Data Submitted (UTC 11): 7/14/2022 6:00:00 AM

First name: Michael Last name: Garrity

Organization: Alliance For The Wild Rockies

Title: Executive Director Comments: July 14, 2022

Ken Coffin, District Ranger

Custer Gallatin National Forest

Beartooth Ranger District

6811 US Highway 212

Red Lodge, MT 59068

RE: Scoping comments on the proposed Red Lodge Mountain Fuels Project

Dear Ranger Coffin,

Please accept these comments on the scoping notice for the proposed Red Lodge Mountain Fuels Project July 14, 2022Ken Coffin, District RangerCuster Gallatin National ForestBeartooth Ranger DistrictRE: Scoping comments on the proposed Red Lodge MountainFuels ProjectDear Ranger Coffin,Please accept these comments on the scoping notice for the proposed Red Lodge Mountain Fuels Project fromme on behalf of the Alliance for the Wild Rockies, Yellowstoneto Uintas Connection, and Montana Ecosystems DefenseCouncil, and Native Ecosystems Council. We will referto this group as (Alliance). The Forest Service must complete a full environmental impactstatement (EIS) for this Project because the scope of the Project will likely have a significant individual and cumulativeimpact on the environment. Alliance has reviewedthe statutory and regulatory requirements governing NationalForest Management projects, as well as the relevantcase law, and compiled a check-list of issues that must be included in the EIS for the Project in order for the ForestService[rsquo]s analysis to comply with the law. Following thelist of necessary elements, Alliance has also included ageneral narrative discussion on possible impacts of the Project, with accompanying citations to the relevant scientificliterature. These references should be disclosed and discussed in the EIS for the Project.I. NECESSARY ELEMENTS FOR PROJECT EIS:A. Disclose all Custer Gallatin National Forest Plan requirementsfor logging/burning projects and explain howthe Project complies with them; B. Will this project comply with forest plan big game hidingcover standards?C. Disclose the acreages of past, current, and reasonablyforeseeable logging, grazing, and road building activities within the Project area; D. Solicit and disclose comments from the Montana Department of Fish, Wildlife, and Parks regarding the impactof the Project on wildlife habitat; E. Solicit and disclose comments from the Montana Departmentof Environmental Quality regarding the impact of the Project on water quality; F. Disclose the biologic or endangered species with potentialand/or actual habitat in the Project area;G. Disclose the biological evaluation for the sensitive andmanagement indicator species with potential and/or actualhabitat in the Project area; H. Disclose the snag densities in the Project area, and themethod used to determine those

densities;I. Disclose the current, during-project, and post-projectroad densities in the Project area;J. Disclose the Custer Gallatin National Forest[rsquo]s record of compliance with state best management practices regardingstream sedimentation from ground-disturbing managementactivities; K. Disclose the Custer Gallatin National Forest[rsquo]s record of compliance with its monitoring requirements as set forth inits Forest Plan;L. Disclose the Custer Gallatin National Forest[rsquo]s record of compliance with the additional monitoring requirements setforth in previous DN/FONSIs and RODs on the Custer GallatinNational Forest;M. Disclose the results of the field surveys for threatened, endangered, sensitive, and rare plants in each of the proposedunits; N. Please formally consult with the US FWS on the impacts of this project on candidate, proposed, threatened, orendangered species and plants; O. Please consult with the US FWS on the impacts of this project on lynx critical habitat and potential lynx criticalhabitat; P. Will this Project exacerbate existing noxious weed infestations and start new infestations?Q. Do unlogged old growth forest store more carbon thanthe wood products that would be removed from the sameforest in a logging operation?R. What is the cumulative effect of National Forest loggingon U.S. carbon stores? How many acres of National Forestlands are logged every year? How much carbon is lost bythat logging?S. Is this Project consistent with [Idquo]research recommendations(Krankina and Harmon 2006) for protecting carbongains against the potential impacts of future climatechange? That study recommends [Idquo][i]ncreasing or maintainingthe forest area by avoiding deforestation,[rdquo] and statesthat [Idquo]protecting forest from logging or clearing offer immediatebenefits via prevented emissions.[rdquo] That study also states that [Idquo][w]hen the initial condition of land is a productive old-growth forest, the conversion to forest plantations with a short harvestrotation can have the opposite effect lasting for manydecades [rdquo] The study does state that thinning may have abeneficial effect to stabilize the forest and avoid standreplacingwildfire, but the study never defines thinning. Inthis Project, where much of the logging is clear-cutting andincludes removing large trees without any diameter limit, and where the removal of small diameter surface and ladderfuels is an unfunded mandate to the tune of over \$3 milliondollars, it is dubious whether the prescriptions are the sametype of [Idquo]thinning[rdquo] envisioned in Krankina and Harmon(2006).T. Please list each visual quality standard that applies toeach unit and disclose whether each unit meets its respectivevisual quality standard. A failure to comply with visualquality Forest Plan standards violates NFMA.U. For the visual quality standard analysis please define[Idquo]ground vegetation,[rdquo] i.e. what age are the trees, [Idquo]restablishes,[rdquo][Idquo]short-term,[rdquo] [Idquo]longer term,[rdquo] and [Idquo]revegetate.[rdquo]V. Please disclose whether you have conducted surveys in the Project area for this Project for wolverines, pine martins,northern goshawk and lynx, grizzly bears as requiredby the Forest Plan.W. Please disclose how often the Project area has been surveyedfor wolverines, pine martins, northern goshawks,grizzly bears and lynx.X. Is it impossible for a wolverines, pine martins, northerngoshawks, grizzly bears and lynx to inhabit the Projectarea?Y. Would the habitat be better for wolverines, pine martins, northern goshawks, monarch butterflies, grizzly bears andlynx if roads were removed in the Project area?Z. What is the U.S. FWS position on the impacts of this Project on wolverines, whitebark pine, monarch butterflies, grizzly bears and lynx? Have you conducted ESA consultation?If not please do so.AA. Please provide us with the full BA for the wolverines, whitebark pine, monarch butterflies, pine martins, northerngoshawks, grizzly bears and lynx.BB. What is wrong with uniform forest conditions?CC. Has the beetle kill contributed to a diverse landscape?DD. Why are you trying to exclude stand replacement fireswhen these fires help aspen and whitebark pine?EE. Please disclose what is the best available science forrestoration of whitebark pine.FF. Disclose the level of current noxious weed infestationsin the Project area and the cause of those infestations; GG. Disclose the impact of the Project on noxious weed infestations and native plant communities; HH. Disclose the amount of detrimental soil disturbance that currently exists in each proposed unit from previouslogging and grazing activities; II. Disclose the expected amount of detrimental soil disturbancein each unit after ground disturbance and prior to anyproposed mitigation/remediation; JJ. Disclose the expected amount of detrimental soil disturbancein each unit after proposed mitigation/ remediation; KK. Disclose the analytical data that supports proposed soilmitigation/ remediation measures; LL. Disclose the timeline for implementation; MM. Disclose the funding source for noncommercial activities proposed; NN. Disclose the current level of old growth forest in eachthird order drainage in the Project area; OO. Disclose the method used to quantify old growth forestacreages and its rate of error based upon field review of itspredictions; PP. Disclose the historic levels of mature and old growthforest in the Project area; QQ. Disclose the level of mature and old growth forestnecessary to sustain viable populations of

dependentwildlife species in the area; RR. Disclose the amount of mature and old growth forestthat will remain after implementation:SS. Disclose the amount of current habitat for old growthand mature forest dependent species in the Project area;TT. Disclose the amount of habitat for old growth and matureforest dependent species that will remain after Projectimplementation; UU. Disclose the method used to model old growth andmature forest dependent wildlife habitat acreages and itsrate of error based upon field review of its predictions; VV. Disclose the amount of big game (moose and elk) hidingcover, winter range, and security currently available in the area; WW. Disclose the amount of big game (moose and elk) hiding cover, winter range, and security during Project implementation; XX. Disclose the amount of big game (moose and elk) hidingcover, winter range, and security after implementation; YY. Disclose the method used to determine big game hidingcover, winter range, and security, and its rate of error asdetermined by field review; please demonstrated compliancewith the Montana Elk-Logging Study Recommendation or Road Management as required by the Forest Plan. The Road Management requirement states: [Idquo] Where maintenanceof elk habitat quality and security is an important consideration, open road densities should be held to a lowlevel, and every open road should be carefully evaluated todetermine the possible consequences for elk.[rdquo] Pleasedemonstrate compliance with the requirement to hold openroad densities to a low level.ZZ. Disclose and address the concerns expressed by the IDTeam in the draft Five-Year Review of the Forest Plan regardingthe failure to monitor population trends of MIS, theinadequacy of the Forest Plan old growthstandard, and the failure to compile data to establish a reliableinventory of sensitive species on the Forest; AAA. Disclose the actions being taken to reduce fuels onprivate lands adjacent to the Project area and how those activities/or lack thereof will impact the efficacy of the activities proposed for this Project; BBB. Disclose the efficacy of the proposed activities at reducing wildfire risk and severity in the Project area in thefuture, including a two-year, five- year, ten-year, and 20-year projection; CCC. Disclose when and how the Custer Galaltin National Forest made the decision to suppress natural wildfire in the Project area and replace natural fire with logging and prescribed burning; DDD. Disclose the cumulative impacts on the Forest- widelevel of the Custer Galaltin National Forest[rsquo]s policydecision to replace natural fire with logging and prescribedburning; EEE. Disclose how Project complies with the RoadlessRule;FFF. Disclose the impact of climate change on the efficacyof the proposed treatments;GGG. Disclose the impact of the proposed project on the carbon storage potential of the area; HHH. Disclose the baseline condition, and expected sedimentationduring and after activities, for all streams in thearea:III. Disclose maps of the area that show the following elements: 1. Past, current, and reasonably foreseeable logging units inthe Project area; 2. Past, current, and reasonably foreseeablegrazing allotments in the Project area;3. Density of human residences within 1.5 miles from the Project unit boundaries;4. Hiding cover in the Project area according to the ForestPlan definition;5. Old growth forest in the Project area;6. Big game security areas;7. Moose winter range; There is a huge problem with the 2006 Travel Plan, and the Biological Opinion. There is no discussion as to how thisamendment will be applied to the Project, even though it isForest Plan direction. There also is no discussion as to thelack of consistency between the 2006 Travel Plan roadsanalysis for grizzly bears with more recent improvements. The public cannot determine what OMARD and TMARD terms and conditions apply to the project area. In addition, the bear analysis units for grizzly bear management and the Travel Plan areas are different, making it even more difficult for the public to determine how management of grizzly bears is being planned and implemented. These problemsneed to be addressed in a scoping document. If the agencyexpects this Forest Plan direction to [Idquo]be gone[rdquo] with delistingbefore the project is implemented, this also needs to bedisclosed to the public. The best available science requires specific numeric limitson total motorized route density and open motorized routedensity, and requires a specific numeric minimum of secure(i.e. roadless) habitat in grizzly bear habitat. Will theproject have these requirements? Cumulative effects mustinclude State and private activities, therefore, please includestate and private lands in your analysis of road densityand secure habitat. The RLM Project Description Form states the Purpose and Need as: Today, the Red Lodge Mountain Ski Area and communityof Red Lodge occur immediately down drainage of the Cascade burn. Existing vegetation conditions in the lowerWest Fork Rock Creek mirror conditions that burned in 2008. The high fuel load in the project area could generatea wildfire event comparable to the Cascade Fire, likelyburning the ski area and surrounding developments, and impacting the community of Red Lodge. For Red LodgeMountain, likely impacts include the destruction of infrastructureand forest canopy needed to preserve wintersnow cover within the ski area. If Red Lodge Mountain, the largest employer in Carbon County, ceased operation, it would

create dire financial consequences for the townof Red Lodge and Carbon County. Other likely impactsinclude extensive loss of structures within the community of Red Lodge and surrounding developments. [bull] Reduce the risk of high-intensity wildfire within andadjacent to Red Lodge Mountain Ski area[bull] Reduce the risk of highintensity wildfire adjacent to the community of Red Lodge and surrounding developments [bull] Provide a safer environment to conduct wildfire suppressionoperations[bull] Provide more suppression options to wildfire managersA new study by Dominick A. DellaSala et al.found that reviewed 1500 wildfires between1984 and 2014 found that actively managedforests had the highest level of fire severity. Please find DellaSala et al. attached. Whilethose forests in protected areas burned, onaverage, had the lowest level of fire severity. In other words, the best way to reduce severefires is to protect the land as wilderness,not [Idquo]manage[rdquo] it, therefore the purposeand need of the project is not valid. Please include an alternative that has no commercial logging outside the Home IgnitionZone (100 feet from a home) and nonew road construction. Hitt and Frissell showed that over 65% ofwaters that were rated as having high aquaticbiological integrity were found withinwilderness-containing subwatersheds. Trombulak and Frissell concluded that the presence of roads in an area is associated with negative effects for both terrestrial andaquatic ecosystems including changes inspecies composition and population size.(USFS 2000, pages 3-80-81)."High integrity [forests] contain the greatestproportion of high forest, aquatic, and hydrologicintegrity of all are dominated bywilderness and roadless areas [and] are theleast altered by management. Low integrity[forests have] likely been altered by pastmanagement are extensively roaded andhave little wilderness." (USFS 1996a,pages 108, 115 and 116)."Much of this [overly dense forest] conditionoccurs in areas of high road densitywhere the large, shade-intolerant, insect-, disease- and fire-resistant species have beenharvested over the past 20 to 30 years. Firesin unroaded areas are not as severe as in theroaded areas because of less surface fuel, and after fires at least some of the largetrees survive to produce seed that regeneratesthe area. Many of the fires in the unroadedareas produce a forest structure thatis consistent with the fire regime, while thefires in the roaded areas commonly producea forest structure that is not in sync with thefire regime. In general, the effects of wildfiresin these areas are much lower and donot result in the chronic sediment deliveryhazards exhibited in areas that have been roaded." (USFS 1997a, pages 281-282). "Increasing road density is correlated withdeclining aquatic habitat conditions and aquatic integrity An intensive review of theliterature concludes that increases in sedimentation[of streams] are unavoidable evenusing the most cautious roadingmethods." (USFS 1996b, page 105). "This study suggests the general trend forthe entire Columbia River basin is toward aloss in pool habitat on managed lands and stable or improving conditions on unmanagedlands." (McIntosh et al 1994). "The data suggest that unmanaged systemsmay be more structurally intact (i.e., coarsewoody debris, habitat diversity, riparianvegetation), allowing a positive interaction with the stream processes (i.e.,peak flows, sediment routing) that shape andmaintain high-quality fish habitat overtime." (McIntosh et al 1994)."Although precise, quantifiable relationshipsbetween long- term trends in fish abundanceand land-use practices are difficult to obtain (Bisson et al. 1992), the body of literatureconcludes that land-use practices cause thesimplification of fish habitat.[rdquo] (McIntosh etal 1994)."Land management activities that contributed to the forest health problem (i.e., selective harvest and fire suppression) havehad an equal or greater effect on aquaticecosystems. If we are to restore and maintain high qualityfish habitat, then protecting and restoring aquatic and terrestrial ecosystems is essential." (McIntosh et al 1994). "Native fishes are most typically extirpatedfrom waters that have been heavily modifiedby human activity, where native fish assemblageshave already been depleted, disrupted,or stressed []." (Moyle et al 1996). "Restoration should be focused where minimalinvestment can maintain the greatestarea of high-quality habitat anddiverse aquatic biota. Few completely roadless, large watersheds remain in the PacificNorthwest, but those that continue relativelyundisturbed are critical in sustaining sensitivenative species and important ecosystemprocesses (Sedell, et. al 1990; Moyle and Sato 1991; Williams 1991; McIntosh et al.1994; Frissell and Bayles 1996). With few exceptions, even the least disturbed basins have aroad network and history of logging or otherhuman disturbance that greatly magnifiesthe risk of deteriorating riverine habitats inthe watershed." (Frissell undated)."[A]llocate all unroaded areas greater than 1,000 acres as Strongholds for the production of clean water, aquatic and ripariandependentspecies. Many unroaded areas areisolated, relatively small, and most are notprotected from road construction and subsequenttimber harvest, even in steep areas. Thus, immediate protection through allocation of the unroaded areas to the production of clean water, aquatic and riparian-dependentresources is necessary to preventdegradation of this high quality habitat and should not be postponed." (USFWS et al 1995). "Because of fire

suppression, timber harvest, roads, and white pine blister rust, the moistforest PVG has experienced great changessince settlement of the project area by Euroamericans. Vast amounts of old foresthave converted to mid seral stages."(USFS/BLM 2000, page 4-58)."Old forests have declined substantially inthe dry forest PVG []. In general, forestsshowing the most change are those that havebeen roaded and harvested. Large trees, snags, and coarse woody debris are all belowhistorical levels in these areas.[rdquo](USFS/BLM 2000, page 4-65)."High road densities and their locations within watersheds are typically correlated with areas of higher watershed sensitivity toerosion and sediment transport to streams. Road density also is correlated with the distributionand spread of exotic annual grasses, noxious weeds, and other exotic plants. Furthermore, high road densities are correlatedwith areas that have few large snagsand few large trees that are resistant to bothfire and infestation of insects and disease. Lastly, high road densities are correlated with areas that have relatively high risk of fire occurrence (from humancaused fires), high hazard ground fuels, andhigh tree mortality." (USFS 1996b, page 85, parenthesis in original). In simpler terms, the Forest Service hasfound that there is no way to build an environmentallybenign road and that roads andlogging have caused greater damage to forestecosystems than has the suppression of wildfire alone. These findings indicate that roadless areas in general will take adequatecare of themselves if left alone and unmanaged, and that concerted reductions in roaddensities in already roaded areas are absolutelynecessary. Indeed, other studies conducted by the ForestService indicate that efforts to [Idquo]manage"our way out of the problem are likely tomake things worse. By "expanding our effortsin timber harvests to minimize the risksof large fire, we risk expanding what arewell established negative effects on streamsand native salmonids. The perpetuation or expansion of existing road networks and other activities might well erode the abilityof [fish] populations to respond to the effectsof large scale storms and other disturbancesthat we clearly cannotchange." (Reiman et al 1997). The following quotes demonstrate that tryingto restore lower severity fire regimes andforests through logging and other managementactivities may make the situationworse, compared to allowing nature toreestablish its own equilibrium. These statements are found in IldguolAn Assessment of Ecosystem Components in the Interior Columbia Basin and Portions of the Klamathand Great Basins, Volume 3 (ICBEMP):[Idquo]Since past timber harvest activities havecontributed to degradation in aquatic ecosystems, emphasis on timber harvest and thinningto restore more natural forests and fireregimes represent risks of extending the problems of the past.[rdquo] (ICBEMP page1340).[ldquo]Proposed efforts to reduce fuel loads and stand densities often involve mechanical treatment and the use of prescribed fire. Such activities are not without their owndrawbacks -- long-term negative effects of timber harvest activities on aquatic ecosystems are well documented (see this chapter; Henjum and others 1994; Meehan 1991; Salo and Cundy 1987). [rdguo] (ICBEMP page1340).[Idquo]Attempts to minimize the risk of large firesby expanding timber harvest risks expandingthe well-established negative effects onaquatic systems as well. The perpetuation or expansion of existing road networks andother activities might well erode the abilityof populations to respond to the effects offire and large storms and other disturbancesthat we cannot predict or control (NationalResearch Council 1996). (ICBEMP page1342).[Idquo]Watersheds that support healthy populationsmay be at greater risk through disruption of watershed processes and degradation of habitats caused by intensive management than through the effects of fire.[rdquo] (ICBMPpage 1342)."Timber harvest, through its effects on foreststructure, local microclimate, and fuels accumulation, has increased fire severity morethan any other recent human activity. Ifnot accompanied by adequate reduction offuels, logging (including salvage of deadand dying trees) increases fire hazard by increasing surface dead fuels and changing the local microclimate. Fire intensity and expected fire spread rates thus increase locally and in areas adjacent to harvest". (USFS1996c, pages 4-61-72). "Logged areas generally showed a strong associationwith increased rate of spread andflame length, thereby suggesting that treeharvesting could affect the potential fire behaviorwithin landscapes...As a by-productof clearcutting, thinning, and other tree-removalactivities, activity fuels create bothshort- and long-term fire hazards to ecosystems. Even though these hazards diminishover time, their influence on fire behaviorcan linger for up to 30 years in dry forestecosystems of eastern Oregon and Washington".(Huff et al 1995). The answer, therefore, is not to try managingour way out of this situation with more roadsand timber harvest/ management. In summary:[bull] Roads have adverse effects on aquaticecosystems. They facilitate timber saleswhich can reduce riparian cover,increase water temperatures, decrease recruitmentof coarse woody debris, and disruptthe hydrologic regime of watersheds by changing the timing and quantity of runoff. Roads themselves disrupt hydrologic processes by intercepting and diverting flowand contributing fine sediment into thestream channels which clogs

spawninggravels. High water temperatures and finesediment degrade native fish spawning habitat. A new study by Dominick A. DellaSala et al.found that reviewed 1500 wildfires between 1984 and 2014 found that actively managedforests had the highest level of fire severity. Please find DellaSala et al. attached. Whilethose forests in protected areas burned, onaverage, had the lowest level of fire severity. In other words, the best way to reduce severefires is to protect the land as wilderness,not [ldquo]manage[rdquo] it, therefore the purposeand need of the project is not valid. "High integrity [forests] contain the greatest proportion of high forest, aquatic, and hydrologicintegrity of all are dominated bywilderness and roadless areas [and] are theleast altered by management. Low integrity[forests have] likely been altered by pastmanagement are extensively roaded andhave little wilderness." (USFS 1996a, pages108, 115 and 116)."Much of this [overly dense forest] conditionoccurs in areas of high road densitywhere the large, shade-intolerant, insect-, disease- and fire-resistant species have beenharvested over the past 20 to 30 years. Firesin unroaded areas are not as severe as in theroaded areas because of less surface fuel, and after fires at least some of the large treessurvive to produce seed that regenerates thearea. Many of the fires in the unroaded areasproduce a forest structure that is consistentwith the fire regime, while the fires in theroaded areas commonly produce a foreststructure that is not in sync with the fireregime. In general, the effects of wildfires inthese areas are much lower and do not resultin the chronic sediment delivery hazards exhibited in areas that have been roaded." (USFS 1997a, pages 281-282). "Increasing road density is correlated withdeclining aquatic habitat conditions and aquatic integrity An intensive review of theliterature concludes that increases in sedimentation[of streams] are unavoidable evenusing the most cautious roadingmethods." (USFS 1996b, page 105). "The data suggest that unmanaged systemsmay be more structurally intact (i.e., coarsewoody debris, habitat diversity, riparianvegetation), allowing a positiveinteraction with the stream processes (i.e., peak flows, sediment routing) that shape andmaintain highquality fish habitat overtime." (McIntosh et al 1994)."Although precise, quantifiable relationshipsbetween longterm trends in fish abundanceand land-use practices are difficult to obtain (Bisson et al. 1992), the body of literatureconcludes that land-use practices cause the simplification of fish habitat.[rdquo] (McIntosh etal 1994)."Land management activities that contributed to the forest health problem (i.e., selective harvest and fire suppression) havehad an equal or greater effect on aquaticecosystems. If we are to restore and maintain high qualityfish habitat, then protecting and restoringaquatic and terrestrial ecosystems is essential."(McIntosh et al 1994). "Native fishes are most typically extirpated from waters that have been heavily modified by human activity, where native fish assemblageshave already been depleted, disrupted,or stressed []." (Moyle et al 1996). "Restoration should be focused where minimalinvestment can maintain the greatestarea of high-quality habitat anddiverse aquatic biota. Few completely roadless, large watersheds remain in the PacificNorthwest, but those that continue relativelyundisturbed are critical in sustaining sensitivenative species and important ecosystemprocesses (Sedell, et. al 1990; Moyle and Sato 1991; Williams 1991; McIntosh et al.1994; Frissell and Bayles 1996). With fewexceptions, even the least disturbed basinshave a road network and history of loggingor other human disturbance that greatlymagnifies the risk of deteriorating riverinehabitats in thewatershed." (Frissell undated)."[A]llocate all unroaded areas greater than1,000 acres as Strongholds for the production of clean water, aquatic and riparian-dependentspecies. Many unroaded areas areisolated, relatively small, and most are notprotected from road construction and subsequenttimber harvest, even in steep areas. Thus, immediate protection through allocation of the unroaded areas to the production of clean water, aguatic and ripariandependentresources is necessary to preventdegradation of this high quality habitat and should not be postponed." (USFWS et al1995). "Because of fire suppression, timber harvest, roads, and white pine blister rust, the moistforest PVG has experienced great changessince settlement of the project area by Euroamericans. Vast amounts of old foresthave converted to mid seral stages."(USFS/BLM 2000, page 4-58)."Old forests have declined substantially inthe dry forest PVG []. In general, forestsshowing the most change are those that havebeen roaded and harvested. Large trees, snags, and coarse woody debris are all belowhistorical levels in these areas.[rdquo](USFS/BLM 2000, page 4-65)."High road densities and their locationswithin watersheds are typically correlated with areas of higher watershed sensitivity toerosion and sediment transport to streams. Road density also is correlated with the distributionand spread of exotic annual grasses, noxious weeds, and other exotic plants. Furthermore, high road densities are correlated with areas that have few large snagsand few large trees that are resistant to bothfire and infestation of insects and disease. Lastly, high road densities are correlatedwith areas that have relatively high risk offire occurrence (from human caused fires), high hazard

ground fuels, and high tree mortality."(USFS 1996b, page 85, parenthesisin original).In simpler terms, the Forest Service hasfound that there is no way to build an environmentallybenign road and that roads and logging have caused greater damage to forestecosystems than has the suppression of wildfire alone. These findings indicate thatroadless areas in general will take adequatecare of themselves if left alone and unmanaged, and that concerted reductions in roaddensities in already roaded areas are absolutelynecessary. Indeed, other studies conducted by the ForestService indicate that efforts to [Idquo]manage"our way out of the problem are likely tomake things worse. By "expanding our effortsin timber harvests to minimize the risksof large fire, we risk expanding what arewell established negative effects on streamsand native salmonids. The perpetuation orexpansion of existing road networks andother activities might well erode the abilityof [fish] populations to respond to the effectsof large scale storms and other disturbancesthat we clearly cannotchange." (Reiman et al 1997). The following quotes demonstrate that tryingto restore lower severity fire regimes and forests through logging and other managementactivities may make the situationworse, compared to allowing nature toreestablish its own equilibrium. Thesestatements are found in [Idquo]An Assessment of Ecosystem Components in the Interior ColumbiaBasin and Portions of the Klamathand Great Basins, Volume 3 (ICBEMP):[Idquo]Since past timber harvest activities havecontributed to degradation in aquatic ecosystems, emphasis on timber harvest and thinningto restore more natural forests and fireregimes represent risks of extending theproblems of the past.[rdquo] (ICBEMP page1340).[ldquo]Proposed efforts to reduce fuel loads andstand densities often involve mechanicaltreatment and the use of prescribed fire. Such activities are not without their owndrawbacks -- longterm negative effects oftimber harvest activities on aquatic ecosystemsare well documented (see this chapter; Henjum and others 1994; Meehan 1991; Salo and Cundy 1987). [rdquo] (ICBEMP page1340).[Idquo]Species like bull trout that are associated with cold, high elevation forests have probablypersisted in landscapes that werestrongly influenced by low frequency, highseverity fire regimes. In an evolutionarysense, many native fishes are likely well acquaintedwith large, stand-replacing fires, Irdguol (ICBEMP page 1341).[Idquo]Attempts to minimize the risk of large firesby expanding timber harvest risks expandingthe well-established negative effects onaquatic systems as well. The perpetuation or expansion of existing road networks andother activities might well erode the abilityof populations to respond to the effects offire and large storms and other disturbancesthat we cannot predict or control (NationalResearch Council 1996). (ICBEMP page1342).[Idquo]Watersheds that support healthy populationsmay be at greater risk through disruptionof watershed processes and degradation of habitats caused by intensive managementthan through the effects of fire.[rdquo] (ICBMPpage 1342)."Timber harvest, through its effects on foreststructure, local microclimate, and fuels accumulation, has increased fire severity morethan any other recent human activity. If notaccompanied by adequate reduction of fuels, logging (including salvage of dead and dyingtrees) increases fire hazard by increasingsurface dead fuels and changing the localmicroclimate. Fire intensity and expectedfire spread rates thus increase locally and inareas adjacent to harvest". (USFS 1996c,pages 4-61-72). "Logged areas generally showed a strong association with increased rate of spread and flame length, thereby suggesting that treeharvesting could affect the potential fire behaviorwithin landscapes...As a by-productof clearcutting, thinning, and other tree-removalactivities, activity fuels create bothshort- and long-term fire hazards to ecosystems. Even though these hazards diminishover time, their influence on fire behaviorcan linger for up to 30 years in dry forestecosystems of eastern Oregon and Washington".(Huff et al 1995).The answer, therefore, is not to try managingour way out of this situation with more roadsand timber harvest/ management. In summary:[bull] Roads have adverse effects on aquaticecosystems. They facilitate timber saleswhich can reduce riparian cover,increase water temperatures, decrease recruitmentof coarse woody debris, and disruptthe hydrologic regime of watersheds by changing the timing and quantity of runoff. Roads themselves disrupt hydrologic processes by intercepting and diverting flowand contributing fine sediment into thestream channels which clogs spawninggravels. High water temperatures and finesediment degrade native fish spawning habitat.In [Idquo]Fire Ecology in Rocky Mountain Landscapes[rdquo] by William Baker, Dr. Baker writes on page 435, [ldquo] ...a prescribedfire regime that is too frequent can reduce species diversity (Laughlin and Grace 2006) and favor invasivespecies (M.A. Moritz and Odion 2004). Fire that is entirelylow severity in ecosystems that historically experiencesome high-severity fire may not favor germination of firedependentspecies (M.A. Moritiz and Odion 2004) or providehabitat key animals (Smucker, Hutto, and Steele2005).[rdguo] Baker continues on page 436: [Idquo]Fire rotations equalthe average mean fire interval across a landscape and areappropriate intervals at

which individual points or thewhole landscape is burned. Composite fire intervals underestimatemean fire interval and fire rotation (chap 5) and should not be used as prescribed burning intervals as this would lead to too much fire and would likely lead to adverselyaf- fect biological diversity (Laughlin and Grace2006).[rdquo]Please find (Laughlin and Grace 2006) attached.Dr. Baker estimates the high severity fire rotation to be 135-280 years for lodgepole pine forests. (See page 162.).Baker writes on page 457-458 of Fire Ecology in RockyMountain Landscapes:[Idquo]Fire rotation has been estimated as about 275 years in theRock- ies as a whole since 1980 and about 247 years in thenorthern Rockies over the last century, and both figures arenear the middle between the low (140 years) and high (328years) estimates for fire rotation for the Rockies under the HRV (chap. 10). These estimates suggest the since Euro-American settlement, fire control and other activities mayhave reduced fire somewhat in particular places, but a general syndrome of fire exclusion is lacking. Fire exclusionalso does not accurately characterize the effects of landusers on fire or match the pattern of change in area burnedat the state level over the last century (fig 10.9). In contrast, fluctuation in drought linked to atmospheric conditions appearto match many state-level patterns in burned area overthe last century. Land uses that also match fluctuations includelogging, livestock grazing, roads and development, which have generally increased flammability and ignitionat a time when the climate is warming and more fire iscom- ing.[rdquo]Schoennagel et al (2004) states: [Idquo]High-elevation subalpineforests in the Rocky Mountains typify ecosystems that experienceinfrequent, high-severity crown fires []... Themost extensive subalpine forest types are composed of Engelmannspruce (Picea engelmannii), sub- alpine fir (Abieslasiocarpa), and lodgepole pine (Pinus contorta), all thinbarkedtrees easily killed by fire. Extensive stand-replacingfires occurred historically at long intervals (i.e., one tomany centuries) in subalpine forests, typically in association with infrequent high-pres- sure blocking systems thatpromote extremely dry regional climate pat-terns.[rdquo] Pleasefind Schoennagel et al (2004) attached. Schoennagel et al (2004) states: [Idquo]it is unlikely that the shortperiod of fire exclusion has significantly altered the longfire intervals in subalpine forests. Furthermore, large, intensefires burning under dry conditions are very difficult, if not impossible, to suppress, and such fires account for themajority of area burned in subalpine forests. Schoennagel et al (2004) states: [Idquo]Moreover, there is noconsistent re-lationship between time elapsed since the lastfire and fuel abun- dance in subalpine forests, further underminingthe idea that years of fire suppression havecaused unnatural fuel buildup in this forestzone.[rdquo]Schoennagel et al (2004) states: IldauolNo evidence suggests thatspruceIndashl fir or lodgepole pine forests have experienced substantialshifts in stand structure over recent decades as a resultof fire suppression. Overall, variation in cli-mate ratherthan in fuels appears to exert the largest influence on thesize, timing, and se-verity of fires in sub-alpine forests []. We conclude that large, infrequent stand replacing fires are[Isquo]business as usual[rsquo] in this forest type, not an artifact of firesuppression.[rdquo].Schoennagel et al (2004) states: [ldquo]Contrary to popular opinion,previous fire suppression, which was consistently effective from about 1950 through 1972, had only a minimal effect on the large fire event in 1988. Reconstruction of historicalfires indicates that similar large, high-severity firesalso occurred in the early 1700s. Given the historical rangeof variability of fire regimes in high-elevation subalpineforests, fire behavior in Yellowstone during 1988, althoughsevere, was neither unusual nor surprising.[rdquo]Schoennagel et al. (2004) states: [ldquo]Mechanical fuel reductionin sub-alpine forests would not represent a restorationtreatment but rather a departure from the natural range ofvariability in stand structure.[rdquo]Schoennagel et al (2004) states: [Idquo]Given the behavior of firein Yellowstone in 1988, fuel reduction projects probablywill not substantially reduce the frequency, size, or severity of wildfires under ex-treme weather conditions.[rdquo]Schoennagel et al (2004) states: [ldquo]The Yellow-stone fires in1988 revealed that variation in fuel conditions, as measuredby stand age and density, had only minimal influence onfire behavior. Therefore, we expect fuel- reduction treatments in high-elevation forests to be generally unsuccessfulin reducing fire frequency, severity, and size, given theoverriding importance of extreme climate in controlling fireregimes in this zone. Thinning also will not re-store subalpineforests, because they were dense historically andhave not changed significantly in response to fire suppression. Thus, fuel- reduction ef- forts in most Rocky Mountainsubalpine forests probably would not effectively mitigatethe fire hazard, and these efforts may create new ecological problems by moving the forest structure out-side thehis- toric range of variability.[rdquo]Please find Schoennagel et al (2004) attached. The NEPA requires a [Idquo]hard look[rdquo] at climate issues, including cumulative effects of the [Idquo] treatments [rdquo] in the proposed project when added to the heat, drought, wind and otherimpacts associated with in- creased climate risk. Regeneration/Restocking failure

following wildfire, prescribed fireand/or mechanical tree-killing has not been analyzed ordisclosed. There is a considerable body of science that suggeststhat regeneration following fire is increasingly problematic.NEPA requires disclosure of impact on [Idquo]the human environment.[rdquo]Climate risk presents important adverse impactson cultural, economic, environmental, and social aspects of the human environment. [ndash] people, jobs, and the economy [ndash]adjacent to and near the project area. Challenges in predictingresponses of individual tree species to climate are a resultof species competing under a never-before-seen climateregime [ndash] one forests may not have experienced before either. In an uncertain future of rapid change and abrupt, unforeseentransitions, adjustments in management approaches will be necessary and some actions will fail. However, it isincreasingly evident that the greatest risk is posed by continuing to implement strategies inconsistent with and notinformed by current understanding of our novel future....Achievable future conditions as a framework for guidingforest conservation and management, Forest Ecology and Management 360 (2016) 80[ndash]96, S.W. Golladay et al.(Please, find attached)Stands are at risk of going from forest to non-forest, evenwithout the added risk of [Idquo]management[rdquo] as proposed in theproject area. The project is currently is violation of NEPA,NFMA, and the APA.ESA regulations mandate that [Idquo][r]einitiation of formal consultationis required ... (b) If new information reveals effects of the action thatmay affect listed species ... in a manner or to an extent not previously considered . . . [rdquo] 50 C.F.R.[sect]402.16(b); see Alliance for the Wild Rockies v. USDA,772 F.3d 592,601 (9thCir.2014). The grizzly bear is an ESA-listed threatened species that ispresent on the Forest. Grizzly bears [Idquo]are known to occur[rdquo]in the Project area. The Project is within the Rock Creek [Idquo]Bear Analysis Unit,[rdquo]which is a unit that the Interagency Grizzly Bear StudyTeam deems to be [Idquo]biologically suitable and socially acceptableareas for grizzly bear occupancy[rdquo] outside of the Yellowstone Grizzly Bear Recovery Zone. The Grizzly Bear Recovery Plan states that roading, logging, and grazing are competitive uses of grizzly bear habitatand that [Idquo][r]oads probably pose the mostimminent threat to grizzly habitat today. Irdguol The Project authorizes 2100 acres of commercial logging, noncommercial burning and tree removal.USFS[rsquo]s remapping and redefining of [ldquo]lynx habitat[rdquo] requiresa stand alone NEPA analysis and ESA consultation; this was not done. In 2016, the Forest Service chose to remap lynx habitat inthe Forest, thereby removing Lynx Amendment protectionson a significant amount of area within the Custer NationalForest. There is no NEPA analysis for the 2016 remapping, eitherin a stand-alone format, or a cumulative landscape scalewithin the analysis for the Project, Please do this NEPAanalysis. The Forest Service Irsquols remapping of lynx habitat on the Custer National Forest constitutes a major federal actionunder NEPA because it is a document prepared by theagency that guides or prescribes uses of federal resources, upon which future agency actions will be based. The newmapping categorizes thousands of acres of lynx habitat outof existence and thereby paves the way for future projectsto authorize logging and other activities in those areas, evenif those activities are prohibited under the Lynx Amendment. Accordingly, the Forest Service must prepare NEPA analysisfor the decision to remap lynx habitat on the Custer NationalForest and remove protections for over 117,000 acresof lynx habitat. Please disclose the wildland urban interface delineation andopen road density in the Project EIS.1.If the Forest Service did not conduct NEPA for the Carbon County Pre-Disaster Mitigation Plan/CommunityWildfire Protection Plan (PDM/CWPP), please immediatelystart that NEPA process.2.Please provide a map showing the Carbon County Pre-Disaster Mitigation Plan/Community Wildfire ProtectionPlan (PDM/CWPP) Wildland Urban Interface (WUI)boundary and the locations of all homes in comparison to the project area.3.If the Forest Service did not conduct NEPA for thePDM/CWPP Wildland Urban Interface (WUI) boundary, please disclose the cumulative effect of the Red LodgeMountain Fuels project EIS to avoid illegally tiering to anon-NEPA document. Specifically analyze the decisionto prioritize mechanical, human-designed, somewhat arbitrarytreatments as a replacement for naturally-occurringfire.4.Did the Forest Service conduct ESA consultation forthe Carbon County Pre-Disaster Mitigation Plan/CommunityWildfire Protection Plan?5.How will the decreased elk security and thermalcover affect wolverines? Please formally consult withthe US FWS on the impact of this project on wolverinessince they are now a proposed species6. Do unlogged old growth forests store more carbonthan the wood products that would be removed from thesame forest in a logging operation?7. How much more carbon would the project area absorbevery year if the no action alternative is chosen versusthe preferred alternative?8. What is the cumulative effect of National Forest loggingon U.S. carbon stores? How many acres of NationalForest lands are logged every year? How much carbonis lost by that logging?9. Is this Project consistent with [Idquo]research recommendations(Krankina and Harmon 2006) for protecting carbongains

against the potential impacts of future climatechange? That study recommends [Idquo][i]ncreasing or maintainingthe forest area by avoiding deforestation, [rdquo] and states that [ldquo] protecting forest from logging or clearing offerimmediate benefits via prevented emissions.[rdquo]10.Please disclose the last time the Project area was surveyedfor whitebark pine, monarch butterflies, wolverines,pine martins, northern goshawk, grizzly bears andlynx.11.Please disclose how often the Project area has beensurveyed for whitebark pine, wolverines, monarch butterflies, pine martins, northern goshawks, grizzly bearsand lynx.12. Would the habitat be better for whitebark pine, wolverines, monarch butterflies, pine martins, northerngoshawks, grizzly bears and lynx if roads were removed in the Project area?13. What is the U.S. FWS position on the impacts of this Project on whitebark pine, monarch butterflies, wolverines, grizzly bears and lynx? Have you conducted ESAconsultation on whitebark pine, monarch butterflies, wolverines, grizzly bears and lynx?14. Please provide us with the full BA for the whitebarkpine, wolverines, Monarch butterflies, grizzly bears andlynx.15.How will the Forest Service that closures are effectivewhen they haven[rsquo]t been in the past?16.How often will the closures be monitored to be surethey are effective? Please include monitoring reports forthe effectiveness of road closures for the past 10 years.17. How will the Forest Service ensure that illegal roadsor trails are not being built?18. Please disclose how many road closures violationswere there in the Beartooth Ranger District in the last 5years? The recurring problem of road closure failures underminesthe foundation of the Forest Plan[rsquo]s wildlife securitystandards, which relies on these road closures toachieve certain densities of open and total roads both insideand outside the Recovery Zone. The agencies mustaddress this problem and its impacts in an updated ESAconsultation for the Forest Plan and this project. Roads pose a threat to big game and grizzly bears becauseroads provide humans with access into big gameand grizzly bear habitat, which leads to direct bear mortalityfrom accidental shootings and intentional poachings. Big game flee onto private lands during huntingseason. Human access also leads to indirect bear mortalityby creating circumstances in which bears become habituatedto human food and are later killed by wildlifemanagers. Human access also results in indirect mortality by displacing grizzly bears from good habitat into areasthat provide sub-optimal habitat conditions. Displacement may have long term effects: [Idquo] Females whohave learned to avoid roads may also teach their cubs to avoid roads. In this way, learned avoidance behavior canpersist for several generations of bears before they againutilize habitat associated with closed roads.[rdquo] Both openand closed roads displace grizzly bears: grizzlies avoidedroaded areas even where existing roads were officially closed to public use. Females with cubs remained primarily in high, rocky, marginal habitat far from roads. Avoidance behavior bybears of illegal vehicular traffic, foot traffic, and/or authorizeduse behind road closures may account for thelack of use of areas near roads by female grizzly bears inthis area. This research demonstrated that a significant portion of the habitat in the study area apparently remainedunused by female grizzlies for several years. Since adult females are the most important segment of the population, this lack of use of both open-roaded and closed-roaded areas is significant to the population. In addition to having a significant impact on female grizzlybears, displacement may also negatively impact thesurvival rates of grizzly cubs: [Idquo]survivorship of the offspringof females that lived in unroaded, high elevationhabitat was lower than that recorded in other study areasin the [Northern Continental Divide Ecosystem]. The majority of this mortality was due to natural factors related to the dangers of living in steep, rocky habitats. This isimportant in that the effects of road avoidance may resultnot only in higher mortality along roads and in avoidanceof and lack of use of the resources along roads, but in thesurvival of young when their mothers are forced to live inless favorable areas away from roads. Thank you for your time and consideration. Sincerely yours, Mike Garrity, Executive Director Alliance for the Wild Rockies And for Sara Johnson, Director Native Ecosystems CouncilAnd forSteve Kelly, DirectorMontana Ecosystems Defense CouncilAnd forJason L. Christensen [ndash] DirectorYellowstone to Uintas Connection