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Abstract

In frequent fire forests of the western United States, a legacy of fire suppression

coupled with increases in fire weather severity have altered fire regimes and vegeta-

tion dynamics. When coupled with projected climate change, these conditions have

the potential to lead to vegetation type change and altered carbon (C) dynamics. In

the Sierra Nevada, fuels reduction approaches that include mechanical thinning fol-

lowed by regular prescribed fire are one approach to restore the ability of the

ecosystem to tolerate episodic fire and still sequester C. Yet, the spatial extent of

the area requiring treatment makes widespread treatment implementation unlikely.

We sought to determine if a priori knowledge of where uncharacteristic wildfire is

most probable could be used to optimize the placement of fuels treatments in a

Sierra Nevada watershed. We developed two treatment placement strategies: the

naive strategy, based on treating all operationally available area and the optimized

strategy, which only treated areas where crown-killing fires were most probable.

We ran forecast simulations using projected climate data through 2,100 to deter-

mine how the treatments differed in terms of C sequestration, fire severity, and C

emissions relative to a no-management scenario. We found that in both the short

(20 years) and long (100 years) term, both management scenarios increased C stabil-

ity, reduced burn severity, and consequently emitted less C as a result of wildfires

than no-management. Across all metrics, both scenarios performed the same, but

the optimized treatment required significantly less C removal (naive=0.42 Tg C, opti-

mized=0.25 Tg C) to achieve the same treatment efficacy. Given the extent of west-

ern forests in need of fire restoration, efficiently allocating treatments is a critical

task if we are going to restore adaptive capacity in frequent-fire forests.
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1 | INTRODUCTION

Forests are a substantial contributor to the terrestrial carbon (C) sink,

but this ecosystem service is jeopardized globally by the increasing

frequency and intensity of disturbances associated with rapid

climatic change (Bellassen & Luyssaert, 2014). This is especially true

for the frequent-fire adapted forests of the western United States,

where fire suppression-caused biomass build-up and changing cli-

mate are causing larger, hotter wildfires that are threatening the abil-

ity of these systems to sequester and store C (Liang, Hurteau, &
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Westerling, 2017a,b; Miller & Safford, 2012; Miller, Safford, Crim-

mins, & Thode, 2009; Westerling, 2016). Identifying the adaptive

capacity of different forest ecosystems to deal with these changes

and evaluating the potential for management intervention to

increase adaptive capacity are central to sustaining functioning forest

ecosystems in the presence of changing climate and disturbance

regimes (Millar & Stephenson, 2015; Lindner et al., 2010; Brandt

et al., 2017.).

A primary impediment to establishing adaptive capacity in west-

ern US forests is the result of a legacy of fire exclusion across the

region. Fire exclusion has resulted in an increase in biomass, both in

terms of surface fuels and tree density, which has pushed the attri-

butes of fire events in many ecosystems beyond their natural range

of variability (Collins, 2014; Hurteau, Westerling, Wiedinmyer &

Bryant, 2014; North, Collins, & Stephens, 2012). The altered

amounts and distributions of biomass, coupled with recent increases

in fire weather severity and duration of the fire season are driving

increased wildfire size, severity, and frequency (Miller et al., 2009;

Westerling, 2016). These altered fire regime attributes and the direct

and indirect risks they pose to society present challenges to land

management agencies that are likely to be further exacerbated by

projected climate change (Liang et al., 2017b).

Restoring forest structure and fire regimes, however, poses a

complex multivariate problem, with socioeconomic and ecological

factors often presenting opposing objectives (North et al., 2015).

Removing fuels across the landscape and restoring fire regimes to

historic frequencies in western forests requires the combination of

mechanical thinning and prescribed fire, both of which reduce car-

bon stocks and increase C emissions to the atmosphere. These activ-

ities have the short-term effect of degrading air quality and reducing

the capacity of the ecosystem to sequester carbon (North, Hurteau,

& Innes, 2009; Wiechmann, Hurteau, North, Koch, & Jerabkova,

2015). This short-term detriment, however, can yield long-term ben-

efits in terms of avoided future emissions of C from wildfire and

increased capability of the forest to sequester C, increasing the

capacity of the ecosystem to tolerate changing climate and fire

weather regimes with minimal loss of function (Hurteau, 2017).

In the Sierra Nevada, complex topography, land ownership pat-

terns, and at-risk species have contributed to a back-log of forest

area requiring restoration (North et al., 2012). Coupled with pro-

posed accelerated treatment rates (North et al., 2012), restoration

implementation must be designed with a strategy that maximizes

treatment benefits while minimizing the associated costs of manage-

ment (Chung, 2015). Previous work has demonstrated that optimiz-

ing treatment placement can be handled in a variety of ways, often,

however, management treatment targets or timber production are

fixed requirements of the optimization process (e.g., Finney, 2001,

2007; Vaillant, 2008). It follows that by simplifying the multivariate

management problem, the spatial allocation of treatments can be

designed such that their efficacy is maximized, with optimal place-

ment resulting in reduced high-severity wildfire risk, smaller net

removals of C, and at a reduced cost due to a smaller fraction of the

landscape being treated.

We sought to compare the impacts of forest restoration treat-

ments in the Dinkey Creek watershed in the Sierra Nevada using

two management strategies: treatment restricted only by operational

limitations (e.g., steep slopes, wilderness or riparian areas, etc.; here-

after naive, indicating a priori information was not used to inform

treatment placement), and treatment placement governed by both

operational limitations and a high-severity fire risk model (hereafter

optimized). Specifically, we asked the question: Can an optimized

treatment approach to placement perform as well as a naive place-

ment approach in terms of high-severity wildfire risk reduction at a

significantly reduced C cost? We hypothesized that (i) short-

(<20 years) and long-term (20–100 years) aboveground C accumula-

tion would be similar in both naive and optimized treatment place-

ment strategies; (ii) patterns of mean fire severity across the

landscape would be similar between the naive and optimized place-

ment strategies; and contingent on hypotheses 1 and 2, (iii) the simi-

lar treatment efficacy, coupled with the reduced biomass removal

associated with optimizing treatment placement, would result in

greater net C storage in the optimized scenario than in the naive

scenario.

2 | MATERIALS AND METHODS

We conducted landscape simulations of vegetation growth and dis-

turbance within the Dinkey Creek watershed, an 87,500 ha area in

the southern Sierra Nevada, CA that is part of a Collaborative Forest

Landscape Restoration Project (CFLRP). This study leveraged our

previous work, which evaluated the efficacy of forest restoration

treatments under severe fire weather in the Dinkey Creek CFLRP

(Krofcheck, Hurteau, Scheller, & Loudermilk, 2017). The watershed

spans roughly 2,700 meters in elevation (300 to 3,000 m), with a

precipitation gradient of 50–100 cm/year and variability in mean

daily minimum temperatures from -3 to 10°C and mean daily maxi-

mum temperatures from 12 to 25°C (DAYMET, Thornton et al.,

2012). This edaphic and climatic variability results in vegetation that

ranges from mixtures of oak (Quercus spp.) and shrubs at the lowest

elevations to ponderosa pine (Pinus ponderosa) and mixed-conifer

forests at mid-elevations, and subalpine forest types at the highest

elevations.

2.1 | Model description and parameterization

We modeled landscape scale disturbance and succession using

LANDIS-II (v6.0), which simulates the growth and mortality of age

and species-specific cohorts of trees and shrubs across a spatially

explicit landscape (Scheller et al., 2007). In each grid cell, each cohort

undergoes growth, disturbance, and dispersal. Species are defined

with individual parameters that govern growth and dispersal,

whereas broader plant traits are parameterized in the model using

plant functional groups. Similarly, the landscape is divided into ecore-

gions, fire regions, and management regions, each with a unique set

of parameters that govern how the landscape interacts with climate
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and disturbance to govern landscape scale carbon balance. LANDIS-

II uses community developed extensions to build additional model

functionality into the simulation framework. We used the Century

Succession (v4.0.1) extension to track landscape C dynamics, the

Dynamic Fire and Fuels System (DFFS, v2.0.5) and the Dynamic

Fuels Leaf Biomass (v2.0) extensions to simulate stochastic fire and

changes to forest fuels across the landscape, and the Leaf Biomass

Harvest extension (v2.0.3) to simulate management scenarios.

LANDIS-II requires that the landscape be split into edaphically

and climatically similar ecoregions, which are parameterized with an

independent set of soil properties and climate drivers. Similarly, the

Dynamic Fire and Fuels extension requires the generation of fire

regions, each with an independent set of fire probabilities and

parameters. The creation of the ecoregions and fire regions used in

this study is described by Krofcheck et al. (2017).

We ran the model using climate projections from the Coupled

Model Intercomparison Project Phase 5 (CMIP5) collection of

models. Specifically, we chose the Localized Constructed Analogs

(LOCA) statistically downscaled climate projections (Pierce, Cayan,

& Thrasher, 2014), a daily, 1/16th degree resolution downscaled

product that has been shown to track local variability in precipita-

tion better than the coarser resolution parent models. We chose

four general circulation models that bracket the precipitation and

temperature envelope as represented by the CMIP5 family of

models for the region: CCSM4 (CCSM4_r6i1p1_rcp85), CNRM-

CM5 (CNRM-CM5_r1i1p1_rcp85), FGOALS-g2 (FGOALS-

g2_r1i1p1_rcp85), and MIROC-ESM (MIROC-ESM_r1i1p1_rcp85),

each run under Representative Concentration Pathway (RCP) 8.5.

The projections include data from 1950 to 2100, and we used

data from 1950 to 2000 for model spin-up. We downloaded the

data using the USGS Geo Data Portal (http://cida.usgs.gov/gdp/,

Thornton et al., 2012), and computed weighted area grid statistics

on a per-ecoregion basis using the export service in the data por-

tal.

The Dynamic Fire and Fuels extension requires fire weather data

separate from the climate inputs to the Century extension. To better

link how changing climate would interact with management and

wildfire regimes, we generated decadal distributions of fire weather

from the four climate model projections and updated the fire

weather in the model every decade. Wind gust velocity was the only

fire weather variable not present in the LOCA climate data, and to

account for this we took the measurement record of local RAWS

stations used in previous work in this area (Krofcheck et al., 2017)

and generated a distribution of wind gusts by fire region, starting at

the 50th percentile, and increasing by increments of 5% of the distri-

bution per decade. At each increment, we calculated the cumulative

distribution function of wind gusts for that percentile, and randomly

drew from a normal distribution centered on the percentile mean

and variance. Ultimately, this resulted in moving toward but never

exceeding measured values recorded during the 2013 Rim fire,

corresponding to the 95th percentile of wind gust velocity. We gen-

erated these data on a per fire region basis, the result of which is

shown in Figure 1.

The Dynamic Fire and Fuels extension determines the fuels class

of each grid cell as a function of the species and ages present, using

a set of equations adapted from the Canadian Fire Behavior and Pre-

diction System (Sturtevant, Scheller, Miranda, Shinneman, & Syphard,

2009). The model also allows the modification of all fuels character-

istics as a function of time since treatment or time since disturbance

(e.g., wildfire). At each time-step, cells in each fire region are ran-

domly selected for attempted ignition. Fire occurrence in a given cell

with attempted ignition is a probabilistic function of fire weather

and fuels characteristics. Maximum fire size is a function of the size

drawn from the fire size distribution and the realized fire size is a

function of fire weather, topography, and the fuel characteristics of

adjacent grid cells. The model assigns a severity class to each grid

cell within each fire, based on the percent of the crown that burned

in each grid cell. Fire severity ranges from surface fire with no crown

mortality (severity 1) to 95% or greater crown mortality (severity 5).

Management treatments that reduce the number of cohorts and

F IGURE 1 Probability density functions of wind speed used to
generate the wind component of the projected fire weather.
Measurements in local fire region 1 (a), 2 (b), and 3 (c) were used to
create ten decadal PDFs, increasing from blue (early century) to red
(late century)
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increase the mean cohort age do not affect the rate of fire spread,

but do increase the canopy base height and can result in decreased

fire severity. In this study, we retained the fire and fuels parameteri-

zation used in Krofcheck et al. (2017). In the previous work, the

number of attempted ignitions per fire region was adjusted such that

the number of fires that resulted in the model matched historical

data for the surrounding region. Per our previous work, we adapted

fuels parameterizations from Syphard et al. (2011) and Loudermilk

et al. (2014) to represent the local conditions inside our study area.

2.2 | Scenario description

We developed three scenarios: no-management, naive placement,

and optimized placement. Both management scenarios employed

combinations of mechanical thinning and prescribed burning. The

naive placement scenario aimed to simulate mechanical thinning

from below and prescribed fire to all forest types that have experi-

enced a fuels load departure from their historic condition due to fire

exclusion. Within each forest type that received mechanical thinning,

thinning was constrained based on operational limits (slope>30%,

which totaled 22,436 ha available for mechanical thinning). The opti-

mized placement scenario further constrained the area that received

mechanical thinning by limiting thinning to areas that also had a high

probability of mixed- and high-severity wildfire.

The optimization process was based on 50 replicate simulations

resulting from previous work (Krofcheck et al., 2017), wherein we

simulated wildfire across the watershed using a distribution of fire

weather from the extreme tail of the distribution over a 100-year

period. The first step in our optimization was to use the output from

these previous simulations and calculate average total number of

fires per grid cell (Figure 2a). Next, we calculated the number fires

per grid cell that resulted in some crown mortality (fires≥severity

class 3 in the model, Figure 2b). Finally, we divided the number of

crown-killing fires by the total number of fires in each grid cell (Fig-

ure 2c). The resulting probability surface described the likelihood of

crown-killing fire across the watershed, in aggregate under the most

extreme fire weather events captured in the contemporary record.

We used this surface to prioritize areas for treatment and excluded

areas available to treat that had a low probability of severe fire,

resulting in a total of 7,266 ha identified for mechanical thinning.

This approach accounts for the influences of fuel type, canopy base

height, slope, and fire weather on the probability of severe wildfire.

Table 1 describes the forest type rates and total for the biomass

removal that resulted from the species and age combinations

removed under each management scenario.

In both treatment scenarios, stands identified for mechanical

treatment were thinned from below, removing roughly one-third of

the live tree biomass over the first decade of the simulation. Stands

selected for mechanical thinning were only thinned once in the simu-

lations, and all thinning was completed within the first decade. We

used the mean historic fire return interval for each forest type to

simulate prescribed fire frequency and applied prescribed fire to all

forest types where more frequent fire is ecologically appropriate.

Using this approach, many grid cells received prescribed fire more

than once during the simulations, as a function of the historic fire

return interval and the disturbance regime experienced by the grid

cell.

We ran 50 replicate 100-year simulations for each climate pro-

jection and management scenario, resulting in 200 replicates within

each management scenario. We leveraged the stochastic nature of

vegetation establishment and wildfire ignition and propagation

afforded by this replication as a means of describing the range of

potential outcomes in our simulation environment.

We used analysis of variance and Tukey’s honestly significant

difference for mean separation following Bartlett’s test for

homoscedasticity. For comparisons where data were heteroscedastic,

we employed Kruskal–Wallis tests with post hoc Dunn’s compar-

isons. We conducted all model parameterization and output analyses,

as well as figure generation using Python (Python Software Founda-

tion, version 2.7. http://www.python.org).

3 | RESULTS

We hypothesized that patterns of landscape aboveground carbon

(AGC) accumulation would be similar in both treatment scenarios

F IGURE 2 Total fires simulated in 50 replicates simulations (from Krofcheck et al., 2017) by grid cell (a), fires with mean severity≥3 (b), and
the resulting probability of high-severity fire p(HSF) used to govern the optimized treatment placement (c)
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over both the short- (<20 years) and long-term (20-100 years). The

range of AGC across replicates and climate projections for each sce-

nario are shown in Figure 3. The no-management scenario showed a

wide range of potential outcomes, from 90.5 to 121.2 Mg C ha�1 in

the short-term and 139.4 to 185.6 Mg C ha�1 in the long term. Both

management scenarios showed significantly smaller variances in AGC

relative to no management, with the naive scenario ranging from

98.7 to 115.4 Mg C ha�1 and the optimized scenario ranging from

100.6 to 118.3 Mg C ha�1 (Table 2).

The maximum AGC is the maximum value for a given year

from the 200 replicate simulations for a given scenario. The initial

treatment costs associated with mechanical thinning are most

apparent in the comparison of maximum AGC, where treatment

scenarios have lower maximum AGC than the no-management

scenario during the first decade when thinning treatments are

implemented. However, this difference diminishes over the full

100 years of simulation (Figure 4a). Short-term reductions in maxi-

mum AGC relative to no management were 5.7 Mg C ha�1 for

naive placement and 2.9 Mg C ha�1 for optimized, with long-term

reductions of 2.6 Mg C ha�1 for naive and 1.6 Mg C ha�1 for

optimized placement.

The minimum AGC is the minimum value for a given year from

the 200 replicate simulations for a given scenario. Therefore, the dif-

ference in minimum landscape AGC between treatments and the no-

management scenario (Figure 4b) represents the gains in worst-case

AGC that result from treatment. The naive scenario had minimum

AGC values that were greater than the no-management minimum

throughout the simulation period. The 67% reduction in thinned area

in the optimized scenario yielded lower minimum AGC values than

the naive scenario over the majority of the simulation period and

had lower minimum values than the no-management scenario in the

short-term (Figure 4b). The lower minimum values in the short-term

are a function of the occurrence of a large wildfire in one replicate

simulation early in the simulation, before the initial prescribed fire

treatments had all been implemented.

The lower 95th percentile of AGC represents the collection of

highest disturbance affected simulation years from the 200 replicate

simulations for each scenario. When we compared the difference in

the lower 95th percentile AGC between the treatment scenarios and

the no-management scenario, both treatment scenarios were lower

than the no-management scenario in the short-term (Figure 4c).

However, the lower 95th percentile of AGC for the optimized sce-

nario surpassed the no-management scenario in year 31 and in year

36 for the naive scenario. While both the naive and optimized treat-

ment placement scenarios underwent mechanical thinning and pre-

scribed fire over the same time intervals, substantially less biomass

was removed annually via mechanical thinning across the landscape

in the optimized scenario (Figure 4d).

TABLE 1 Treatment areas and rates by forest type and
treatment. Areas that received thinning were only thinned once

Optimized
treatment

Thin
area
(ha)

Thin rate
(ha/year)

Prescribed
fire area (ha)

Prescribed fire
rate (ha/year)

Ponderosa

pine

532 106 7,508 417

Mixed

conifer-

pine

3,644 728 12,474 623

Mixed

conifer-fir

3,431 686 9,087 363

Red fir - - 5,921 148

Naive
treatment

Thin
area
(ha)

Thin rate
(ha/year)

Prescribed
fire area (ha)

Prescribed fire
rate (ha/year)

Ponderosa

pine

4,558 651 7,508 417

Mixed

conifer-

pine

8,150 1,164 12,474 623

Mixed

conifer-fir

6,767 966 9,087 363

Red fir - - 5,921 148

F IGURE 3 Above ground carbon (AGC) for the no-management scenario (a), the naive placement scenario (b), and the optimized scenario
(c). Each subplot shows the absolute minimum, maximum, mean (dashed) and lowest 95th percentile (dotted) of AGC for each year across 200
total simulations
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The end-of-simulation mean fire severity for all three scenarios is

shown in Figure 5a-c. In all three scenarios, the greatest burn sever-

ity occurred in areas dominated by ponderosa pine and pine-domi-

nated mixed-conifer forests. Consistent with our hypothesis, the

impact of treatment in both management scenarios was lower mean

fire severity relative to the no-management scenario. In both man-

agement scenarios mean severity was significantly reduced, with a

mean reduction of 16.1% for the naive placement, and 18.4% for

the optimized placement scenario (p < .001; Figure 5d-e).

Cumulative wildfire carbon emissions in both the naive

(7.0 � 8.5 Mg C ha�1) and optimized (6.8 � 8.0 Mg C ha�1) treat-

ment scenarios were significantly lower (p < .001) than the no-man-

agement scenario (15.2 � 17.7 Mg C ha�1). The increased area

thinned in the naive scenario resulted in significantly higher cumula-

tive C removals from thinning (0.31 Tg C) than the optimized sce-

nario (0.14 Tg C; p < .001). In spite of the greater area prescribed

burned without first being thinned in the optimized scenario, the

optimized scenario cumulative prescribed fire emissions (0.12 Tg C)

were not significantly different than the prescribed fire emissions

from the naive scenario (0.11 Tg C). When we accumulated the C

losses from the landscape by summing C efflux from wildfires and C

removal from management, the end of simulation C losses from the

optimized scenario were significantly lower than both the no-man-

agement and naive placement scenarios (p < .001, Figure 6).

4 | DISCUSSION

The concept of optimization is inherently context dependent, as it

implies maximizing one process while minimizing another, and conse-

quently we acknowledge that optimum treatment placement is a

moving target. Previous studies have sought to optimize treatment

location to minimize fire spread, via fuels treatment placement that

reduces the rate of fire progression (e.g., Finney, 2007). This

approach has been widely used in the fire management literature as

a component of wildfire management frameworks (e.g., Ager, Vail-

lant, & Finney, 2011), and is designed to minimize fire size. Here, we

specifically aimed to maximize the reduction in wildfire severity

across the landscape, while minimizing the area mechanically

thinned, and so we chose to use the probability of high-severity

wildfire as the sole metric to govern differences in our management

treatment design. This approach forgoes the socioeconomic system

considerations that often complicate management decision making

(Agee & Skinner, 2005; Ager, Vaillant, & Finney, 2010; Prichard,

Peterson, & Jacobson, 2010), and consequently seeks only to maxi-

mize the potential treatment effect of fuels reduction across the

landscape. Furthermore, by forgoing any efforts to reduce fire size

or percent of the landscape burned, our process-based approach

permits large, low severity wildfires which managers may choose to

manage for resource benefit, facilitating the often difficult to achieve

targets for hectares burned per year in these landscapes. This

approach is broadly applicable to historically frequent-fire ecosys-

tems, or systems which have transitioned away from a low severity

and fuel limited fire regime to one characterized by high-severity

fires. Such transitions often occur as a result of fire suppression as is

TABLE 2 Mean above ground carbon for the short- and long-
term from each scenario and the corresponding standard deviation
across the 200 replicate simulations. Variances that are significantly
different (p < .001) from one another are denoted with different
letters

Scenario

Year 20 Year 100

Mean (Mg C ha) r Mean (Mg C ha) r

No management 116.0 5.1 a 173.1 8.3 a

Naive 111.1 3.9 b 174.4 5.0 b

Optimized 113.6 4.1 b 175.0 4.8 b

F IGURE 4 Relative differences in
above ground carbon (AGC) between the
naive placement (dashed), optimized
placement (solid), and the no-management
scenarios (zero line). Differences between
the maximum (a), minimum (b), lowest 95th

percentile (c), and the AGC removed
during management (d) are shown for each
year of the simulation across 200
replicates

6 | KROFCHECK ET AL.



the case in the broader western United States, where the inter-

annual variability in large fire size is well described as a function of

fire-year climate and vegetation type (Keyser & Westerling, 2017).

This approach has applications in other regions around the globe as

well, where shifts in land use and land occupancy have reshaped the

fuels structure and subsequently the fire regime of forests and

woodlands, for example, across landscapes in the Mediterranean

(e.g., Pausas & Fernandez-Munoz, 2012) and northern Australia (e.g.,

Russell-Smith et al., 2003).

In our simulation environment, wildfire is stochastic and proba-

bilistic across the landscape, and by designing our optimized treat-

ment placement scenario based on the probability of high-severity

wildfire, we were able to identify and subsequently apply treatments

to the high-risk portions of the landscape with a finer granularity

than in the naive placement. This fundamental difference resulted in

a much more targeted mechanical thinning prescription, treating all

of the high fire risk areas with significantly fewer resources. Further-

more, the optimized scenario assumes that placing treatments to

reduce the probability of high-severity fire achieves adequate ‘an-

chors’ (Ager et al., 2010; North et al., 2015) for widespread applica-

tion of prescribed fire, which is an integral piece of the management

strategy in both the na€ıve and optimized scenarios.

The cumulative C costs incurred by management resulted in a

mean landscape reduction in 0.42 Tg C for the naive scenario and

0.25 Tg C for the optimized scenario, yet the treatment efficacy of

both scenarios in terms of reductions in burn severity (Figure 5b)

and changes in AGC accumulation (Figure 3) was very similar. How-

ever, forest fuels management decision making generally operates

with the aim of mitigating disturbances from all but the extreme tail

of the distribution, which in the case of wildfire is commonly repre-

sented by the 95th percentile of weather events. In our simulations,

F IGURE 5 Mean fire severity for the no management (a), naive placement (b), and optimized placement (c) scenarios, and the resulting
percent change in fire severity relative to the no-management scenario caused by the naive (d) and optimized (e) treatments

F IGURE 6 Total losses of C from the landscape represented as
means of the 200 replicate simulations for the no management
(dotted), naive placement (solid), and optimized (dashed) simulations.
Shaded regions represent the 95% confidence interval about the
mean
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both treatment scenarios resulted in the same treatment efficacy in

terms of avoided wildfire emissions and reduced landscape burn

severity while continuing to accumulate carbon even under the

increasingly extreme fire weather. While both treatments therefore

restored adaptive capacity to the landscape, the optimized place-

ment scenario did so at a considerably reduced C cost.

Understanding the short- and long-term implications of the C

costs and benefits of treatment was one of our research objectives.

The treatment efficacy relative to the C removed by management in

both treatments in the short-term was fairly similar, resulting in a

landscape carbon deficit at the lower 95th percentile level well into

the second decade of simulation (Figure 4c). We attribute this to

lower intensity fire weather that resulted from the milder first two

decades of projected climate. Once the number of extreme fire

weather events began to increase, the avoided C losses from wildfire

also increased, and because burn severity reduction in our treatment

simulations were not significantly different (Figure 5b), the benefit of

the optimized treatment placement scenario was realized primarily

as a reduction in carbon losses from the ecosystem (Figure 6). The C

benefit of treatment was also realized under the most extreme dis-

turbance conditions, at the lower 95th percentile AGC, where both

treatment scenarios resulted in an increase across the landscape of

5–15 Mg C ha.

The total losses of C from the landscape were heavily governed

by management decision making until mid-century, when the

increases in fire weather severity began to result in significant C loss

in the no-management scenario (Figure 6). Because both treatments

remove a significant portion of the C from the system in the first

decade of simulation with mechanical thinning, the actual C loss to

the atmosphere due to management is considerably lower than the

apparent C loss due to treatment. Roughly 60% of the C removed

by mechanical thinning can be stored in long-lived wood products

(North et al., 2009), and subsequently further offsets the landscape

C loss for the treatment scenarios by approximately 0.18 Tg C for

the naive scenario and 0.08 Tg C for the optimized placement sce-

nario.

In both management scenarios, building the adaptive capacity to

store C under projected climate and more extreme fire weather was

contingent on restoring surface fire to the system and front loading

the mechanical thinning to reduce the standing fuel load. Without

the regular use of prescribed fire to reduce surface fuel accumula-

tion, the potential for high-severity fire would likely have been sig-

nificantly greater (Krofcheck et al., 2017). The similar treatment

efficacies achieved by both the naive and optimized management

scenarios, is indicative of the fact that an a priori understanding of

high-severity wildfire risk in a given landscape can be used to more

efficiently allocate management resources (Ager et al., 2011; Chung,

Jones, Krueger, Bramel, & Contreras, 2013; Finney, 2007). This opti-

mization benefit is especially poignant given that the Sierra Nevada

on the whole has a massive backlog of nearly one million ha of

untreated forest (North et al., 2012), and an increase in the effi-

ciency of management decision making that affords even a 10%

reduction in area mechanically treated may have large implications at

the landscape scale.

Our approach to determining the optimum placement of fuels

treatments required a predecision making set of simulations with a

large number of replicates, and consequently opportunities for wild-

fire to occur. The probability of high-severity fire layer we generated

for the watershed then served as a relatively simple means of deter-

mining optimum placement, in a post hoc, treat the highest probabili-

ties first framework. This approach did not require an iterative

simulation approach, and yielded a comparable treatment efficacy to

the naive approach with fewer management inputs. Furthermore, by

optimizing treatment placement, the lower 95th percentile of AGC

surpassed that of the no-management scenario 5 years earlier in the

optimized simulation than in the naive scenario. This finding suggests

that efficiently allocating resources, in this case thinning, and using

thinned areas to restore surface fire in the short-term, can yield

long-term C storage gains because this approach takes advantage of

less extreme early century fire weather to restore adaptive capacity

for more extreme late-century fire weather.
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