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Natural capital will be depleted rapidly and excessively if the long-
term, offsite impacts of depletion are ignored. By examining the case
of tropical forest burning, we illustrate such myopia: Pursuit of short-
term economic gains results in air pollution that causes long-term,
irreversible health impacts. We integrate longitudinal data on pre-
natal exposure to the 1997 Indonesian forest fires with child
nutritional outcomes and find that mean exposure to air pollution
during the prenatal stage is associated with a half-SD decrease in
height-for-age z score at age 17, which is robust to several statistical
checks. Because adult height is associated with income, this implies a
loss of 4% of average monthly wages for approximately one million
Indonesian workers born during this period. To put these human
capital losses in the context of policy making, we conduct social
cost–benefit analyses of oil palm plantations under different scenar-
ios for clearing land and controlling fires. We find that clearing for oil
palm plantations using mechanical methods generates higher social
net benefits compared with clearing using fires. Oil palm producers,
however, would be unwilling to bear the higher private costs of
mechanical clearing. Therefore, we need more effective fire bans,
fire suppression, and moratoriums on oil palm in Indonesia to pro-
tect natural and human capital, and increase social welfare.

sustainable development | environmental health | oil palm | cost–benefit
analysis | health irreversibility

Economists will argue that natural capital has been depleted
rapidly and excessively because the offsite lagged impacts of

depletion are either ignored or remain unmeasured (1–4). We use
the case of Indonesia to illustrate the extent of such oversight.
Despite its vast tropical forests, forest loss is rapid because forests
are burned to clear land cheaply and plant lucrative job-friendly
export crops such as oil palm (5, 6). Unfortunately, such economic
development is unsustainable because we ignore externalities of
forest fires—air pollution and biodiversity loss, chief among others
(4, 7). For example, forest fires in Indonesia, started to establish
estate crops, burned out of control due to the El Niño-induced
abnormally dry weather in 1997. These fires destroyed habitat
(around 11 million hectares of forests), compromised hydrological
services, and generated health-damaging air pollution (around
25% of global carbon emissions from fossil fuels came from this
single event) (8–11). Despite the severity of this event, we do not
know the full extent of health damages, especially the irreversible,
offsite lagged human capital impacts. In addition, we do not know
whether the costs (in terms of jobs and profits) of policies to avoid
the haze will outweigh the social benefits (12).
In the post-2015 sustainable development goals (SDGs) era,

debates rage in the global community about how best to protect
natural capital, promote health, mitigate climate change, and re-
duce poverty (13, 14). The main question posed in our paper—do
the economic benefits of avoiding health damages of haze from
forest fires outweigh the economic costs of alternative policies—is
relevant to these debates. Specifically, our research illustrates
why SDGs should focus on reducing negative externalities, pro-
moting intergenerational equity, and improving capabilities (15).
We focus on the 1997 forest fires in Indonesia and the associated
haze. The 1997 fires were one of the largest in recent history, but

unfortunately, such forest fires have become even more frequent
lately, including a round of devastating forest fires in 2015. De-
spite their magnitude and frequency, we know surprisingly little
about the full social costs of these fires. While there is evidence
on short-run health damages of air pollution, little is known about
the long-term and intergenerational costs of early-life exposure to
air pollution.
Most studies of early-life exposure to air pollution are con-

ducted in high- or middle-income countries and focus on imme-
diate birth outcomes (16, 17). From past analyses, there is strong
evidence showing that early-life exposure to air pollutants is as-
sociated with low birthweight and preterm birth (16, 17). The
suspected pathways from air pollutants to birth outcomes are in-
flammation and direct toxic effects to the placenta and fetus, oxygen
supply to the fetus, and DNA expression (17). With respect to
longer-term outcomes, the literature on the “fetal origins” hypothesis
suggests that intrauterine health insults can cause lasting and
irreversible damage to cardiovascular and respiratory health
and that low birthweight is associated with shorter height in
adulthood (18–21). Still, there are very few studies that specifically
make the connection between environmental exposure to air pol-
lutants at early-life and long-term outcomes (22).
Demonstrating that a short-term episode of extremely high air

pollution has long-term health impacts is salient to many low- and
middle-income countries, especially as many parts of Asia face
frequent “airpocalypses” in recent years. In our study setting, the
24-h total suspended particulate (TSP) concentration reached as
high as 4,000 μg/m3 during multiple days in October 1997 in parts
of Sumatra—the World Health Organization (WHO) recom-
mended 24-h maximum for TSPs is 120 μg/m3 (23). More recently,
New Delhi experienced 24-h PM2.5 levels of 700–1,200 μg/m3 in
November 2016—the WHO daily guideline is 25 μg/m3. Also in
late 2016, multiple cities in northern China attained their highest
level of air pollution warning. Because earlier studies were mainly
conducted in rich countries that experience very different exposure
profiles, economic development, and environmental institutions,
there is little evidence to guide policy makers and practitioners in
low- and middle-income contexts.
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It is not enough to stop at estimating environmental health
damages, however, without considering how they stack up
against the costs (and other benefits) of policies to control fires.
The political economy of policies to control forest fires in
Indonesia is complex and covers the entire gamut from govern-
ment regulation to market incentives to voluntary control by
firms and landowners (24–27). Currently, key policies include
blanket bans on fires for clearing land and moratoriums on
expanding oil palm (28, 29). Because oil palm is extremely lu-
crative in terms of foreign exchange revenue (e.g., it accounted
for US$18.6 billion, or about 10% of Indonesia’s total exports in
2015) and jobs (e.g., sector employs around 4.5 million workers),
such moratoriums may be politically impractical and unsustain-
able. Moreover, firms will not comply with bans and morato-
riums if enforcement is not strict (30, 31). Hence, we must
consider costs and benefits of policies to detect and suppress
forest fires before they spread, and to enforce bans and mora-
toriums (32). Such cost–benefit analyses (CBAs) can identify the
parameters driving the maximizations of social welfare, given the
health benefits of reduced fires and haze (7). All of these options
are complicated by the fact that fire severity depends on the
location, and the costs and benefits vary by stakeholders (33).

Study Rationale and Design
First, it is difficult to know the extent of irreversible and offsite
lagged human capital impacts because high-quality longitudinal
data that faithfully depict long-term impacts have been difficult

to find in environmentally vulnerable and economically poor
locations (7, 34). Thus, we carefully integrate longitudinal data
on prenatal exposure to the pollution from the 1997 Indonesian
forest fires with data on nutritional outcomes, genetic in-
heritance, climatic factors, household inputs, and various
sociodemographic factors. Second, methodologically flexible
approaches are needed because of the interdisciplinary nature
of issues in sustainable development and planetary health (4).
We show how rigorous statistical analyses and numerous ro-
bustness checks can be applied to a multisectoral panel dataset
to control for potential sources of confounding the correlation
of prenatal haze exposure with adult height. While previous
research has drawn attention to the deaths caused by the forest
fires, we show that survivors also suffer large and irreversible
losses of human capital because of haze exposure (35, 36).
Third, scientists are often unwilling (because of norms or in-
centives) to provide approximate, if imperfect, practical advice
that policy makers seek, preferring to provide precise answers
to questions, even if these questions are irrelevant or untimely
for policy (37). To avoid such “type III” errors and to put such
human capital losses in context, we conduct a CBA of various
policies to avoid fires in oil palm plantations (38–40). Specifi-
cally, we combine our haze-height results with other costs and
benefits, and also account for the heterogeneity and uncertainty
inherent in the model parameters.

Fig. 1. Spatial and temporal distribution of air quality across Indonesia.
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Results
Our data show that the average 1997 air pollution exposure
[aerosol index (AI)] is 0.1 (where 0.01 represents crystal-clear sky
with maximum visibility and 0.4 represents trouble seeing the
midday sun). As shown in Fig. 1, however, AI varies significantly in
space and time, with exposure ranging from 0 (18% of sample,
from Sulawesi and Nusa Tenggara) to 0.3 (18% of sample, from
Kalimantan and Sumatra). Average height-for-age z score (HAZ)
is negative, suggesting that Indonesian children are shorter than
the reference group from the United Kingdom. The other envi-
ronmental, household, and parental variables are summarized in
SI Appendix, Table S1.
Fig. 2 shows effects of AI, including the 95% confidence in-

terval, on child’s HAZ 17 y after exposure [i.e., fourth round of
the Indonesian Family and Life Survey (IFLS)]. The first, second,
and third coefficient in each set of results represent the overall,
prenatal, and postnatal impact, respectively, of early-life ex-
posure (Materials and Methods). Results from the main specification

show that the mean level of exposure (i.e., AI = 0.1) translates
to a 0.41 decrease in HAZ (or about 3.4 cm, equivalently) by
2014. The full results are also presented in SI Appendix, Table S2.
These results show that the decrease in HAZ is statistically con-
sistent across earlier waves of the IFLS. In other words, children in
our analysis experienced a decrease in height from 3 y of age, and
this impact persisted through the age of 17.
We further examined whether this early-life effect was at-

tributable to prenatal or postnatal exposure. When exposed
during the prenatal stage, the impact on HAZ is essentially un-
changed—the average effect is 0.43. In contrast, while the co-
efficient for postnatal exposure is negative, it is statistically
insignificant. Thus, the relationship we detect appears to be
completely driven by prenatal exposure.
To ensure our results are not driven by confounders and

spurious correlations, we undertake a series of robustness checks
(Materials and Methods). We confirm that our findings are not
driven by (i) high levels of pollution in later years, (ii) an indirect
effect of severe air pollution on a family’s ability to work and to
earn income, (iii) something about the location, rather than the
exposure per se, and (iv) overall reductions in food consumption
during the forest fire months.
To put these estimates of irreversible health impacts in context,

we conduct a CBA of oil palm plantations by including social
externalities (Materials and Methods). Briefly, the analysis of haze-
reducing policies considers benefits to health (both avoided losses
in income and in mortality), tourism, and transportation, and costs
to firms (land preparation) and to agencies for program imple-
mentation. To acknowledge and model the heterogeneity and
uncertainty inherent in the parameters used in the CBA, we
conduct Monte Carlo simulations by allowing each parameter to
take on a range of values. This process yields 10,000 net present
values (NPVs) for each scenario, summarized in a cumulative
distribution function (CDF) for each scenario.
Starting with the baseline scenario of fire-based clearing, we

see that 30% of the CDF is negative (Fig. 3). This finding is
particularly sensitive to emissions attributed to oil palm fires,
exposure to air pollution, income growth, and mortality and
human capital losses (SI Appendix, Fig. S1). First, we consider
the main alternative of clearing mechanically (and avoiding fires)
to establish plantations and find that the CDF of social NPV is

Fig. 2. Impact of early-life air pollution on HAZ for different regression
specifications.

Fig. 3. Comparing social welfare of land clearing for oil palm using fire, mechanical options, and public policies (e.g., ban and suppression).
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wholly positive (Fig. 3). This is because the averted air pollution-
related health losses are much larger than the increased me-
chanical clearing costs. Second, we consider stronger enforce-
ment of the ban. The social NPV under this policy is now closer
to the social welfare of mechanical clearing (Fig. 3) and is sen-
sitive to the emissions attributed to oil palm, probability of being
caught using fires, size of penalty, air pollution attributed to
forest fires, and income growth (SI Appendix, Fig. S3). Finally,
we also consider a fire detection and suppression policy. The
distribution of social NPV is mostly positive and better than the
baseline by 15 percentage points (Fig. 3). As expected, this
finding is sensitive to program efficiency, program longevity,
emissions attributed to oil palm, income growth, and program
costs (SI Appendix, Fig. S4). Collectively, these analyses show
that social net benefits from clearing for oil palm using fire is
lower compared with net social benefits of (i) clearing using
mechanical means, (ii) stronger enforcement of fire bans, and
(iii) better fire suppression efforts.

Discussion
Recent studies have used simulations, derived from exposure-
response models, to suggest that air pollution from fires is po-
tentially causing deaths in Southeast Asia (36, 41). In our study,
we use actual data on (i) smoke emissions from a major forest
fire event, and (ii) children’s demographics, to test hypotheses
that complement such assumptions-based simulations. Also,
unlike the earlier studies that focused on human lives poten-
tially lost, we draw attention to the millions others who survive
but with decreased functioning and capability (42, 43). We find
a statistically significant negative effect of in utero exposure to
air pollution on adults’ height—a 0.41 decrease in HAZ at age 17
(or 3.4 cm) due to mean level of in utero exposure to air pollution
during the 1997 Indonesian forest fires. Furthermore, these results
are robust to a series of checks for confounding factors.
When we feed these health impacts into a broader CBA, and

consider the various costs and benefits of policies and practices
to control fires and avoid haze, we find that mechanical clearing
delivers higher net social benefits compared with fire-based
clearing. However, the additional costs of mechanical clearing
will reduce firms’ profits by 7% on average and as much as 25%
(SI Appendix, Fig. S2), implying that most firms will not volun-
tarily comply with the ban. Indeed, previous studies documented
the pervasive use of fires even though fire bans were imple-
mented in the 1990s (30, 31).
This implies the need for complementary policies to detect

and suppress fires or more rigorously enforce a fire ban. We
find that such policies will increase social welfare, even without
including the full list of ecological costs of fire-based land
clearing such as carbon and habitat. More generally, our CBA
illustrates a framework that could be used to evaluate other
policies currently being considered by governments and non-
governmental consortiums (e.g., the roundtable for sustain-
able palm oil), such as green bonds to compensate oil palm
firms for profit losses from mechanical clearing that would reduce
emissions (26, 27, 44, 45).
Because Monte Carlo simulations reveal that the social NPV

of these policies depend on factors that vary by location (e.g.,
policy effectiveness, emissions attributed to oil palm, local in-
come growth), targeting will be efficient (45, 46). These findings
provide strong justification for ongoing Indonesian government
policies, including those that focus on restoring peatlands both
inside and outside concessions so that forest fires will not spread
to the peats (10, 47–49).
In sum, our study contributes to the literature on natural

capital loss, forest fires, haze, health, and economic develop-
ment in three ways. That is, following calls from implementa-
tion science research, we attempt to provide approximate, if
imperfect, practical advice that policy makers seek, instead of

stopping at precise (and sometimes irrelevant or untimely)
estimates (7, 37, 50). First, we are one of the first studies of
the lagged impacts of early-life exposures to air pollution, us-
ing data from Indonesia, a middle-income country critical to
global conservation. Second, analyses of planetary health
policies—which are multisectoral and interdisciplinary in nature—
require methodologically flexible approaches (4). To this end,
we first estimate the haze-height effect by applying rigorous
quasi-experimental methods on a multisectoral dataset of health,
socioeconomic, demographic, and environmental variables. Next,
we use these impact estimates in a CBA of various policy so-
lutions to the haze problem. Third, we use Monte Carlo simu-
lations to account for the heterogeneity and uncertainty associated
with the many costs and benefits (51, 52). More broadly, this
combination of estimation and simulation illustrates an ap-
plied research framework (such as the Natural Capital Project)
that can be used to mainstream conservation science into the
decision making by communities, companies, governments, and
donors (53, 54).

Materials and Methods
Data for Statistical Analysis. Data for our regression analysis of health out-
comes on air pollution are drawn from three publicly available sources. First,
health outcomes and household characteristics are from the 1997, 2000, 2007,
and 2014 rounds of the IFLS (55). Early life is defined as prenatal or in utero
to the first 6 mo following birth; this period represents the maximum
growth velocity for humans (56). Using records of birth dates and mothers’
location of residence (defined at the district level), we identify the air pol-
lution exposure for each fetus from August to October 1997, when the fires
and air pollution were most intense (23). The final panel used in analysis
contains 560 children that were in their early life during August to October
1997 and appeared in each of four waves of the longitudinal survey. The birth
months of these children ranged from March 1997 to August 1998 and are
mostly uniformly distributed among all months (SI Appendix, Table S3). We
consider HAZs for each child as our outcome because it is derived from well-
established worldwide protocols for measurement and is strongly associated
with adulthood socioeconomic outcomes (56, 57). The IFLS also provides data
on child and parent demographics and other household variables.

Second, because ground monitoring of air quality is scarce in Indonesia
(as in much of the developing world), we use satellite-derived data, that is,
AI by the Total Ozone Mapping Spectrometer of the National Aeronautics
and Space Administration (NASA) from August to October 1997, to proxy
for air quality. AI is the monthly amount of atmospheric aerosols, such as
dust and smoke, on a 1° × 1.25° grid that has been shown to reliably
represent ambient air quality (58). Third, we obtain data on rainfall and
temperature from the National Center for Atmospheric Research Global
Precipitation Climatology Centre and NASA’s Goddard Institute for Space
Studies surface temperature analysis, respectively. Climatic factors are in-
cluded as controls as they may confound the association between health
and AI (59).

We attribute AI exposure to each individual in the following manner. First,
from the 1997 IFLS, we know birth dates and district locations of affected
individuals (“affected” is defined as being in utero or first 6 mo of life from
August to October 1997). While one might be concerned that households
may have moved in anticipation of the impending haze, earlier studies using
the IFLS data have shown that this is not the case (9). Second, using the
satellite-derived data, we assign monthly AI to each district in Indonesia.
Third, we assign an average AI exposure to each individual depending on
how many months of their early-life stage fall within August to October 1997.
For example, an individual born in March 1997 would be defined as being
exposed to 1 mo of the haze in August 1997 for his early-life (postnatal) pe-
riod. On the other hand, an individual born in December 1997 would be de-
fined as being exposed to 3 mo of haze from August to October 1997 for his
early-life period (prenatal) and his exposure would be defined as the average
AI for the 3 mo. AI has also been used in earlier studies to analyze the health
impacts from exposure to air pollutants caused by the 1997 Indonesia forest
fires (9, 35, 60, 61). This is partly because AI has been ground truthed, as in, it
tracks closely with ground-measured pollution from biomass fires (58). Any
measurement error that stems from using AI to proxy for air quality would be
classical in that it would result in attenuation bias (i.e., more conservative
“smaller” estimates), not systematic bias (i.e., wrong inference).
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Statistical Approach. The impact of AI on height, β1, is obtained by regressing
child’s health, yijt, on AI, AIijt, and a host of controls using least-squares re-
gression method:

yijkt = β0 + β1AIijt + β2AIijt · Iðy2000Þ+ β3AIijt · Iðy2007Þ+ Iðy2000Þ+ Iðy2007Þ
+Xiγ + δj +αt + «ijkt ,

[1]

where i, j, and t represent child i from location j and born in period t. The
subscript k denotes the particular survey in which height was measured (i.e.,
IFLS 2000, IFLS 2007, or IFLS 2014). X is a vector of parent and household
characteristics that could impact child’s HAZ, for example, parents’ educa-
tion, parents’ heights (a genetic contribution to the child outcomes), and
household inputs at birth such as sanitation and clean cooking fuels. Iðy2000Þ
is an indicator variable equal to 1 if the height was obtained from IFLS 2000.
δ and α are district—the same scale at which AI is measured—and
birth month fixed effects, respectively. The birth month-by-birth year fixed
effects are included to control for unobserved factors that are constant
across all individuals born in the same year and month, such as macroeco-
nomic conditions (e.g., currency devaluation related to the Asian financial
crisis) or seasonal weather patterns, which might otherwise confound the
relationship between AI and HAZ. Similarly, district fixed effects are included
to control for any unobserved factors constant across individuals born in the
same location, such as access to local nutrition programs. Thus, following an
established empirical method in applied statistics, the relationship between
air quality and height is identified by removing any confounding differences
attributable to location and season. Last, « is an idiosyncratic error term. To
guard against potential biases from the “Moulton” effect due to coarseness
of the AI data, we cluster SEs at both the district and birth month-by-
birth year levels (62). Three rounds of data from the same individuals are
pooled. Therefore, when AI is interacted with the year in which the survey
was administered, β2 and β3 represent changes in impact of early-life AI on
height in the 2000 and 2007 surveys. In other words, the impact of early-life
exposure of AI on height at 17 y is β1, whereas the impact of early-life ex-
posure of AI on height at 3 y is β1 + β2, and β1 + β2 + β3 at 10 y. By way of
summary, note that the AI coefficients are estimated using variation in air
quality at the spatial-temporal level. This means that any potential con-
founders (e.g., the Asian financial crisis) would need to covary at the same
temporal (by month) and spatial (by districts) scale with air pollution to bias
the estimates of the AI coefficients.

Eq. 1 can be modified to separate the effects of prenatal versus postnatal
exposure AI on height:

yijkt = β0 + β1preAIijt + β2postAIijt + β3preAIijt · Iðy2000Þ+ β4preAIijt · Iðy2007Þ
+ β5postAIijt · Iðy2000Þ+ β6postAIijt · Iðy2007Þ+ Iðy2000Þ+ Iðy2007Þ
+Xiγ + δj + αt + «ijkt .

[2]

The main difference between Eqs. 1 and 2 is that β1 and β2 in Eq. 2 report the
effects of prenatal and postnatal exposure to AI, respectively, when the
respondents are at 17 y, whereas β1 in Eq. 1 reports the overall effect of any
exposure to AI. Similarly, the coefficients for the other interaction terms in
Eq. 2 report any remaining effects of AI from prenatal and postnatal AI
exposure. Statistical analyses are conducted using Stata 14.

Robustness Checks for Statistical Analysis. To confirm that our results are not
driven by spurious correlations and confounding factors, we conduct four
robustness checks.
First, it is possible that the height impacts are driven by high levels of pol-
lution in later years. SI Appendix, Table S1 demonstrates that the 1997
pollution was unprecedented, and AI levels were much higher in 1997
compared with later years. Moreover, the district fixed effects control for
later years’ exposure for all individuals within the same district. The district
fixed-effects strategy would not work, however, if those exposed at birth
were systematically more likely to migrate to heavily polluted, dirtier loca-
tions. Thus, we gathered further information on households’ migration
history and computed the AI exposure for 1998 and 1999 for their updated
locations. In regression analysis that includes 1998 and 1999 AI as additional
explanatory variables, only the 1997 exposure is statistically significant (Fig.
2; full results in SI Appendix, Table S2). We are not claiming that exposure to
air pollution later in life does not impact height, rather that the initial (1997)
early-life exposure is the dominant channel.
Second, we consider other nonpollution mechanisms by which height could
be affected by the fires. For example, all else being equal, severe air pollution
may have reduced a family’s ability to work, and, in turn, this would decrease
household income and, consequently, caloric intake. This is especially true

for those engaged in outdoor work. This loss-of-income mechanism can be
tested by interacting the AI variable with proportion of adult household
members engaged in outdoor work. Indeed, the impact on HAZ is stronger
in this subsample of households with outdoor workers; that is, while the AI
coefficient mostly retains similar magnitude and statistical significance from
the main results, there seem to be additional impacts on HAZ for households
with higher proportion of outdoor workers (Fig. 2 and SI Appendix, Table
S2). This means that this channel of outdoor work partially explains HAZ
differences. However, the key AI coefficients remain significant for all three
waves, signaling that the loss-of-income mechanism still leaves room for a
large, direct impact of exposure on growth.
Third, to test whether there is something about the location, rather than the
exposure itself, that is driving the association, we used the true exposure
group but assigned a placebo AI exposure (1996 AI, true exposed cohort).
That is, we assigned the 1996 AI exposure to our existing sample of exposed
children. These children could not have been exposed to the pollution in
1996, as this is the year before their conception. The placebo test demon-
strates this effect: The total impact of 1996 AI on HAZ is insignificant for each
of the three rounds (Fig. 2 and SI Appendix, Table S2).
Last, we consider another source of potential confounding: if the forest fires
influenced reduced food consumption. We can test this channel because of
the timing of the surveys, as some household were surveyed during and
others after the forest fires. Regression analysis of food consumption shows
no statistical difference in consumption during and after the forest fires (SI
Appendix, Table S3).

CBA. CBAs essentially compare the discounted stream of costs and benefits
arising from a project or policy. In this setting, the CBA puts our estimates of
health irreversibilities in context but is also essential for understanding the
implementation of conservation policies in general (12). First, we conduct a
social CBA of oil palm plantations by including social externalities. Second,
because the private optimum will diverge from what is best for society, we
also conduct the CBA from firms’ perspectives to learn, for example, if credible
enforcement can incentivize firms to behave in a way so that higher social
welfare is achieved. Briefly, the analysis of haze-reducing policies considers
benefits to health (both reductions in mortality and morbidity), tourism, and
transportation, and costs to firms (land preparation) and to agencies for
program implementation. While we included the ecological costs of me-
chanical clearing, we are not able to include ecosystem-related costs of fire
clearing related to carbon and habitat because we could not find conclusive
quantitative data on these benefits. Including these other costs would make
the net social benefits of oil palm cleared using fire even more negative.

Third, to acknowledge and model the heterogeneity and uncertainty
inherent in the parameters used in the CBA, we conduct Monte Carlo sim-
ulations (63). That is, we allow each parameter to take on a range of values
(obtained from the literature) and specify a statistical distribution for these
values (either uniform or normal distribution). For example, the AI–HAZ
relationship is estimated in this study with a SD. To fully utilize the range
behind each parameter, we ran 10,000 trials in the Monte Carlo simulation
whereby, in each trial, a value for each parameter is randomly from the
specified statistical distribution. Eventually, this process yields 10,000 dif-
ferent NPVs, which constitute a CDF.

The 26 parameters that underlie these computations and the eight primary
equations that combine these parameters to estimate benefits and costs are
described in SI Appendix, Tables S3 and S4. Without describing each and
every parameter and equation (SI Appendix), we briefly summarize some of
the key computations here.
Haze attributed to oil palm. Neither are forest fires the only source of air
pollution in Indonesia, nor are all forest fires caused by establishing oil palm
plantations. While there is a large literature examining the role of the causes
of the 1997 forest fires and its effects, there is no specific study that directly
quantifies the pollution attributable to oil palm or any concessions (38, 39).
However, we can draw on this literature and estimate the attributable
fraction as follows. First, we compare the AI in the August to October 1997
period to both August to October 1996 and to January to June 1997 periods,
when there were fewer forest fires. Thus, we estimate that 57–77% of air
pollution is from forest fires during the August to October 1997 period.
Second, we rely on a recent study to approximate the forest fire emissions
attributable to oil palm plantations, which suggests the range 10–60% of all
pollution emissions is because of oil palm plantations (48). Third, we multiply
these two fractions to compute the proportion of air pollution attributed to
oil palm-related forest fires. Critically, recognizing that this attributable
fraction can vary (as with other causes) from the low to high range of this
product, we build this variability into the 10,000 Monte Carlo simulations,
introduced previously.
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Avoided mortality damages. Epidemiological models estimate the total mor-
tality burden for the 1997 fires in Indonesia to be around 15,000 deaths (64).
In monetary terms, we assign a value-of-statistical life (VSL) of US$108,900
(in 2008 US dollars) to these deaths. This VSL estimate is obtained by starting
first with OECD baseline VSL of US$3.3 million (in 2008 US dollars) and then
applying “benefits transfer” logic.
Avoided income loss. For loss of income, we start with a well-established liter-
ature that shows that relative height is correlated with adult mortality, mor-
bidity, neurodevelopmental, and economic capability (56). Specifically, height
has been shown to be correlated with earnings; for example, 1 SD in HAZ at
adulthood is associated with 8% increase in adult income (57). Thus, our es-
timate of a 0.41 SD HAZ decrease (i.e., from the 2014 wave when the cohort is
about 17 or 18 y old) translates into ∼3.3% decrease in income through human
capital channels. Consider the fact that 1.13 million individuals were in their
prenatal stage during August through October 1997 in the impacted provinces
of Sumatra or Kalimantan, where the air pollution and fires were most intense
(that is, what we report next is a conservative estimate because others in other
provinces were partially exposed but we do not count them). Assuming,
(i) their working age spans 21–58 (the official retirement age), (ii) the average
annual wage for blue-collar work at US$860 (from Indonesian Statistical De-
partment), (iii) a social discount rate of 8%, and (iv) an annual real wage in-
crement of 2% for the first 15 working years (from Indonesian Statistical
Department), we estimate that the lifetime productivity loss for this exposed
population of 1.13 million is about US$392 for each individual.
Profits of oil palm plantations. The operating costs and revenue of oil palm
plantations are obtained from Butler et al. (65). The plantations are evalu-
ated on a 25-y basis and the range of operating costs and revenue is based
off the high- and low-yield scenarios in the original analysis. The size of the
oil palm planation is assumed to be 100,000 ha, based off new plantation
area in 1998 (66). Clearing by fire costs between $82/ha to US$320/ha (47,

67). In contrast, clearing using mechanical means is much higher and ranges
from low of $200/ha to $990/ha (47, 67).
Fire detection and suppression. Our analysis of the early detection and sup-
pression policy rests primarily on the related parameters of program costs and
effectiveness, and program life. The effectiveness of this policy ranges from
0 to 0.6. That is, emissions from oil palm plantations is reduced by 60% if fully
effective. Additionally, to allow for spatial targeting of this policy, we model
positive correlation between program effectiveness and both the levels of
emissions from oil palm and the income growth. The Indonesian government
approximates that the costs of early-detection and suppression program
would range between US$450 million to US$2.3 billion. Last, we assume this
program will last between 2 and 10 y.
Enforcing the fire ban.Wemodel an enforcement policy for fire bans and the firm’s
reaction on three parameters—probability of detecting which plantations are
using fires, the resulting penalties, and firms’ risk aversion. We conservatively
estimate the probability of identifying fires to range from 0 to 20%. The pen-
alties are derived from recent court judgements on plantation owners that were
found guilty of starting fires and are estimated to range from US$300/ha to US
$40,000/ha. A risk-adverse firm would reduce fires more than proportional to the
ratio of expected penalty vs. additional costs of mechanical clearing. We consider
the risk aversion to range between 0.1 (risk averse) and 3 (risk taking).
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