Instructs PEST to undertake (or not) final model run with 

best parameters.
Objective function value at which to abandon  

optimization process or filename containing  
abandonment schedule.

Record covariance matrix in matrix file.
Record correlation-coefficient matrix in matrix file
Record eigenvectors in matrix file.
Record resolution data.
Write current Jacobian matrix to iteration-specific *.jco 

file at the end of every optimization iteration.
Store best-fit residuals to iteration-specific residuals file at 

end of every optimization iteration.

Variables in the optional “automatic user intervention” section of the PEST Control File.

Variable Type Values Usage Description

MAXAUI integer 0 or greater 1 Maximum number of AUI iterations per optimization 
iteration.

AUISTARTOPT integer 1 or greater 1 Optimization iteration at which to begin AUI.

NOAUIPHIRAT real between 0 and 1 1 Relative objective function reduction threshold triggering 
AUI.

AUIRESTITN integer 0 or greater, but not 1 1 AUI rest interval expressed in optimization iterations.

AUISENSRAT real greater than 1 1 Composite parameter sensitivity ratio triggering AUI.

AUIHOLDMAXCHG integer 0 or 1 1 Instructs PEST to target parameters that change most 
when deciding which parameters to hold.

AUINUMFREE integer greater than 0 1 Cease AUI when only AUINUMFREE parameters are 
unheld.

AUIPHIRATSUF real between 0 and 1 1 Relative objective function improvement for termination 
of AUI.

AUIPHIRATACCEPT real between 0 and 1 1 Relative objective function reduction threshold for  
acceptance of AUI-calculated parameters.

NAUINOACCEPT integer greater than 0 1 Number of iterations since acceptance of parameter 
change for termination of AUI.
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Variables in the optional “singular value decomposition” section of the PEST Control File.

Variable Type Values Usage Description

SVDMODE integer 0 or 1 3 Activates truncated singular value decomposition for 
solution of inverse problem.

MAXSING integer greater than 0 3 Number of singular values at which truncation occurs.

EIGTHRESH real 0 or greater, but less 
than 1

2 Eigenvalue ratio threshold for truncation.

EIGWRITE integer 0 or 1 1 Determines content of SVD output file.

Variables in the optional “LSQR” section of the PEST Control File.

Variable Type Values Usage Description

LSQRMODE integer 0 or 1 1 Activates LSQR solution of inverse problem.

LSQR_ATOL real 0 or greater 1 LSQR algorithm atol variable.

LSQR_BTOL real 0 or greater 1 LSQR algorithm btol variable.

LSQR_CONLIM real 0 or greater 1 LSQR algorithm conlim variable.

LSQR_ITNLIM integer greater than 0 1 LSQR algorithm itnlim variable.

LSQR_WRITE integer 0 or 1 1 Instructs PEST to write LSQR file.

Variables in the optional “SVD-Assist” section of the PEST Control File.

Variable Type Values Usage Description

BASEPESTFILE text a filename 3 Name of base PEST Control File.

BASEJACFILE text a filename 3 Name of base PEST Jacobian matrix file.

SVDA_MULBPA integer 0 or 1 2 Instructs PEST to record multiple BPA files.

SVDA_SCALADJ integer -4 to 4 1 Sets type of parameter scaling undertaken in  
superparameter definition.

SVDA_EXTSUPER integer 0, 1, 2, -2, 3 1 Sets means by which superparameters are calculated.

SVDA_SUPDERCALC integer 0 or 1 1 Instructs PEST to compute superparameter sensitivities 
from base parameter sensitivities.

Variables in the optional “sensitivity reuse” section of the PEST Control File.

Variable Type Values Usage Description

SENRELTHRESH real 0 to 1 1 Relative parameter sensitivity below which sensitivity 
reuse is activated for a parameter.

SENMAXREUSE integer integer other than 0 1 Maximum number of reused sensitivities per iteration.

SENALLCALCINT integer greater than 1 1 Iteration interval at which all sensitivities recalculated.

SENPREDWEIGHT real any number 1 Weight to assign to prediction in computation of com-
posite parameter sensitivities to determine sensitivity 
reuse.

SENPIEXCLUDE test “yes” or “no” 1 Include or exclude prior information when computing 
composite parameter sensitivities to determine sensitiv-
ity re-use.
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Variables required for each parameter group in the “parameter groups” section of the PEST Control 
File.

Variable Type Values Usage Description

PARGPNME text 12 characters or less 3 Parameter group name

INCTYP text “relative,” 
“absolute,”
 “rel_to_max”

2 Method by which parameter increments are calculated.

DERINC real greater than 0 2 Absolute or relative parameter increment.

DERINCLB real 0 or greater 3 Absolute lower bound of relative parameter increment.

FORCEN text “switch,” 
“always_2,” 
“always_3”

1 Determines whether central derivatives calculation is 
done.

DERINCMUL real greater than 0 1 Derivative increment multiplier when undertaking central 
derivatives calculation.

DERMTHD text “parabolic,” 
“outside_pts,” 
“best_fit”

1 Method of central derivatives calculation.

SPLITTHRESH real greater than 0 (or 0 to 
deactivate)

1 Slope threshold for split slope analysis.

SPLITRELDIFF real greater than 0 1 Relative slope difference threshold for action.

SPLITACTION text text 1 “smaller,” “0” or “previous.”

Variables required for each parameter in the “parameter data” section of the PEST Control File.

Variable Type Values Usage Description

PARNME text 12 characters or less 3 Parameter name.

PARTRANS text “log,” “none,” “fixed,” 
“tied”

3 Parameter transformation.

PARCHGLIM text “relative” or “factor” 3 Type of parameter change limit.

PARVAL1 real any real number 3 Initial parameter value.

PARLBND real less than or equal to 
PARVAL1

3 Parameter lower bound.

PARUBND real greater than or equal to 
PARVAL1

3 Parameter upper bound.

PARGP text 12 characters or less 3 Parameter group name.

SCALE real any number other than 0 2 Multiplication factor for parameter.

OFFSET real any number 2 Number to add to parameter.

DERCOM integer 0 or greater 1 Model command line used in computing parameter  
increments.

PARTIED text 12 characters or less 3 The name of the parameter to which another parameter is 
tied.
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Variables required for each observation group in the “observation groups” section of the PEST 
Control File.

Variable Type Values Usage Description

OBGNME text 12 characters or less 3 Observation group name.

GTARG real positive 1 Group-specific target measurement objective function.

COVFILE text a filename 2 Optional covariance matrix file associated with group.

Variables required for each observation in the “observation data” section of the PEST Control File.

Variable Type Values Usage Description

OBSNME text 20 characters or less 3 Observation name.

OBSVAL real any number 3 Measured value of observation.

WEIGHT real 0 or greater 3 Observation weight.

OBGNME text 12 characters or less 3 Observation group to which observation assigned.

Variables in the optional “derivatives command line” section of the PEST Control File.

Variable Type Values Usage Description

DERCOMLINE text system command 1 Command to run model for derivatives calculation.

EXTDERFLE text a filename 1 Name of external derivatives file.

Variables in the “model command line” section of the PEST Control File.

Variable Type Values Usage Description

COMLINE text system command 3 Command to run model.

Variables in the “model input/output” section of the PEST Control File.

Variable Type Values Usage Description

TEMPFLE text a filename 3 Template file.

INFLE text a filename 3 Model input file.

INSFLE text a filename 3 Instruction file.

OUTFLE text a filename 3 Model output file.



Appendix 1. Basic PEST Input    49

Variables in the “prior information” section of the PEST Control File.

Variable Type Values Usage Description

PILBL text 20 characters or less 3 Name of prior-information equation.

PIFAC text real number other 
than 0

3 Parameter value factor.

PARNME text 12 characters or less 3 Parameter name.

PIVAL real any number 3 “Observed value” of prior information.

WEIGHT real 0 or greater 3 Prior-information weight.

OBGNME text 12 characters or less 3 Observation group name.

Variables in the optional “predictive analysis” section of the PEST Control File.

Variable Type Values Usage Description

NPREDMAXMIN integer −1 or 1 3 Maximize or minimize prediction.

PREDNOISE integer 0 or 1 2 Instructs PEST to include predictive noise in prediction.

PD0 real greater than 0 3 Target objective function.

PD1 real greater than PD0 3 Acceptable objective function.

PD2 real greater than PD1 3 Objective function at which Marquardt Lambda testing  
procedure is altered as prediction is maximized/minimized.

ABSPREDLAM real 0 or greater 2 Absolute prediction change to terminate Marquardt Lambda 
testing.

RELPREDLAM real 0 or greater 2 Relative prediction change to terminate Marquardt Lambda 
testing.

INITSCHFAC real greater than 0 2 Initial line search factor.

MULSCHFAC real greater than 1 2 Factor by which line search factors are increased along line.

NSEARCH integer greater than 0 2 Maximum number of model runs in line search.

ABSPREDSWH real 0 or greater 1 Absolute prediction change at which to use central derivatives 
calculation.

RELPREDSWH real 0 or greater 1 Relative prediction change at which to use central derivatives 
calculation.

NPREDNORED integer 1 or greater 1 Iterations since prediction raised/lowered at which termination 
is triggered.

ABSPREDSTP real 0 or greater 1 Absolute prediction change at which to trigger termination.

RELPREDSTP real 0 or greater 1 Relative prediction change at which to trigger termination.

NPREDSTP integer 2 or greater 1 Number of iterations over which ABSPREDSTP and  
RELPREDSTP apply.
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Variables in the optional “regularization” section of the PEST Control File.

Variable Type Values Usage Description

PHIMLIM real greater than 0 3 Target measurement objective function.

PHIMACCEPT real greater than PHIMLIM 3 Acceptable measurement objective function.

FRACPHIM real optional; 0 or greater, 
but less than 1

2 Set target measurement objective function at this fraction of 
current measurement objective function.

MEMSAVE text “memsave” or  
“nomemsave”

1 Activate conservation of memory at cost of execution speed and 
quantity of model output.

WFINIT real greater than 0 1 Initial regularization weight factor.

WFMIN real greater than 0 1 Minimum regularization weight factor.

WFMAX real greater than WFMIN 1 Maximum regularization weight factor.

LINREG text “linreg” or  
“nonlinreg”

1 Informs PEST that all regularization constraints are linear.

REGCONTINUE text “continue” or  
“nocontinue”

2 Instructs PEST to continue minimizing regularization objective 
function even if measurement objective function less than 
PHIMLIM.

WFFAC real greater than 1 1 Regularization weight factor adjustment factor.

WFTOL real greater than 0 1 Convergence criterion for regularization weight factor.

IREGADJ integer 0, 1, 2, 3, 4 or 5 2 Instructs PEST to perform interregularization group weight 
factor adjustment, or to compute new relative weights for 
regularization observations and prior-information equations.

NOPTREGADJ integer 1 or greater 2 The optimization iteration interval for re-calculation of  
regularization weights if IREGADJ is 4 or 5.

REGWEIGHTRAT real absolute value of 1 or 
greater

2 The ratio of highest to lowest regularization weight; spread is 
logarithmic with null space projection if set negative.

REGSINGTHRESH real less than 1 and greater 
than 0

1 Singular value of XtQX (as factor of highest singular value)  
at which use of higher regularization weights begins if 
IREGADJ is set to 5.
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Variables in the optional “Pareto” section of the PEST Control File.

Variable Type Values Usage Description

PARETO_OBSGROUP text 12 characters or less 3 name of observation group whose weights are subject to  
multiplication by a variable weight factor

PARETO_WTFAC_START real zero or greater 1 initial weight factor for user-specified observation group

PARETO_WTFAC_FIN real greater than PARETO_
WTFAC_START

2 final weight factor for user-specified observation group

NUM_WTFAC_INT integer greater than zero 2 number of weight factor increments to employ in traversing 
Pareto front

NUM_ITER_START integer zero or greater 1 number of optimisation iterations to employ when using intial 
weight factor

NUM_ITER_GEN integer greater than zero 1 number of optimization iterations to employ when using any 
weight factor other than PARETO_WTFAC_START or 
PARETO_WTFAC_FIN

NUM_ITER_FIN integer zero or greater 1 number of optimization iterations to employ when using final 
weight factor

ALT_TERM integer zero or one 3 set to one in order to activate PEST termination determined by 
value of a specified model output

OBS_TERM text 20 characters or less 3 the name of an observation cited in the “observation data”  
section of the PEST control file whose value will be  
monitored for possible PEST run termination

ABOVE_OR_BELOW text “above” or “below” 3 determines whether the monitored model output must be above 
or below the threshold to precipitate run termination

OBS_THRESH real any number 3 value that monitored model output must exceed or undercut to 
precipitate model run termination

ITER_THRESH integer zero or greater 3 the number of optimization iterations for which the model 
output threshold must be exceeded or undercut to precipitate 
run termination

NOBS_REPORT integer 0 or greater 3 number of model outputs whose values to report

Files used by PEST

The following tables list files that are read and written by PEST. Many of these possess the same filename base as the PEST 
Control File, this being designated as case in the tables below.

Files read by PEST.

File name File type Purpose

case.pst PEST Control File Provides problem dimensions, names of files for communication with 
a model, and values for all PEST control variables.

Arbitrary, commonly *.tpl Template file Provides means through which PEST writes current parameter values 
to a model input file.

Arbitrary, commonly *.ins Instruction file Provides means through which PEST reads outputs of interest from 
model output files.

case.rmf Run management file Provides Parallel PEST with information needed to communicate with 
slaves.

case.hld Parameter hold file Supplies details of manual intervention when holding individual  
parameters, or groups of parameters, at current values.
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Files written by PEST.

File name File type Purpose

case.rec Run record file Contains details of progress of parameter-estimation process.
case.cnd Condition number file Contains continuous record of inverse-problem condition numbers.
case.mtt Matrix file Contains interim covariance, correlation coefficient, and eigenvector 

matrices.
case.sen Parameter sensitivity file Contains continuous record of composite parameter sensitivities.
case.seo Observation sensitivity file Records composite observation sensitivities.
case.res Residuals file Contains residuals and associated information recorded in tabular 

format.
 case.rei Interim residuals file Contains residuals and associated information recorded in tabular 

format. This file is rewritten during every optimization iteration.
pest.mmf Message file Optionally recorded by PEST before every model run, contains the 

reason for carrying out the run and the parameter values that it 
employs.

case.svd SVD file Written only if PEST employs truncated SVD for solution of inverse 
problem; contains eigenvalues and, optionally, eigenvectors of 
XtQX matrix.

case.lsq LSQR file Records information written by LSQR solver.
case.jco Jacobian matrix file Binary file containing Jacobian matrix pertaining to best parameters 

achieved so far.
case.par Parameter value file Records best parameter values achieved so far in  

parameter-estimation process.
case.par.N Parameter value file Records parameters achieved during each iteration when PEST is run 

in Pareto mode.
case.pod Pareto objective function file Record of objective functions encountered when traversing Pareto 

front.
case.ppd Pareto parameter data file Binary file recording parameters and corresponding model outputs 

encountered during traversal of the Pareto front.
basecase.bpa Best parameter file Contains best base parameters achieved so far; the filename base is 

the same as that of the base PEST Control File.
case.rsd Resolution data file Binary file written by PEST whenever it does any kind of  

regularized inversion. It contains data from which the resolution 
and “G” matrices can be computed by the RESPROC utility.

case.rst, case.jac, case.jst Restart files Contain information (written in binary form) that PEST uses in 
restarting a previously incomplete PEST run.

case.rmr Run management record file Lists history of communications between Parallel PEST and its 
slaves.

pest.rdy, 
param.rdy, 
observ.rdy
pslave.fin
p###.###

Semaphore files Used by Parallel PEST to communicate with its slaves.
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Appendix 2.  PEST Utilities

This appendix presents a series of tables listing utility software provided with PEST, together with the function that each 
program serves. Programs are grouped into different tables according to similarity of function. Complete descriptions of the fol-
lowing utilities can be found at http://www.pesthomepage.org/.

Checking Utilities.

Program Purpose

TEMPCHEK Checks the integrity of a PEST template file.

INSCHEK Checks the integrity of a PEST instruction file.

PESTCHEK Checks an entire PEST input dataset for correctness and consistency.

Classical parameter estimation preprocessing and postprocessing. 

(Note: Some of these can also be employed for regularized inversion preprocessing and postprocessing.)

Program Purpose

PARREP Builds a new PEST Control File whose initial values are optimized values from a previous PEST run.

PARAMFIX Alters prior information pertaining to one or a number of parameters as these parameters are tied or 
fixed.

EIGPROC Collects uncertainty, sensitivity, and eigencomponent information pertinent to a nominated parameter 
from PEST output files.

PCOV2MAT Extracts a parameter covariance matrix from a PEST Control File, rewriting it in matrix file format.

INFSTAT Computes a suite of observation influence statistics, including DFBETAS and Cook’s D.

PESTGEN Builds a basic PEST Control File based on a parameter value file and an INSCHEK output file.

Regularized inversion preprocessing and postprocessing.

Program Purpose

ADDREG1 Adds preferred-value regularization to a PEST Control File based on initial parameter values.

SUPCALC Estimates number of superparameters to employ in SVD-Assisted parameter estimation.

SVDAPREP Writes a PEST input dataset for SVD-Assisted parameter estimation.

PARCALC Run as part of a model employed for SVD-Assisted parameter estimation; computes base parameter 
values from superparameter values.

PICALC Run as part of a model employed for SVD-Assisted parameter estimation; computes prior information 
expressed in terms of base parameter values.

IDENTPAR Computes parameter identifiability.

PCLC2MAT Computes base parameter composition of SVD-Assist superparameters.

GENLINPRED Automates running of PREDUNC and PREDVAR utilities. Undertakes linear predictive error  
analysis; also computes parameter identifiability and relative error variance and uncertainty  
reduction.

RESPROC Processes information written in binary form to *.rsd file during any PEST run in which regularization 
of any kind is employed.

RESWRIT Processes information written by RESPROC; stores resolution and “G” matrices in PEST matrix file 
format.

REGERR Computes the covariance matrix of regularization-induced structural noise.
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Weights and covariance matrix manipulation.

Program Purpose

COV2COR Calculates a correlation coefficient matrix from a covariance matrix.

COVCOND Calculates a conditioned covariance matrix from an unconditioned covariance matrix.

PWTADJ1 Alters weights in a PEST Control File so that the contribution to the initial objective function by all 
observation groups is equal based on residuals calculated at initial values.

PWTADJ2 Attempts to create observation-group-specific weights, which are the inverse of  
measurement-error standard deviations.

WTFACTOR Multiplies the weights pertaining to all observations belonging to a selected observation group by a 
specified factor.

Linear uncertainty analysis.

Program Purpose

PREDUNC1 Computes the uncertainty of a user-specified prediction.

PREDUNC4 Computes contributions to predictive uncertainty by different parameters or parameter groups.

PREDUNC5 Computes observation worth through its effect in lowering predictive uncertainty.

Linear error analysis.

Program Purpose

PARAMERR Computes the covariance matrix of parameter error after a calibration exercise involving any form or 
regularization.

PREDERR Computes the error variance of a prediction whose sensitivities are available after a calibration exercise 
involving any form or regularization.

PREDERR1 Similar to PREDERR, but slightly different in its input-file requirements.

PREDERR2 Similar to PREDERR, but slightly different in its input-file requirements.

PREDERR3 Similar to PREDERR, but slightly different in its input-file requirements.

PREDVAR1 Computes the error variance of a model prediction based on a notional calibration exercise done by  
using truncated SVD; also finds the minimum of the predictive error variance curve.

PREDVAR1A As for PREDVAR1, but undertakes SVD on Q1/2X rather than XtQX.

PREDVAR4 Computes contribution made to the error variance of a prediction by different parameters  
and/or groups of parameters.

PREDVAR5 Computes observation worth through its effect on lowering predictive error variance.

Nonlinear error analysis.—Continued

Program Purpose

VECLOG Computes the log of all elements of a vector (normally used as part of nonlinear highly parameterized 
predictive maximization/minimization).

PEST2VEC Facilitates preparation for nonlinear highly parameterized predictive uncertainty analysis done by way 
of constrained maximization /minimization.

VEC2PEST Facilitates preparation for nonlinear highly parameterized predictive uncertainty analysis done by way 
of constrained maximization /minimization.
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Nonlinear error analysis.—Continued

Program Purpose

OBSREP Replaces observations in a PEST Control File with best-fit model-generated equivalents.  
(This is normally run just prior to REGPRED.)

REGPRED Builds a PEST Control File in which postcalibration nonlinear predictive uncertainty analysis is  
effected by constrained prediction maximization/minimization.

RANDPAR Computes random parameter values, placing these values into a series of parameter-value files.

PNULPAR Undertakes null-space projection of random parameter fields to remove solution-space component; 
replaces it with solution space component from calibrated model.

RDMULRES Reads multiple output files produced as an outcome of Monte Carlo analysis and collates results.

MULPARTAB Builds a table of multiple sets of parameter values produced through null-space Monte Carlo analysis.

COMFILNME Facilitates post-null-space MonteCarlo file management.

Pareto analysis.

Program Purpose

PPD2ASC Stores all data recorded in a Pareto parameter data file in ASCII format.

PPD2PAR Extracts single parameter sets from the Pareto parameter data file.

Sensitivity-data manipulation.

Program Purpose

JACTEST Undertakes serial or parallel model runs to test the integrity of finite-difference-calculated derivatives.

POSTJACTEST JACTEST postprocessor; provides index of derivatives corruptness for different model outputs.

JACWRIT Rewrites the contents of a *.jco file in ASCII format.

JCO2JCO Writes a Jacobian matrix corresponding to a new PEST Control File on the basis of information  
contained in an existing *.jco/*.pst file pair.

JCO2MAT Rewrites the contents of a *.jco file in PEST matrix file format.

JCOADDZ Adds sensitivities to an existing *.jco file.

JCOCOMB Builds a new *.jco file from an existing one, in which observations from the first are combined in  
user-supplied ratios in the second.

JCODIFF Subtracts the contents of one *.jco file from that of another.

JCOORDER Reorders rows and/or columns in a *.jco file.

JCOPCAT Concatenates two *.jco files; thus sensitivities with respect to some parameters can be computed on one 
machine and those with respect to other parameters can be computed on another.

JCOTRANS Translates from old *.jco storage format to new (compressed) storage format employed by PEST.

JROW2MAT Extracts a row of a Jacobian matrix file and writes it in PEST matrix file format.

JROW2VEC Extracts a row of a Jacobian matrix file, transposes it, and writes it in PEST matrix file format.

DERCOMB1 Combines two external derivatives files (supplied by models that can calculate their own derivatives) 
into one, before being read by PEST.

MULJCOSEN Reads multiple *.jco files as written on a single PEST run (if PEST is instructed to write such multiple 
files); calculates composite sensitivity of nominated parameter or observation from iteration to  
iteration.

WTSENOUT Computes a weighted Jacobian matrix and a weighted observation vector.
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Matrix manipulation.

Program Purpose

MAT2SRF Writes a matrix in SURFER grid format.

MATADD Performs matrix addition.

MATCOLEX Extracts a column of a matrix.

MATDIAG Extracts the diagonal of a matrix.

MATDIFF Performs matrix differencing.

MATINVP Computes the inverse of a positive definite matrix.

MATJOINC Joins matrices which possess the same number of columns.

MATJOIND Joins two matrices in a diagonal sense (useful in forming a composite covariance matrix).

MATJOINR Joins matrices which possess the same number of rows.

MATORDER Reorders the rows or columns of a matrix.

MATPROD Performs matrix multiplication.

MATQUAD Evaluates the quadratic form ytMy.

MATROW Extracts a single row of a matrix.

MATSMUL Multiplies a matrix by a scalar.

MATSPEC Lists matrix specifications.

MATSVD Undertakes singular value decomposition of an arbitrary matrix.

MATSYM Forms a symmetric matrix as (M + Mt)/2.

MATTRANS Computes the transpose of a matrix.

MATXTXI Computes (XtX)-1 where X has more rows than columns.

MATXTXIX Computes (XtX)-1X where X has more rows than columns.

Global Optimization.

Program Purpose

SCEUA_P Global optimization by use of the SCEUA algorithm.

CMAES_P Global optimization by use of the CMAES algorithm.

General.
Program Purpose

PAR2PAR Undertakes arbitrary mathematical manipulation of model parameters; normally run as part of a model 
calibrated by PEST.

SCALEPAR Builds a PEST input dataset based on parameters scaled by their innate variability.

GENLIN Generalized linear model.

PESTLIN Reads a general PEST input dataset and accompanying *.jco file; creates a GENLIN model and  
accompanying PEST input dataset for calibration of that model.

SENSAN Undertakes basic sensitivity analysis through repeated model runs.

SENSCHEK Checks the integrity of a SENSAN input dataset.

PAUSE Pauses PEST execution.

PUNPAUSE Unpauses PEST execution.

PSTOP Stops PEST execution.

PSTOPST Instructs PEST to cease execution with a full statistical printout.

PSLAVE PEST slave program.
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Appendix 3.  Groundwater Data Utilities

This appendix presents a series of tables listing utility software provided with the PEST Groundwater Data Utilities suite. 
Programs are grouped into different tables according to similarity of function. Complete descriptions of these utilities can be 
found at http://www.pesthomepage.org/.

Implementation of pilot-point parameterization.
Program Purpose

FAC2FEFL Uses PPKFAC_FEFL-generated kriging factors to modify a FEFLOW model input data file on the basis of spatial 
interpolation from a set of pilot points.

FAC2FEM Uses PPK2FAC-generated kriging factors to produce a MicroFEM input file on the basis of spatial interpolation 
from a set of pilot points.

FAC2MF2K Modifies an existing set of MODFLOW-2000 input files, replacing parameter cited in that file with pilot-point-
based parameters (often a first step in pilot-point-based model calibration).

FAC2REAL Uses PPKFAC-generated kriging factors to produce a MODFLOW-compatible real array on the basis of spatial 
interpolation from a set of pilot points.

FAC2RSM Uses PPKFACR-generated kriging factors to produce an RSM model input data file on the basis of spatial interpola-
tion from a set of pilot points.

PPK2FAC Calculates kriging factors for use in spatial interpolation from a set of pilot points to model grid cell centers.

PPK2FACF Calculates kriging factors for use in spatial interpolation from a set of pilot points to the nodes of a MicroFEM finite 
element mesh.

PPK2FAC1 Identical to PPK2FAC except the regularization data file it writes is suitable for the use of PPKREG1.

PPK2FACR Calculates kriging factors for use in spatial interpolation from a set of pilot points to the nodes of an RSM mesh. 
Regularization data file protocol is identical to that of PPK2FAC1.

PPK2FAC_FEFL Calculates kriging factors for use in spatial interpolation from a set of pilot points to the elements of a FEFLOW 
mesh. Regularization data file protocol is identical to that of PPK2FAC1.

PARM3D Assists in pilot-point parameterization of a 3-D model domain where hydrogeological units intersect grid layers.

MODFLOW/MT3D array manipulation.

Program Purpose

ARR2BORE Undertakes spatial interpolation from a single array to a set of points.

INT2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible integer array.

INT2REAL Builds a MODFLOW/MT3D-compatible real array based on the contents of a MODFLOW/MT3D-compatible inte-
ger array.

LOGARRAY Evaluates the log (to base 10) of all elements of a real array.

PT2ARRAY Builds a MODFLOW-compatible real array; the value assigned to each array element is calculated from information 
pertaining to points lying within the respective element.

REAL2INT Builds a MODFLOW/MT3D-compatible integer array based on the contents of a MODFLOW/MT3D-compatible real array.

REAL2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible real array.

REAL2SRF Translates a MODFLOW/MT3D-compatible real array into a SURFER grid file.

REAL2TAB Translates a MODFLOW/MT3D-compatible real array into three-column real array table format.

SRF2REAL Re-writes a SURFER grid file as a MODFLOW-compatible real array.

TAB2INT Generates a MODFLOW/MT3D-compatible integer array from an integer array stored within a GIS.

TAB2REAL Generates a MODFLOW/MT3D-compatible real array from a real array stored within a GIS.

TABCONV Translates between integer or real array table files using row/column identifier format and those using cell number 
identifier format.

TWOARRAY Combines two real arrays by addition, subtraction, multiplication, division and partial replacement.
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MODFLOW/MT3D/SEAWAT preprocessing.
Program Purpose

MOD2ARRAY Reads a MODFLOW or MT3D input file, extracting real or integer arrays from that file and storing them in separate files.

ELEV2CONC Computes the elevation of the freshwater-saltwater interface on the basis of a sequence of concentration arrays.

ELEV2CONC1 Similar to ELEV2CONC, but computes “zero flow head” arrays as well.

REPARRAY “Pastes” a MODFLOW- or MT3D-compatible real array into an existing MODFLOW or MT3D input file.

MODFLOW/MT3D/SEAWAT/FEFLOW postprocessing.
Program Purpose

ARRDET Lists the contents of a MODFLOW or MT3D binary head/drawdown/concentration output file.

BUD2HYD Extracts flow data from a MODFLOW binary cell-by-cell flow term file. Rewrites this data in a form suitable for  
plotting against time.

BUD2SMP Extracts flow data from a MODLFOW binary cell-by-cell flow term file. Rewrites this data in bore sample file format.

CONC2ELEV Computes the elevation of the freshwater/saltwater interface on the basis of a sequence of concentration arrays.

DAR2SMP Translates system states computed by a FEFLOW model to bore sample file format.

GETMULARR Extracts arrays from MODFLOW/MT3D binary output files at user-nominated simulation times and stores these arrays in separate 
binary files.

GETMULARR1 Extracts all arrays for a nominated simulation time from a MODFLOW/MT3D binary output file and writes these to an-
other binary MODFLOW/MT3D output file.

MANY2ONE Splits MODFLOW/MT3D-generated binary files comprised of multiple two-dimensional results arrays into individual 
ASCII/binary files.

MOD2OBS Interpolates model-generated data to the same times and locations as those cited in a user-supplied bore sample file; writes 
another bore sample file. 

LAYDIFF Evaluates head value differences in different layers based on contents of a bore sample file, bore coordinates file and bore 
listing file.

MOD2SMP Interpolates the information contained in a binary MODFLOW/MT3D output file to a set of user-specified bores, rewriting 
the bore-specific data as a bore sample file.

MOD2SMPDIFF Interpolates the information contained in a binary MODFLOW/MT3D output file to user-specified bores, calculating the 
difference or ratio between heads/concentrations at user-nominated pairs of bores.

SECTION Interpolates the data contained in multiple MODFLOW-compatible real arrays to an arbitrary transect line through all or 
part of the finite-difference grid.

Processing and manipulation of field and model time series.
Program Purpose

PMP2INFO Builds a bore information file from a bore pumping file, the former containing cumulative pumped volumes between two user-
specified dates for a user-supplied list of bores.

PMPCHEK Checks the integrity of the data contained in a bore pumping file.

SMP2HYD Rewrites the contents of a bore sample file for a user-specified list of bores in a form suitable for plotting borehole data against 
time.

SMP2INFO Time-interpolates the information contained in a bore sample file to a user-specified date for a list of user-specified bores, thus 
writing a bore information file ready for access by commercial contouring software.

SMP2SMP Interpolates data contained within one bore sample file to the dates and times represented in another bore sample file.

SMPCAL Calibrates one time-series dataset on the basis of another.

SMPCHEK Checks the integrity of a bore sample file.

SMPDIFF Writes a new bore sample file in which differences are taken between successive values in an existing bore sample file, or 
between values in an existing file and a reference value.

SMPTREND Writes a new bore sample file in which differences are taken between samples within an existing bore sample file and either 
the first sample for each bore in that file or a reference sample. However, sampling is restricted to a yearly sample window.
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Construction of a PEST input dataset.

Program Function

ADJOBS Adjusts observation weights for different observation groups in a PEST Control File according to user-defined 
formulas.

ARRAYOBS Facilitates the introduction of model outputs consisting of MODFLOW/MT3D-compatible real arrays into a PEST 
parameter-estimation process.

PESTPREP Automates construction of a PEST Control File and PEST instruction file for a model comprised of MODFLOW 
and/or MT3D followed by MOD2OBS, or MODFLOW followed by BUD2SMP followed by SMP2SMP.

PESTPREP1 Similar to PESTPREP but provides extra flexibility in observation naming.

PESTPREP2 Similar to PESTPREP1 but allows extra observation data to be added to an existing PEST input dataset.

Adding regularization to a PEST input dataset.
Program Purpose

GENREG Inserts prior information pertaining to many different types of regularization into an existing PEST Control File.

PPCOV Builds a covariance matrix pertaining to pilot point parameters based on one or a number of geostatistical structures.

PPKREG Adds a “prior information” and “regularization” section to a PEST Control File where parameterization is based on 
pilot points.

PPKREG1 Similar to PPKREG but more powerful in that it facilitates the use of both “difference regularization” (same as 
PPKREG) and “preferred-value regularization.”

ZONE2VAR1 Computes a parameter variogram where parameterization is based on a large number of zones of piecewise con-
stancy, and is defined through a ZONMDEF output file. Assists in undertaking “variogram regularization” as 
described by Johnson and others (2007).

ZONE2VAR2 Computes a parameter variogram much more quickly than ZONE2VAR1 because it employs the results of the pa-
rameter search process done by the latter program as read from a binary file written by it.

VERTREG Adds “vertical regularization” prior-information equations to a PEST Control File where parameterization is based 
on pilot points.

Working with the MODFLOW adjoint process.
Program Function

ASENPROC Reads a “distributed parameter sensitivity file” written by the adjoint state version of MODFLOW; formulates sensi-
tivities for PEST parameters and writes them to a PEST “external derivatives file.”

MKMHOBS Reads a bore sample file. Writes a MODFLOW 2005 heads observation file, as well as an instruction file to read a 
MODFLOW heads output data file and a “PEST building block file” containing pertinent fragments of a PEST 
Control File.

PPMDEF Builds a parameter definition file for the use of ASENPROC, linking distributed parameters as employed by the 
adjoint process of MODFLOW to pilot-point parameters.

ZONMDEF Assists in the preparation of input files for the use of PEST in conjunction with the MODFLOW-2005 adjoint pro-
cess where parameters are based on a large number of zones of piecewise constancy.

Uncertainty Analysis.
Program Function

FIELDGEN Generates a stochastic field in each zone of a model domain using the sequential Gaussian simulation method.

PPSAMP Used in calibration-constrained Monte Carlo analysis. Samples stochastic fields at pilot point locations, interpolates 
between the pilot points, and generates difference fields.
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Geographical data manipulation.

Program Function

GRID2ARC Writes ARCINFO generated files of the active part of the finite-difference grid as defined by a user-supplied integer 
array.

GRID2BLN Writes a SURFER blanking file of the active part of the finite-difference grid as defined by a user-supplied integer 
array.

GRID2DXF Writes a DXF file of the active part of the finite-difference grid as defined by a user-supplied integer array.

GRID2PT Tabulates the coordinates of the cell centers of the finite-difference grid within an active window defined by a  
user-supplied integer array.

INT2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible integer array.

PTINGRID Locates the finite-difference cells in which arbitrary, user-supplied points lie; optionally provides the value of an 
integer or real array element pertaining to the cell containing each such point.

QDIG2DXF Translates the output of the shareware digitizing program, QDIGIT, into DXF format.

QDIG2XYZ Translates the “contours” output of QDIGIT to an “xyz” data file.

RDAT2TAB Reads an RSM element data file or index file. Adds mesh centroid coordinates to respective data elements and 
rewrites data in tabular format.

ROTBLN Rotates a SURFER blanking file about the top left corner of a finite-difference grid so that the component elements 
of the file can be overlain over the grid when the latter has been rotated such that its row direction is oriented 
directly east.

ROTDAT Rotates a data file about the top left corner of a finite-difference grid so that the component elements of the file can 
be overlain over the grid when the latter has been rotated such that its row direction is oriented directly east.

ROTDXF Rotates a DXF file about the top left corner of a finite-difference grid so that the component elements of the file can 
be overlain over the grid when the latter has been rotated such that its row direction is oriented directly east.

RSM2SRF Reads an RSM (also GMS) 2D mesh file. Writes files through which SURFER can plot mesh design, outer mesh 
boundary, as well as nodes and element centroids.

ZONE2BLN Writes a SURFER “blanking” file of finite-difference grid zonation as defined by a user-supplied,  
MODFLOW-compatible integer array.

ZONE2DXF Writes a DXF file of finite-difference grid zonation as defined by a user-supplied, MODFLOW-compatible integer 
array.

Reference Cited

Johnson, T.C., Routh, P.S., Clemo, T., Barrash, W., and  
Clement, W.P., 2007, Incorporating geostatistical constraints 
in nonlinear inversion problems: Water Resources Research, 
v. 43, no. 10, W10422, doi:10.1029/2006WR005185.
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Appendix 4.  Background and Theory 
of PEST Uncertainty Analyses

The theory of Doherty (2010a, 2010b) that underpins 
PEST’s exploration of model parameter and predictive 
uncertainty is now presented. Much of the theory is based on 
the assumption of a linear relation between model parameters 
and model outputs; where appropriate, however, it is extended 
to accommodate the more usual nonlinear relation between 
these two sets of quantities. 

General

Let the matrix X represent the action of a model on its 
parameters p through which it calculates a set of outputs 
for which field measurements h are available for use in 
the calibration process. Thus, h represents the calibration 
dataset which can, without loss of generality, include direct 
measurements of system properties constituting the elements 
of p. Let ε represent the noise associated with this dataset. 
Thus,

	 h Xp= + ε 	 (A4.1)

For ease of notation it is assumed that parameter values of 
zero lead to model outputs of zero.

Let it be assumed that the model is parameterized to a 
level of “appropriate complexity.” In the present context, this 
means that parameterization density is such that no errors 
to model outputs under predictive conditions are incurred 
through parameter simplification. Thus, all parameterization 
detail that is salient to model predictions is incorporated into 
the model parameterization scheme that is encapsulated in 
p. Ideally, the same should apply to model outputs under 
calibration conditions. In practice, this assumption is often 
violated, and the “structural noise” so incurred is lumped with 
measurement noise ε. In the discussion that follows it will be 
assumed that the noise associated with h, whatever its source, 
is characterized by a known covariance matrix C(ε).

Because the model is parameterized to a level of 
“appropriate complexity” as defined above, it is unlikely that 
unique estimates for all elements of p can be obtained on the 
basis of the calibration dataset h. It is therefore assumed that 
the inverse problem of model calibration is ill posed. 

Let the covariance matrix C(p) denote the precalibration 
uncertainty associated with parameters p. This matrix may 
have geostatistical origins. More often than not, however, 
it will be the outcome of subjective deliberations made 
by those with site expertise. Non-zero diagonal elements 
denote the fact that exact parameter values are unknown. 
However, boundedness of diagonal elements denotes the fact 
that some knowledge does exist of not-unlikely values for 
these properties. The presence of non-zero off-diagonal C(p) 
elements may allow further representation of site knowledge, 
this reflecting the fact that parameters of similar type at the 

same location, or of the same type at neighboring locations, 
exhibit joint variabilities (that is, are statistically correlated).

Let s (a scalar) represent a prediction required of 
the model. Let the sensitivity of s to all parameters be 
encapsulated in the vector y. Thus, ignoring offsets once again,

	 s y p= T
	 (A4.2)

	 If p is uncertain, then so is s. Uncertainty of s can be 
computed from that of p by using the standard equation for 
propagation of variance:

	 σ s
T2 = ( )y p yC 	 (A4.3)

Equation (A4.3) expresses the precalibration variance 
(square of standard deviation) of the prediction s. For a 
nonlinear model, it could be computed through generating 
many realizations of p on the basis of C(p), running the model 
using each such realization to calculate a corresponding s, and 
then building a frequency histogram of s.

Parameter and Predictive Uncertainty

Use of equation A4.3 to calculate predictive uncertainty 
takes no account of the fact that parameter sets that do not 
allow the model to replicate historical measurements of system 
state should have their probabilities reduced in comparison 
with those that do. This notion is, of course, expressed 
formally by Bayes’ equation:

	

P
P P
P P d

p h
h p p
h p p p

|
|

|
( ) = ( ) ( )

( ) ( )∫ 	
(A4.4)

Where a model is linear, and where model-parameter 
variability is characterized by a multi-Gaussian distribution, 
use of Bayes’ equation to express calibration-constrained 
variability is accomplished in the manner now described.

Let x be a vector of random variables with covariance 
matrix C(x). Let it be partitioned into two subvectors x1 and x2 
such that

	
x
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(A4.5)

Let C(x), the covariance matrix of x, be represented as

	
C x

C C
C C

( ) = 
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


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

11 12

21 22 	
(A4.6)

Now suppose that the elements of x2 become known. 
Then C11

' , the covariance matrix of x1  conditional on know-
ing x2 , is computed as follows (Koch, 1988):

	 C C C C C11 11 12 22
1

21
' = − −

	 (A4.7)
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To apply this concept in the modeling context, first 
equations and are combined to yield
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(A4.8)

Then, using standard matrix relations for propagation of 
covariance,
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Application of then leads to
	          
σ s

T T T T2 1
= ( ) − ( ) ( ) + ( )  ( )−
y p y y p X X p X X p yC C C C ε C

	

Through use of appropriate matrix identities given by Athans 
and Schweppe (1965), this can also be written as

                    
σ s

T T2 1 1 1
= ( ) + ( ) 

− − −
y X X p yC ε C

	

Equation (A4.10)expresses the postcalibration (that is, 
posterior) uncertainty of the prediction s whose sensitivity 
to parameters is encapsulated in the vector y, conditional 
upon parameters being constrained by the necessity for the 
model to replicate within a margin of error set by C(ε) the 
field observations h with model outputs whose sensitivities to 
parameters are encapsulated in the matrix X. The following 
features of equation (A4.10) are noteworthy:
1.	 Neither the value of the prediction s, the values of param-

eters p, nor the values of observations h feature in these 
equations. Only sensitivities and covariance matrices are 
featured in them.

2.	 The first term of equation (A4.10) is the prior variance of 
the prediction s; the second term is the reduction in this 
variance accrued through conditioning on field data h.

3.	 If the vector y possesses only a single non-zero element 
of 1.0, then equations (A4.10) and (A4.11) provide the 
posterior variance of the selected parameter. 

4.	 Equations (A4.10) and (A4.11) can be modified to provide 
the posterior covariance matrix of model parameters; 
the y vector in these equations is simply replaced by the 
m-dimensional identity matrix I, where m is the number 
of elements composing p.

5.	 By reconfiguring the elements of X, equations (A4.10) 
and (A4.11) can be adapted to include direct measure-
ments of system properties (these constituting individual 
elements of p) in the observation dataset.

6.	 Because of the size of the matrix which requires inver-
sion in each case, equation (A4.10) is better used where 
observation numbers are small and parameter numbers 
are large; equation (A4.11) is better used in the opposite 
situation.
Figure A4.1 shows a probability contour for two random 

scalar variables x1 and x2 encapsulated in a two-dimensional 
vector x. Also shown is the marginal probability distribution of 
x1 as well as the probability distribution of x1 conditional upon 
acquisition of perfect knowledge of x2. The fact that the latter 
is (a) narrower than the former and (b) recentered correspond 
to the precalibration marginal probability distribution of x1 is 
immediately evident from this figure.

Parameter and Predictive Error

Calibration

The above discussion of model predictive uncertainty 
has avoided use of the word “calibration.” It could be argued 
that the very concept of “calibration” should be avoided in 
environmental modeling, for in the face of the high degree of 
parameter and predictive uncertainty that attends most model-
ing exercises, what justification can there be for using a single 
parameter set to make predictions? In contrast, conceptually 
at least, a prediction should be made by using many different 
parameter sets, all of which are plausible (as assessed on 
the basis of the C(p) covariance matrix of innate parameter 
variability) and all of which provide an acceptable replication 
of historical system behavior through providing an adequate 
fit with the observation dataset h (with “adequacy” assessed 
using the C(ε) covariance matrix of measurement noise).

Justification for use of a single parameter set can only 
be based on the premise that this particular parameter set can 
be shown to possess one or more desirable properties. Given 
the uncertainty associated with values of parameters inferred 
through the calibration process, and of predictions that depend 
on them, the property of minimum error variance would be a 
logical property to seek for the parameter set which is deemed 
to calibrate the model. It must be noted however, that “mini-
mum error variance” does not mean “low error variance.” As 
Moore and Doherty (2005, 2006) point out, predictions made 
by means of a calibrated model can be considerably in error, 
despite the use of sophisticated mathematical regularization 
techniques that can indeed bestow on estimated parameter 
fields desirable properties such as these.

Notwithstanding its limitations, the “calibrated model” 
forms the basis of much environmental management. Indeed, 

(A4.10)

(A4.11)
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where large numbers of parameters must be conditioned by 
large numbers of observations, a strictly Bayesian approach to 
calculation of predictive uncertainty can be computationally 
impractical. In contrast, the attainment of parameter unique-
ness by use of various mathematical regularization devices 
(for the example the “SVD-assist” methodology described by 
Tonkin and Doherty (2005) and supported by PEST), requires 
a relatively light numerical burden. Furthermore, parameter 
fields so obtained can be shown to possess properties that do 
not depart greatly from that of minimum error variance. 

 In model-use contexts such as this, the task of quantify-
ing parameter and predictive uncertainty must be replaced by 
that of quantifying model-parameter and predictive propensity 
for error, or “error variance.” Inevitably, error variance will 
be larger than the variance of posterior parameter or predic-
tive uncertainty, because its calculation must accommodate 
the fact that the attainment of parameter uniqueness through a 
process of regularized inversion may not necessarily result in 
a minimum-error-variance parameter field, even though it may 
strive to achieve this goal. 

Suppose that the calibrated parameter field p is computed 
from observations h by use of the equation

	 p Gh= 	 (A4.12)

The exact nature of G depends on the regularization method 
used in the calibration process. For example, where solution 
of the (ill-posed) problem of model calibration is obtained 
through truncated singular value decomposition (SVD),  
G takes the form

	 G V S U Q h= −
1 1

1 1 2T T /

	 (A4.13)

where Q is a user-specified measurement weight matrix, and 
SVD of Q1/2X leads to

	 Q X USV1 2/ = T
	 (A4.14)

U and V in equation (A4.14) are orthonormal matrices whose 
columns span the range space and domain of X, respectively, 
and S is a diagonal matrix of singular values, these being 
ranked from highest to lowest down its diagonal. If S is par-
titioned into S1 and S2 such that zero and near-zero singular 
values of S are assigned to S2 while the remainder are assigned 
to S1, equation (A4.14) can be rewritten as
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x1

x2
conditional probability distribution of x1

marginal probability distribution of x1

fixed value of x2

joint probability contour for x1 and x2

Figure A4.1. Marginal and conditional probability distributions of a random variable x  
1 that is correlated with 

another random variable x2.
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this defining the V1 matrix that appears in (A4.13) , the ortho-
gonal columns of which span the “calibration solution space.”

Where Tikhonov regularization is used for solution of the 
ill-posed inverse problem of model calibration, G becomes

	
G X QX T Q T X Qhr= +( )−T T Tβ 2 1

	
(A4.16)

where T expresses Tikhonov constraints on parameter values, 
Qr is a weight matrix associated with these constraints, and β2 
is a variable that specifies the strength with which regulariza-
tion constraints are applied.

Where parameter estimation takes place through the 
SVD-assist process implemented in PEST, G takes the form

          
G V Y QY V T Q TV X Qhr= +( )−1

2
1 1

1T T T Tβ
	

(A4.17)

where V1 is obtained from SVD of the Q1/2X weighted model 
sensitivity matrix calculated on the basis of initial parameter 
estimates, and the Y matrix encapsulates sensitivities of model 
outputs to superparameters estimated through the SVD-
assisted parameter estimation process.

Where regularization is implemented through user pre-
definition of a parsimonious parameter set q, the G matrix is 
computed as

	
G L Y QY Y h= ( )−T T1

	
(A4.18)

where parameters p used by the model at the cell or element 
level are computed from their lumped counterparts, q, as

	 p Lq= 	 (A4.19)

Where the parsimonious parameter set q is composed of zones 
of piecewise constancy, L is simply a “selection matrix” that 
assigns a parameter value to a model cell or element on the 
basis of the zone in which it lies. Y in equation (A4.18) com-
prises sensitivities of model outputs to the lumped parameters 
used for the purpose of model calibration. 

The Resolution Matrix 

If equation (A4.1) is substituted into (A4.12) , we obtain

	 p GXp G= + ε 	 (A4.20)

If measurement noise is zero, this becomes

	 p GXp Rp= + 	 (A4.21)

where R is the so-called resolution matrix. This matrix 
describes the relation between estimated parameters p and 
their real-world counterparts p. If the inverse problem is well 

posed, R is the identity matrix I. However, where it is not,  
R is a rank-deficient matrix that describes the simplification 
process through which parameter uniqueness has been 
attained. It should also be noted that obtaining a resolution 
matrix R that is equivalent to the identity matrix I, indicates 
only that the estimated parameter values p are unique: it does 
not indicate that the parameters have been estimated accu-
rately for, as will be discussed below, accurate estimation of 
parameters may be eroded through the presence of noise in the 
calibration dataset on which basis they are estimated.

Where calibration is effected through truncated SVD, R 
assumes a particularly simple form, namely

	 R VV= 1
T

	 (A4.22)

Equation states that the inferred parameter set p is the 
vector projection of the actual (unknown) parameter set p onto 
the subspace of parameter space defined by the columns of V1. 
As has been stated, these span the so-called calibration solu-
tion space. This is illustrated in Figure A4.2.

The following features of the resolution matrix are of 
interest:
1.	 Each row of R defines the averaging or integration pro-

cess through which a single element pi of p is related to 
real-world parameters p. In most real-world calibration 
contexts, R is not strongly diagonally dominant—if it is 
diagonally dominant at all. Each pi is thus partly a reflec-
tion of its corresponding pi (that is, the ith element of p), 
and partly a reflection of many other real-world proper-
ties (that is, elements of p), these possibly including 
properties of very different types. This is an unavoidable 
consequence of the quest for uniqueness that is implicit in 
the notion of model calibration.

2.	 The magnitude of the i th diagonal element of R is the 
direction cosine between a vector pointing in the direction 
of the i th parameter and its projection into the calibration 
solution space. This is equivalent to the “parameter identi-
fiability” of Doherty and Hunt (2009a,b).

3.	 As equations (A4.18) and (A4.21) imply, even where 
regularization is implemented manually through preca-
libration parameter lumping, a resolution matrix must 
inevitably accompany the quest for uniqueness that 
underpins the process of model calibration. In most cases 
however, the resolution matrix achieved through this form 
of regularization will be suboptimal, in that its diagonal 
elements will possess lower values, and its off-diagonal 
elements higher values, than those achieved through use 
of mathematical regularization. See Moore and Doherty 
(2005) for a more complete discussion of this issue.
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Figure A4.2. Relation between real-world and estimated parameters where model calibration is achieved through 
truncated SVD.
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Figure A4.3.  Components of postcalibration parameter error.



66    Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis

Parameter Error

From equation the error in parameters that are estimated 
through the calibration process is formulated as

	
p p I GX p G− = − −( ) + ε

	
(A4.23)

That is,

	
p p I R p G− = − −( ) + ε

	
(A4.24)

It is apparent from equations (A4.23) and (A4.24) 
that there are two contributors to postcalibration parameter 
error. The first term on the right side of equation (A4.24) 
is the so-called “null-space term,” whereas the second is 
the “solution-space term.” Where parameter estimation is 
implemented by use of truncated SVD, these two contributions 
to total parameter error are orthogonal, as illustrated in figure 
A4.3. As Moore and Doherty (2005) explain, the first term 
arises from the necessity to simplify when seeking a unique 
parameter field that is deemed to calibrate a model. ��������The sec-
ond term expresses the contribution of measurement noise to 
parameter error.

As the true parameter set p of equation (A4.24) is not 
known, the actual parameter error (p – p) is not known. 
However the penchant for parameter error can be expressed in 
probabilistic terms. From (A4.24), using standard relations for 
propagation of variance, it follows that

        
C C C εp p I R p I R G G−( ) = −( ) ( ) −( ) + ( )T T

	
(A4.25)

where C(p – p) is the covariance matrix of parameter error. 
Prior to calibration, the second term of (A4.25) is zero; R is 
notionally 0 under these circumstances as well. Thus, C(p – p) 
becomes C(p), as it should.

Predictive Error 

Equation (A4.2) expresses, in a linear sense, the relation 
between a prediction s and parameters p. A prediction made by 
a calibrated model, however, is calculated as

	 s T= y p 	 (A4.26)

with the result that predictive error is inherited from parameter 
error. Predictive error is calculated as

	
s s T− = −( )y p p

	
(A4.27)

Predictive error variance is thus calculable as

	
σ s s

T
− = −( )2 y p p yC

	
(A4.28)

That is,

    σ s s
T T T T

− = −( ) ( ) −( ) + ( )2 y I R p I R y y G G yC C ε 	 (A4.29) 

As for parameter error, the first term of equation (A4.29) 
quantifies the contribution made to predictive error by the 
need to simplify in order to achieve parameter uniqueness. 
The second term expresses the contribution made to predictive 
error by the fact that, in calculating values for the simplified 
parameter field estimated through the calibration process, the 
parameter estimates are based on a dataset that is contaminated 
by measurement noise. 

For illustrative purposes, suppose that

	 C pp I( ) = σ 2

	 (A4.30)

and that

	 C ε ε( ) = σ 2I	 A4.31)

Let it be further assumed that solution for the calibrated 
parameter field p takes place by means of truncated SVD, so 
that G of equation (A4.12) is given by (A4.13). For simplicity, 
let it be further assumed that Q =I and hence that the weights 
assigned to observations are all 1.0. Equation (A4.29) then 
becomes

	 σ σ σs s
T T T T T

−
−= +2 2

2 2
2

1
2

1p µy V V y y V S V y 	 (A4.29)

where V2 contains orthonormal vectors that span the calibra-
tion null space while V1 contains orthonormal vectors that 
span the orthogonal complement of this, the calibration solu-
tion space. Separation of parameter space into these two sub-
spaces depends on where partitioning of S takes place to form 
S1 and S2, the latter containing zero and near-zero singular 
values of Q1/2X. If there is no truncation at all (and hence no 
calibration), the last term of equation (A4.32) is zero, so that 
precalibration predictive error variance becomes

	 σ σs s
T

− =2 2
py y 	 (A4.33)

which is the same as precalibration predictive uncertainty. 
More generally, it becomes

	 σ σs s
T

− = ( )2 2
p Cy p y 	 (A4.34)

which is the same as equation (A4.3).
Suppose that truncation is now used to implement model 

calibration. Suppose further that truncation proceeds gradually 
to include an increasing number of columns in V1 and, conse-
quently, a decreasing number of columns in V2. As this process 
goes forward, the first term of A4.29 falls monotonically 
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while the second term rises monotonically. Eventually, as 
singular values within S1 become very small through attempt-
ing to achieve a solution space with too many dimensions 
(a phenomenon that is often referred to as “overfitting”), the 
second term dominates the first and eventually rises to infin-
ity as singular values fall to zero. Overall, as the truncation 
point increases from zero singular values to a high number of 
singular values, the sum of these two terms (that is the total 
error variance σ s s−

2 ) falls and then rises again. Ideally, for a 
particular prediction of interest, truncation should take place 
where the error variance of that prediction is minimized. 
Hopefully, this minimized predictive error variance should 
approximate the conditional predictive uncertainty variance 
computed through equations (A4.10) and (A4.11); however, 
this is not a foregone conclusion, and the result will depend 
on the nature of the G matrix through which calibrated model 
parameters are computed from field measurements. 

Regularization-Induced Structural Noise 

From equation (A4.1):

	 h Xp Xp XRp XRp= + − +ε + ε= 	

so that

	 h XRp X I R p= −( ) ++ ε 	 (A4.35)

As discussed above, it is Rp that is estimated through the 
calibration process. Though comparing (A4.35) with (A4.1), 
it is apparent that the “structural noise”  η  induced through 
undertaking the parameter simplification encapsulated in R 
that is necessary for obtaining a unique solution to the inverse 
problem of model calibration is

	 η =X I R p−( ) 	 (A4.36)

Its stochastic character can then be described with the covari-
ance matrix

	 C η C( ) = −( ) ( ) −( )X I R p I R XT T

	 (A4.37)

Predictive Uncertainty Analysis—
Underdetermined Systems 

Parameter and Predictive Error

With R equal to I, as occurs when the inverse problem 
of model calibration is solved by means of overdetermined 
parameter estimation, equation (A4.25) becomes 

	 C C εp p G G−( ) ( ) T
	 (A4.38)

Where calibration is implemented through minimization of a 
least-squares objective function,

	
G X QX X Q= ( )−T T1

	
(A4.39)

so that (A4.38) becomes

      C C εp p X QX X Q Q X X QX−( ) = ( ) ( ) ( )− −T T T T1 1

	 (A4.40)

If Q is chosen such that

	 Q = ( )−σ r C ε2 1
	 (A4.41)

equation (a4.40) becomes

	
C rp p X QX−( ) = ( )−σ 2 1T

	
(A4.42)

The reference variance, σ r
2 , is generally estimated through the 

calibration process as

	
σ r
2 =

−( )
Φ
n m 	

(A4.43)

where Φ is the minimized objective function, calculated as

	 Φ = −( ) −( )h Xp Q h XpT

	 (A4.43)

and n is the number of elements in h while m is the number of 
elements in p.

Where parameter-averaging-induced structural noise is 
included in C(ε), and where Q is calculated from the resultant 
C(ε) through (A4.41) (see Cooley; 2004; and Cooley and 
Christensen, 2006), the parameters estimated by using the G 
defined in (A4.39) on the basis of the Q defined in (A4.41) 
are the best linear unbiased estimates of the “true” p obtained 
through user-specified areal averaging of heterogeneous model 
domain properties; see Cooley (2004) for full details.

Once the covariance matrix of parameter error has been 
computed by using (A4.42), the error variance of any predic-
tion can be computed using equation (A4.28). Use of equation 
(A4.28), however, neglects “predictive noise” induced by 
parameter lumping/simplification. Cooley (2004) and Cooley 
and Christensen (2006) show how to accommodate this term.
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Figure A4.4.  Schematic description of calibration-constrained predictive maximization/minimization.

Nonlinear Analysis 

Vecchia and Cooley (1987) and Christensen and Cooley 
(1999) show how postcalibration predictive uncertainty 
analysis can be posed as a constrained maximization/
minimization problem in which a prediction is maximized 
or minimized subject to the constraint that the objective 
function rises no higher than a user-specified value; this value 
is normally specified to be slightly higher than the minimum 
value of the objective function achieved during a previous 
overdetermined model calibration exercise. Cooley (2004) and 
Cooley and Christensen (2006) extend this methodology by 
including parameter-simplification-induced structural noise in 
the analysis.

The principle that underlies this method is illustrated 
in figure A4.6 for a two-parameter system. In this figure, 
the axes depict optimized parameters that correspond to the 
minimum of the objective function. The solid lines depict 
objective function contours; the value of each contour 
defines the objective function for which parameters become 
unlikely at a certain confidence level. Each contour thus 
defines the constraint to which parameters are subject as a 
prediction of interest is maximized or minimized in order 
to define its postcalibration variability at the same level of 
confidence. The dashed contour lines of figure A4.4 depict 
the dependence of a prediction on the two parameters. The 
constrained maximization/minimization process through 

which the postcalibration uncertainty of this prediction is 
explored attempts to find the two points marked by circles 
on the constraining objective-function contour. These points 
define parameter sets for which the prediction of interest is as 
high or as low as it can be, while maintaining respect for the 
constraints imposed by the calibration process.

Let Φ0 define the objective function value correspond-
ing to a certain postcalibration parameter confidence level. 
Vecchia and Cooley (1987) show that parameters p corre-
sponding to the two points depicted in figure A4.6 for which 
the prediction of interest is maximized/minimized subject to 
the constraint that the objective function rises no higher than 
Φ0 can be calculated as

	
p X QX X Qh y
= ( ) −








−T T1

2λ 	
(A4.45)
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(A4.46)

In these equations, y is the sensitivity of the prediction 
to parameters used by the model; maximization or minimiza-
tion is undertaking through selection of the “+” or “-” sign in 
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equation (A4.46). Equations (A4.45) and (A4.46) are solved 
for maximized/minimized parameters by using an iterative 
procedure very similar to that used for solution of the parameter 
set p corresponding to the objective function minimum Φmin. 

The value chosen for Φ0 depends on whether simultane-
ous or individual confidence limits are sought. For a linear 
model, use of the latter provides the same predictive confi-
dence intervals as those obtained through use of equations 
(A4.42) and (A4.28); simultaneous confidence intervals, 
however, are somewhat broader. See Christensen and Cooley 
(1999) for further details. Values of Ф0 for 1-α simultaneous 
and individual confidence intervals respectively are given by

	
Φ Φ0 1=
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n m
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(A4.47)

and
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where F(m,n - m) depicts the F distribution with (m,n - m) 
degrees of freedom, t(m - n) signifies a t distribution with  
(n - m) degrees of freedom, n is the number of observations, 
and m is the number of parameters.

Where account is taken of predictive noise, equation 
(A4.46) becomes
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where we is the weight assigned to predictive noise and e is 
the predictive error itself. The actual predictive error obtained 
through the predictive maximization/minimization process is 
calculated as

	
e

we=
− −2

2λ 	
(A4.50)

predictive noise is taken into account, equation (A4.47)
becomes

	
Φ Φ0

1 1 1=
+
−

+ −( ) +
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


min ,m
n m

F m n mα

	
(A4.51)

while equation (A4.48) remains unchanged. See Doherty 
(2010b) for further details.

Predictive Uncertainty Analysis—Highly 
Parameterized Systems 

As discussed in the body of this document, the PEST 
suite provides two methods through which nonlinear uncer-
tainty analysis can be performed in the highly parameterized 
context. The theory which underpins these methods is now 
briefly described. 

Constrained Maximization/Minimization 

This method is described in Tonkin and others (2007). 
Once a model has been calibrated, predictive maximization/
minimization takes place in a similar manner to that discussed 
above based on equations (A4,45), (A4.46), and (A4.49). 
However, the maximization/minimization problem is formu-
lated in terms of parameter differences from their calibrated 
values rather than in terms of actual parameter values, while 
the effect that these parameter differences have on model 
outputs is also expressed in terms of differences between those 
outputs and those that correspond to the calibrated parameter 
set. As predictive maximization/minimization takes place, dif-
ferences between current parameter values and their calibrated 
counterparts are projected onto the calibration null space, thus 
forming the vector p – p, where p constitutes the calibrated 
parameter set. From these differences a “null-space objective 
function” is formed, this being computed as

	
Φn nC= −( ) −( )−p p p p

T 1

	
(A4.52)

In this equation, Cn(p – p), the covariance matrix of null-
space projected parameter departures from their calibrated 
values, is computed as

    	
C Cn p p I R p I R−( ) = −( ) ( ) −( )T

	
(A4.53)

where, as usual, C(p) is supplied by the modeler, and the 
resolution matrix R is computed through the antecedent highly 
parameterized inversion process. At the same time, a solution-
space objective function is calculated as

	 Φs = −( ) −( )h Xp Q h XpT

	 (A4.54)

where

	
h Xp=

	
(A4.55)
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When p = p (that is, when the model employs the calibrated 
parameter field) the total objective function, calculated as

	 Φ Φ Φt n s= + 	 (A4.56)

is zero. A prediction of interest is maximized or minimized 
subject to the constraint that Φt rises no higher than a pre-
defined value Φ0. On the assumption that p and ε are normally 
distributed, the confidence level associated with a chosen 
value of Φ0 is the same as that of the normal variate whose 
value is the square root of this. For example, setting Φ0 to 9.0 
allows definition of the 99.7-percent two-sided confidence 
interval through implementation of predictive maximization 
followed by predictive minimization.

Null-Space Monte Carlo

As described by Tonkin and Doherty (2009) for the con-
strained maximization/minimization process described above, 
prior to implementation of null-space Monte Carlo analysis, 
it is assumed that a model has been calibrated, this resulting 
in computation of a parameter field p. Stochastic parameter 
fields are then generated by using an appropriate C(p) matrix. 
In each case the calibrated parameter field is then subtracted 
from the stochastically generated parameter field. The differ-
ence between the two (that is, p – p) is then projected onto 
the calibration null space; this ensures that this difference is in 
accordance with a C(p – p) covariance calculated as

	
C Cp p V V p V V−( ) = ( )2 2 2 2

T T

	
(A4.57)

where the vectors composing the columns of the V2 matrix 
span the calibration null space, this being obtained through 
truncated SVD of Q1/2X as described by equation (A4.15) . For 
regularized inversion based on truncated SVD,

	 I R V V I VV−( ) = = −2 2 1 1
T T

	 (A4.58)

so that equation (A4.57) describes parameter variability aris-
ing from the first term of equation (A4.25). 

Next, the solution-space component of the stochastically 
generated parameter field is replaced by p, the parameter field 
arising from the previous regularized-inversion exercise. In 
most circumstances, this replacement will result in a slightly 
decalibrated model, this being a consequence of model 
nonlinearity and the fact that the cutoff between calibration 
solution and null spaces is not sharp and does not equate with 
the location of zero-valued singular values.

Recalibration of the model is then effected by adjusting 
only solution-space-parameter eigencomponents, these being 
the coefficients of vectors composing the columns of the V1 
matrix of equation A4.14. Adjustment of these solution-space 
parameters continues until the objective function falls below 

a user-specified level. Although this level could be chosen 
on the basis of formulas such as equation A4.43, in practice 
the selection of an appropriate objective function threshold is 
often somewhat subjective because of the following factors:
1.	 Selection of a higher objective-function threshold can 

reduce the computational effort required to achieve it.

2.	 In most modeling circumstances, “measurement noise,” 
as encapsulated in C(ɛ), is dominated by structural noise 
of unknown stochastic character: as such, a theoretically 
correct objective function threshold is difficult, if not 
impossible, to determine.

3.	 In most modeling circumstances, parameter error is domi-
nated by the null-space term of equation A4.23; hence, 
errors incurred in computation of the solution-space con-
tribution to overall parameter and predictive error degrade 
its assessment to only a small degree.
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