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A B S T R A C T

Background: Substantial increases in wildfire activity have been recorded in recent decades. Wildfires influence
the chemical composition and concentration of particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5).
However, relatively few epidemiologic studies focus on the health impacts of wildfire smoke PM2.5 compared
with the number of studies focusing on total PM2.5 exposure.
Objectives: We estimated the associations between cardiorespiratory acute events and exposure to smoke PM2.5

in Colorado using a novel exposure model to separate smoke PM2.5 from background ambient PM2.5 levels.
Methods: We obtained emergency department visits and hospitalizations for acute cardiorespiratory outcomes
from Colorado for May–August 2011–2014, geocoded to a 4 km geographic grid. Combining ground measure-
ments, chemical transport models, and remote sensing data, we estimated smoke PM2.5 and non-smoke PM2.5 on
a 1 km spatial grid and aggregated to match the resolution of the health data. Time-stratified, case-crossover
models were fit using conditional logistic regression to estimate associations between fire smoke PM2.5 and non-
smoke PM2.5 for overall and age-stratified outcomes using 2-day averaging windows for cardiovascular disease
and 3-day windows for respiratory disease.
Results: Per 1 μg/m3 increase in fire smoke PM2.5, statistically significant associations were observed for asthma
(OR=1.081 (1.058, 1.105)) and combined respiratory disease (OR=1.021 (1.012, 1.031)). No significant
relationships were evident for cardiovascular diseases and smoke PM2.5. Associations with non-smoke PM2.5

were null for all outcomes. Positive age-specific associations related to smoke PM2.5 were observed for asthma
and combined respiratory disease in children, and for asthma, bronchitis, COPD, and combined respiratory
disease in adults. No significant associations were found in older adults.
Discussion: This is the first multi-year, high-resolution epidemiologic study to incorporate statistical and che-
mical transport modeling methods to estimate PM2.5 exposure due to wildfires. Our results allow for a more
precise assessment of the population health impact of wildfire-related PM2.5 exposure in a changing climate.

1. Introduction

Climate change, defined as the long-term change in global and re-
gional weather patterns, has been extensively documented since the
mid-to-late 20th century (Boudes, 2011; Incropera, 2016; The
Environmental Pollution Panel, 1965; United States Environmental
Protection Agency, 2017b). Despite politically charged debates

regarding the cause of the change, it is clear that climate change and its
resulting extreme weather events could severely impact the health and
well-being of populations across the globe (Berrang-Ford et al., 2015;
Kjellstrom et al., 2016; Thornton et al., 2014; Wu et al., 2016). One area
that reflects the synergistic impact of climate change and human ac-
tivity is the occurrence of wildfires. Notably, the Western US has seen
consistent and rapid increases in wildfire activity since the 1980s. This
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increase has been characterized by rises in the frequency, severity, size,
and total burned area associated with wildfires (Liu et al., 2013;
Westerling, 2016; Westerling et al., 2006). Fire effects are often seen at
great distances from the events due to large smoke plumes, sometimes
extending across multiple counties or states. States in the Rocky
Mountain region continue to exhibit climatic factors conducive to fire
activity—including high temperatures, low soil moisture, decreased
rainfall, and increased solar radiation (Crockett and Westerling, 2018;
Dawson et al., 2014; Griffin and Anchukaitis, 2014; Leung and
Gustafson, 2005; Penrod et al., 2014). Conditions may become more
suitable to large wildfires over time due to climate change (Keeley and
Syphard, 2016; Keywood et al., 2013; Stavros et al., 2014). Conse-
quently, wildfires place significant burdens on the human, economic,
and environmental systems in areas surrounding and downwind from
the burn zone. This is of particular concern given the impact that
wildfire events can have on regional air quality and, subsequently,
human health (Liu et al., 2015; Reid, Jerrett et al., 2016).

Wildfire smoke can produce significantly higher exposures to
harmful compounds than are normally found in non-fire urban settings
(Alves et al., 2011; Kim et al., 2018; Na and Cocker, 2008). Fine par-
ticulate matter (PM2.5, airborne particles< 2.5 μm in aerodynamic
diameter) is of particular concern due to its ability to travel deep into
the human respiratory system and enter the blood stream (Dockery and
Pope, 1994; Hong et al., 2017; Kim et al., 2015; Liu et al., 2015; Park
and Wexler, 2008; Reid, Jerrett et al., 2016; United States
Environmental Protection Agency, 2017a). Smoke particles differ in
both size and composition from particles found in typical ambient PM
from non-wildfire sources. It has been shown that organic compounds,
such as methanol or formaldehyde, make up a significantly higher
proportion of smoke PM2.5 when compared with ambient PM (X.X. Liu,
2017; Na and Cocker, 2008). These distinctions could have differing
effects on human health outcomes and may vary by fuel source. This
has been shown in both in vivo and in vitro studies using human cells
and mice (Kim et al., 2019; Shin et al., 2017; Xu et al., 2019). While
much is left to be understood about the toxicological differences, cur-
rent literature has begun to elucidate potential differences between
smoke and ambient PM sources. It is, therefore, important to differ-
entiate between smoke and non-smoke PM2.5 when assessing the health
impact of wildfires.

While numerous epidemiological studies have established the as-
sociations between ambient PM2.5 and human health (Brook et al.,
2010; Di et al., 2017; Pope and Dockery, 2006), relatively few studies
have focused specifically on wildfire smoke (Rappold et al., 2017). For
example, Reid et al. published a study showing a significant results for
asthma during fire events (previous 2-day moving average) for a 5 μg/
m3 change in PM2.5 concentration (Reid, Jerrett et al., 2016). While
Reid et al. included satellite and chemical transport data, they were
limited to the use of fire day and fire distance parameters to account for
smoke PM instead of directly estimating smoke PM concentrations.
Additionally, many studies are restricted to the use of ambient urban air
pollution measurements, coupled with fire day indicators, to represent
fire-related exposures. In addition, current guidelines for public health
response to wildfire events rely heavily on changes of ambient total PM
measurements due to a lack of information in wildfire-specific air
quality (Lipsett et al., 2016). A few studies have distinguished among
sources on larger scales (Hutchinson et al., 2018; J.C. Liu, 2017; Thelen
et al., 2013). For example, Liu et al. derived metrics of smoke waves for
distinguishing fire activity and evaluated the health impacts of smoke
PM2.5 (J.C. Liu, 2017). Their chemical transport model simulations,
however, were on a spatial grid of 0.5× 0.67 degrees, which may be
too coarse to capture finer-scale spatial gradients of exposure, see
Supplemental Fig. 1.

Though there is consistent evidence for associations between wild-
fire events and disease, questions remain regarding the relationship
between wildfire smoke PM2.5 and both respiratory and cardiovascular
outcomes given the difficulty in estimating smoke PM2.5 exposure.

Developing robust methods for understanding this complex relationship
is vital to understand the potential future impacts of climate and
wildfire events on human health. Building upon previous studies, the
goal of our study is to estimate the associations for multiple respiratory
and cardiovascular acute health events in relation to wildfire smoke
PM2.5 in Colorado during the fire seasons of 2011–2014 using novel,
high-resolution methods to separate wildfire smoke PM2.5 from back-
ground ambient PM2.5.

2. Methods

2.1. Health data

We obtained individual-level health data on daily hospitalizations
and emergency department (ED) visits at all public and private hospi-
tals for the fire seasons (May–August) of 2011–2014 from the Colorado
Department of Public Health and Environment. Information included in
the patient records are dates of admission, residential address, age, sex,
payer information and International Classification of Diseases version 9
(ICD9) codes for primary and secondary diagnoses. Patients admitted to
the hospital through the ED were only counted once, and those with
elective hospitalizations were excluded from analysis.

We analyzed multiple endpoints for primary cardiovascular and
respiratory diagnoses. Respiratory outcomes include asthma (ICD9:
493), bronchitis (ICD9: 490), chronic obstructive pulmonary disease
(ICD9: 491, 492, and 496), upper respiratory infection (ICD9: 460–465
and 466.0), and combined respiratory disease (ICD9: 460–465, 466.0,
466.1, 466.11, 466.19, 480–486, 487, 488, 490, 491, 492, 496, and
493). Cardiovascular outcomes include ischemic heart disease (ICD9:
410–414), acute myocardial infarction (ICD9: 410), congestive heart
failure (ICD9: 428), dysrhythmia (ICD9: 427), peripheral/cere-
brovascular disease (ICD9: 433–437, 440, 443, 444, 451–453), and
combined cardiovascular disease (ICD9: 410–414. 427, 428, 433–437,
440, 443, 444, 451–453). Due to inadequate numbers, events in chil-
dren were not analyzed for COPD or any cardiovascular outcomes.

2.2. PM2.5 and meteorological data

We sought to separate smoke PM2.5 from ambient sources. To ac-
complish this, daily mean PM2.5 concentrations were adopted and im-
proved from our previous study by adding new data (Geng et al., 2018).
Briefly, mean concentrations were estimated using a two-model ap-
proach to combine information from high-resolution satellite AOD de-
rived from the Multi-angle Implementation of Atmospheric Correction
(MAIAC) algorithm, model simulations from the Community Multiscale
Air Quality Modeling System (CMAQ), and ground measurements ob-
tained from the U.S. Environmental Protection Agency (USEPA) for fire
seasons in the state of Colorado (April–September 2011–2014). The
first model (i.e. AOD model) utilized random forest modeling to in-
corporate MAIAC AOD, smoke mask, meteorological fields and land-use
variables. The second model (i.e. CMAQ model) utilized statistical
downscaling to calibrate the CMAQ PM2.5 simulations. Additional ex-
posure modeling specifics can be found in Supplemental 2 and Sup-
plemental Fig. 2. The output exposure data have full coverage in space
and time and are able to capture the large fire events at a resolution of
1 km×1 km (CV R2= 0.81 and RMSE=1.85 μg/m3). Compared to
Geng et al. (2018), major improvements include new observation data
from the National Park Service to capture PM2.5 enhancement near
wildfires, allowing for a better representation of high values found
during fire events (Supplemental 2 and Supplemental Fig. 2) (Benedict
et al., 2017; Martin et al., 2013). Additionally, a random forest ap-
proach was utilized instead of the original statistical downscaler for the
AOD model. This improved the R2 of the AOD model from 0.65 to 0.92
and the gap-filled R2 from 0.66 to 0.81 (Geng et al., 2018). PM2.5 ex-
posure values were then aggregated to a 4 km×4 km grid to match the
resolution of the health data.
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Fire count data were obtained using the MODIS fire count product
to specify fire days for each grid cell (NASA, 2018). Wildfire and pre-
scribed fire emissions were obtained from the US EPA emissions in-
ventory for the study period. To calculate the wildfire smoke PM2.5

fractions, we used two CMAQ model scenarios–with and without smoke
and dust particles. The differences between these scenarios were then
divided by the total PM2.5 scenario to calculate the smoke PM2.5 frac-
tions. The smoke PM2.5 fractions were then multiplied by the total sa-
tellite-based PM2.5 exposure to get the smoke PM2.5 concentrations.

2.3. Epidemiological modeling methods

We estimated associations between short-term changes in air quality
and ED visits and hospital admissions using a case-crossover study de-
sign (Maclure, 1991). Each individual's event day (i.e., date of ED visit
or hospitalization) was matched with up to four non-event days, with
matching based on grid location, day of week, and calendar month
(Levy et al., 2001). Exposure and meteorology were assigned to each
event day and corresponding non-event days based on the 4 km×4 km
grid cell in which the patient's address is located. The 4 km grid was
chosen a priori through collective agreement between the researchers
and the Colorado State Health Department. This resolution was deemed
the finest resolution we could use while still conserving confidentiality.
We then used conditional logistic regression to estimate the associations
between ED visits and hospitalizations for each outcome and exposure
to non-smoke PM2.5 and smoke PM2.5. The final models for respiratory
outcomes are shown in model specification 1 & 2 below:

= + +logit P β total PM β temp ns doyY( ) ( ) ( ) ( )day day3 2.5 3 (1)

= + + +

logit P

β smoke PM β nonsmoke PM β temp ns

doy

Y( )

( ) ( ) ( )

( )

day day day3 2.5 3 2.5 3

(2)

where total3day PM2.5 represents the 3-day moving average for total
PM2.5 (i.e., smoke + non-smoke), temp3day is the 3-day moving average
temperature, ns(doy) is a spline for day of year (two internal nodes per
year), smoke3day PM2.5 represents the three-day moving average smoke
PM2.5; and nonsmoke3day PM2.5 denotes three-day moving average PM2.5

not related to wildfires. Cardiovascular outcome models were con-
ducted using the same models shown in model specifications 1 and 2,
but with 2-day averaging windows. Exposure windows of 3-day average
PM for respiratory outcomes and 2-day average PM for cardiovascular
outcomes were decided a priori based on published studies and con-
sensus information found in the latest Integrated Science Assessment
from the USEPA (Analitis et al., 2012; Delfino et al., 2009; Kunzli et al.,
2006; J.C. Liu, 2017; Rappold et al., 2011; Reid, Jerrett et al., 2016;
Strickland et al., 2010; USEPA, 2019). Sensitivity analyses were con-
ducted using lag 0, lag 0–1 and seven-day exposure windows for re-
spiratory outcomes and lag 0 and three-day exposure windows for
cardiovascular outcomes.

Other potential confounders were assessed (relative humidity,
boundary layer height, heat index, wind speed). However, these para-
meters did not influence the results and were omitted in the final
model. Analyses to examine the presence of potential effect modifica-
tion were completed using sex and age-stratification. Age-stratified
categories included children (0–18 years), adults (19–64 years), and
older adult (65+ years). We conducted all analyses in R 3.4.3 (2017)
and SAS© 9.4.

3. Results

3.1. Exposure modeling and smoke contribution to PM2.5 levels

A time series plot for modeled statewide daily mean PM2.5 con-
centrations is shown in Fig. 1. Modeled total PM2.5 values ranged from

close to 0 to 47.48 μg/m3, with an overall mean value of 4.67 μg/m3.
The exposure model was also used to separate smoke PM2.5 from non-
smoke PM2.5. This separation is based on the CMAQ fraction, with total
PM2.5 equal to the sum of non-smoke PM2.5 and smoke PM2.5. Ratios of
smoke PM2.5 to total PM2.5 ranged from 0 to 99.56% (mean=0.006%),
with smoke PM2.5 levels ranging from 0 to 37.34 μg/m3. The statewide
daily mean smoke vs. total PM2.5 ratio is also shown for the entire study
period (See Fig. 2). As shown, concentrations varied year-to-year and
between stations. This is likely due to the spatial variability of wildfires
and varied smoke plume behavior due to factors such as prevailing
wind speed and direction. To illustrate PM2.5 concentrations and ratios
attributable to fire, Fig. 3 shows the domain-wide average total PM2.5
on fire days (smoke PM2.5 > 1%) compared with the domain-wide
average ratio of smoke PM2.5. For the entire study period, total PM2.5
averaged 7.87 μg/m3 with average fire PM2.5 ratios at 28%. Fig. 4
shows locations on a fire day near two major fires that occurred during
our study period. As shown in Fig. 4A, high levels of smoke PM can be
seen despite more moderate total PM2.5 concentrations. Fig. 4B depicts
a fire day with much higher total PM2.5 concentrations and the sub-
sequent contributions of smoke PM. Additional analysis showed rela-
tively little correlation between smoke PM2.5 and non-smoke PM2.5

(Pearson correlation coefficient r= 0.11, p < 0.0001). The peaks of
highest smoke PM2.5 ratios tended to correspond with active fire days.
Fig. 5 illustrates the modeled total PM2.5 and smoke PM2.5 ratio for
June 22, 2013, a peak fire day during the West Fork Fire Complex. As
depicted, when compared to satellite imaging, the modeled smoke
PM2.5 appears to capture the apparent visible smoke plume adequately.

3.2. Epidemiological modeling

After excluding duplicate events and events with non-geocoded
addresses, 44,262 of 490,368 (9%) of cases were excluded from the
analysis. A total of 446,106 ED visit and hospitalization events were
analyzed from the Colorado Department of Public Health and
Environment. Of those included, there were 204,823 male and 241,283
female cases. The lowest case count occurred in 2011 (n=102,318),
with the highest number of cases in 2014 (n=129,477). While many
reasons could exist, the large increase seen in 2014 could be explained
by changes in health seeking behavior due to wider Medicaid coverage
resulting from the implementation of the Affordable Care Act (Singer
et al., 2019). Other summary statistics on age groups and events per
year are found in Table 1.

Using conditional logistic regression models, we estimated the odds
ratio for exposure to smoke PM2.5 and individual health outcomes. As
shown in Fig. 6 and Supplemental Table 1, we observed significant
positive associations between 1 μg/m3 increases in 3-day moving
average fire exposures and both asthma (OR 1.081, 95% CI (1.058,
1.105)) and combined respiratory disease (OR 1.021, 95% CI (1.012,
1.031)) in a model that adjusted for PM2.5 from other sources. There
were no significant positive associations linked to cardiovascular out-
comes and 2-day smoke PM2.5 exposures (see Fig. 7 and Supplemental
Table 2). However, some inverse associations were shown to be pro-
tective for cardiovascular outcomes. This could possibly be due to
random error, or it may be that individuals with pre-existing cardio-
vascular disease stay indoors on days with fire activity.

The models were also run using total PM2.5 for both cardiovascular
and respiratory outcomes. Overall, the majority of the respiratory odds
ratios for 3-day average total PM2.5 were either null or trending to
positive (Supplemental Table 3).The odds ratios for ischemic heart
disease, acute myocardial infarction, and dysrhythmia also suggest a
trend toward a positive association (see Supplemental Table 4). The
cardiovascular results for total PM2.5 included significant negative re-
sults for congestive heart failure, peripheral/cerebrovascular disease,
and cardiovascular disease.

We conducted sensitivity analyses for additional exposure windows.
Using lag 0 for both respiratory and cardiovascular outcomes, similar
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results were seen with smoke PM2.5 exposure, with notable differences
in overall upper respiratory infection (OR 1.015, 95% CI (1.005,
1.026)) and upper respiratory infection in children (OR 1.018, 95% CI
(1.004, 1.003), see Supplemental Figs. 3 and 4). Using lag 0–1 for all

respiratory outcomes, the results were again similar to the initial ana-
lysis with changes for overall and child-only upper respiratory infec-
tions; see Supplemental Fig. 5. Using a 7-day averaging window for
respiratory outcomes, asthma was the only outcome to have a

Fig. 1. Daily mean modeled PM2.5 from for fire seasons 2011–2014 in Colorado. State-averaged time series data for fire seasons (May–August) 2011–2014 show total
modeled PM2.5 levels by day, month, and year.

Fig. 2. Daily mean ratio of PM2.5 attributed to wildfire. State-averaged time series data for fire seasons (May–August) 2011–2014 depicting ratio of modeled smoke
PM2.5 to total modeled PM2.5.

Fig. 3. Domain-wide daily mean total PM2.5 and mean ratio of PM2.5 on fire days (fire PM > 1%). Time series depicting both total and ratio of modeled smoke PM2.5

to total modeled PM2.5.
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significant positive association with smoke PM2.5 exposure (OR 1.081,
95% CI (1.051, 1.112), see Supplemental Table 5). The associations for
asthma, upper respiratory infection, bronchitis, and combined re-
spiratory disease trended positive but not significant for 7-day averaged
total PM2.5 exposure (see Supplemental Table 6). A 3-day averaging
window used for cardiovascular outcomes also yielded either null or
negative results (Supplemental Tables 7 and 8).

3.3. Stratified analysis

To investigate potential effect modification of the relationship be-
tween exposures and respiratory outcomes, we conducted stratified
analyses based on sex and age. While most sex-stratified total PM2.5

results were null, an association was seen in females for bronchitis (OR
1.007, 95% CI (1.001, 1.013), see Supplemental Table 9), however, no
significant results were observed for cardiovascular outcomes and both
2-day total and smoke PM2.5 (Supplemental Tables 10 and 11).
Associations for both female and male asthma cases and 3-day average
smoke PM2.5 were significant, with higher odds shown in female cases
(OR 1.096, 95% CI (1.064, 1.128)) than in male cases (OR 1.063, 95%
CI (1.029, 1.098)). Female bronchitis cases (OR 1.054, 95% CI (1.010,
1.101)) and female total respiratory cases (OR 1.027, 95% CI (1.015,
1.040)) were also positively associated with smoke PM2.5. Additional
sex-stratified, 3-day average smoke PM2.5 results can be found in
Supplemental Table 12.

Additionally, some outcomes exhibited differences when stratified
on age. After age-stratification, there were no patterns found linking

respiratory outcomes and total PM2.5 with any specific age group
(Supplemental Table 13). Regarding smoke PM2.5, Fig. 6 also depicts
the ORs and associated confidence intervals for each of the respiratory
outcomes by age group. In children ages 0 to 18 years, significant po-
sitive associations were seen for asthma (OR 1.075, 95% CI (1.035,
1.116)). Adults aged 19 to 64 years of age exhibited positive associa-
tions for asthma (OR 1.091, 95% CI (1.060, 1.122)), bronchitis (OR
1.044, 95% CI (1.005, 1.085)), COPD (OR 1.056, 95% CI (1.015,
1.100)), and combined respiratory disease (OR 1.030, 95% CI (1.017,
1.044)) (see also Supplemental Table 14). For individuals 65 and older,
there were no significant positive associations seen for respiratory
outcomes. We found no positive associations for age-stratified total or
smoke PM2.5 and any of the cardiovascular outcomes (See Fig. 7 and
Supplemental Tables 15 and 16). Additional results for stratification
analyses using a 7-day averaging window for respiratory outcomes and
a 3-day averaging window for cardiovascular outcomes can be found in
Supplemental Tables 17–24. Of note, associations for both childhood
and adult asthma, adult COPD, and adult combined respiratory disease
events were positively associated with 7-day average smoke PM2.5 (see
Supplemental Table 17).

4. Discussion

In this study, we estimated associations between various health
outcomes and acute exposure to non-smoke PM2.5 and smoke PM2.5 in
the state of Colorado over a four-year period (2011–2014). The design
of this study is centered on smoke PM2.5 contributions to health

Fig. 4. Daily mean total PM2.5 and mean ratio of PM2.5 attributed to wildfire at two locations. Time series depicting both total and ratio of modeled smoke PM2.5 to
total modeled PM2.5. A) Location near the High Park Fire (June 9–30, 2012) and B) Location near Waldo Canyon Fire (June 23–July 10, 2012). Red boxes indicate
active fire days. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

J.D. Stowell, et al. Environment International 133 (2019) 105151

5



outcomes. This work builds on our previous work by improving ex-
posure data metrics and expanding from a 1-month pilot study (Alman
et al., 2016). The exposure data considers both spatial and temporal
variability by including the use of satellite data to enhance the exposure
estimates on an improved spatial scale of 4 km×4 km. Another unique
aspect of our exposure assessment is that we were able to separate
smoke PM2.5 from non-smoke sources and estimate risks attributable to
wildfire smoke distinct from those due to PM2.5 exposures from other
sources.

As we hypothesized, many of the respiratory disease outcomes in-
creased during periods of wildfire activity. For respiratory outcomes,
we estimated an increase (OR=1.036 (95% CI: 1.022, 1.050%)) in ED/

hospitalizations per 1 μg/m3 increase in fire smoke PM2.5 exposure. The
magnitude of the association was largest for asthma (OR=1.081 (95%
CI: 1.058, 1.105)). Additionally, we observed heterogeneity in the as-
sociation estimates when stratifying by age group. Positive associations
were observed for asthma events, where ED/hospitalizations increased
significantly in children (OR=1.075 (95% CI: 1.035, 1.116)) and in
adults (OR=1.091 (95% CI: 1.060, 1.122)) whereas the association
estimate was lower in magnitude and was less precise for older adults
(OR=1.009 (95% CI: 0.920, 1.106)). Similarly, an increase was seen
for combined respiratory diseases with increases in ED/hospitalizations
and adults (OR=1.030 (95% CI: 1.017, 1.044)). Specifically, in the
adult group, increases were also shown for both bronchitis (OR=1.044
(95% CI: 1.005, 1.085)) and COPD (OR=1.056 (95% CI: 1.015,
1.100)). As opposed to other studies, there was no association shown
for respiratory diseases when stratified for the older adult age group.

Unlike respiratory outcomes, we did not see a strong link between
smoke PM2.5 and cardiovascular outcomes. Results for combined car-
diovascular disease yielded null results (OR=0.998 (95% CI: 0.984,
1.011)). Similar results were shown for both the adult and older adult
age groups. This is not wholly surprising given differing results in
current literature regarding the links between cardiovascular outcomes
and wildfire events. There are fewer examples of cardiovascular asso-
ciations with wildfire smoke exposure compared to respiratory out-
comes. Additionally, associations with cardiovascular outcomes tended
to be substantially lower in magnitude than for the respiratory out-
comes. These differences are consistent with published studies on both
types of outcomes (Cascio, 2018; Deflorio-Barker et al., 2019;
Dennekamp et al., 2011; Dennekamp et al., 2015; Johnston et al., 2014;
Liu et al., 2015; Reid, Brauer et al., 2016; Wettstein et al., 2018). For
example, in Deflorio-Barker et al. (2019), most cardiovascular out-
comes were not significant with fire day PM2.5 using lag0–2. They also
found similar results for smoke day all-cause cardiovascular outcomes
were very similar to non-smoke days (OR 1.06 for smoke days vs OR
1.07 for non-smoke days (Deflorio-Barker et al., 2019)).

Our high-resolution epidemiological study furthers the current
knowledge in the field by incorporating random forest modeling
methods combining information from MAIAC AOD, CMAQ simulations,
and ground measurements to elucidate the portion of PM2.5 present in
the air due to wildfire smoke. Previous work has been done to enhance
the spatial coverage and resolution of total PM2.5 estimates during
wildfire events (Reid et al., 2019). While most work compared smoke
and non-smoke days using various fire indicators, our study particularly
focuses on the separation of smoke PM2.5 from other sources. In most
work, researchers compared smoke and non-smoke days using a variety
of methods different from our study (Reid et al., 2019; Reid, Jerrett
et al., 2016). For example, satellite measurements are increasingly used
to augment the spatially sparse ground monitoring for PM. However,

Fig. 5. Satellite smoke plume, modeled total PM2.5 and smoke PM2.5 for west
fork fire complex, June 22, 2013. Modeled data corresponds to visible smoke
plume as shown in A-C. A) Satellite image from June 22, 2013 with active West
Fork Complex Fire (NASA, 2013). B) Total PM2.5 for Colorado on June 22,
2013. C) Amount of PM2.5 attributed to fire on June 22, 2013.

Table 1
Epidemiologic data descriptive statistics.

Case count

Total records 490,368
Geocoded addresses 446,106
Non-geocoded addresses 44,262

Year of event
2011 102,318
2012 102,574
2013 111,737
2014 129,477

Age ranges
0–18 y 94,022
19–64 y 202,665
65+ y 149,419

Sex
Female 241,282
Male 204,823
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this remains a relatively new approach to capturing the smoke PM
concentrations. A study by Liu et al. looked at the entire Western US at
the county-level using combined satellite and ground data (J.C. Liu,
2017). They defined a fire indicator variable, or “smoke wave,” which
includes periods of at least two days of high pollution from wildfire
smoke. Using this method, Liu et al. found associations between wild-
fire smoke exposure and various respiratory illnesses, but no associa-
tions with cardiovascular outcomes. Reid et al. (2015) used a machine
learning approach to integrate multiple data sources including smoke
indicators such as the distance to the nearest fire cluster and a smoke
intensity calculation. The use of more advanced methods for predicting
PM2.5 exposure enhanced the exposure estimations, however, the PM2.5

concentrations were not separated into smoke and non-smoke

concentrations (Reid et al., 2015).
Other work has utilized methods combining wildfire emissions and

smoke plume modeling. For example, Hutchinson et al. examined si-
milar epidemiological questions using exposure data derived from a
model that combined the Wildland Fire Emissions Information System
and the Hybrid Single-Particle Lagrangian Integrated Trajectories
(Hutchinson et al., 2018). Their study found increases in respiratory
events with null cardiovascular results. However, the methods denoted
fire-specific emissions due to fire location and progression from mod-
eled progression maps and may not capture exposures as well as the use
of chemical transport models. Ultimately, while our results carry si-
milar interpretations to both studies, subtle dissimilarities may be seen
as we utilize different air quality evaluation products and higher-

Fig. 6. Wildfire smoke PM2.5 exposure and respiratory outcomes. Odds ratios for both total and age-stratified respiratory outcomes per 1 μg/m3 increase in wildfire
smoke PM2.5 exposure, arranged by outcome and age group.
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resolution meteorological and epidemiological data to better-define the
local exposures for each event.

The asthma association found in our study is substantially larger
than those shown in previous publications. In addition to Reid, Brauer
et al. (2016), other studies found significant associations between
smoke PM and health outcomes. Delfino et al. reported significant as-
sociations of OR=1.043 between asthma and 2-day moving average
smoke exposure for 10 μg/m3 increase in total PM2.5 concentration
(Delfino et al., 2009). In a more recent study, Reid et al. also found a
significant association for asthma and previous 2-day moving average
smoke exposure, with an OR of 1.050 during fire events for a 10 μg/m3
increase in PM2.5 (Reid et al., 2019). Factoring in the domain-wide
average smoke PM2.5 ratio for the study period (~28% for days
with> 1% smoke PM), our result per 1 μg/m3 roughly translates to
1.08 per 4 μg/m3 of total PM2.5. This converted result is more aligned

with previously reported values, and the larger effect estimate is likely
due to improved exposure assessment. It is also important to remember
that our methods are unlike the majority of previous literature. Namely,
the general approach in previous studies is to model smoke exposure
using smoke day indicators. Our approach differed in that we sought to
isolate the actual concentration of PM2.5 directly from smoke. We
originally hypothesized that there may be a difference in toxicity of
smoke PM2.5 compared to non-smoke PM2.5. When compared with
other literature, our findings suggest that smoke PM2.5 may actually be
more damaging to human health. Aside from asthma outcomes, the
majority of the health associations in this study fall in line with those
found in previous literature. For example, Deflorio-Barker et al. (2019)
also demonstrated stronger associations with respiratory outcomes than
those with cardiovascular disease; with asthma exhibiting the largest
OR of 1.06 (Deflorio-Barker et al., 2019).

Fig. 7. Wildfire smoke PM2.5 exposure and cardiovascular outcomes. Odds ratios for both total and age-stratified cardiovascular outcomes per 1 μg/m3 increase in
wildfire smoke PM2.5 exposure, arranged by outcome and age group.
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While we did not investigate physiological mechanisms, these re-
sults may be explained by the toxicity of smoke PM2.5. Since different
chemical compositions of PM2.5 may affect the body differently, it has
been suggested that toxicological differences may play a role in how
wildfire smoke PM affects the human anatomy and physiology. Multiple
toxicological studies have shown differences in the composition and
effects of wildfire smoke compared to ambient air (Franzi et al., 2011;
Kim et al., 2018; Wegesser et al., 2010; Wegesser et al., 2009; Wong
et al., 2011). It has been shown that the small particles found in wildfire
smoke may be responsible for stimulation of mechanisms that lead to
increased oxidative stress at the cellular level. Wegesser et al. (2009)
observed significant changes in macrophage and neutrophil counts in
mouse lung samples exposed to wildfire smoke PM compared to am-
bient air. An additional study by the same group, expanded on these
findings to show that substances such as polycyclic aromatic hydro-
carbons (PAH) can be present in much higher concentrations in smoke
versus levels detected in ambient air (Wegesser et al., 2010). Franzi
et al. (2011) looked specifically at the inflammatory responses due to
wildfire smoke PM exposure. PM from wildfire smoke exhibited ap-
proximately five times more toxicity to lung macrophages than non-
smoke exposure. This study also showed significant changes in reactive
oxygen species and subsequent oxidative stress, leading to higher cell
degeneration and potential apoptosis. Similarly, Kim et al. (2018) found
significant increases in mouse lung neutrophils after exposure and that
levels of lung toxicity were significantly associated with fuel type (Kim
et al., 2018).

Despite the strengths of our study, some limitations remain. While
we sought to enhance the exposure estimates for individual cases, some
exposure misclassification is still possible given the assumption that the
location of a person's address is a good representation of their short-
term exposures to smoke PM. An additional limitation exists due to the
use of modeled exposure data. However, as stated previously and de-
spite this uncertainty, the model accurately captures the temporal and
spatial trends of PM2.5 measured by ground monitors and, thus give an
accurate representation of overall trends. Additionally, several health
events were left out of the analysis due to issues with address geocoding
or non-Colorado residency. However, the exclusions were relatively
small with only 9% of cases not used in the final analyses. Additionally,
our analyses lacked the ability to differentiate chemical compositions of
PM2.5. Thus, we cannot link toxicological effects to our exposure me-
trics. Finally, the selection of averaging window size, though based on
current literature, may also introduce error into the analysis.

Notwithstanding these limitations, our methods lend insight into
important challenges that remain in the wildfire smoke exposure and
health effects literature. The use of higher resolution enhanced ex-
posure data provides a new approach to assigning exposure to in-
dividual events. Using multiple data products, our method aids in dis-
tinguishing wildfire smoke PM2.5 from background PM2.5. Unlike
ground monitors that provide spatially sparse measurements, the ex-
posure model used here provides daily concentrations for each
4 km×4 km grid cell in our epidemiological study.

5. Conclusions

Supported by high-resolution PM2.5 exposure estimates, we found
significant associations between wildfire smoke and acute respiratory
outcomes in Colorado, despite an absence of association with total
PM2.5 concentrations. Our findings point to potential toxic differences
between smoke and non-smoke PM2.5 exposure; suggesting that PM2.5

from wildfire smoke could pose a significant threat to public health.
This is especially true given the expected climate change-related im-
pacts on wildfire incidence. It is, therefore, important to derive more
accurate concentration-response relationships specific to wildfire
smoke in order to develop a better understanding of future potential
health risks based on increased wildfire activity. Taken together, the
current analysis can inform public health agencies and healthcare

systems regarding the potential future burden of wildfire smoke PM2.5

exposure within the context of climate change. This information may be
a key element in evaluating and enhancing current preparations aimed
at wildfire-event response readiness.
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