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Abstract
Introduction: Wildland fires degrade air quality and adversely affect human health. A growing 
body of epidemiology literature reports increased rates of emergency departments, hospital 
admissions and premature deaths from wildfire smoke exposure.

Objective: Our research aimed to characterize excess mortality and morbidity events, and the 
economic value of these impacts, from wildland fire smoke exposure in the U.S over a multi-year 
period; to date no other burden assessment has done this.

Methods: We first completed a systematic review of the epidemiologic literature and then 
performed photochemical air quality modeling for the years 2008 to 2012 in the Continental U.S. 
Finally, we estimated the morbidity, mortality, and economic burden of wildland fires.

Results: Our models suggest that areas including northern California, Oregon and Idaho in the 
West, and Florida, Louisiana and Georgia in the East were most affected by wildland fire events in 
the form of additional premature deaths and respiratory hospital admissions. We estimated the 
economic value of these cases due to short term exposures as being between $11 and $20B 
(2010$) per year, with a net present value of $63B (95% confidence intervals $6-$170); we 
estimate the value of long- term exposures as being between $76 and $130B (2010$) per year, 
with a net present value of $450B (95% confidence intervals $42-$1,200).

a.Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle 
Park, NC 27711, Voice: (919) 541-0209, Fax: (919) 541-0839, Fann.Neal@epa.gov. 
Disclaimer
The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. 
Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the 
views and policies of the Agency, nor does the mention of trade names of commercial products constitute endorsement or 
recommendation for use.
Competing financial interests: The authors declare no competing financial interests.

EPA Public Access
Author manuscript
Sci Total Environ. Author manuscript; available in PMC 2019 January 01.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Sci Total Environ. 2018 January 01; 610-611: 802–809. doi:10.1016/j.scitotenv.2017.08.024.EPA Author M
anuscript

EPA Author M
anuscript

EPA Author M
anuscript



Conclusion: The public health burden of wildland fires—in terms of the number and economic 
value of deaths and illnesses—is considerable.
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1. Introduction
The increasing frequency and intensity of large wildfires deteriorates air quality and 
adversely affects human health (Crimmins et al. 2016; Henderson et al. 2009; Liu et al. 
2015, 2016; Westerling et al. 2006). These events in turn both promote, and are exacerbated 
by, long-term changes to the climate; current trends in these events are expected to continue 
(Crimmins et al. 2016; Stavros et al. 2014). While the level and type of pollutants emitted 
during wildfires vary according to region and fuel type, all fires release directly emitted 
particulate matter (PM) as well as precursors to fine particles (PM2.5) and can contribute to 
downwind formation of ozone (Knorr et al. 2012).

While risks to human health from exposure to PM are especially well characterized in the 
epidemiological, toxicological and controlled human exposure literature (US EPA 2009), 
health impacts from PM stemming from wildland fires have been less extensively studied, 
though epidemiological literature has consistently observed adverse human health impacts 
attributable to wildfire-related PM2.5 (Liu et al. 2015). For example, Rappold et al., (2012b, 
2011) found that a peat fire episode in eastern North Carolina was associated with increasing 
numbers of Emergency Department visits for cardiopulmonary and respiratory outcomes. 
Similarly, Delfino et al., (2009) observed increasing rates of respiratory and cardiovascular 
hospital admissions resulting from a month-long wildland fire episode in southern 
California. Epidemiological studies conducted in other countries, including Australia, have 
observed similar affects (Johnston et al. 2007a; Morgan et al. 2010b). A systematic review of 
literature from the U.S., Australia and elsewhere by Liu et al., (2014) found that wildland 
fire-related coarse particles (PM10) was most consistently associated with respiratory 
outcomes.

Despite the growing body of epidemiological studies, there are a relatively small number of 
air pollution risk assessments that attribute the number of premature deaths and illnesses and 
the economic value of health impacts to wildfire episodes. The risk assessments performed 
thus far have been limited in their temporal scope, using a single (2005) and projected 
(2016) year (Fann et al., 2013), or have been limited to examining one fire at a time (Jones et 
al. 2015; Kochi et al. 2012; Rappold et al. 2014; Rittmaster et al. 2006). This paper builds 
upon this literature to estimate the number and economic value of wildland fire PM2.5-
related premature deaths and illnesses in the contiguous United States using chemical 
transport model predictions of PM2.5 from wildland fire episodes over a 5-year period 
beginning in 2008. Considering a national scope allows us to more fully capture the impact 
that wildland fires may have on human health.
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2. Materials and Methods
In this study we characterized the overall magnitude and distribution of adverse health 
impacts by age and race that were associated with exposure to fire-PM2.5 during wildfire 
smoke episodes. We used health impact functions derived from epidemiological studies that 
assessed the relationship between fire-PM2.5 and expected incidence of health outcomes. We 
also performed a systematic literature review and meta-analysis; however, using results from 
the meta-analysis in a health impact function would have introduced considerable 
uncertainty into the estimates, and thus were not used.

2.1. Health Impact Function
The risk assessment employs a health impact function to quantify the number of wildland 
fire-attributable premature deaths and illnesses in each of the five years we modelled. We 
estimated the number of PM2.5-related deaths and hospital admissions (yij) during each year 
i (i=2008, 2009, 2010, 2011, 2012) among individuals in each county j (j=1,…,J where J is 
the total number of counties) as:

yi j = Σayi ja

yi ja = m0i ja × eβ ⋅ C
i j − 1 × Pi ja,

where, β is the risk coefficient, m0ija is the baseline death rate or hospital admission rate for 
the population in county j in year i among individuals for 5-year age strata a, Cij is annual 
mean wildfire-attributable PM2.5 concentration in county j in year i, and Pija is the number of 
residents in county j in year i for five-year age strata a.

To perform a health impact risk assessment we used baseline incidence rates, population 
counts, and health impact functions included in the environmental Benefits Mapping and 
Analysis Program—Community Edition (BenMAP-CE, v1.1) (U.S. Environmental 
Protection Agency 2014) to estimate counts of PM2.5 attributable deaths and respiratory 
hospital admissions in each of five years from 2008 to 2012. These inputs have previously 
been used to estimate health and economic impacts in the national ambient air quality 
standards reviews, and the methods have been validated in previous publications (Berman et 
al. 2012; Fann et al. 2011; Office of Air Quality Planning and Standards 2011). Below we 
describe how we specify inputs and use the BenMAP-CE tool with the appropriate input 
data.

2.2. Air quality modeling predictions
We simulated daily air quality from 2008 to 2012 using the Community Multiscale Air 
Quality version 5.1 (CMAQ v5.1) model with and without emissions from wildland fires in 
the contiguous United States. Wildland fires in our study included wildfires, prescribed fires, 
and other significant fires but it excluded agricultural fires. The difference between the two 
model runs represents the contribution of fire-PM2.5 and PM2.5 precursor emissions. Inputs 
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to the model included gridded meteorological fields, emissions data, and boundary 
conditions. Gridded meteorological fields were provided by annual CONUS Weather 
Research and Forecasting (WRF) model simulation. Meteorological fields were defined on a 
12 ×12 km horizontal grid with 35 vertical layers of variable thickness extending up to 50 
hPa. The lowest model layer, which extended to approximately 20m above ground was used 
to calculate the annual mean concentration of PM2.5 (Δx) in the health impact function.

The CMAQ input emissions were based on a 12 km national U.S. domain with speciation for 
the Carbon-Bond 05 chemical mechanism (Yarwood et al. 2005). The emission inventory 
and ancillary files were based on the 2008 emissions modeling platform for 2008, 2009, and 
2010 (EPA, 2012) and on the 2011 emission modeling platform for 2011 and 2012 (EPA, 
2016). Since the focus of this study is wildland fires, any additional information about the 
non-fire emission sources is noted in the references. The fire emissions were based on year 
specific daily fire estimates using the Hazard Mapping System fire detections and Sonoma 
Technology SMARTFIRE system version 2 (Sonoma Technology 2007). Smartfire2 is a 
framework for producing fire activity data and allows for the merging of multiple data 
sources. Some of the fires included in the fire inventory come from satellite based remote 
sensing sources which cannot distinguish large prescribed or debris burning fires from 
wildfires with certainty. After multiple sources of fire information are reconciled to create 
fire activity estimates, the fire emissions are estimated using fuel moistures (via the USFS 
Wildland Fire Assessment System), consumption estimates from the Consume model 
(Ottmar, 2014; US Forest Service 2015), emission factors from the Fire Emission Production 
Simulator (Ottmar, 2014; US Forest Service 2015), and fuel loading from the United States 
Forest Service Fuel Characteristic Classification System (FCCS) database (McKenzie et al., 
2012). Plume rise for all point sources including the wildland fires was calculated within the 
CMAQ model. Biogenic emissions were processed in CMAQ and are based on the Biogenic 
Emissions Inventory System v3.14 (Schwede et al, 2005; Carlton et al, 2011)

2.3. Effect coefficients
To identify PM2.5 effect coefficients suitable for the health burden impact assessment, we 
consulted two sources of evidence. The first is the U.S. EPA’s 2009 Integrated Science 
Assessment for Particulate Matter (PM ISA), which classified human health endpoints as 
having a “causal” or “likely to be causal” relationship with short-term and long-term 
exposure to PM2.5. The PM ISA synthesizes the epidemiological, toxicological and 
controlled human exposure studies published to that point, and was peer reviewed by the 
independent Clean Air Scientific Advisory Committee (U.S. EPA, 2009). The PM ISA 
indicated that mortality and cardiovascular outcomes were causally related, and respiratory 
outcomes were likely to be causally related, to short-term and long-term exposure to fine 
particle levels (U.S. EPA 2009). The ISA did not differentiate these effects by particle 
composition or source.

Next, we performed a systematic review and quantitative meta-analysis. We included 
epidemiological studies that looked at associations between PM2.5 during smoke events and 
various health endpoints. Studies identified were conducted in the U.S., Australia, South 
America, and Asia, and were limited to health endpoints identified by the PM ISA as being 

Fann et al. Page 4

Sci Total Environ. Author manuscript; available in PMC 2019 January 01.

EPA Author M
anuscript

EPA Author M
anuscript

EPA Author M
anuscript



causally related to PM2.5 exposure. The systematic review employed a machine learning 
technique to identify relevant literature. We report detailed information regarding the search 
terms, our procedure for identifying and screening eligible literature, and a Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses diagram in the Supplemental 
Materials. The machine learning literature review identified a total of 276 epidemiological 
studies, of which we judged 21 to be suitable to be included in the quantitative meta-analysis 
(Supplemental Figure 1). These 21 studies reported a total of 902 relative risks or odds ratios 
for respiratory (n=455) or cardiovascular (n=308) hospital or emergency department visits, 
or all-cause or non-accidental deaths (n=139).

A subset of 4 studies reported risk estimates for respiratory hospital admissions that reported 
effect coefficients for a common endpoint, PM indicator (in this case, PM10), lag structure 
and population age strata and so were suitable for pooling in a quantitative meta-analysis 
(Henderson et al. 2015; Johnston et al. 2007b; Morgan et al. 2010a; Tham et al. 2009). 
Using the Metafor library in the R statistical package, we perform a random effects meta-
analysis (R Core Team 2016; Viechtbauer 2010). A forest plot illustrating the studies 
included in the meta-analysis, a random-effects pooled estimate, and additional information 
regarding tests for funnel plot asymmetry can be found in the Supplemental Materials 
(Supplemental Figures 2 and 3).

Ultimately, for the health impact assessment, we did not use this pooled estimate because the 
exposure of interest for our nationwide risk assessment was PM2.5, not PM10. Additionally, 
the risk coefficients may not be generalizable because all 4 studies were based on wildland 
fire events outside of the U.S. (Henderson et al. 2015; Johnston et al. 2007b; Morgan et al. 
2010a; Tham et al. 2009).Populations in other countries may respond differently to wildland 
fire episodes to those in the U.S., have access to a different healthcare system, may be more 
or less susceptible to wildland fire smoke, and may differ in other ways that we cannot 
observe using the available data. For these reasons, we used a risk coefficients drawn 
Delfino et al. (2009), which reported risk estimates for both respiratory and cardiovascular 
hospital admissions during the wildland fire episodes in Southern California.

We also selected PM2.5 epidemiological studies that reported short-term and long-term 
PM2.5 effect coefficients that did not specifically report effect estimates for exposures to 
wildland fire PM2.5. We used risk estimates U.S. EPA previously employed to evaluate the 
health benefits of alternative air quality standards (EPA 2011), recognizing that these studies 
do not consider PM2.5 particles originating from wildland fire events specifically and they 
generally consider PM2.5 concentrations at levels significantly below those observed during 
wildland fire episodes. The short-term studies include Zanobetti et al. (2009), a multi-city 
time-series study that reported hospital admissions for respiratory outcomes, and Zanobetti 
and Schwartz (2009), a multi-city time series study of PM2.5-related mortality. Because 
wildfire episodes can affect long-term levels of PM2.5, we also employ effect coefficients 
from long-term epidemiological studies; these include an extended analysis of the American 
Cancer Society (Krewski et al. 2009) and an extended analysis of the Harvard Six Cities 
cohort (Lepeule et al. 2012).
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2.4. Baseline rates of death and hospital admissions
The epidemiological studies noted above report estimates of risk that are expressed as being 
relative to a baseline rate. In this analysis we used effect coefficients to quantify cases of 
hospital admissions and premature deaths, and thus we applied baseline rates of rates of all-
cause mortality and hospital admissions. We selected county-level age-stratified all-cause 
death rates from the Centers for Disease Control (WONDER) database for the year 2010 
(Centers for Disease Control and Prevention 2016). We selected hospital visit rates from the 
Healthcare Cost and Utilization Program (HCUP); these are a mixture of county, state and 
regional rates (See Supplemental Table 2).

2.5. Assigning PM2.5 concentrations to the population
We quantified changes in population-level exposure by assigning the predicted PM2.5 
concentrations to the population in each 12km by 12km model grid cell. The BenMAP-CE 
tool contains 2010 U.S. Census reported population counts stratified by age, sex, race and 
ethnicity, assigned to each air quality grid. We used the census-reported population counts 
for the years 2010 and then projected these counts to the years 2011 and 2012 using the 
Woods and Poole forecast (Woods and Poole 2012). Population data in each year are 
stratified by age, sex, race, and ethnicity.

To calculate a national wildland fire PM2.5 concentrations for each of the five years that was 
weighted to the size of the population exposed to wildland fire PM2.5 concentrations for all 
counties combined (Ci) in year i as

Ci =
∑

j
Ci j × Pi j
Pi

where Cij is the wildfire-attributable annual mean PM2.5 concentration in county j in year i, 
Pij is the population in county j in year i, and Pi is the total population over all counties 
combined in year i.

2.6. Economic Values
We estimated the value of avoided premature deaths using a Value of Statistical Life (VSL) 
recommended by the U.S. EPA’s Guidelines for Preparing Economic Analyses (US EPA 
2010). Following U.S. EPA guidelines, we indexed this value to the inflation and income 
year of the analysis. Using a 2010 inflation year and assuming 2016 income levels, we 
calculated a VSL of $10.1M. To value changes in respiratory hospital admissions, we used a 
cost of illness estimate U.S. EPA employed in its Regulatory Impact Analysis for the PM2.5 
National Ambient Air Quality Standards (US EPA 2012). This value of $36,000 reflects the 
direct medical costs associated with the hospital visit as well as lost earnings.
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3. Results
3.1. Air Quality

The median of the predicted annual mean wildland fire-attributable PM2.5 concentrations 
across all model grid cells ranges from between 0.3 µg/m3, in 2009 and 0.8 µg/m3 in 2012, 
while the population-weighted annual mean PM2.5 concentration ranges from between 0.6 
µg/m3 in 2009 to 1.1 µg/m3 in 2008 (Table 1). In general, the distribution of wildfire 
attributable PM2.5 concentrations are greatest in the year 2008 and lowest in the years 2009 
and 2010 of the years included in this analysis.

A small number of states are most greatly affected by wildland fire events across the 5-year 
period (Figure 1). In the western U.S, states including California, Oregon, Idaho and 
Montana experience wildland fires in each year. Among the Southeastern states, North 
Carolina, South Carolina, Georgia, Louisiana, Arkansas, Florida and eastern Texas are most 
impacted.

3.2. Estimated health impacts and economic values of wildland fire events
We estimate between 5,200 to 8,500 respiratory hospital admissions per year (Table 2) 
(From 2008 to 2012) from wildland fires when using the concentration-response relationship 
from the Delfino et al. (2009) study. This range is within the same order of magnitude as the 
values estimated using a concentration-response relationship from the Zanobetti et al. (2009) 
multi-city study that did not explicitly account for wildland fire episodes (3,900 to 6,300). 
Using an effect coefficient from the Delfino et al. (2009) study, we also estimate between 
1,500 and 2,500 cardiovascular hospital admissions. As noted above, we could not identify a 
suitable wildland fire study that reported a mortality effect coefficient and so used a risk 
coefficient from a multi-city time-series study (Zanobetti & Schwartz). We quantified 
between 1,500 and 2,500 wildland-attributable PM2.5-related deaths from short-term 
changes in PM2.5 concentrations over the five-year period (Table 2). We estimate the largest 
number of excess deaths and hospital admissions for the year 2008, when wildland fire 
attributable PM2.5 concentrations are the greatest out of the years included here.

To provide context for the estimates above, in the secondary analysis we also applied PM2.5 
concentration-response relationships recently employed in U.S. EPA health impact 
assessments, estimating thousands of non-fatal heart attacks, thousands of respiratory and 
cardiovascular hospital admissions, hundreds of thousands of cases of upper and lower 
respiratory symptoms and millions of cases of acute respiratory symptoms (Supplemental 
Table 4).

Summing the economic value of the short-term premature deaths and hospital admissions we 
estimated a total dollar value of between $11B and $20B per year (2010$) (Table 3). The 
present value of these economic values across the 5-year time period is $63B (3% discount 
rate, 2016$). We estimated the value of the long-term PM2.5 related premature deaths and 
hospital admissions to fall between $76B and $130B per year (2010$). The present value of 
these economic values across the 5-year time period is $450B (3% discount rate, 2010$).
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3.3. The distribution of wildland fire-attributable health impacts among population 
subgroups

We next sought to better understand how the 5-year wildland fire episodes that we modeled 
in CMAQ were affecting populations across the U.S. For the 2008 to 2012 time period in 
which we modeled wildland fire episodes we mapped the cumulative CMAQ predicted 
wildland fire PM2.5 concentrations as a distribution, and identified the upper 75th, 90th and 
95th percentile. We then identified the portions of the CMAQ modeling domain at or above 
this level across the continental U.S. (Figure 2). We next characterized the populations 
exposed to these elevated concentrations according to their race (Table 4).

When comparing the wildland fire-attributable PM2.5 concentrations occurring among the 
highly affected and less affected areas, we found that: (1) in locations of the U.S. that are 
most affected by wildland fires, black populations represent a larger share of the individuals 
exposed to wildland fire PM2.5 and a smaller share in those locations of the U.S. that are less 
affected by wildland fires; (2) by contrast, white populations experience a smaller share of 
the population in the highly affected areas and a larger share in the less affected areas.

3.4. Sensitivity Analysis
The estimated number of premature deaths and illnesses are sensitive to the predicted daily 
change in wildfire related PM2.5 concentrations. Smoke plume height has been repeatedly 
identified as one of the critical sources of uncertainty in air quality modeling (Baker et al 
2016).

This parameter in turn affects the range in which particles disperse and therefore the 
predicted level of concentrations are most sensitive at both very short and far distances from 
fires. Examining model performance indicated that the model tends to over-predict at low 
concentrations, possibly over representing small fires, as well as at very high concentrations. 
Over-dispersion of particles in the model can yield an excess number of low impact days 
that can have a cumulative impact on the estimate of exposure.

To understand the sensitivity of our results to the high number of days with low 
concentrations we quantified the number of wildland fire-attributable deaths from daily 
changes in PM2.5 that were at least 1, 3 and 5 µg/m3 in size (Supplemental Table 3). We find 
that when quantifying PM2.5-related deaths on days in which wildland PM2.5 concentrations 
are at or above 1 µg/m3, the estimated number of premature deaths is on average 17% lower 
than when we do not apply this threshold; when estimating premature deaths occurring on 
days when PM2.5 levels at or above 5 µg/m3, there are about 44% fewer premature deaths. 
These results suggest that our results were sensitive to low levels of model-predicted 
wildland PM2.5 concentrations.

4. Discussion and Conclusions
To our knowledge, this is the first manuscript to characterize the PM2.5-related incidence 
and economic value of wildland fire impacts in the continental United States across an 
extended time period. The number of wildland fire-attributable PM2.5-related hospital 
admissions, emergency department visits and other outcomes we estimated in this analysis 
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are comparable to those reported in Fann, Fulcher and Baker (2013) for the year 2016. That 
analysis, like this one, employed photochemical modeling surfaces and used a similar array 
of health impact functions. However, Fann, Fulcher and Baker (2013) calibrated the air 
quality modeling predictions to monitored air quality data, which would affect the level and 
distribution of the wildland fire-attributable PM2.5 concentrations. Here we do not calibrate 
model predictions with observed data because it has been noted that high concentrations of 
particles during wildfires restrict air flow to the pumps, shutting the monitors down and 
missing high concentration episodes, thus leading to potentially biased observed values. We 
also recognize the potential for CMAQ to overestimate wildland fire impacts (Baker et al. 
2016). More complex calibration and data fusion models specific to the wildland fires are 
likely to become available with the increased usability of remote sensing in this area of 
research as well as improved parameterizations based on results from field campaigns such 
as the Fire and Smoke Model Evaluation Experiment (FASMEE) (http://www.fasmee.net).

The epidemiological literature reporting risks from wildland fire-related PM2.5 is sparse; this 
makes quantifying wildland-attributable risks challenging. The epidemiology studies that the 
U.S. EPA and others commonly use to quantify PM-related mortality and morbidity impacts, 
and reported in the Supplemental Materials to this article, were not explicitly designed to 
characterize risks from this emission source. However, it is reasonable to expect that many 
epidemiologic studies that did not explicitly address wildland fire impacts will have at least 
partially accounted for them, given that wildland fire particles tend to account for large 
portion of PM in the atmosphere (Verma et al. 2014). The National Emissions inventory of 
2011 estimates that 41% of PM2.5 emissions originate with wildland burning (U.S. EPA, 
2011).

In light of this limitation, when we designed the health impact assessment, we took two 
steps to ensure that we were using effect coefficients that were well matched to the unique 
characteristics of wildland fire smoke events. First, we performed a random effects 
quantitative meta-analysis of respiratory hospital admission epidemiological studies of 
smoke events in the U.S. and elsewhere in the world. Second, we selected concentration-
response relationships from epidemiological studies that we believe would better account for 
the episodic nature of smoke events and the corresponding elevated levels of particles 
(Zanobetti et al. 2009; Zanobetti and Schwartz 2009).

The overall economic value of wildland fire-attributable premature deaths and respiratory 
hospital admissions is considerable. Depending on whether we quantify short-term PM2.5-
related premature deaths or long-term PM2.5-realted deaths, the cumulative 5-year economic 
value is in the tens to hundreds of billions of dollars.

Nearly all states in the U.S. experienced elevated fine particle concentrations from wildland 
fire events over the 5-year period, according to our simulation of air quality. Certain states 
were affected by severe wildland fire events occurring across two or more years, including 
Louisiana (some of which may be due to debris burning after an active hurricane season 
because remote sensing of fires cannot distinguish between large debris burning from 
wildfires or prescribed fires), California, Idaho, and Georgia. Within these states, certain 
population subgroups were affected disproportionately. In particular, black populations, and 
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to a lesser extent Asian populations, accounted for a greater share of wildland fire-
attributable health impacts. State and local officials may wish to consider how best to 
communicate with subgroups that are most affected when deploying warning systems that 
alert the public to the health risks of wildland fire smoke. State and local officials deploying 
warning systems to alert the public to the health risks of wildland fire smoke may wish to 
consider how best to reach these subgroups.

This analysis is subject to certain limitations and uncertainties that shape the way in which 
the results may be interpreted. Considering first the air quality inputs, we assessed the 
performance of the chemical transport model by matching CMAQ grid locations to the 
locations of environmental monitors and comparing predicted and observed values. We 
found that the model is biased high when predicting low levels of PM2.5 concentrations. The 
model also over predicts PM2.5 (mainly Organic Carbon and Elemental Carbon) during all 
seasons for fire events. Baker et al (2016) found the Flint Hills fire overestimated OC and 
EC but the Wallow fire did not overestimate to the same degree suggesting there is a lot of 
complexity in terms of how different fires are characterized in CMAQ. Another limitation is 
that only fire events that are part of the emission inventory have been evaluated. Any 
misspecification of emissions in the inventory fires is not included in our analysis. Further 
scientific advances and research efforts aimed to improve characterization of fire, fuel and 
emissioninventories, and to improve measure characterization of differential toxicity of 
smoke emitted from different fuel types can potentially improve future health risk 
assessments.

The health impacts quantified using concentration-response relationships described in this 
paper are also subject to uncertainties. More specifically, questions remain regarding the 
extent to which certain species of fire-attributable PM may be more or less toxic than others 
(Sullivan et al. 2008). Thus, using effect coefficients from the epidemiological studies that 
did not specifically consider wildland fire episodes, may under- or over-estimate impacts. By 
contrast, the quantitative meta-analysis draws upon epidemiological studies of wildland fire 
events, but is limited to respiratory hospital admissions and PM10. Several of these studies 
were conducted outside of the U.S.; differences between the health care system, wildland 
fire particle composition, behavioral responses to smoke events and other factors may bias 
the meta-analysis pooled risk coefficient. We also apply the effect coefficients from the 
Delfino et al. (2009) study of wildfires in Southern California nationwide; this may bias our 
estimates of risk high or low depending on the area that it is applied to. Finally, the present 
value calculation assumes that the wildland fire-related premature deaths estimated for each 
year are independent of those estimated in all other years. For example, individuals modeled 
as dying prematurely from wildland fire smoke exposure in year 1 cannot also die in year 2, 
but the net present value calculation introduces the possibility that deaths may have been 
counted more than once across years. However, given that the fraction of total deaths 
accounted for by air pollution episodes is relatively small (approximately 6% on a national 
basis), the potential for this approach to bias-high the number of wildland-attributable deaths 
is likely small (Fann et al. 2011).

Despite these uncertainties, this manuscript also exhibits a number of strengths and unique 
features. First, this analysis is, to our knowledge, the first to characterize the incidence and 

Fann et al. Page 10

Sci Total Environ. Author manuscript; available in PMC 2019 January 01.

EPA Author M
anuscript

EPA Author M
anuscript

EPA Author M
anuscript



economic value of human health impacts attributable to wildland fire-emitted fine particles 
in the continental U.S. over a 5-year period. Second, while previous studies have 
incorporated a systematic review of wildland fire studies, none to our knowledge have 
performed a quantitative meta-analysis. Third, we characterize both the size, and 
distribution, of wildland fire-related premature deaths and hospital admissions across 
population subgroups. Taken together, the results in this analysis suggest that the number 
and value of wildland fire events is considerable and that these impacts are not shared 
equally across the U.S. population.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgements:
We gratefully acknowledge the comments received from Bryan Hubbell and Karen Wesson, who reviewed early 
versions of this manuscript.

Abbreviations
BenMAP-CEenvironmental Benefits Mapping and Analysis Program—Community 

Edition

CMAQ Community Multi-Scale Air Quality Model

U.S. EPA United States Environmental Protection Agency

ICD International Classification of Disease

NH3 Ammonia

NOx Nitrogen Dioxide

O3 Ground-level ozone

PM2.5 Particulate matter, 2.5 microns or less in diameter

SO2 Sulfur Dioxide

WHO World Health Organization

5. References
Baker KR, Woody MC, Tonnesen GS, Hutzell W, Pye HOT, Beaver MR, et al. 2016 Contribution of 

regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling 
approaches. Atmos. Environ. 140:539–554; doi:10.1016/j.atmosenv.2016.06.032.

Berman JD, Fann N, Hollingsworth JW, Pinkerton KE, Rom WN, Szema AM, et al. 2012 Health 
benefits from large-scale ozone reduction in the United States. Environ. Health Perspect. 120:1404–
10; doi:10.1289/ehp.1104851. [PubMed: 22809899] 

Crimmins A, Balbus J, Gamble JL, Beard CB, Bell JE, Dodgen D, et al. 2016 HUMAN HEALTH 
THE IMPACTS OF CLIMATE CHANGE ON IN THE UNITED STATES THE IMPACTS OF 
CLIMATE CHANGE ON HUMAN HEALTH IN THE UNITED STATES. U.S. Glob. Chang. Res. 
Progr.

Fann et al. Page 11

Sci Total Environ. Author manuscript; available in PMC 2019 January 01.

EPA Author M
anuscript

EPA Author M
anuscript

EPA Author M
anuscript



Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M, et al. 2009 The relationship of respiratory 
and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. 
Environ. Med. 66:189–97; doi:10.1136/oem.2008.041376. [PubMed: 19017694] 

EPA. 2011. Regulatory Impact Assessment for Final Transport Rule.
Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ. 2011 Estimating the National 

Public Health Burden Associated with Exposure to Ambient PM(2.5) and Ozone. Risk Anal. 32:81–
95; doi:10.1111/j.1539-6924.2011.01630.x. [PubMed: 21627672] 

Henderson SB, Brauer M, Kennedy S, MacNab Y. 2009 Three Measures of Forest Fire Smoke 
Exposure and Their Association with Respiratory and Cardiovascular Physician Visits and Hospital 
Admissions. Epidemiology 20:S82; doi:10.1097/01.ede.0000362956.02139.fd.

Henderson SB, Brauer M, MacNab YC, Kennedy SM. 2015 Three Measures of Forest Fire Smoke 
Exposure and Their Associations with Respiratory and Cardiovascular Health Outcomes in a 
Population-Based Cohort; doi:10.14288/1.0074714.

Johnston FH, Bailie RS, Pilotto LS, Hanigan IC. 2007a Ambient biomass smoke and cardio-
respiratory hospital admissions in Darwin, Australia. BMC Public Health 7:240; doi:
10.1186/1471-2458-7-240. [PubMed: 17854481] 

Johnston FH, Bailie RS, Pilotto LS, Hanigan IC, Samet J, Zeger S, et al. 2007b Ambient biomass 
smoke and cardio-respiratory hospital admissions in Darwin, Australia. BMC Public Health 7:240; 
doi:10.1186/1471-2458-7-240. [PubMed: 17854481] 

Jones RR, Hogrefe C, Fitzgerald EF, Hwang SA, Özkaynak H, Garcia VC, et al. 2015 Respiratory 
hospitalizations in association with fine PM and its components in New York State. J. Air Waste 
Manag. Assoc. 65:559–569; doi:10.1080/10962247.2014.1001500. [PubMed: 25947314] 

Knorr W, Lehsten V, Arneth A. 2012 Determinants and predictability of global wildfire emissions. 
Atmos. Chem. Phys. 12:6845–6861; doi:10.5194/acp-12-6845-2012.

Kochi I, Champ PA, Loomis JB, Donovan GH. 2012 Valuing mortality impacts of smoke exposure 
from major southern California wildfires. J. For. Econ. 18:61–75; doi:10.1016/j.jfe.2011.10.002.

Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, et al. 2009 Extended follow-up and spatial 
analysis of the American Cancer Society study linking particulate air pollution and mortality. Res. 
Rep. Health. Eff. Inst. 5-114–36.

Lepeule J, Laden F, Dockery D, Schwartz J. 2012 Chronic exposure to fine particles and mortality: an 
extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 
120:965–970; doi:10.1289/ehp.1104660. [PubMed: 22456598] 

Liu JC, Mickley LJ, Sulprizio MP, Dominici F, Yue X, Ebisu K, et al. 2016 Particulate air pollution 
from wildfires in the Western US under climate change. Clim. Change 1–12; doi:10.1007/
s10584-016-1762-6.

Liu JC, Pereira G, Uhl Sa, Bravo Ma, Bell ML. 2014 A systematic review of the physical health 
impacts from non-occupational exposure to wildfire smoke. Environ. Res. 136:120–132; doi:
10.1016/j.envres.2014.10.015. [PubMed: 25460628] 

Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML. 2015 A systematic review of the physical health 
impacts from non-occupational exposure to wildfire smoke. Environ. Res. 136:120–132; doi:
10.1016/j.envres.2014.10.015. [PubMed: 25460628] 

McKenzie D, French NH and Ottmar RD (2012). National database for calculating fuel available to 
wildfires. Eos, Transactions American Geophysical Union 93(6): 57–58.

Morgan G, Sheppeard V, Khalaj B, Ayyar A, Lincoln D, Jalaludin B, et al. 2010a Effects of Bushfire 
Smoke on Daily Mortality and Hospital Admissions in Sydney, Australia. Epidemiology 21:47–55; 
doi:10.1097/EDE.0b013e3181c15d5a. [PubMed: 19907335] 

Morgan G, Sheppeard V, Khalaj B, Ayyar A, Lincoln D, Jalaludin B, et al. 2010b Effects of bushfire 
smoke on daily mortality and hospital admissions in Sydney, Australia. Epidemiology 21:47–55; 
doi:10.1097/EDE.0b013e3181c15d5a. [PubMed: 19907335] 

Office of Air Quality Planning and Standards. 2011. Regulatory Impact Assessment for the Mercury 
and Air Toxics Standards.

Ottmar RD (2014). Wildland fire emissions, carbon, and climate: Modeling fuel consumption. Forest 
Ecology and Management 317: 41–50 DOI: 10.1016/j.foreco.2013.06.010.

R Core Team. 2016. R: A language and environment for statistical computing.

Fann et al. Page 12

Sci Total Environ. Author manuscript; available in PMC 2019 January 01.

EPA Author M
anuscript

EPA Author M
anuscript

EPA Author M
anuscript



Rappold AG, Fann NL, Crooks J, Huang J, Cascio WE, Devlin RB, et al. 2014 Forecast-Based 
Interventions Can Reduce the Health and Economic Burden of Wildfires. Environ. Sci. Technol.

Rittmaster R, Adamowicz WL, Amiro B, Pelletier RT. 2006 Economic analysis of health effects from 
forest fires. 877:868–877; doi:10.1139/X05-293.

Sonoma Technology. 2007. SMARTFIRE system version 2.
Stavros EN, McKenzie D, Larkin N. 2014 The climate-wildfire-air quality system: interactions and 

feedbacks across spatial and temporal scales. Wiley Interdiscip. Rev. Clim. Chang. 5:719–733; doi:
10.1002/wcc.303.

Sullivan AP, Holden AS, Patterson LA, McMeeking GR, Kreidenweis SM, Malm WC, et al. 2008 A 
method for smoke marker measurements and its potential application for determining the 
contribution of biomass burning from wildfires and prescribed fires to ambient PM 2.5 organic 
carbon. J. Geophys. Res. 113:D22302; doi:10.1029/2008JD010216.

THAM R, ERBAS B, AKRAM M, DENNEKAMP M, ABRAMSON MJ. 2009 The impact of smoke 
on respiratory hospital outcomes during the 2002–2003 bushfire season, Victoria, Australia. 
Respirology 14:69–75; doi:10.1111/j.1440-1843.2008.01416.x. [PubMed: 19144051] 

U.S. Environmental Protection Agency. 2014. Environmental Benefits Mapping and Analysis 
Program--Community Edition (BenMAP-CE).

U.S. EPA LU-USEPA. 2009. Integrated science assessment for particulate matter. EPA/600/R-.
US EPA. 2010. Guidelines for Preparing Economic Analyses.
US EPA. 2009. Integrated Science Assessment for Particulate Matter (Final Report).
U.S. EPA. 2011. National Emissions Inventory, 2011.
US EPA. 2012. Regulatory Impact Assessment for the PM NAAQS RIA.
US Forest Service. 2015. PNW - Fire and Environmental Research Applications Team (FERA) 

Research/Studies. Available: https://www.fs.fed.us/pnw/fera/fft/consumemodule.shtml [accessed 
13 March 2017].

Verma V, Fang T, Guo H, King L, Bates JT, Peltier RE, et al. 2014 Reactive oxygen species associated 
with water-soluble PM 2.5 in the southeastern United States: spatiotemporal trends and source 
apportionment. Atmos. Chem. Phys 14:12915–12930; doi:10.5194/acp-14-12915-2014.

Viechtbauer W 2010 Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 36:1–
48; doi:10.18637/jss.v036.i03.

Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006 Warming and earlier spring increase 
western U.S. forest wildfire activity. Science 313:940–3; doi:10.1126/science.1128834. [PubMed: 
16825536] 

Woods and Poole. 2012. Woods & Poole.
Yarwood G, Rao S, Yocke M, Whitten G. 2005 Updates to the carbon bond mechanism: CB05; 

doi:RT-04006758.
Zanobetti A, Franklin M, Koutrakis P, Schwartz J. 2009 Fine particulate air pollution and its 

components in association with cause-specific emergency admissions. Environ. Health 8:58; doi:
10.1186/1476-069X-8-58. [PubMed: 20025755] 

Zanobetti A, Schwartz J. 2009 The effect of fine and coarse particulate air pollution on mortality: a 
national analysis. Environ. Health Perspect. 117:898–903; doi:10.1289/ehp.0800108. [PubMed: 
19590680] 

Fann et al. Page 13

Sci Total Environ. Author manuscript; available in PMC 2019 January 01.

EPA Author M
anuscript

EPA Author M
anuscript

EPA Author M
anuscript

https://www.fs.fed.us/pnw/fera/fft/consumemodule.shtml


Figure 1. 
Annual mean wildland fire-attributable PM2.5 concentrations (2008– 2012)
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Figure 2. 
Locations of the U.S. Experiencing Elevated Wildfire-Related PM2.5 Concentrations Over a 
5-year Period
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Table 1.

Summary statistics of annual mean PM2.5 (µg/m3) predictions across 12km grid cells attributable to wildfires 
(2008 to 2012)

YearA

2008 2009 2010 2011 2012

10th %ile 0.26 0.14 0.14 0.26 0.33

25th %ile 0.37 0.18 0.23 0.40 0.52

50th %ile 0.61 0.33 0.43 0.60 0.81

Mean 1.1 0.56 0.70 0.80 0.92

75th %ile 1.4 0.79 0.96 1.1 1.2

90th %ile 2.3 1.3 1.7 1.7 1.6

Max 42 6.5 6.5 23 17

Population-weighted PM2.5 level 1.1 0.61 0.68 0.73 0.75

AValues rounded to two significant figures
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Table 3.

Estimated economic value of wildfire-attributable PM2.5-related premature deaths and respiratory hospital 

admissions (2008 to 2012) (Billions of 2010$, 95% confidence intervals)A.

Health Endpoints
Year

Present Value
2008 2009 2010 2011 2012

Sum of mortality from short-term exposures and 
respiratory hospital admissions A

$20 $12 $14 $11 $12 $63

($2—$53) ($1—$31) ($1—$37) ($1—$30) ($1—$31) ($6—$170)

Sum of mortality from long-term exposures and 
respiratory hospital admissions B

$130 $76 $90 $96 $100 $450

($12—$340) ($7—$210) ($8—$250) ($9—$260) ($9—$270) ($42—$1,000)

ASum of Delfino et al. (2009) respiratory hospital admission estimates and Zanobetti & Schwartz (2009) mortality.

BSum of Delfino et al. (2009) hospital admission estimates and Krewski (2009) mortality.
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Table 4.

The percentage of individuals living in locations highly affected, and less affected, by wildland fires (2008 to 

2012)A

Race National Average

Location of the U.S.B
Difference between highly and less affected

Highly affected Less affected

Asian 5% 4% 5% −1%

Black 13% 18% 13% 12%

Native American 1% 2% 1% 1%

White 81% 75% 81% −6%

Total 100% 100% 100%

AHighly affect subgroups are those individuals who have experienced cumulative levels of wildland fire attributable PM2.5 concentrations that are 

at or above the 75th percentile, identified in Figure 2 with blue hatched shading. Less affected subgroups are those not living in these areas.

BEstimates rounded to two significant figures
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