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Introduction 
 
Forests of the Sierra Nevada and across the western U.S. are experiencing an 
unprecedented increase in the size and severity of wildfires1–6 along with widespread tree 
mortality due to drought and insect outbreaks.7–9  Over the last six years alone, five 
separate wildfires in the Sierra Nevada have burned 100,000 acres or more with unusually 
large patches of forest burned at high-severity (where most trees are killed).  The fire 
behavior observed during some of these fires is unlike any experienced in recorded 
memory, uncharacteristic of the way that forest fires burned in these forests before Euro-
American arrival in California, and detrimental to forest sustainability as the climate 
continues to warm.10–13 a  These developments not only threaten lives and communities but 
also seriously compromise forest health and resilience, degrading many important benefits 
forests provide to people more broadly.  The forested watersheds of the Sierra Nevada 
provide clean water for over 25 million people14, support rural economies and tourism15, 
and play a critical role in carbon storage and climate control.16–18  Healthy Sierra forests are 
also home to abundant and diverse wildlife, with over 500 vertebrate species (24 of which 
occur nowhere else) and 3,500 plant species (400 which occur nowhere else).19 
 
We know how to manage forests so they are less prone to megafires and drought and to 
decrease likelihood of large tree mortality events from insect and disease outbreaks.9,10,20,21   

Through use of targeted ecological thinning, prescribed fire, and managed wildfire we can 
reduce the accumulated high fuel loads, promote healthier, more resilient forests, reduce 
the risk of high-severity wildfire at large spatial scales, and protect sensitive species.  
Unfortunately, the pace and scale of these activities is inadequate given the widespread 
scope and long-term consequences of the problem. 
 
An important obstacle to increasing the pace and scale of forest management in the Sierra 
Nevada is misunderstanding about the relative roles of thinning trees to reduce fuels and 
increasing the natural role of fire as a restorative process.  In this briefing paper, we explain 
how our forests became overgrown and at risk from uncharacteristic, high-severity 
wildfire and tree mortality. Then, we make the scientific case for ecological forestry – a 
combination of strategic thinning, prescribed fire, and managed wildfire – as the best 
solution to the challenges our forests face. 
 
A legacy of logging and fire suppression has created forests prone to severe wildfires 
 

                                                 
a This paper focuses on fire in the forests of the Sierra Nevada. Importantly, the causes and consequences of a changing 
fire regime vary among the different kinds of ecosystems in California. The now more frequent and devastating fires of 
coastal and inland shrub communities are driven by different factors and, thus, require different solutions. 



 

 

What has changed and why are fires different now?  One critical factor is that, despite the 
large and destructive wildfires of recent years, many of the forests of the Sierra Nevada are 
fire-starved.  There is far less fire now than there was before Euro-American settlement of 
California, even though there have been major increases in area burned in recent years.  
Prior to the 20th century, wildfires frequently roamed over large areas every year in the 
Sierra Nevada.22–25  These were both naturally caused by lightning and intentionally set by 
Native Americans for the diversity of benefits fire can create.  On average 400,000 to 
500,000 acres burned each year prior to European settlement on National Forest lands of 
the Sierra Nevada alone.3,26  Most of these fires were dominated by low and moderate 
severity effects, with patches of high severity that created openings in the forest.13,23,27  This 
patchy mosaic created the diversity of forest conditions – from open, shrubby patches and 
pocket meadows to shady stands of large, fire-resistant trees27–32 – that maintained the 
health and resilience of the forest and the biota that depend on it.  Frequent fire in some 
forests was also the process that reduced the likelihood of megafires by removing surface 
fuels and keeping shrubs and understory trees that fuel intense fires in check.27,29–33 
Frequent low to moderate intensity fire also served to regenerate and increase diversity of 
understory plants134,135, whereas high intensity fire now tends to reduce diversity and 
favor shrubby species; in some cases, indefinitely.136 
 
This lack of ecologically appropriate fire is the result of aggressive fire-exclusion.  
Eliminating most fire from these landscapes began in the mid 19th century when Native 
American burning was drastically reduced.  This was followed by widespread fire 
suppression in the 20th century, based on the well-intentioned but now disproved 
assumption that all fire is bad.13,34–38   Another critical factor contributing to the current 
situation is historical logging practices.  Extensive logging beginning in the mid-1800s 
removed most of the old-growth forests dominated by large, fire-resistant trees that 
provide habitat for sensitive species like the California spotted owl.  Even-aged 
management of forests for timber production also favored uniform, single-species 
“plantations” that reduced the overall diversity and resilience of the forests. 
 
The result is that many forests in the Sierra Nevada now are highly homogenous and overly 
dense with small trees and shrubs. They are dominated by fire-intolerant species with few, 
large fire-resistant trees, continuous canopy cover and heavy understory fuel loading from 
litter and woody debris.13,31,36,37,39–43  Many private timberlands are characterized by 
relatively homogenous, even-aged stands of trees. Overall, these uncharacteristically 
uniform, dense and young forests are more prone to high-severity fire.  As a consequence, 
while fire frequency overall remains lower than prior to fire suppression, in recent decades 
we have experienced a rapid increase in burned area and fire size,5,44 with strong evidence 
for an  increase in the severity of fires (as measured by trends in fire-driven tree 
mortality)1,3,11,34,45 and minimum area burned at high severity.1,3,34,46  At high elevations, 
where fire was historically infrequent, the number of fires burning and the annual area 
burned also appear to be increasing over time.3,47  Of particular concern is the potential for 
more of the largest, most severe fires (“megafires”), like several experienced just within the 
last 5 years.48  
 



 

 

One recent example is the 2014 King Fire, in which 50% of the burned area was high-
severity, mostly occurring as one very large contiguous patch.  Over the last hundred years 
the forests in this area have changed dramatically49 and, based on the best available 
evidence on historical fire regimes, high severity burn areas would have been less overall 
and distributed across many smaller patches.2,3,27  The King Fire burned 30 spotted owl 
territories.  An average of 53% of each territory burned at high-severity and 14 of these 
territories had an average of 89% high-severity burn area (Gavin Jones, personal 
communication).  The result was sevenfold higher abandonment of territories compared to 
unburned and low-severity burned territories.50  The intensity of the King Fire also 
precipitated massive erosion events that caused millions of dollars in damage and 
maintenance costs for Placer County Water Agency.  It can take decades if not hundreds of 
years for large patches of severely burned forests to recover; some of the forests may be 
permanently converted to shrub fields if the sizes of high severity patches are very large 
(like in the King Fire) or if they repeatedly burn during the warmest, driest periods of 
subsequent years.51–54 
 
Even more concerning are the observed and potential long-term effects of a warming 
climate.  California is on track to exceed 2˚C increase in average temperature by 2050 and 
to experience more intense droughts.44,55,56  This may push many forests into a climate 
regime they have not experienced for millenia or ever57 and intensify already observed fire 
and tree mortality trends in Sierra forests.10,12   
 
Increasingly early snowmelt is likely to increase fire frequency and lengthen the fire 
season.5  Overall burned area is expected to increase with a drier and warmer future, with a 
predicted 50% increase by the end of century in the frequency of extreme wildfires burning 
more than 25,000 acres.58,59  Dense and young forests are also more prone to the impacts of 
drought.60,61  Dense forests are more susceptible to water stress, insect outbreaks and some 
diseases that can lead to large-scale tree die offs and conversion to non-forest 
vegetation.9,20,21,62–65  During the 2012-2016 drought an estimated 130 million trees died in 
the Sierra, including up to 50% of pines in lower and middle elevation watersheds in the 
central and southern Sierra.66,67  These conditions can lead to high intensity fires that could 
be dangerous to human communities and forests.21 
 
Current forest conditions are bad for people and nature 
 
The effects of increasing fire size and severity, as well as the recent drought, are having 
significant, negative impacts on people and nature.  Not only do severe fires near 
communities threaten lives and properties, they can lead to damaging erosion and 
mudslides that affect homes and water supplies.68–71  The effects of severe wildfires also go 
well beyond the forest.  Large, intense wildfires degrade air quality around the state and 
even across the country.72–74  This increases the duration of smoke exposure75 with acute 
and chronic human health impacts, such as increased asthma-related hospital visits, 
respiratory disease, and cardiovascular disease.76–78  Forests are also a significant source of 
carbon storage in terrestrial ecosystems, but the value of Sierra Nevada forests as a vital 
carbon sink is in jeopardy.12,16,18  Further, the many imperiled species that depend on older, 



 

 

closed canopy forests and suffer from the legacy of past logging – like California spotted 
owls79 – are increasingly threatened by the impact severe fires can have on the little 
remaining old forest they occupy.50,80–83 
 
Finally, we have many more homes and people living in the forest now than we did a 
century ago. This has intensified the potential impact and challenges to managing fire, 
especially at the wildland–urban interface where people live.84  At the same time, 
eliminating wildfire is neither a practical, affordable, or ecologically desirable solution.  As 
recent events have demonstrated, it is also impossible. 
 
Given that our fire-adapted forests need more of the right kind of fire, but existing 
conditions and a warming climate make it unsafe for people and nature to allow all fires to 
burn under unmanaged conditions, what is the solution? 
 
The solution: ecological forestry 
 
Forests are diverse and complex, as are the changes they have experienced.  There is not a 
one-size-fits-all answer to restoring their resilience, diversity, and safety.85–88  An essential 
part of the answer will be taking a landscape-scale and ecologically-based approach to 
forest management.  The good news is that we largely know what needs to be done and it is 
based on a robust body of science showing what the trends are, what the forests used to 
look like, and how to balance the trade-offs between reducing high-severity fire risk and 
protecting the natural diversity and function of these forests in a changing climate. 
 
Many low and mid-elevation forests of the Sierra Nevada need to be restored to a more 
open, patchy and diverse structure with more frequent low and moderate severity fire in 
order to make them more resilient to drought and a warming climate.87,89  This will require 
increasing the scale of ecological forestry across large areas.  It will also require fire-
hardening human communities and reducing development in fire prone areas.  All three 
solutions will be necessary, and none of them will be sufficient on its own. 
 
Ecological forestry has two main ingredients: careful and targeted removal of forest fuels – 
thinning of smaller trees and shrubs in strategic, accessible areas where it is needed most 
and will have the least negative impact on sensitive species – plus large-scale 
implementation of prescribed fire and managed wildfire as a natural process where it is 
safe and appropriate to do so.  Prescribed fires are intentionally planned, ignited and 
managed fires targeted to specific places and often preceded by thinning of small trees and 
shrubs where needed.  Managed wildfires are those that are unintentionally started by 
natural causes like lightning, but then allowed to burn where weather conditions permit 
and managed for resource benefits and human safety.  Managed wildfires take advanced 
planning so that when fires start the appropriate measures can be taken to manage them. 
 
Ecological forestry will also need to include proactive measures to ensure the resilience 
and adaptive capacity of the forests to a changing environment over the long-term.  This 
may include active replanting of seeds from drought tolerant populations or facilitating the 



 

 

expansion of tree and shrub genotypes that are better-adapted to future climates and 
disturbance regimes.90,91 

Ecological Thinning 
As counter-intuitive as it may seem given that historical logging created some of the 
challenges our forests face, cutting some trees out of our forests is now a necessary part of 
the solution.28,92–96  Given current conditions, healthy fire cannot be safely re-introduced to 
some forested areas without some preliminary fuels reduction.  This is particularly 
important in areas that are closest to homes and communities and in areas that can 
transport high intensity fire to the wildlife-urban interface, as happened in the 2018 Camp 
Fire.  Targeted and ecologically based thinning in accessible areas is needed to open up the 
forest where it is unnaturally dense.  Done well, this kind of thinning can recreate a diverse 
forest structure that protects wildlife and plant diversity and facilitates the reintroduction 
of fire where it would currently be unsafe to do so.95–97  
 
Ecological forestry has little in common with historical logging practices.  Ecological 
thinning does not mean clearcutting, old-growth forest logging or extensive salvage logging 
after fires.  It is explicitly focused on protecting the oldest trees and creating a diverse 
mosaic of natural features that are essential for forest diversity and regeneration.96,98  To 
do this, it must be done carefully.  Intensive logging can negatively affect sensitive wildlife 
and the diversity and function of the forests.  Thus, ecological thinning must minimize 
disturbance and balance the trade-offs between potential short-term impacts of treatment 
with the longer-term benefits from reduced risk of large, high-severity fires.  This means 
prioritizing removal of surface and ladder fuels that contribute most to wildfire hazard99, 
while minimizing ground disturbance and impacts to those trees and shrubs that will not 
be removed.  It also means maintaining higher canopy cover in some locations and 
protecting stands of large trees in high quality and occupied habitat of sensitive species – 
like the California spotted owl and Pacific fisher.   
 
There remains some uncertainty about the relative impacts to sensitive species from 
severe wildfire compared to ecological thinning.  For example, further research is needed 
on how spotted owls respond to ecological thinning in their territories relative to how they 
respond to varying amounts and severities of fire.  However, given the degree to which 
forests have been modified and current trends it is clear that some thinning in strategic 
areas will be needed to reduce the risks that high-severity wildfire poses to these 
species.50,101  Otherwise, there is the risk that the benefits of avoiding near-term impacts 
from ecological thinning will be overwhelmed by the devastating loss of habitat due to 
high-severity wildfires.50  Ongoing and future research will build on our understanding of 
how species respond to forest management and megafires, and we will be able to adapt our 
forest management strategies in response. 
 
Prescribed Fire and Managed Wildfire 
Reintroducing fire to many of our forested watersheds is the other key ingredient in 
ecological forestry and ultimately will be the most important contributor to restoring forest 
health and resilience.  This means re-establishing more frequent fires of relatively low-



 

 

severity where this was once the natural regime.  This will keep the most flammable fuels 
in check, protect the larger trees, and recycle nutrients in the forest to develop a healthier 
canopy and less flammable and more diverse understory.  It also means allowing and 
managing for smaller patches of moderately and severely burned forest where safe and 
appropriate.  The kind of structural diversity and patchiness created by fires with mixed 
severity impacts moderates the intensity of future fires.30,103–105  This heterogeneity is also 
essential for supporting the full diversity of plants and wildlife that are unique to the Sierra 
Nevada, including those that are adapted to and benefit from severely burned forest 
patches.83,102,106–110   
 
Ecologically-based thinning and fire need to be combined as part of increasing the pace and 
scale of forest restoration for several reasons.  First, we know that the combination of 
thinning followed by prescribed fire works best to restore Sierra Nevada forests.  Treated 
areas are more species diverse and the reduction in potential fire severity lasts longer than 
if thinning or fire are implemented alone.11,26,28,89,113–117  In fact, following thinning with fire 
may be essential in many areas to avoid increased fire severity following a single thinning 
treatment.99,116–119  Second, as a practical matter given the scope of the problem and many 
constraints on applying prescribed and managed wildfire, ecological thinning will be an 
important part of the solution at least in the near to mid-term.  The fact is that less than 1% 
of Forest Service lands are currently being managed with fire each year,26 which likely 
reflects the scale across other federal and state lands.  Prescribed fires have been practiced 
for thousands of years by Native Americans, and we have much to learn from their 
traditional cultural practices.137  It will take some years to build the capacity and social will 
to manage fire for resource benefits at large scales.  Also, management guidelines for 
federal and state lands often require or encourage wildfire suppression regardless of 
potential to safely manage them for resource benefits.  In addition, some areas (e.g. near 
communities) may never be suitable for fire even in the long-term.  
 
Ecological forestry will provide many benefits 

While it is a daunting challenge, implementing ecological forestry broadly across Sierra 
Nevada forests where both human and natural communities are at the greatest risk will 
provide many benefits. Ecological forestry will help ensure we are able to protect the 
natural diversity and beauty of California’s fire-prone forests.  Done thoughtfully, it will 
protect habitat for and mitigate high-severity fire risks to the imperiled species that have 
been pushed to the brink.  Ecological management of our forests will also be an important 
part of protecting California’s largest supply of clean water120–125 and making forests more 
resilient to drought.10,60,126,127  Further, protecting our forests from the most extreme fire 
and tree mortality events will protect the forests against more extreme losses of carbon 
storage that would come with widespread and severe wildfires, as well as help stabilize 
carbon stores in these forests over the long-term.44,128–132  Importantly, managing for these 
diverse benefits will require planning for and managing the Sierra Nevada forests at 
landscape and regional scales to balance the trade-offs between fire risk, habitat, carbon 
storage and water supplies. 



 

 

Taking a large-scale and ecologically-based approach to forest management is also 
important for human safety.  Focusing all of California’s forest investments only on 
defensible space around communities and fire-hardening homes may not be enough.  These 
defenses could be overwhelmed by an intense and fast-moving fire coming out of the forest.  
As recent fires like the 2018 Camp fire have demonstrated, late season fires of this intensity 
fueled by large fuel loads, dry weather, and high winds – conditions that will become more 
frequent in California – can quickly move out of the wildlands and send embers flying miles 
to land on homes in the middle of densely populated communities.  Instances like these are 
forcing the state to rethink how it maps fire hazard zones. 

There could also be important indirect benefits of ecological forestry to people other than 
safety.  Lower severity fires (including prescribed fires and managed wildfires) can have 
lower emissions per fire event and thus may reduce the potential human health impacts 
and costs over time compared to unplanned megafires.72,75  Given the scale of forest 
management needed and the inadequate capacity to implement at the required scales, 
there is also the potential for California to lead in the development of a forest restoration 
economy.  California’s current capacity to implement ecological forestry at the scale needed 
is far short of what is required.  There are few innovative uses for the small wood material 
that will be removed (e.g. cross-laminated timber) and not enough facilities to process the 
material.  There are also far too few trained personnel in ecological forestry and the 
application of prescribed fire.  Those that are trained can barely keep up with managing the 
dangerous wildfires that need to be contained.  Ramping up investments and training could 
supply jobs in ecological forestry, bio-energy, and small diameter wood products that could 
revitalize struggling rural communities.133 

California’s fire-prone forests are unhealthy and at serious risk of uncharacteristic, high-
severity wildfire, drought, and insect outbreaks.  There is compelling evidence that 
ecological forestry – ecological thinning, prescribed burning, and managed wildfire – can 
reduce these risks and promote healthier, more resilient forest conditions.  We urge 
policymakers to maintain and increase funding for ecological thinning and prescribed fire 
and to take steps to address the policy and practical barriers to implementing ecological 
forestry at a scale and pace appropriate to the challenge at hand. 
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