

Data Submitted (UTC 11): 1/17/2023 7:00:00 AM

First name: Sara

Last name: Johnson

Organization: Native Ecosystems Council

Title: Director

Comments: Certified Mail# 7020 3160 0001 9453 4003January 17, 2023Dixie National ForestPowell Ranger DistrictAttn: Christopher Wehrli, District RangerPO Box 80Panguitch, Utah 84759RE: COMMENTS ON THE PROPOSED SHOWALTER PIPELINE PROJECT ENVIRONMENTAL ASSESSMENTHello,Native Ecosystems Council, the Alliance for the Wild Rockies, Yellowstone to Uintas Connection, and Center for Biological Diversity would like to submit the following comments in regards to the Environmental Assessment (EA) for the proposed Showalter Pipeline Project on the Powell Ranger District of the Dixie National Forest. Please note we have attached 4 reports with these comments: Decline of the North American avifauna by Rosenberg and others (2019); Ecology and Management of Neotropical Migratory Birds: a synthesis and review of critical issues (1995) by T. Martin and D. Finch; relevant portions cited in these comments of the Vertebrate Information Compiled by the Utah Natural Heritage Program: a progress report (2003); and Proposal for a System of Federal Livestock Exclosures on Public Rangelands in the Western United States by Bock et al. 1993, Conservation Biology 7-731-733. Although adherence to Forest Plan direction for management of the Greater Sage-Grouse (hereafter "sage grouse") is the one of the most significant issues we have for this proposed project, management of all birds that occur in this project area is necessary, especially those identified as species of conservation concern, as is the sage grouse. The added references help identify what some of these other birds species are.1. It is clear that the 2 grazing allotments that define the project area (Pines and East Pines Cattle and Horse Allotments) need to have revised Environmental Assessments (EAs) as an integral part of any proposed modifications.Information provided in the EA clearly demonstrate that the 2 grazing allotments are not working as intended, due to insufficient water availability. This brings up the question, since the allotted AU Ms were based on total acres of these allotments, and not water availability in general, what has been the impact of grazing as a result? With cattle significantly limited in the areas available for grazing due to unreliable or nonexistent water, what has been the grazing pressure on those areas cattle have been able to graze? It seems like the current allotment management plans have resulted in severe overgrazing pressure in many areas of these allotments. The existing condition and use of these 2 allotments needs to be defined, along with existing impacts. If there are severely overgrazed areas, how will these area be addressed in the future? If overgrazing has been a general impact of past management, why will this change with new management? Many questions about past management need to be addressed in new EAs for these allotments, including how Forest Plan direction for sage grouse has been met, as well as how grazing impacts in riparian areas has affected these areas. Also, if more water is made available, will there be more cows put on these 2 allotments? How many acres that were generally ungrazed will now have much more extensive grazing pressure? Overall, the addition of 6 new stock tanks to each allotment will create huge changes in the existing grazing program, changes that need to be evaluated. In particular, there will be many more acres of this landscape that will not be grazed much more heavily than occurred in the past. These changes in grazing pressure need to be evaluated as to how this will impact wildlife, including both game and nongame species, including the sage grouse and mule deer.In summary, adding new water developments is new management for the 2 grazing allotments, with greatly expanded grazing acres. which requires a new EA and public involvement for each allotment.2. Please include an economic analysis with the new EAs that are required to address new management of the affected allotments.We would like to know what the costs of the proposed water improvement will be, and how these costs relate to the financial costs and benefits of the grazing programs on both allotments.3. The impacts on water distribution/availability of this landscape as will be impacted by a new well needs to be fully evaluated and defined to the public; how will adverse impacts on ground water reductions (e.g., drying out of springs important to wildlife) be mitigated?The EA wildlife analysis suggests that stock tanks created with this project will improve water availability for wildlife. It is not clear what the basis for this claimed improvement is. Most nongame wildlife will not use stock tanks for watering, including the sage grouse. The loss of spring water sources for nongame species, including small mammals, will not be replaced with stock tanks. As a result, there will be a reduction in water availability for nongame wildlife, an impact that cannot be mitigated. The total acreage of land where water availability will be reduced for wildlife needs to be

included in this analysis, along with the expected reductions in these populations. In addition, it is very common that stock tanks are a high risk factor for nongame birds and other wildlife, since escape ramps in these tanks are frequently not implemented. What will be the expected average mortality level to birds per new stock tank, based on the average failure rate of putting in escape ramps for wildlife?4. Although the impacts of both past and increased grazing levels on sage grouse were completely ignored in the project Biological Evaluation, this impact needs to be fully assessed in an EA. As was noted in the attached information on vertebrate information provided in the Utah Natural Heritage Program, population data collected on sage grouse since the late 1960s indicate statewide population declines; population declines have been largely attributed to decreasing suitability of sagebrush steppe habitat, which has resulted in the loss and fragmentation of sage grouse habitat; impacts include increases in invasive non-native plants, particularly cheatgrass, which has resulted in dramatic changes to habitat structure and species composition in many areas; this grass is also involved in altered fire cycles and the associated conversion of large areas from shrub steppe habitat to nonnative grassland; changes to sagebrush steppe habitat are also a result of overgrazing by livestock. There are many factors that will degrade sage grouse habitat on these 2 allotments with the addition of 12 new tanks. The Forest Plan direction for sage grouse requires that impacts of new water developments be evaluated. These impacts include the creation of 12 new severely degraded areas, roughly 125 acres each, around each new stock tank, totally 1500 acres of severely degraded sage grouse habitat. As already mentioned, water availability for sage grouse will likely significantly decrease with springs drying out. Also, with the potential addition of more cattle to these allotments, current impacts on riparian areas and wet areas from cattle will increase as well, to the detriment of sage grouse. The agency needs to address what the current trend for sage grouse is within these allotments, based on lek counts. We would like to know the lek counts for the last 20 years at a minimum. If counts are down, what are the suspected reasons? Would this indicate that grazing may be having an adverse impact, such as limiting good spring nesting cover? Even though the project BE noted that ravens are a significant predator on sage grouse eggs and chicks, there was no acknowledgement that ravens benefit from stock tanks. The proposed 12 new stock tanks in this sage grouse breeding habitat will result in increased predation rates on sage grouse nests and chicks. This adverse impact on sage grouse in order to promote livestock grazing is a violation of the Forest Plan direction for sage grouse. While there was no information provided in the project BE regarding the loss of nesting cover for sage grouse from cows, this is an important factor for sage grouse nesting success, which is why the Forest Plan direction includes a recommendation of at least 7 inches of residual grass cover in spring sage grouse nesting habitat. The agency needs to map all known sage grouse nesting areas in the project area, and define if these residual grass levels are being met. Given that there are a number of sage grouse leks within or next to the project area, nesting habitat clearly exists on these allotments. IN the past, has the agency met the required cover levels as per the Forest Plan in these areas? If sage grouse management is not going to be implemented as is required by the Forest Plan, the agency needs to amend the sage grouse management direction for the Dixie Forest Plan to remove management requirements, including adequate nesting cover. Overall, the planned increase in grazing impacts in this sensitive species habitat for sage grouse will clearly be highly detrimental. Currently, the lack of water availability for cows, as was noted in the EA, has greatly restricted the distribution and thus level of grazing across this landscape. Although there has apparently been no monitoring of sage grouse nesting habitat use on these 2 allotments, one can assume that these areas of limited grazing have provided high quality sage grouse nesting habitat. With their removal, sage grouse suitable nesting habitat will also be reduced. We would also like to know what the current levels and distribution of cheatgrass are on these 2 allotments. If livestock grazing is increased over much of these allotments, what is the expected increase in cheatgrass as well? How would an increase in cheatgrass affect sage grouse habitat quality? It appears that the agency has been implementing various programs to improve sage grouse habitat, such as removing juniper trees. So why would the agency then implement projects (increased livestock grazing) that will be counterproductive to improving sage grouse habitat?5. Increasing grazing with livestock on these 2 allotments will be detrimental for many land birds, both migrants and permanent residents; the rationale for reducing habitat for these landbirds needs to be fully disclosed to the public, including how these habitat reductions adhere to the Migratory Bird Treaty Act (MBTA). Land birds in North America have experienced a loss of roughly 3 billion birds since the mid-1970s (Rosenberg et al. 2019); the authors warn of a fauna collapse unless these declines are addressed. For the land area affected by the 2 grazing allotments for the

Showalter project, there are a potential 62 bird species characteristic of arid lands, 56.5% that are in decline. Id. The habitat in the Showalter project area is largely shrub steppe and grassland. There are a number of sensitive bird species, in addition to the sage grouse, that may occur in this project area, species that would be harmed by increases in livestock grazing. These include Birds of Conservation Concern for Region 16 (Southern Rocki89es and Colorado Plateau, or also the adjacent Great Basin region, # 9). Some species of conservation concern also include the Utah Partners in Flight Priority Species, and sensitive species identified by the Utah Natural Heritage Program. Examples of these species and their sensitivity to grazing are provided below. The Northern Harrier is noted to be highly sensitive to grazing (Martin and Finch 1995). This species is a BCC for the Great Basin Region. The long-billed curlew is noted to be highly sensitive to grazing (Martin and Finch 1995). This species is a sensitive species for the state of Utah, and a Priority species for the Utah Partners in Flight. The short-eared owl is noted to be sensitive to grazing (Martin and Finch 1995). This species is a BDD, and a sensitive species for the state of Utah. Although grazing impacts are not clear, livestock grazing could result in trampling of burrows used by burrowing owls. This species is a sensitive species for the state of Utah. The Showalter Project BE identifies the Brewer's sparrow as a species of concern that is present in the project area. Martin and Finch (1995) state that this species is adversely impacted by grazing. While not a species of conservation concern, the brown-headed cowbird is strongly positively affected by grazing (Martin and Finch 1995); this species is responsible for reduction of nesting success for a significant number of western bird avifauna. Id. Although grazing impacts are not clear, livestock grazing could result in trampling of burrows used by pygmy rabbits. This species is a sensitive species for the state of Utah, and a sensitive species for the Intermountain Region of the Forest Service.

Livestock overuse and weed invasions are identified as important factors contributing to degradation of sagebrush habitat (Vertebrate Information Compiled by the Utah Natural Heritage Program). The Utah prairie dog is a threatened species classified by the USFWS. Impacts of grazing can be adverse based on livestock removal and/or competition for crucial nutritious, succulent plants that provide moist vegetation throughout the summer; colonies without such vegetation can be decimated by drought; higher moisture content in the vegetation allow greater population density (Vertebrate Information Compiled by the Utah Natural Heritage Program). Martin and Finch (1995) provide recommendations for livestock grazing in shrub-steppe habitats. These include first to significantly reduce or exclude livestock grazing from shrubsteppe habitat, one benefit being increased vegetation cover for protection of nest sites; these areas could be protected areas for avifauna. Second, restore perennial bunch grasses, as many species depend upon these seed resource. Third, avoid fragmentation and water developments in important habitats for species of conservation concern. Fourth, avoid conservation of shrub[shy]steppe habitats to non-native grasses, and restore areas where this has done back to shrubsteppe habitats. Fifth, determine methods for recovering soil cryptograms to increase soil moisture and seedling germination, reduce soil erosion, and enhance productivity. And sixth, initiate long-term research to help understand the direct and indirect effects of grazing on shrubsteppe avifauna, including how livestock affects the distribution of the brown-headed cowbird. The recommendations by Martin and Finch (1995) to remove livestock grazing from many areas of shrubsteppe habitat is consistent with the recommendations of Bock et al. (1993) to establish a system of ungrazed reserves for wildlife, to benefit those wildlife species that have a low tolerance for grazing. The size of these reserves should be at least 2500 acres. Id. These areas would be roughly 20% of the landscape that has been leased for grazing, and would be permanently set aside from grazing use by livestock.6. The Dixie National Forest needs to include action alternatives for the 2 grazing allotments where the Showalter water project is planned, alternatives that would promote multiple use and wildlife species of conservation concern by promoting wildlife habitat within large portions (at least acres each) the allotments, instead of managing this landscape only for private livestock. The 2 allotments in the Showalter Project Area are clearly a perfect area to begin a progressive new management approach, whereby wildlife has at least equal value as private livestock. We believe that at least 20% or more of these 2 allotments could be removed from livestock grazing, since water availability is already limiting grazing. These removed areas would be permanently set aside for wildlife reserves. Various alternatives could include a different number and location of these reserves. The cost of these alternatives needs to be compared to the cost of increasing livestock management. These alternatives are needed in order for the agency to comply with the National Environmental Policy Act (NEPA) to develop action alternatives that address public issues. Regard, Sara Johnson Director, Native Ecosystems Council, PO Box 125, Willow Creek, MT 59760; ph ne 406-579-3286;

sijohnsonkoa@yahoo.com.Mike Garrity, Director, Alliance for the Wild Rockies, PO Box SOS, Helena, MT 59624; phone 406-459-5936; wildrockies@gmail.com.Jason Christensen, Director, Yellowstone to Uintas Connection, PO Box 363, Paris, ID 83261; phone 435-881-6917; jason@yellowstoneuintas.org.Kristine Akland, Center for Biological Diversity, PO Box 7274, Missoula, MT 59807; phone 406-544-9863; kakland@biologicaldiversity.org.