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ABSTRACT The annual rate of population change (lt) is a good metric for evaluating population
performance because it summarizes survival and recruitment rates and can be used for open populations.
Another measure of population performance, realized population change (Dt) is an encompassing metric of
population trend over a period of time; it is the ratio of population size at an end time period relative to the
initial population size. Our first goal was to compare mean l and Dt as summaries of population change over
time. Our second goal was to evaluate different methods for estimating these parameters; specifically we
wished to compare the value of estimates from fixed effects models, random effects estimates from mixed
effects models, and Bayesian Markov chain Monte Carlo (MCMC) methods. Our final goal was to evaluate
the use of the posterior distribution of Dt as a means for estimating the probability of population decline
retrospectively. To meet these goals, we used California spotted owl (Strix occidentalis occidentalis) data
collected on 3 study areas from 1990 to 2011 as a case study. The estimated MCMC median ls for 2 of the
study areas were 0.986 and 0.993, indicating declining populations, whereas median lwas 1.014 for the third
study area, indicating an increasing population. For 2 of the study areas, estimated MCMCmedian Dts over
the 18-year monitoring period were 0.78 and 0.89, suggesting 21% and 11% declines in population size,
whereas the third study area was 1.22 suggesting a 22% increase. Results from Dt analyses highlight that small
differences in mean l from 1.0 (stationary) can result in large differences in population size over a longer time
period; these temporal effects are better depicted by Dt. Fixed effects, random effects, and MCMC estimates
of mean and median l and of Dt were similar (�9% relative difference). The estimate of temporal process
variance was larger for MCMC than the random effects estimates. Results from a Bayesian approach using
MCMC simulations indicated that the probabilities of a �15% decline over 18 years were 0.69, 0.40, and
0.04 for the 3 study areas, whereas the probabilities the populations were stationary or increasing were 0.07,
0.22, and 0.82. For retrospective analyses of monitored populations, using Bayesian MCMC methods to
generate a posterior distribution of Dt is a valuable conservation and management tool for robustly estimating
probabilities of specified declines of interest. � 2013 The Wildlife Society.

KEY WORDS Bayesian MCMC approach, California, California spotted owl, hierarchical model monitoring,
Pradel’s temporal symmetry model, random effects estimator, rate of population change, realized population change,
Strix occidentalis occidentalis.

Long-term monitoring programs are often focused on
species of concern, from game to threatened species.
Management of these species is often controversial and
sociopolitical challenges are often as important as biological

ones. Controversial species require clear, simple, and
objective biological metrics to inform the management
decision process, particularly for regular and relatively short-
term intervals, such as management plans and status updates
(e.g., �5 years). Population size is often used because of its
ease of interpretation and because management or conserva-
tion goals often include maintaining population levels close
to sustainable objectives (Thompson et al. 1998, Williams
et al. 2002) or above some minimum threshold, such as the
size of a minimum viable population (Soulé 1980). However,
population size alone reveals little about the long-term
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sustainability of a population (Lancia et al. 2005). Deter-
mining whether the population is increasing, decreasing, or
remaining stable is also critical to ensuring future population
size objectives (Thompson et al. 1998, White et al. 2002,
Williams et al. 2002). The annual rate of population change
(lt) is a good metric for evaluating population performance
because it summarizes survival and recruitment rates and can
be used for open populations (Nichols and Hines 2002). The
value of lt is interpreted as the rate of annual (or other time
period of interest) increase or decrease in the population, and
is used more frequently for monitoring and management
decisions.
Another metric used for evaluating changes in population

status is realized population change (Dt), which is the change
in population over a period of time (Franklin et al. 2004).
This quantity is the ratio of population size at some point in
time period K, relative to the initial population size N
(Dt ¼ NK/N), which reflects the cumulative effect of lt for a
time period of interest. For example, if lt had a geometric
mean of 0.97, a population size starting at 100 would decline
to approximately 86 over 5 years (a common management
time frame) and Dt would be 0.86. Specifically, Dt

incorporates all estimates of lt and provides an intuitive
number for evaluating population change over periods of
time.
In the past, the confidence intervals (CI) for estimates of

mean l and of Dt were used to evaluate population decline.
That is, if the CI included 1, even if just barely, the
conclusion was that there was no evidence for a decline.
However, with this methodology, the influence and
probability of a Type II error (inability to detect a decline
or change) cannot be eliminated from the interpretation of
no decline. The key element missing in this approach was the
ability to estimate the probability of decline. Using Bayesian
Markov chain Monte Carlo (MCMC) methods, a posterior
distribution of Dt can be used to estimate any probability of
decline. The approach has not been widely used, although
Gerrodette and Rojas-Bracho (2011) used it to evaluate
declines in vaquita (Phocena sinus) over a 15-year monitoring
period. Indeed, the posterior distribution of Dt provides a
robust method for detecting and describing retrospective
population trajectories, similar to how population viability
analysis (PVA) and more generally, projection models, are
used to evaluate potential prospective population trajectories.
The inclusion of sampling variation in estimates of lt can

negatively bias estimates of Dt, similar to how it can
negatively bias estimates of persistence in PVA models.
Bayesian MCMC methods can be used to separate process
variation from sampling variation during the estimation of
Dt. In addition to Bayesian MCMC methods, a random
effects estimator, also called a shrinkage or empirical Bayes
estimator, is an analytical approach to separate sampling
variation from the overall process variance (Efron and
Morris 1977, Ver Hoef 1996, Burnham and White 2002).
Depending on computing tools available, both approaches
can be used for estimating lt and Dt.
Our first goal was to compare mean l and Dt as summaries

of population change over time. Our second goal was to

evaluate different methods for estimating mean l and Dt.
Specifically, we wished to compare the value of estimates
based on a random effects estimator from a mixed effects
model and a Bayesian MCMC approach for evaluating
population performance of species with long-term monitor-
ing data. Our final goal was to evaluate a Bayesian approach
to generate a posterior distribution of Dt as a means to
estimate the probability of population decline retrospectively.
We use data collected on the California spotted owl (Strix
occidentalis occidentalis) as a case study. The California
spotted owl remains a focal species of conservation concern,
and knowledge of population trends is an important
component of assessing status and informing forest
management planning efforts.

STUDY AREA

We used data from spotted owls on 3 study areas in the Sierra
Nevada and southern Cascade Mountains, California,
collected from 1990 to 2011 (Fig. 1). Although we did
not randomly select the study areas, they spanned the length
of the contiguous California spotted owl range in the Sierra
Nevada and encompassed all habitat types known to be used
by spotted owls in the Sierra Nevada. The Lassen (LAS)
study area was in the southern Cascades, but it was included
in the Sierra Nevada province by the United States Forest
Service for management purposes (U.S. Forest Service 2004).
Most of the LAS and Sierra (SIE) study areas were located
on public land managed by the United States Forest Service,
whereas the Sequoia and Kings Canyon (SKC) study area
was in 2 national parks. Franklin et al. (2004) and Blakesley
et al. (2010) described in detail the LAS, SIE, and SKC
study areas; however, SKC has changed from Blakesley et al.
(2010). In 2006, the study area for SKC was reduced; all
estimates of lt were based on data from this reduced study
area. Long-term mark-resight data were available for each
study population. The number of marked birds varied each
year, but generally ranged between 40 and 90, with 4–14 new
birds marked each year (Table 1).

METHODS

Field Surveys
Field methods for the study of spotted owl population
dynamics have been well described elsewhere
(Forsman 1983; Franklin et al. 1996, 2004; Anthony
et al. 2006). In particular, the field methods and protocols
used to collect the data are detailed by Franklin et al. (2004).
Therefore, we present only a brief summary of the methods
used to capture and recapture (by resighting) owls.
We conducted surveys to find and locate California spotted

owls from 1 April to 31 August on LAS and from 1March to
30 September on SIE and SKC. We identified owls by
capturing and banding, or by resighting owls previously
banded with unique color band combinations. We surveyed
spotted owls primarily at night by vocally imitating spotted
owl calls or by broadcasting recordings of spotted owl calls.
We completely surveyed the core study areas on�3 occasions
throughout each field season. When we detected owls, we
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conducted walk-in surveys during daylight hours to visually
locate owls, identify color bands, or capture unbanded owls.
We identified spotted owls to sex (male, female) by

vocalization and behavior, and determined age by plumage
characters (Franklin et al. 1996). Owls can be identified to 4
age classes (juvenile [young of the year], 2 subadult ages [1–2
years old; 2–3 years old], and adult [�3 years old]; Moen
et al. 1991). We use the term non-juvenile owl to refer to
subadult and adult age classes; we used only non-juvenile
owls for our analyses.

Rate of Population Change
We used each owl’s encounter history to estimate the annual
rate of population change in territorial owls (lt) using
Pradel’s temporal symmetry model (Pradel 1996, Nichols
and Hines 2002, Franklin et al. 2004) in Program MARK
(White and Burnham 1999). We refer to Pradel’s temporal

symmetry model as the Pradel model. All 3 study areas had
territorial survey areas, in which some areas were not
consistently surveyed, and a subset core study area, which was
surveyed consistently for estimation of lt. In the core areas,
coverage was complete, in that each year, we surveyed areas
without known owl territories, as well as areas with known
owl territories. For population growth rate to represent
changes in the number of owls for the Pradel model, the
study area size and boundary must remain unchanged
through time (Hines andNichols 2002, Franklin et al. 2004).
Consequently, we used data only from the core areas to
interpret lt as the annual rate of population change.
We used the (flp) structure of the Pradel model, where f

is apparent survival (probability that an owl alive in year t
survived to the next year t þ 1 and remained on the study
area [i.e., available for recapture or resight]) and p is the
resight (by recapture or resight) probability. Based on
previous California spotted owl analyses (Franklin
et al. 2004, Blakesley et al. 2010), we used a model with
fixed effects of sex and year, l(t)f(t)p(s � t), where s ¼ sex
and t ¼ year as a categorical time effect. For each study area,
we estimated the overdispersion parameter ð̂cÞ using the
median ĉ procedure in ProgramMARK under the Cormack-
Jolly-Seber (CJS) global model f(s � t)p(s � t). When
ĉ was >1, we used ĉ to inflate variances of parameter
estimates (Burnham and Anderson 2002).
Using the model structure above, l(t) f(t) p(s � t), we

estimated the mean rate of population change using a fixed
effect model ð�̂lÞ. Using the same model, we also used a
mixed model approach to estimate the mean rate of
population change ð�~lÞ and its temporal process variation
ðŝ2Þ, as well as to generate random effects estimates of
lt (~lt ; White et al. 2001). The parameters f and p were fixed
effects and lt was a random effect. To estimate �~l, we used an
intercept-only (means) model for lt. We did not include the
first 2 estimates and last estimate of lt to estimate mean l
because the first and last estimates were confounded with
estimation of p, and the second estimate has a potential bias
from trap response or a learning curve experienced by field
crews at the beginning of the studies (Hines and
Nichols 2002). We calculated �̂l, SEð�̂lÞ, �~l, SEð�~lÞ, and ŝ2

on the log scale and used the delta method to estimate
variance of the back-transformed geometric means of l̂ and ~l
(Franklin et al. 2004). We used the log-scale because the
geometric mean generates an unbiased estimate of mean l
over a finite time period, whereas the arithmetic mean
generates a biased estimate (Morris and Doak 2002).

Figure 1. Outline of southern Cascade and Sierra Nevada Mountains,
California, showing the location of 3 study areas for California spotted owls,
1990–2011.

Table 1. Descriptions of the 3 study areas in the southern Cascades and Sierra Nevada, California, and sample sizes of California spotted owls.

Study areaa Years Area (km2) Avg. total no. markedb Avg. new marked/yearc

LAS 1990–2011 1,254 88 14
SIE 1990–2011 562 76 8
SKC 1991–2011 182 59 7

a LAS is Lassen, SIE is Sierra, and SKC is Sequoia Kings Canyon.
b Average number of marked owls on study area; includes territorial adult and subadult owls.
c Average number of newly marked owls on study area; includes territorial adult and subadult owls.
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Both LAS and SIE had expansion areas, areas in which
surveying began several years after the start of the study. If
these were not accounted for, new owls found in these areas
would enter the Pradel model as new recruits, and result in a
positive bias in estimates of lt. Therefore, we accounted for
these areas by grouping them separately and excluding
estimates of lt from the year of and year following the
expansion, and estimates of p for the year of expansion (see
Blakesley et al. 2010, Appendix G, for a detailed explanation
of the procedure). One study area, SKC, had a year of missed
data collection (2005); we used an unequal time interval to
account for this in Program MARK, which resulted in an
average survival over the 2-year interval. We did not use the
average estimate from these 2 years (2004–2005 and 2005–
2006) in any random effects analyses because random effects
in Program MARK assumes equal time intervals.

Realized Population Change
We translated fixed effects estimates of ltðl̂tÞ into estimates
of realized population change ðD̂tÞ on each study area, which
is the proportional change in estimated population size,
relative to the initial population size (Franklin et al. 2004).
We calculated D̂t as the product 1� l̂k � l̂kþ1 � l̂kþ2�
� � � � l̂K , where k was year of the first estimated lt (i.e., the
third year because the first 2 estimates of lt were confounded
or biased) and K was the last (i.e., the second to last estimate
because the last estimate was confounded). For each study
area, we used the delta method to estimate variance of
realized change (on the natural log scale) and the associated
back-transformed CIs (Franklin et al. 2004). We also used
the random effects estimates of ltðl̂tÞ to estimate realized
population change ð~DtÞ. Because the random effects variance
estimate is conditionally biased, we based CIs on root mean
square error (RMSE; White et al. 2001, Burnham and
White 2002), which includes a term for the difference
between ~Dt and D̂t (e.g., ½~Dt � D̂t �2). To estimate the
covariance between random effects estimates, we multiplied
the correlations between fixed effects estimates by the
RMSE2 (i.e., variance) of each estimate.
To estimate probabilities of population declines or

increases for each area, we used a bayesian approach via

MCMC sampling implemented in Program MARK to
estimate posterior distributions of lt (lt MCMC) using the
same mixed effects model and years as described above. We
used the posterior distributions of lt MCMC to estimate the
posterior distribution of median l (lMCMC) and Dt

(Dt MCMC). For all MCMC simulations, we used 4,000
tuning samples, 1,000 burn in samples, and 20,000
realizations. We used vague priors for all parameters
included in the model. For estimating median lMCMC

and Dt MCMC, we used a hyperprior for m and s of lt. For m,
we used a normally distributed prior with mean ¼ 0 and
standard deviation ¼ 100 and for s, we used a gamma prior
to model its transformation, 1/s2, with a ¼ 1.00001 and
b ¼ 0.000001. Although we did not use estimates of f and
p in the hyperprior to estimate m and s of lt, we did include
them in the model, l(t)f(t)p(s � t), and they required a
prior distribution. Because they were logit transformed
parameters, we used a normal prior distribution with mean of
0 and a standard deviation of 1.75, which is a vague prior
when back transformed to the real scale (2.5th and 97.5th
percentiles of approximately 0.02 and 0.98, with a uniform
distribution between those percentiles). We determined if
the Markov chains converged using the Gelman–Rubin
statistic, R-hat (Gelman et al. 2004). For each parameter,
we used 10 chains of 1,000 each and used a threshold of
R-hat < 1.1 to indicate adequate sampling of the posterior
distribution.

RESULTS

We used encounter histories for 323, 317, and 165 individual
owls, for LAS, SIE, and SKC respectively, to model rate of
population change. Median ĉ ranged from 1.09 to 1.18,
suggesting some overdispersion but no serious lack of fit. We
adjusted all variance estimates by site-specific estimates of c.
The MCMC chains for all model parameters converged
(R-hat < 1.1).
Estimates of mean l̂, ~l, and median lMCMC were<1.0 for

LAS and SIE, which suggested declining populations
(Table 2). Estimates of median lMCMC were very close to
�̂l and �~l, although estimates of s were �2.9� greater for
MCMC than for the random effects estimate (Table 2).

Table 2. Estimates of mean annual rate of population change ð�lÞ and its temporal process standard deviation ðŝÞ. Data are from California spotted owls on 3
study areas (Lassen [LAS], Sierra [SIE], and Sequoia Kings Canyon [SKC]) in the southern Cascades and Sierra Nevada, California, for 1990–2011.
Random effect estimates are based on mixed effects models using a means model for time-specific estimates of rate of population change (l; random effect)
with fixed effects for time-specific apparent survival (f) and resight probability (p), and Markov chain Monte Carlo (MCMC) estimates are based on a
Bayesian approach to generate posterior distributions of annual rate of population change (lt) that is implemented in Program MARK.

Study area Estimatora �lb SE 95% CI ŝ 95% CI

LAS FE 0.985 0.017 0.950 1.022
RE 0.987 0.011 0.967 1.008 0.018 0.013 0.026

MCMCc 0.986 0.880 1.072 0.052 0.012 0.212
SIE FE 0.993 0.017 0.959 1.027

RE 0.990 0.009 0.973 1.008 0.000 0.000 0.052
MCMC 0.993 0.925 1.058 0.037 0.011 0.134

SKC FE 1.016 0.021 0.976 1.057
RE 1.010 0.014 0.982 1.038 0.018 0.000 0.101

MCMC 1.014 0.907 1.170 0.058 0.015 0.217

a FE are fixed effects estimates, RE are random effects estimates from a mixed effects model, and MCMC are estimates from 20,000 simulations.
b This estimate does not include the first 2 estimates and last estimate of lt because they were confounded or potentially biased.
c MCMC estimates are the median and 2.5 and 97.5 percentiles from the posterior distribution, based on 20,000 simulations.
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For LAS and SKC, the annual pattern of lt was the same
between the fixed effects, random effects, and MCMC
estimates, although values of ~lt and lt MCMC were closer to
their estimated means compared to l̂t (Fig. 2). On average,
the variance was greater for fixed effects estimates (Fig. 2a)
than for random effects estimates from the mixed model
(Fig. 2b). However, because we used RMSE for the random
effects estimates, the variance for several estimates of ~lt was
greater than for the fixed effects l̂t (most noticeably, SIE
1992 and 1997 and SKC 1992, 2001, and 2002). The
MCMC estimates of median lt MCMC had smaller credible
intervals than fixed effects CIs (Fig. 2a,c), and although some
credible intervals were larger than the random effects CIs,
they were more consistent (Fig. 2b,c).
The consecutive estimates of Dt reflected the temporal

variation in lt, with ~Dt (Fig. 3b) not necessarily having less
variance than D̂t (Fig. 3a and Table 3). Credible intervals of
estimates of median Dt MCMC (Fig. 3c) started out smaller
than CIs of D̂t (Fig. 3a), but grew to be approximately
the same size by the end of the monitoring period. Over the
18-year study period, the different estimators of Dt indicated
population declines of 21–22% for LAS and 11–16% for SIE,

and an increase of 16–27% for SKC, although CIs overlapped
1.0 for all estimators and study areas (Fig. 3 and Table 3). We
found small but variable differences in magnitude between
the estimators of Dt (1–9% absolute difference; Table 3). The
size of standard errors for Dt were also variable with no
particular pattern between the estimators (Table 3).
From the Bayesian approach, posterior distributions of

Dt MCMC showed the 3 populations had different population
trajectories (Fig. 4). The probability that any population
declined by �30% was low, varying from 0.24 for LAS to
<0.01% for SKC (Table 4). The probability of a minor
decline was more substantial; we calculated a 0.69 and 0.40
probability LAS and SIE declined by �15% (Table 4). The
populations had variable probabilities of remaining station-
ary or increasing as well; SKC had a relatively high
probability (0.82), whereas LAS and SIE had lower
probabilities (0.07 and 0.22; Table 4).

DISCUSSION

For long-term monitoring data, Dt is an insightful metric for
portraying the cumulative dynamics of a population across

Figure 2. Estimates of annual rate of population change (lt) and 95% confidence intervals based on (a) fixed effects estimates, (b) random effects estimates from
a mixed effects model, and (c) a Bayesian Markov chain Monte Carlo (MCMC) approach for California spotted owls on 3 study areas (Lassen [LAS], Sierra
[SIE], and Sequoia Kings Canyon [SKC]) in the southern Cascades and Sierra Nevada, California, 1992–2010. We excluded the first 2 and last estimates
because of confounding or potential bias. Solid lines indicate the best estimates of mean l from a mixed effects model for each study area. We used the root
means squared error for 95% confidence intervals for random effects estimates, and show the median and 2.5 and 97.5 percentiles for MCMC methods.

Conner et al. � Overall Population Change for Long-Term 1453



medium and long time scales, such as 5–20 years. Further, if a
Bayesian approach is used to estimate Dt, uncertainty is
portrayed more completely through the posterior distribu-
tion, and the probability of decline can be calculated. For the
California spotted owl, values of Dt are more immediately
interpretable than �l because interpreting differences in �l
from 1.0 (stationary) depends on the time period, and
summarizing how much a population will change over a
given time period can be difficult. For example, estimated
median Dt MCMC was 0.78 for LAS, indicating that the
population likely declined by 22% over the 18-year
monitoring period. This is more directly interpretable
than stating that estimated median lMCMC was 0.986
over the 18-year period. Although �l is an important metric
of population performance, we conclude that Dt is generally
more interpretable, particularly for depicting population
changes over longer time periods.
Because estimates of �l and Dt can be biased by sampling

variation, we recommend using a hierarchical Bayesian
MCMC or a random effects approach to estimate these
parameters. Both these approaches remove sampling varia-
tion and generally have improved precision as a result of
reduced mean square error, and equal or improved coverage
when compared to fixed effects estimators (Burnham
et al. 1987, Link 1999, Burnham and White 2002).
However, in this study, we found random effects estimates

for D did not necessarily have improved precision. Although
the average variance of the random effects point estimates of
lt was less, 17–25% of the random effects estimates had
variances that were 1.3–3.2� larger than their fixed effects
counterparts. These large variances occurred when fixed
effects estimates of lt were far from the random effects
estimate; for example see SIE in 1992 and 1997 (Fig. 2).
Because we added variances and covariances to estimates of
Dt on the natural log scale, the few large variances propagated
larger variances for subsequent estimates of ~Dt and,
compared to their fixed effects counterparts, resulted in
larger CIs for estimates of ~Dt for SIE and little reduction of
the CIs for SKC.
We also found that the credible intervals on estimated

median Dt MCMC increased through the monitoring period,
such that by the end of the 18 years they were similar to fixed
effects CIs. This was not initially intuitive because the
credible intervals for estimated median lt MCMC were
smaller than the CIs of the fixed effects l̂t . However, for
these data we found relatively high proportions of negative
covariances between fixed effects estimates that reduced the
overall additive variance of subsequent estimates of Dt. Thus,
the data and type of estimator (e.g., when the estimates of
interest are the result of additive or multiplicative
combinations) will determine whether random effects
estimates or estimates from Bayesian MCMC methods

Figure 3. Estimates of realized population change (Dt) and 95% confidence intervals based on (a) fixed effects estimates, (b) random effects estimates from a
mixed effects model, and (c) a BayesianMarkov chainMonte Carlo (MCMC) approach. Data are fromCalifornia spotted owls on 3 study areas (Lassen [LAS],
Sierra [SIE], and Sequoia Kings Canyon [SKC]) in the southern Cascades and Sierra Nevada, California, 1992–2010.We excluded the first 2 and last estimates
because of confounding or potential bias. We used the root means squared error for 95% confidence intervals for random effects estimates, and show the median
and 2.5 and 97.5 percentiles for MCMC methods. Realized population change is the proportion of the initial population size remaining each year.
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will show improved precision compared to fixed effects
estimates.
However, for estimating and removing process variation, a

Bayesian hierarchical MCMC approach is generally prefer-
able to the random effects estimator for a more practical
reason. For the random effects estimator, a minimum of 9,

and preferably 15, estimates are required (Efron and
Morris 1977, Burnham andWhite 2002). Thus, the random
effects method may be daunting in terms of required effort,
or even impossible for many studies that lack sufficient
spatial replication or temporal longevity. In addition, the
variation in length of CI for random effects estimates
(Fig. 2b compared to c) may not be readily interpretable and,
therefore, may be less desirable.
Finally, we found that estimates of s for mean l were

�2.9� larger from the Bayesian MCMC approach
compared to random effects estimates (Table 2). This is
presumably because inference is exact and MCMC
incorporates all uncertainty in the modeled system (Royle
and Dorazio 2008, Higgins et al. 2009, Kéry 2010), thus
providing a more realistic estimate of the variance of mean l
and D. In contrast, random effects estimates are based on
maximum likelihood and are approximations with asymp-
totic properties, which means ŝ2 may be biased low for small
sample sizes (Gelman and Hill 2007). In addition, unbiased
estimates of s2 may be harder to achieve when s2 is small or
sampling variation is relatively large (Burnham and
White 2002). For the California spotted owl case study,
the sampling variation was likely large relative to s2,
resulting in estimates that were biased low or estimated as 0.
The biggest advantage of using a Bayesian approach and

the posterior distribution of DMCMC is that probability of
decline can be estimated for a retrospective analysis, similar
to how projection models or PVAs are used for a prospective
analysis. In the past, evaluating whether the population
declined typically relied on hypothesis tests with a null
hypothesis of no decline. If the null hypothesis was not
rejected, a retrospective power analysis was recommended to
address the probability of accepting a false null or to
determine the smallest detectable effect size, given study
sample sizes (Taylor and Gerrodette 1993, Steidl et al. 1997,
Lougheed et al. 1999). More recently, research has shown
that retrospective power analyses are not appropriate to make
inference about a non-significant result (Hoenig and
Heisey 2001, Lenth 2001, Dixon and Pechmann 2005).
Even if retrospective power was a valid approach, it still does
not answer the real question of interest, what is the
probability the population declined?

Table 3. Estimates of overall realized population change (Dt) for 3 estimators, which are based on estimates of annual rate of population change (lt). Data
are from California spotted owls on 3 study areas (Lassen [LAS], Sierra [SIE], and Sequoia Kings Canyon [SKC]) in the southern Cascades and Sierra
Nevada, California, for 1990–2011. Overall realized population change is the proportion of the initial population size remaining at the end of the time period.

Study area Estimatora Dt
b SE 95% CI CV (%)

LAS FE 0.78 0.13 0.56 1.08 17
RE 0.79 0.12 0.59 1.06 15

MCMCc 0.78 0.57 1.08
SIE FE 0.85 0.15 0.60 1.21 18

RE 0.84 0.18 0.55 1.28 22
MCMC 0.89 0.65 1.20

SKC FE 1.27 0.24 0.88 1.83 19
RE 1.16 0.23 0.79 1.72 20

MCMC 1.22 0.82 1.84

a FE are fixed effects estimates, RE are random effects estimates from a mixed effects model, and MCMC are estimates from 20,000 simulations.
b This estimate does not include the first 2 estimates and last estimate of lt because they were confounded or potentially biased.
c MCMC estimates are the median and 2.5 and 97.5 percentiles from the posterior distribution, based on 20,000 simulations.

Figure 4. Estimated posterior distributions of overall realized population
change (Dt) based on posterior distributions of lt from 20,000Markov chain
Monte Carlo (MCMC) simulations. Data are from California spotted owls
on 3 study areas (Lassen [LAS], Sierra [SIE], and Sequoia Kings Canyon
[SKC])in the southern Cascades and Sierra Nevada, California, 1992–2010.
We excluded the first 2 and last estimates because of confounding or
potential bias. Overall realized population change is the proportion of the
initial population size remaining at the end of the monitoring time period.
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Hypothesis testing is a less informative evaluation
compared to using a Bayesian approach to generate a
posterior distribution of Dt. If the hypothesis is rejected, or if
the 95% CI of estimated �l or Dt covers 1.0, even if barely, we
have no way of evaluating the probability of a decline or lack
thereof. The posterior distribution of Dt has broader
application beyond use with Pradel model estimates of lt;
it can be used for changes in density, abundance, or any
population parameter of interest. For example, Gerrodette
(2011) used data on the vaquita to examine the usefulness of
frequentist versus other methods of hypothesis support for
determining the change in abundance over an 11-year period.
In a frequentist test for difference in abundance (i.e., overall
change), P ¼ 0.38, which did not mean abundance was
equal, but rather that the data were not inconsistent with this
hypothesis. However, although Gerrodette (2011) found a
non-significant P-value when testing whether abundance
had changed, Bayesian methods suggested a high probability
of decline (0.88).
In our study, all CIs of estimates of �l and Dt covered 1.

However, the probability of a decline varied widely between
the 3 study sites, with LAS having a substantial probability of
�10% decline (0.80), whereas SKC only had a 0.07
probability of the same decline. The problem of having a
large probability of decline, even when the null hypothesis of
no decline is not rejected, is especially important for small
populations. Smaller populations can drop, undetected by a
null hypothesis approach, to low levels where the probability
of extinction increases to unacceptably high levels due to
demographic variability and stochastic environmental events
(White 2000, Lande 2001, Morris and Doak 2002). The
undetected decline is a problem faced by ecologists studying
sensitive populations. For example, even with 12–19 years of
northern spotted owl (Strix occidentalis caurina) monitoring
data collected on 13 study areas, Anthony et al. (2006) found
that although 12 of 13 areas had estimates of �l that were<1,
they could only conclude that populations were declining on
4 areas based on whether confidence intervals overlapped 1.
Further, using Dt Anthony et al. (2006) were only able to
detect a change in population for 6 of the 12 areas with
estimated �l < 1. Clearly, using a Bayesian approach to

generate the posterior distribution of Dt MCMC is a powerful
tool for estimating probability of change and provides a more
refined measure of risk to monitored populations, which is
particularly significant when monitoring results affect the
legal status of a species and have broad management
ramifications.
Although measures of central tendency, such as mean or

median l and Dt, have the discussed advantages, they also
have limitations. If a population is growing (�l > 1),
managers cannot tell whether the growth is from internal
recruitment or immigration. Likewise, if a population is
declining, managers cannot determine whether the declines
are due to deaths within the population or emigration. Thus,
additional information on specific vital rates is necessary to
understand what is driving l and ultimately, the mechanisms
driving population dynamics. Although �l and Dt are
important metrics, they may not suffice for a full assessment
of a population’s health. Ultimately, the choice of appropri-
ate monitoring parameters should be based on management
and conservation objectives and information needs, given
available resources.

MANAGEMENT IMPLICATIONS

Managers and regulators charged with formulating conser-
vation strategies for focal wildlife species require robust
information to support decisions that are often ecologically
complex and socially and politically controversial. Realized
population change is a useful metric for assessing population
trends of focal species. Further, using Bayesian MCMC
methods to generate a posterior distribution of Dt is a
valuable tool for robustly estimating risk, or probability of
declines, for retrospective analyses of monitored populations.
In addition, compared to a random effects estimator,
Bayesian MCMC methods also provide a more broadly
applicable approach for estimating mean or median l and s
because they do not have the restriction of requiring �10
estimates. Finally, Bayesian MCMC methods are also
preferable for point estimates of lt because they are exact for
the data and, with sampling variation removed, their credible
intervals are smaller than CIs for likelihood estimates. The
Bayesian approach to generate a posterior distribution of Dt,

Table 4. Estimates of the probability of a population declining or increasing a given percentage or greater over a 17-year (SKC) or 18-year (LAS and SIE)
monitoring period. Data are from California spotted owls on 3 study areas (Lassen [LAS], Sierra [SIE], and Sequoia Kings Canyon [SKC]) in the southern
Cascades and Sierra Nevada, California, for 1990–2011. Probabilities are based on a posterior distribution of overall realized population change (Dt MCMC),
which is the proportion of the initial population size remaining at the end of the monitoring time period.

Study area

Overall decline in population

�50% �30% �25% �20% �15% �10% �5% >0%

LAS 0.00 0.24 0.39 0.54 0.69 0.80 0.88 0.93
SIE 0.00 0.07 0.15 0.26 0.40 0.54 0.67 0.78
SKC 0.00 0.00 0.01 0.02 0.04 0.07 0.12 0.18

Study area

Overall increase in population

�0% �5% �10% �15% �20% �25% �30% �50%

LAS 0.07 0.04 0.02 0.01 0.01 0.00 0.00 0.00
SIE 0.22 0.14 0.08 0.05 0.03 0.01 0.01 0.00
SKC 0.82 0.76 0.68 0.60 0.52 0.45 0.38 0.10
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in particular, provides biologists, managers, and regulators
with more insightful information on the probability of
population changes that can better inform conservation
assessments and strategies.

ACKNOWLEDGMENTS

We thank the many field technicians who carefully collected
data over the 20 years of the study. In particular, we thank
those who ran field projects, were involved for the long haul
(>7 years), or helped with data analyses, including J.
Blakesley, D. Shaw, G. Steger, R. Scherer, S. Sutton, K.
Mazzocco, R. Kussow, M. Warner, and A. Peet, for their
work in the field and out. Their efforts resulted in a high
quality and long-term data set. We thank A. White, S.
Bigelow, M. Bokach, K. Hubbert, and T. Biasiolli, for
helpful comments on drafts of the manuscript. We
acknowledge the United States Department of Agriculture
(USDA) Forest Service Region 5 for their long-term support
of spotted owl population monitoring. Funding for our
analysis was provided by the USDA Forest Service Region 5
and the Pacific Southwest Research Station.

LITERATURE CITED
Anthony, R. G., E. D. Forsman, A. B. Franklin, D. R. Anderson, K. P.
Burnham, G. C. White, C. J. Schwarz, J. D. Nichols, J. E. Hines, G. S.
Olson, S. H. Ackers, L. S. Andrews, B. L. Biswell, P. C. Carlson, L. V.
Diller, K.M. Dugger, K. E. Fehring, T. L. Fleming, R. P. Gerhardt, S. A.
Gremel, R. J. Guttierez, P. J. Happe, D. R. Herter, J. M. Higley, R. B.
Horn, L. L. Irwin, P. J. Loschl, J. A. Reid, and S. G. Sovern. 2006. Status
and trends in demography of northern spotted owls, 1985–2003. Wildlife
Monographs 163.

Blakesley, J. A., M. E. Seamans, M. M. Conner, A. B. Franklin, G. C.
White, R. J. Gutiérrez, J. E.Hines, J. D. Nichols, T. E.Munton,D.W.H.
Shaw, J. J. Keane, G. N. Steger, and T. L. McDonald. 2010. Population
dynamics of spotted owls in the Sierra Nevada, California. Wildlife
Monographs 174.

Burnham, K. P., andD. R. Anderson 2002.Model selection andmultimodel
inference. Second edition. Springer-Verlag, New York, New York, USA.

Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie, and K. H.
Pollock. 1987. Design and analysis methods for fish survival experiments
based on release-recapture. American Fisheries Society, Monograph 5,
Bethesda, Maryland, USA.

Burnham, K. P., and G. C. White 2002. Evaluation of some random effects
methodology applicable to bird ringing data. Journal of Applied Statistics
29:245–264.

Dixon, P. M., and J. H. K. Pechmann 2005. A statistical test to show
negligible trends. Ecology 86:1751–1756.

Efron, B., and C. Morris 1977. Stein’s paradox in statistics. Scientific
American 236:119–127.

Forsman, E. D., editor. 1983. Methods and materials for locating and
studying spotted owls. U.S. Forest Service, General Technical Report,
PNW-GTR-162, Portland, Oregon, USA.

Franklin, A. B., D. R. Anderson, E. E. Forsman, K. P. Burnham, and F. F.
Wagner. 1996.Methods for collecting and analyzing demographic data on
the northern spotted owl. Studies in Avian Biology 17:12–20.

Franklin, A. B., R. J. Gutiérrez, J. D. Nichols, M. E. Seamans, G. C.White,
G. S. Zimmerman, J. E. Hines, T. E. Munton, W. S. LaHaye, J. A.
Blakesley, G. N. Steger, B. R. Noon, D. W. H. Shaw, J. J. Keane, T. L.
McDonald, and S. Britting. 2004. Population dynamics of the California
spotted owl (Strix occidentalis): a meta-analysis. Ornithological Mono-
graph 54.

Gelman, A., J. A. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian data
analysis. Second edition. Chapman & Hall/CRC, Boca Raton, Florida,
USA.

Gelman, A., and J. Hill 2007. Data analysis using regression and multilevel/
hierarchical models. Cambridge University Press, Cambridge, United
Kingdom.

Gerrodette, T. 2011. Inference without significance: measuring support
for hypotheses rather than rejecting them. Marine Ecology 32:404–
418.

Gerrodette, T., and L. Rojas-Bracho 2011. Estimating success of protected
areas for the vaquita, Phocena sinus. Marine Mammal Science 27:E101–
E125.

Higgins, J. P. T., S. G. Thompson, and D. J. Spiegelhalter. 2009. A re-
evaluation of random-effects meta-analysis. Journal of the Royal Statistical
Society 172:137–159.

Hines, J. E., and J. D. Nichols 2002. Investigations of potential bias in the
estimation of l using Pradel’s (1996) model for capture–recapture data.
Journal of Applied Statistics 29:573–587.

Hoenig, J. M., and D. M. Heisey 2001. The abuse of power: the pervasive
fallacy of power calculations for data analysis. American Statistician 55:
19–24.
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