

1 Introduction

+ 2 Material and methods

3 Results

+ 3.1 Company figures

+ 4 Discussion and conclusion

Acknowledgements

References

Silva Fennica vol. 54 no. 2 article id 10211 | 2020 | Research article

Gernot Erber , Raffaele Spinelli

Timber extraction by cable yarding on flat and wet terrain: a survey of cable yarding experience

Erber G., Spinelli R. (2020). Timber extraction by cable yarding on flat and wet terrain: a survey of cable yarder manufacturers. <https://doi.org/10.14214/sf.10211>

Highlights

- Survey of all European cable yarder manufacturers on flat-terrain yarding
- Manufacturers are frequently contacted concerning flat-terrain yarding
- Forest resource inaccessibility, regulatory and environmental considerations are most important motivations
- Lack of clearance, tree stability and installation costs are major challenges
- Mobile, self-anchoring tail spar is considered a chief adaptation
- Cost-competitiveness with ground-based systems cannot be achieved without subsidies
- Increasing environmental awareness and climate change present opportunity to expand flat-terrain cable yarding.

Abstract

Cable yarding is a general solution for load handling on sites not accessible to ground-based machinery, and is typically associated with primarily be found on soft or wet soils, most frequently encountered in Central and Northern European countries. Today, changed environmental circumstances provide an unprecedented opportunity to the actual implementation of cable yarding on flat terrain in commercial operations. The study goal was to evaluate the use and adaption of cable yarding technology on flat terrain. European manufacturers of cable yarding technology were identified, challenges, adaptation potential, future potential and main hurdles for the expansion of cable yarding on flat terrain. Almost all manufacturers of cable yarding technology solutions, primarily from Germany. Temporal or permanent inaccessibility, regulatory or environmental reasons were the main reasons for the lack of use of cable yarding technology. Installation was considered particularly challenging (clearance, stable anchoring). Potential adaptations included higher tensioning forces, increased cable diameter and increased cable length.

Keywords

forest soils; soil compaction; logging equipment; sensitive soils

Author Info (View)

Received 18 June 2019 Accepted 20 February 2020 Published 4 March 2020

Views 116728

Available at <https://doi.org/10.14214/sf.10211> | Download PDF

1 Introduction

Forest management, and especially timber harvesting, can have large impacts on soils due to the ec disturbance and compaction are the effects of heavy machine traffic during ground-based timber ex hamper regeneration and cause significant yield losses (Thompson et al. 1998; Grulouis 2007; Gebau amelioration of compacted soils is a long-term process and it is unknown if a complete recovery can Therefore, methods for removing timber with less damage to both residual vegetation and the soil a erosion or impassable due to wet and soft soils (Thompson et al. 1998; Worrell et al. 2010). On flat be encountered in mire, swamp and floodplain forests, as well as the large share of boreal forest gr

The issue of soft and wet terrain has become increasingly urgent, and for two main reasons. Enviror decreasing the tolerance for soil disturbance (Abbas et al. 2018), and global warming has reduced tl which has been a solution to traffic on soft and wet terrain up to now (Mohtashami et al. 2017). In t winter, when the soil was frozen solid and could support heavy loads with minimum damage: today, required for the soil to freeze, or the cold season is much shorter than before, thus reducing the wir based harvesting (Goltsev and Lopatin 2013; Daniel et al. 2018). In Finland, Lehtonen et al. (2019) period of frozen soil conditions will have decreased by one month, and by the end of the century ma altogether. Such problems are compounded by a third factor: the increasing size and weight of grou attempt to boost productivity (Nordfjell et al. 2019).

Cable yarding is generally associated with steep terrain; however, it is rather a general solution to lo traffic (Samset 1985). In the Alps, where most modern yarder developments originated (Bont and H common steep slope harvesting technique. Today, hundreds of cable-yarding contractors are active i Austria, Germany, Italy and Switzerland (Spinelli et al. 2013).

The gentler mode of operation with regard to soils is considered cable yarding's outstanding advanta and wet sites (LeDoux and Baumgras 1990; Stokes and Schilling 1997; Thompson et al. 1998; Ower

2016) and a frequent reason for selecting this extraction technology (Biernath 2009; Biernath 2011; Hofmann 2016; Kirsten 2019). As no heavy machines traverse the terrain, soil impacts are minimized (Thompson 1996). Thompson et al. (1998) compared site disturbance after cable yarding of tree lengths and grapple skidding of tree lengths after felling with a tracked feller-buncher and motor-manual processors in Minnesota. Cable yarding disturbed a much smaller share (9%) of the total area than the forwarder (21%). Similar results were reported for two case studies in Germany's northeastern province of Mecklenburg-Vorpommern (Thompson et al. 1998; Owende et al. 2002). The lower degree of disturbance is explained by the way loads are extracted in cable yarding: partial loads are suspended in the air, so they apply little pressure to the soil. Compared to skidding by tractors, this reduces the amount of disturbance (Thompson et al. 1998; Owende et al. 2002). Causes for soil disturbance and compaction are limited to the extraction of the load, to the movement of the cable yarding machine, and to occasional dragging of the load during extraction (Thompson et al. 1998). In the segments of the yarding corridor lacking clearance, which can be avoided by intermediate supports (Thompson et al. 1998), the cable yarding machine can damage the soil. The gentle work mode enables extraction in watershed protection areas, that are not accessible to conventional extraction methods for environmental reasons (Brown and Kellogg 1996).

Advantages of cable yarding include the temporal and spatial extension of the harvesting season on frozen (Thompson et al. 1998; Kirsten 2019). In this respect, Silande (1999) reported that seasonal crew's work period to 6 to 7 months a year, resulting in low utilization rates and reduced annual production. It is suggested to extend cable yarding operations to sensitive soils in the plains during wintertime; a step that has already been taken (Biernath 2011).

However, cable yarding on flat and wet terrain presents specific challenges. Firstly, the carriage can installation of a haul-back line becomes inevitable (Thompson et al. 1998), entailing additional instal employing self-propelled carriages, which require neither main nor haul-back line. Further, carriage s (Thompson et al. 1998), which results in lower productivity. Secondly, cable yarding requires tail hol on yarding distance – intermediate supports. Trees are the preferable option for these elements (Ma not available, as trees in wet areas are prone to shallow rooting and thus easy uprooting (Thompson

Approaches to tackle these challenges include pre-rigging corridors to reduce unproductive time during artificial and/or mobile tail holds/spars to compensate for the lack of natural ones (Fraser and Robin TU Dresden 2016) and increasing tower height and skyline tension to allow for longer single spans (present means of stability (Owende et al. 2002), as in case of the Koller KX304 and KX800E (Koller & Herzog's Grizzly 400 (Herzog 2019) machines.

Introduction of cable yarding to flat and wet sites is not a new idea and it has been used intermitter Lidgerwood 1919; Ziemer 1980; Koten and Peters 1985; Meek 1997). Yarding equipment was already 1900s to move logs to the railroad line (Williams 1908; Lidgerwood 1919). Today, changed environmr unprecedented opportunity to a more wide-spread implementation of flat-terrain cable yarding in co professional journals suggest this practice has gained some traction in Central Europe (Biernath 200

2015; Biernath 2016; Kirsten 2019), and might soon expand to Eastern Europe and Fennoscandia, outperformed by more productive and less costly ground-based systems.

Therefore, the goal of this study was to collect cable yarder manufacturer's experience regarding the technology on flat terrain. For their role at the top of the technology supply chain, manufacturers are what conditions their equipment is used (or can be used) on flat terrain. Obviously, they will also know received) specific adaptations for optimum performance in flat terrain. To this end, the authors investigated cable yarding technology, with just three exceptions. Three sub-goals were formulated: 1) to investigate customers working on flat terrain, 2) to explore their opinion concerning the particular challenges of they see adaption potential and 3) to learn about their view of cable yarding's future potential on flat terrain expanding its use under these conditions.

2 Material and methods

2.1 Sample

The survey was conducted between February and April 2019, and it was geographically limited to manufacturers with headquarters in a European country. Manufacturers qualified if their product range included at least one model designed for the installation of a cableway system. Simple winches designed for dragging loads on the ground were not considered eligible. Manufacturers offering only carriages were excluded from the survey.

2.2 Interviews

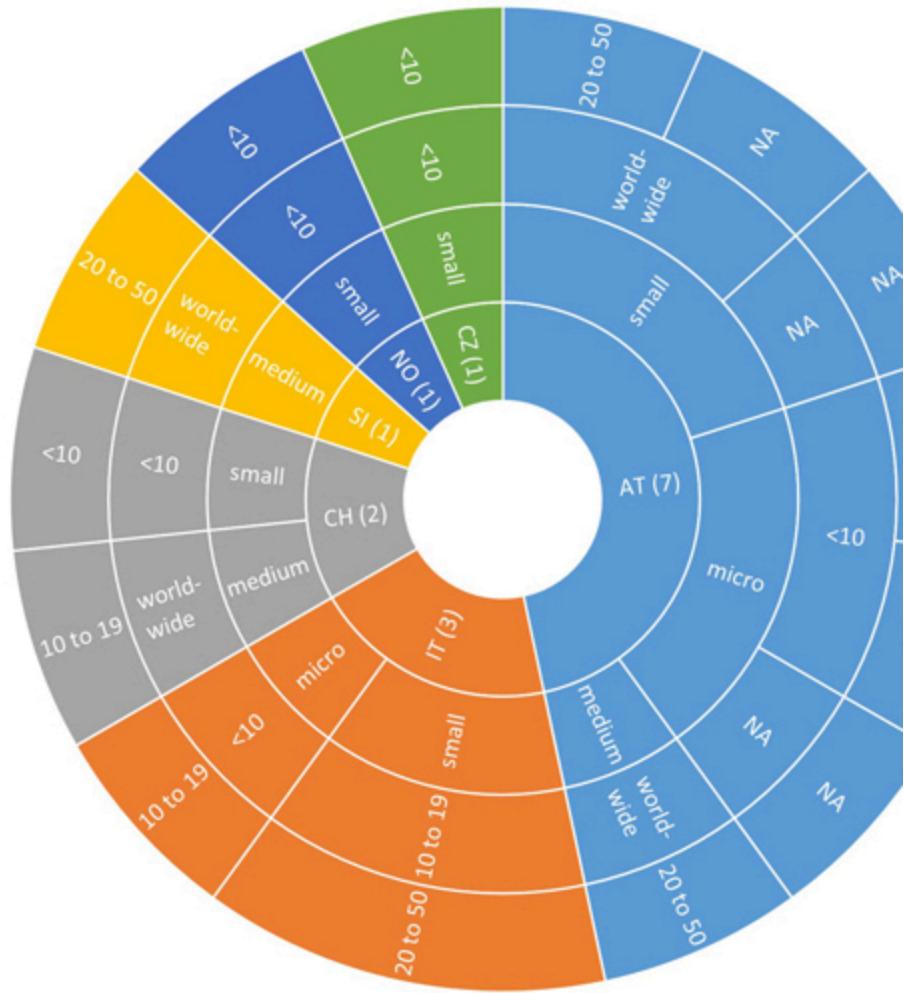
The authors developed a simple and concise interview form, including 13 questions ordered within five thematic groups. The first four questions could be answered by either yes or no and were followed by an open sub-question in case the answer was yes. The fifth thematic group of questions was to further elaborate on the respective topics. General comments and opinions were collected and used for the categorization and analysis. Altogether, 18 manufacturers were contacted via e-mail or telephone and 15 manufacturers participated in the survey. To the authors knowledge, this number is equivalent to a full inventory of European manufacturers of cable yarding equipment.

Table 1. Interview form displaying thematic groups, question ID, question content and category. Thematic groups and question level (letters for the thematic group, one digit numbers for questions, double digit numbers for sub-questions).

Thematic group	ID	Question/Sub-question
Company figures	A1	Company establishment year
	A2	Number of employees (SME classification; European Commission, 2017)
	A3	Market size (number of countries)
	A4	Number of produced yarding equipment per year
Customer experience	B1	Has your company ever received requests from customers concerning cable yarding equipment for use in flat and/or wet terrain conditions?
	B11	If yes, from which country/countries?
	B2	Does your company offer cable yarding equipment that has been specifically adapted to flat and/or wet terrain conditions?

	B21	If yes, what have these adaptions been?
	B3	Are you aware of customers that are using your equipment for cable yarding operations on flat and/or wet terrain?
	B31	If yes, do you know what their primary motivations to use this system are (in order of perceived priority)?
Specific challenges and adaption potential	C1	From your point of view, what are the specific challenges of cable yarding on flat and/or wet terrain concerning installation, with particular respect to anchors, intermediate supports, tail hold trees and clearance?
	C2	From your point of view, what are the specific challenges of cable yarding on flat and/or wet terrain concerning operation, with particular respect to productivity and cost?
	C3	From your point of view, what are the specific challenges of cable yarding on flat and/or wet terrain concerning other areas?
	C4	Do you think cable yarding equipment could be specifically adapted to better suit for flat and/or wet terrain conditions?
	C41	If yes, what would these adaptions be?
Future potential	D1	Do you think that the demand for cable yarding operations on flat terrain will increase as a result of altered operation conditions (climate change and society's environmental awareness)?
	D2	What do you think are the main hurdles to a further expansion of cable yarding in flat terrain?

2.3 Analysis


Interview notes were immediately entered into Microsoft Word as individual files, corresponding to each interview. These interview files were then read by the same lead researchers, who looked for commonly voiced opinions under the same conceptual category. This categorized data was entered into a single master data base. In line with the goal statement, the study's primary aim was to collect cable yarder manufacturer's experience with the use of cable yarding technology on flat terrain. For this reason and due to the type of collected data, analysis focused on qualitative data and no further statistical analysis was conducted.

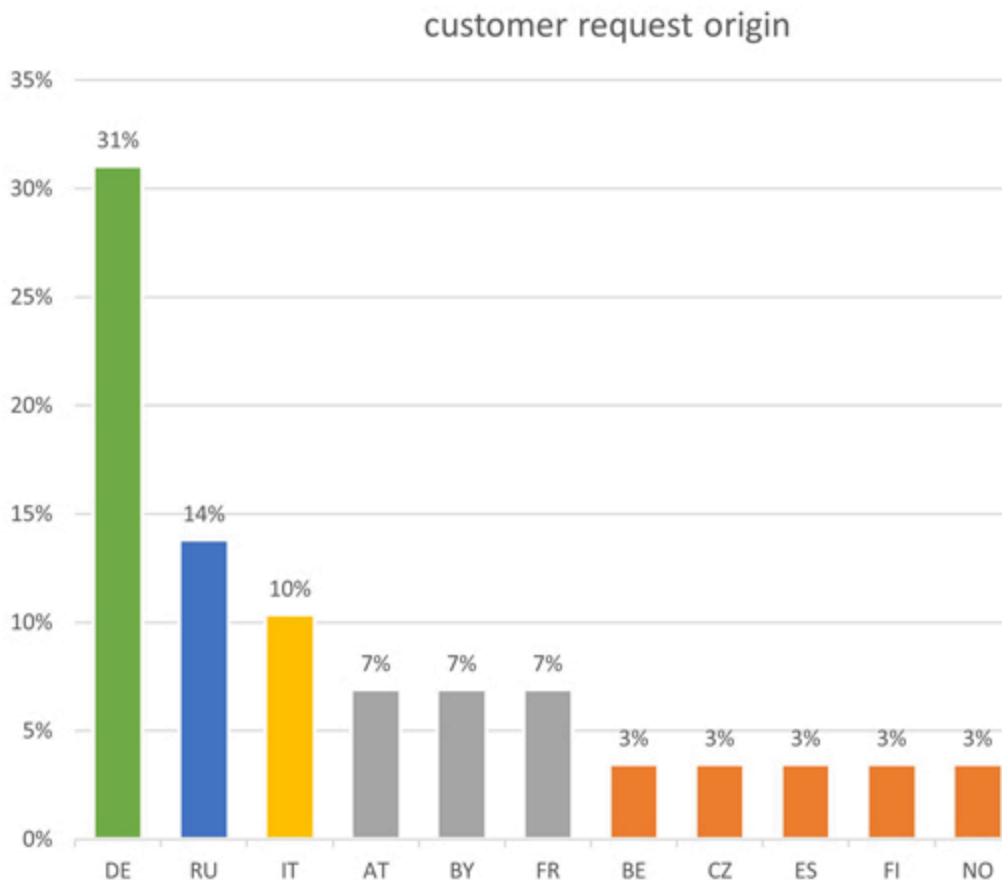
3 Results

3.1 Company figures

The final database contained 15 observations, because three out of the 18 eligible manufacturers did not respond to the survey. This corresponds to a positive response rate above 80%. While originating from six different countries, the manufacturers were concentrated in the alpine region (13 in Austria, Italy, Slovenia and Switzerland). The other two were located in Central Europe (Czech Republic and Norway).

company country, size, market and annual product

Fig. 1. Company country and number of companies per country in bracket (innermost circle; AT = Austria, IT = Italy, CH = Switzerland), size (second circle from centre; according to SME classification of the European Commission (2017)), market size (third circle from the centre) and average annual number of produced pieces of cable yarding equipment (outermost circle). Willingness to answer either not be provided by the companies or they were not willing to share


The production of cable yarding equipment is mostly with micro (27%) and small (53%) enterprises belonged to the medium enterprise category. However, the number of employees working for a man output of cable yarding equipment, as most manufacturers have a wider portfolio of products – and

Five of the companies declared to operate “worldwide” (20 or more countries), while market size was them, with two companies selling in 10 to 19 countries, and six companies selling in less than 10 countries did not answer this question.

Five of the respondents stated that they produced 20 to 50 pieces of cable yarding equipment (tow Two reported a production between 10 and 19 pieces, while further four declared that they produced companies did not want to answer this question.

3.2 Customer experience

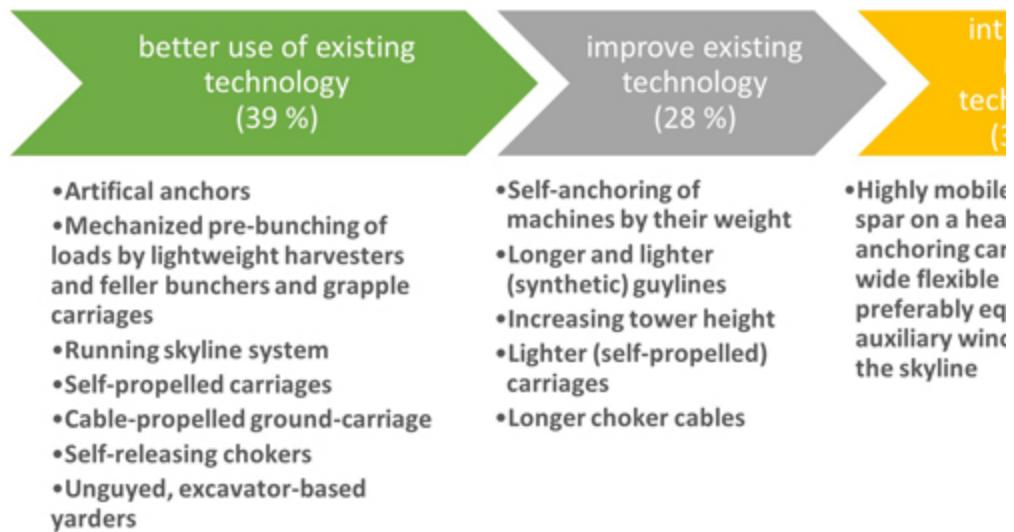
All but one company declared they had received customer requests concerning cable yarding on flat company specified that the requests concerned flat but not wet terrain, while all the others indicated subject of the requests. Only one respondent stated that they've never been contacted concerning s that most requests came from Germany (named 9 times out of 29 mentioned countries) (Fig. 2). Ru while Austria, France and Belarus received two nominations each. One nomination each was recorded Romania, Spain and Switzerland.

Eleven of the companies stated that they had already adapted their machinery to flat and wet terrain, adapt it based on customer demand. Four companies stated that they did not offer specific adaptations.

Three major groups of adaptations were identified from a total of 13 mentioned ones. The first group (23%) focused on adapting the machine (23%) to improve the mobility of the winch assembly on difficult terrain, such as the use of locomotion devices (tracked base machines). A second group (54%) covered adaptations of the winch independent of slope and to increase line lift. These included three-drum-systems (skyline, mainline (endless loop) systems for sled winches (winches mounted on a sled-like structure and generally used for extended towers, artificial supports, self-propelled carriages, twin-carriage systems ([Studier](#) and [Binl](#) 2010) for the extraction of whole trees and longer chokers for pre-concentrated loads. Finally, a third group of adaptations (13%) focused on the use of

supporting, excavator-based yarder concept as a solution to overcome the limitations in anchor availability in wet terrain.

Ten of the companies were aware of customers employing their equipment on flat and wet terrain or reported of non-forestry customers using their machines in flat terrain for construction work. One company reported of both sectors. Only two declared that they were not aware of any customer activities in flat-terrain or in wet terrain.


Out of a total of 22, permanent (wet or rock strewn terrain) or temporarily (shortened frost periods) machinery was the most frequently (45%) named motivation for employing cable yarding on flat and wet terrain. The second most important group of reasons (32%) included restrictions to ground-based conservation or watershed protection measures, as well as governmental interventions, i.e. subsidies achieved by cable yarding. The smallest group (23%) reported that the implementation of cable yarding was driven by environmental considerations on otherwise accessible areas.

3.3 Specific challenges and adaptation potential

Flat-terrain challenges were collected and analyzed separately for installation and operation. Concerns indicated that limited terrain clearance was the most important challenge when deploying cable yarding equipment. Half of these further stated that this lack of clearance results in shortened span lengths (75 m to 200 m). The second most important challenge was the increased cost of installation. The third most important challenge included restriction to single spans and increased skyline tension. However, at least one company mentioned that the use of single spans is not always the best solution. Increased skyline tension has drawbacks in the form of reduced payload capacity, higher strain on the anchors and an increased risk of anchor failure. A further challenge mentioned by seven manufacturers was the absence of suitable anchor points for cable yarding. Respondents further indicated that the lack of suitable anchors is often caused by the absence of trees in flat-terrain stands (smaller trees, hindrance by the crown), after forest damage (trees have been blown down) or on agricultural land (permanent absence of trees) – all situations being especially frequent when operating in flat-terrain. On the other hand, some respondents pointed out that the installation of artificial anchors might be easier in flat-terrain than in steep terrain. The installation of artificial anchors requires less space and machine accessibility is better than generally found in steep terrain. That would be an advantage when operating in flat-terrain. The installation of artificial anchors can be done in order to bury deadman anchors or to act as an anchor itself. Concern about challenges encountered in flat-terrain was higher than for those related to installation, and it was difficult to identify a clear pattern or focus. Three reasons for challenges in flat-terrain were mentioned: the need for more space, the need for more time and the need for more effort during operation. The challenges mentioned during operation on flat and wet terrain may be close to (or slightly above) those mentioned for downhill yarding. The challenges mentioned during operation on flat and wet terrain were more similar to those mentioned for downhill yarding than for uphill yarding. Experience of the yarding crew, efficient pre-concentration and the use of a corridor were considered important success factors. If mentioned at all, high operating costs were listed as a challenge. The purchase price of dedicated flat-terrain cable yarding equipment was mentioned as a challenge.

All but two companies stated that they saw potential for the specific adaptation of cable yarding equipment. Proposed solutions were classified into three groups: better use of already existing technology, actualization of existing technology and new, purpose-built devices (Fig. 3).

approaches to better adapt cable yarding to flat terrain

Fig. 3. Major groups of approaches to better adapt cable yarding to flat terrain and examples of

Out of a total of 18, seven (39%) were classified as new ways of using already existing technologies such as deadman or machine anchors was advocated by several respondents as a solution to overcome the challenge of flat terrain. One respondent offered self-supporting, excavator-based yarder technology stating that this system is superior to other systems in terms of lower capital costs, faster and easier installation and lower workforce requirements. A further approach to overcome the challenge of flat terrain was to employ a wheeled platform ("ground-carriage") similar to a forwarders bunk, which operates a "skyline" that is suspended between the harvester, which directly cuts or lifts the logs onto the bunk, and the truck equipped with a crane for unloading (Konrad 2020). One respondent considered tail spar stability to be a challenge, as the tail spar is exposed to the wind. Two respondents suggested that tail spar stability could be improved by using lighter materials. Other respondents suggested using self-releasing chokers, as they would exert less strain on the tail spar. Pre-bunching of loads before yarding was suggested as a way to increase yarding productivity in general. To achieve this effect, respondents favoured mechanized felling and recommended that the felling should be done by light tracked harvesters or feller-bunchers.

One respondent pointed out that the advantage of bunched loads should be exploited further by employing self-propelled carriages on flat terrain. Self-propelled carriages were considered to offer increased efficiency at low capital cost. A further respondent suggested that self-propelled carriages should be designed for such conditions from the very start. Furthermore, a more widespread adoption of self-propelled carriages was suggested by one respondent, while another demonstrated a very hands-on attitude by suggesting waterproof footwear.

Increasing the height of the tower was the most frequently named adaptation among adaptations to flat terrain, with 28% of the mentioned solutions. One respondent argued that longer guylines would allow a more effective anchoring of the yarder, as the upward pulling force on the trees (or stumps) used as anchors would be reduced. Another respondent suggested that the use of lattice mast type intermediate structures instead of sled-like platforms was suggested. Self-anchoring of cable yarders by their own weight was seen as a challenge. By reducing the weight of carriages, their payload could be increased, particularly that of the yarder, which is a quite cumbersome structure up to now. Finally, longer choker cables were suggested to be able to

The third group comprised of variations of one main innovation, which was a mobile artificial tail spar challenges related to lack of clearance and stability at once. Firstly, the tail hold should be of a height eliminating the need for intermediate supports and thus reducing set up time. The respondents referred to "tail height", but did not specify what this might mean in terms of meters. However, they made it clear that the heights and that this approach would require improvements in anchoring. Placing the spar on a heavy machine merely the machine's own weight was considered the preferable solution. A tracked base machine with operation mode would be to move parallel to the cable yarder from corridor to corridor on connecting roads. The machine should be equipped with an auxiliary winch to pull out the skyline. One respondent considered tracks (swamp tracks) as the optimal solution, because this vehicle would be able to free itself if stuck.

3.4 Future potential and main hurdles

Most survey respondents demonstrated either a positive (47%) or neutral (33%) attitude towards timber extraction by cable yarding on flat and wet terrain. The potential for cable yarding on flat and wet terrain may increase in the near future. Only a fifth of the respondents were of the opinion that cable yarding would remain a (stable) niche business. Increased environmental awareness of both the public and forest industry stakeholders as forest managers and harvesting contractors are expected to prevent extensive soil disturbance. Forest owners have already imposed restrictions on extraction technology, often in the form of prohibiting the use of cable yarders. Finally, decreased accessibility of forest resources as a result of reduced soil bearing capacity due to soil compaction and the need to access forest resources in difficult terrain to fulfill raw material demand was identified as a major obstacle to the expansion of cable yarding on flat terrain. Neutral respondents were either simply inconclusive or had a differentiated view with regard to the availability of subsidies.

About two thirds of the named obstacles to a further expansion of cable yarding on flat and wet terrain were operating costs due to complicated installation and especially in comparison to ground-based alternatives. Another concern: they stated that successful expansion may only be possible through legal restrictions on ground-based extraction methods or through subsidies in support of yarding that may offset the higher operating costs. Two manufacturers mentioned that the equipment might be too expensive to permit widespread adoption, especially among farmers. A single respondent mentioned the inefficiency and high cost due to a lack of bunching, given that machine access constraints would favor mechanized felling and the former cannot achieve a good pre-bunching of felled trees. If pre-bunching is not possible, a grapple carriage to take advantage of the bunched loads. A further respondent mentioned that cable yarding is compared to harvester and forwarder, as long as it cannot be operated safely at night.

Workforce-related hurdles comprise the second group of obstacles. All respondents in this group considered that qualified and motivated personnel experienced by the forest sector in general, and by cable yarding in particular, that flat and wet terrain was considered the least attractive: even if moving might be less tiresome on flat terrain than on hilly and muddy terrain was considered particularly unattractive. One participant indicated the construction of cable yarding roads as capable of offering easier jobs for a qualified workforce. Several respondents reported that labour skills

anticipated machine purchases. In the opinion of one respondent, this issue can only be overcome to allow operating without workers in the field.

4 Discussion and conclusions

4.1 Limitations of the study

First of all, this study represents the views and opinions of the interviewed company representatives experience, area of operation and own portfolio of products. On the other hand, most questions were checked for plausibility and consistency, which excluded gross distortions. Of course, the geographic representative of European yarding technology only: different yarding concepts developed in other areas and limitations when it comes to operation in flat terrain and if so, these additional elements are not specific experience of European manufacturers. That is especially relevant when one considers that yarding come from North America (LeDoux and Baumgras 1990; Stokes and Schilling 1997; Thompson 1998). The difference in space and time between those earlier studies and the current survey offers an opportunity to discuss the issues and the proposed solutions. The discussion that follows seems to deny any major progress in principles are concerned.

Second, some degree of subjectivity was unavoidable when the researchers categorized the open questions. Some answers were attributed to different categories than it was done here by the authors of this paper. I categorized the answers with the utmost care and after extensive discussion, whenever attribution was doubtful. Each question was taken by the same researcher, in order to guarantee the internal consistency of the dataset.

Third and final, the dataset was unbalanced concerning manufacturer characteristics, as expressed by the annual production of cable yarding equipment. As the sample size is equivalent to a full inventory, the dataset is considered representative for the European manufacturers of cable yarding equipment.

4.2 Technology

Broadly speaking, the survey indicates that: a) almost all manufacturers have received requests for cable yarding on flat and wet terrain and b) that almost all have adequate solutions available within their own product range. However, the manufacturers have developed a range of products, rather than individual items specifically designed for flat-terrain yarding. This statement, e.g. self-propelled artificial intermediate supports developed by at least two manufacturers, is true for improving off-road mobility and machine stability (Sündermann et al. 2013). This indicates that the solution is flexible enough to allow cable yarding over a wide range of different site conditions, including flat and wet terrain. The conclusion that it is a true all-terrain load-handling solution.

4.3 Market

Again, almost all manufacturers know of customers who have used or are regularly using their yards doing so – when they are known – are not exclusively related to poor bearing capacity and/or soil problems, but may also include excessive roughness (i.e. rocks) and/or the need to avoid trail blazing. Yarding on flat terrain in Germany is by far the most represented. This matches the extensive coverage found in the German literature (e.g. Biernath 2009; Biernath 2011; Schröter 2011; Haberl 2015; Biernath 2016; Kirsten 2019), research reports (Fischer et al. 2016; Hoffmann 2016; TU Dresden 2016; Teschner 2016) and thematic events, such as the KWF thematic conference (Sündermann et al. 2013). The German prevalence may be explained by an ideal combination of factors: on one hand, soft and wet terrain is well represented in Germany, especially in the Northern part. That is, countries located further south, where there is not much flat terrain available to forestry and/or where wetlands are more common. These are the countries where cable yarding is generally associated with steep terrain. Conversely, Alpine conditions in the South and more Nordic wetland conditions in the North, and that favours the use of cable yarding. At the same time, a relative wealth and a generally favourable wood market (despite the ups and downs of the market) provides the industry with additional margins for environmental compliance – that is, reinvesting some of the profits into environmental protection. In addition, there is a strong tradition for environmental awareness, which has generated a very strong emphasis on environmental protection. In this regard, all respondents indicate that the implementation of cable yarding technology in flat terrain is not a priority, with the exception of Germany included. What is more, the majority of respondents believe that flat- terrain yarding will stay the same or even decrease in the future, even if the changing climate and societal demands may cause some limited expansion.

4.4 Challenges and opportunities

There is a general agreement for what concerns the main challenges: a higher harvesting cost than equipment (financial challenge), a clearance problem due to the unfavourable terrain profile (technic qualified labor (workforce challenge).

Cost for ground-based extraction with forwarders in Europe vary between studies and with country, treatment (thinning, regeneration felling). Figures normally vary from 4 to 10 € m⁻³ (Enache et al. 2018). Extraction by cable yarding is considerably more expensive, and can exceed 20 € m⁻³ (Enach complete harvesting cost – i.e. felling, processing and extraction – figures range from 8 to 16 € m⁻³ Europe (LUKE 2019), and over 40 € m⁻³ for cable-based harvesting in the Alps (Spinelli et al. 2015). the cost of ground-based and cable-based harvesting indicates that the average contract rate is 12 € m⁻³ for cable-based operations (Spinelli et al. 2017). Considering the large disparity in unit cost extraction, it is highly unlikely that cable yarding will ever be competitive on flat terrain, even if all manufacturers were applied. However, this statement may only be valid for areas where ground-bas degrees of soil disturbance.

On the contrary, the clearance hurdle is straightforward, and refers to the disadvantages suffered with terrain, as opposed to steep terrain. In that regard, respondents agree on the challenge and on the increasing the height of the tower and the number of supports.

Finally, the shortage of qualified labor is a general challenge experienced by the forest sector worldwide. Three main reasons for labour shortage in forestry listed in a recent study from New Zealand (MPI 2018) context too. They are: (1) inability to attract new entrants in the business, (2) unattractive employment location etc.) and (3) experienced staff leaving the industry. Competition with other industries ranked Europe's Forest 2015 report (FOREST EUROPE 2015) indicates that around 30% of all people employed are 45 years old, and attracting young people to study and work in the forest sector is considered a main challenge. Making cable yarding especially hard because of the larger labour requirements of cable technology compared to other operators must station on the cutover, exposed to the elements, for hooking the loads (Stampfer et al. 2019).

Respondents offered many different and insightful suggestions to make flat-terrain yarding more efficient. New ways of employing existing technology may simply reflect a lack of imagination in deploying technology (e.g. radio controlled chokers). Others, such as reducing tail spar stress by employing a running skyline system, are limited to certain conditions only. Actually, this system has already been successfully tested by Lisland (1996) in Norway, which makes it a way to more efficiently pre-bunch loads and thus boost yarder productivity and offset installation costs (Lisland 1996; Visser and Stampfer 1998; Spinelli et al. 2019), especially in combination with a grapple. Respondents specifically asked for light tracked harvesters or feller-buncher to pre-bunch loads. Considering the tree size, the use of low-mass machinery would implicate a shorter crane reach and necessitate a tighter corridor. More corridors would be required and less volume would be harvested per corridor. More corridors would be required and probably a larger area would be impacted by traffic. Therefore, the respondent's motivation comes from soil bearing capacity considerations and from the assumption that lighter machines correspond to various implications. However, this problem could be overcome by the cutting-strip method, where the yarder travels 5 to 7 m on a cutting strip inside the stand on so-called "ghost trails" and piles the processed logs (Ovaskainen et al. 2006). On the other hand, corridor spacing could be increased beyond double the distance between felling trees by chainsaw towards the corridor in order to make them accessible to the harvester for yarding.

Taking more machines on site could speed up building of artificial anchors – or the machines could be less installation dependent on tree anchors and allowing the exact calculation of anchor resistance (Herzog 2019). Anchoring of machines has successfully been realized, usually for excavator-based machines (Herzog 2019). Height would improve cable yarding efficiency on flat terrain by eliminating or reducing the need for artificial anchors. Respondents indicated that this has been done before on customer request. Canopy height is often the limiting factor for cable yarding. Depending on tree species, site conditions and stand age, this would range between 10 m and 35 m (Wassermann 2019). The most common solution is to use a self-anchoring, canopy-height tail spar. It is envisioned to speed up installation by eliminating the need for artificial anchors and using a tree tail spar. Combined with a self-anchoring cable yarder, this would eliminate any anchoring requirement. The tail spar would have to be large and heavy, as demonstrated by a solution from Canada (Teleforest 2019), which uses masts to support the skyline. Summing up, the majority of the proposed innovations aimed to simplify operations and reduce the demand for natural anchors, intermediate supports and tail spars. Innovations to improve operations and reduce the demand for natural anchors, intermediate supports and tail spars.

bunching and improved loading and unloading practises. Finally, the Authors believe that the genera would make it possible to integrate flat-terrain and steep-terrain contracts within a company's work utilization. Most mountain operations are paused during winter due to heavy snow conditions, and tl (Silande 1999). Coming down to the lowlands for some flat-terrain yarding could then represent a us shut down (Grulais 2007).

4.5 Future scenarios

None of the respondents expects a rapid general expansion of flat-terrain cable yarding in the short this practice will gain ground over time. However, several external indicators may justify more optim high in many countries, and it keeps growing almost everywhere. Furthermore, the duration of the f every year in most regions of the globe (e.g. in Finland; Lehtonen et al. 2019), which makes it incre solutions. Manufacturers of ground-based solutions seek to lower the impact of machine traffic on s machine and soil through adapting tyre pressure, hydro-pneumatic suspension (e.g. the Forwarder2 employing wider or longer tracks (Ala-Ilomäki et al. 2011), as well as by reinforcing strip roads with routing solutions to bypass areas of very low bearing capacity. Recent developments for soft terrain forwarders or a forwarder with a rubber-tracked undercarriage (OnTrack project, OnTrack 2017). The ground-based solutions will continue to be the most efficient means to extract timber on flat terrain, balance the decline in terrain traversability. For cable yarding, some of the suggested adaptations m competitiveness on flat terrain in the near future: Acuna et al. (2011) found that bunching of trees in Raymond (2017) showed that radio-controlled grapple carriages equipped with video cameras could on slope unnecessary, while increasing productivity by 35%. However, even if all adaptions were imp likely to be restricted to areas where ground-based systems are undesirable for excessive soil distur desire for cable yarding is expressed by subsidies.

Acknowledgements

The research leading to these results was conducted as part of the TECH4EFFECT project. This project Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme (Project ID: 720757).

References

Abbas D., Di Fulvio F., Spinelli R. (2018). European and United States perspectives on forest operations in environmentally sensitive areas. *Forests* 9(1): 188–201. <https://doi.org/10.3390/forests9010188>.

Acuna M., Skinnell J., Evanson T., Mitchell R. (2011). Bunching with a self-levelling feller-buncher on steep terrain for efficient yarding. *Journal of Forest Engineering* 12(4): 521–531. http://www.crofe.com/site/assets/files/3787/07acuna_521-531.pdf. [Cited 05 Feb 2019].

Adler K. (2016). Verbundvorhaben: Entwicklung und Prototypenbau eines Seiltransportsystems für den Holztransport auf nicht befahrbaren Flächen [Development and prototype construction of a cable yarding system for timber extraction on non-trafficable, flat and wet sites]. Konrad-Zuse-Zentrum für Informationstechnik Berlin.

<http://www.gbv.de/dms/tib-ub-hannover/892780940.pdf>. [Cited 18 Jun 2019].

Ala-Ilomäki J., Högnas T., Lamminen S., Siren M. (2011). Equipping a conventional wheeled forwarder for peatland operations. *Internat*: <https://doi.org/10.1080/14942119.2011.10702599>.

Biernath D. (2009). Das ist sanfte Forstwirtschaft. [This is gentle forestry]. *Forstmaschinen-Profi* 17(9): 13–15.

Biernath D. (2011). Give me Moor! [Give me moor!]. *Forstmaschinen-Profi* 19(5): 12–14.

Biernath D. (2016). Seilkran in der Ebene? - Eben darum! [Cable yarding on flat terrain? That's why!]. *Forstmaschinen-Profi* 24(11): 1

Bont L., Heinemann H. (2012). Optimum geometric layout of a single cable road. *European Journal of Forest Research* 131: 1439–144

Brown C.G., Kellogg L.D. (1996). Harvesting economics and wood fiber utilization in a fuels reduction: a case study in eastern Oregon

Cambi M., Certini G., Neri F., Marchi E. (2015). The impact of heavy traffic on forest soils: a review. *Forest Ecology and Management* 333: <https://doi.org/10.1016/j.foreco.2014.11.022>.

Daniel J.S., Jacobs J.M., Miller H., Stoner A., Crowley J., Khalkhali M., Thomas A. (2018). Climate change: potential impacts on frost–thaw–low-volume roadways. *Road Materials and Pavement Design* 19(5): 1126–1146. <https://doi.org/10.1080/14680629.2017.1302355>.

Deutscher Landwirtschaftsverlag (2013). KWF-Thementage vom 1./2. Oktober 2013: Umweltgerechte Bewirtschaftung nasser Waldstellen [wet forest sites]. Der Wald- Allgemeine Forst Zeitschrift für Waldwirtschaft und Umweltvorsorge (AFZ) 18. 60 p. https://www.kwf-online.de/images/KWF/Wissen/Veroeffentlichungen/FTI/Archiv/2013/FTI_9-10_2013-es_final.pdf. [Cited 18 Jun 2019].

Enache A., Kühmaier M., Visser R., Stampfer K. (2016). Forestry operations in the European mountains: a study of current practices and Research 31(4): 412–427. <https://doi.org/10.1080/02827581.2015.1130849>.

European Commission (2017). User guide to the SME Definition. Publications Office of the European Union, Luxembourg. 60 p. <https://ec.europa.eu/eurostat/documents/2013857/10338373/10338373>.

FOREST EUROPE (2015). State of Europe's Forests 2015. Ministerial Conference on the Protection of Forests in Europe, Madrid, Spain <https://www.foresteurope.org/docs/fullsoef2015.pdf>. [Cited 12 Feb 2020].

FORWARDER2020 – Forwarder 2020 project (2020). <https://www.forwarder2020-project.eu/>. [Cited 06 Feb 2020].

Fraser D., Robinson D. (1998a). Excavator mobile anchoring methods. *LIRO Report* 23(4): 6 p.

Fraser D., Robinson D. (1998b). Tractor mobile anchoring methods. *LIRO Report* 23(5): 7 p.

Gebauer R., Jindřich N., Ulrich R., Martinková M. (2012). Soil compaction – impact of harvesters' and forwarders' passages on plant growth and forest management – current research. *Intech*. p. 179–196. <https://doi.org/10.5772/30962>.

Goltsev V., Lopatin E. (2013). The impact of climate change on the technical accessibility of forests in the Tikhvin District of the Leningrad Oblast. *Forestry and Forest Engineering* 24: 148–160. <https://doi.org/10.1080/19132220.2013.792150>.

Grulouis S. (2007). Cable-yarding in France: past, present and perspective. DEFOR Project Report - Task 1.1 - INTERREG IIIB SUDOE. <https://www.interreg-sudoe.eu/Content/uploads/2018/05/DEFORReport1.4.1.pdf>. [Cited 18 Jun 2019].

Haberl A. (2015). Soweit die Seile reichen. [As far the cables reach]. *Österreichische Forstzeitung* 5, Arbeit im Wald (AIW): 14.

Herzog (2019). https://www.herzog-forsttechnik.ch/wp-content/uploads/2019/08/Prospekt-Grizzly-400-Yarder_2012.pdf. [Cited 05 Sep 2019].

Kirsten H. (2019). Seilkranneinsätze auf ebenen, empfindlichen Standorten. [Cable yarding operations on flat, sensitive sites]. *Kuratorium Forsttechnische Informationen* 2: 5–9.

Koirala A., Kizha A.R., Roth B. (2017). Perceiving major problems in forest products transportation by trucks and trailers: a cross-sectional study. *Journal of Forest Engineering* 23: 23–34.

Koller (2019). <https://www.kollergmbh.com/de/kippmastgeraete/kx304>. [Cited 05 Sep 2019].

Konrad (2020). <https://www.forsttechnik.at/en/products/ground-carriage-pully.html>. [Cited 06 Feb 2020].

Koten D.E., Peters P.A. (1985). Cable yarding on environmentally sensitive areas in New York State. In: Proceedings of the 8th COFE I

LaBelle E.R., Poltorak B.J., Jaeger D. (2019). The role of brush mats in mitigating machine-induced soil disturbances: an assessment i penetration resistance. Canadian Journal of Forest Research 49(2): 164–178. <https://doi.org/10.1139/cjfr-2018-0324>.

LeDoux B.C., Baumgras J.E. (1990). Cost of wetland protection using cable logging systems. Proceedings of the 13th COFE Meeting –

Lehtonen I., Venäläinen A., Kämäräinen M., Asikainen A., Laitila J., Anttila P., Peltola H. (2019). Projected decrease in wintertime bear under a warming climate. Hydrology and Earth System Sciences 23: 1611–1631. <https://doi.org/10.5194/hess-23-1611-2019>.

Leshchinsky B., Sessions J., Wimer J. (2015). Analytical design for mobile anchor systems. International Journal of Forest Engineering <https://doi.org/10.1080/14942119.2015.1023014>.

Lidgerwood (1919). Commercial advertising of the Lidgerwood Skidder. Southern Lumberman, September 13: 77. <https://babel.hathitrust.org/cgi/pt?id=uiug.30112054681470&view=1up&seq=521>. [Cited 23 Aug 2019].

Lisland T. (1996). Use of cable systems on soft ground in Norway. Proceedings of the FAO/ECE/ILO seminar on environmentally sound Sinaia, Romania. <http://www.fao.org/3/X0622E/x0622e13.htm>. [Cited 18 Jun 2019].

LUKE (2019). Statistics database: unit costs in mechanised harvesting of roundwood by felling method.

http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/LUKE_04%20Metsa_08%20Muut_Teollisuuspuun%20korjuu%20ja%20kaukokuljetus_rid=001bc7da-70f4-47c4-a6c2-c9100d8b50db. Finnish Natural Resources Institute (LUKE). [Cited 4 Feb 2020].

Marchi E., Grigolato S., Mologni O., Scotta R., Cavalli R., Montecchio L. (2018). State of the art on the use of trees as supports and an <https://doi.org/10.3390/f9080467>.

Meek P. (1997). Preliminary trials of wood extraction by cable yarding on soft soils. Forest Engineering Research Institute of Canada, I

Mohtashami S., Eliasson L., Jansson G., Sonesson J. (2017). Influence of soil type, cartographic depth-to-water, road reinforcement ar a survey study in Sweden. Silva Fennica 51(5) article 2018. 14 p. <https://doi.org/10.14214/sf.2018>.

Moskalik T., Borz S.A., Dvořák J., Ferenčík M., Glushkov S., Muiste P., Lazdiņš A., Styranivsky O. (2017). Timber harvesting methods in E Forest Engineering 38: 231–241. <http://www.crojfe.com/site/assets/files/4083/moskalik.pdf>. [Cited 31 Oct 2019].

MPI (2019). 2019 Forestry labour requirements survey. <https://www.mpi.govt.nz/dmsdocument/33484/direct>. Ministry for Primary Ind 2020].

Mussong M., Hofmann J. (2016). Technikanpassung zur umwelt- und naturverträglichen Bewirtschaftung wiedervernässter Standorte compatible management of wet forest sites]. Green Owl Development, Berlin, Germany. 22 p.

Nordfjell T., Öhman E., Lindroos O., Ager B. (2019). The technical development of forwarders in Sweden between 1962 and 2012 and of Forest Engineering 30(1): 1–13. <https://doi.org/10.1080/14942119.2019.1591074>.

OnTrack – OnTrack Project (2017). <https://www.linkedin.com/pulse/ontrack-ontrack-project/>. [Cited 06 Feb 2020].

Ovaskainen H., Uusitalo J., Sassi T. (2006). Effect of edge trees on harvester positioning in thinning. Forest Science 52: 659–669.

Owende P.M.O., Lyons J., Haarlaa R., Peltola A., Spinelli R., Ward S.M. (2002). Operations protocol for eco-efficient wood harvesting o

Payn T. (2018). Future environmental challenges and New Zealand's planted forests. New Zealand Journal of Forestry 63: 14–20.

Proto A., Macrì G., Visser R., Harrill H., Russo D., Zimbalatti G. (2018). Factors affecting forwarding productivity. European Journal of F <https://doi.org/10.1007/s10342-017-1088-6>.

Raymond K. (2017). Steepland harvesting programme – final programme report. Ministry for Primary Industries and Forest Growers R

Richter L. (2015). Untersuchung zu Boden- und Bestandesschäden der Seilkrananlage „FlatLift“. [Investigation of soil and stand dama Technical University Dresden, Tharandt, Germany. 40 p.

Samset I. (1985). Winch and cable systems. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, The Netherlands. 539 p.

Schröter P. (2011). Mit der Seilbahn übers Moor. [Over the moor by cable yarder]. Forstmaschinen-Profi 19(11): 22–23.

Silande G. (1999). Le débardage par câble en France. Situation actuelle et perspectives. [Cable yarding in France. Current situation and perspectives].

Spinelli R., Magagnotti N., Facchinetti D. (2013). A survey of logging enterprises in the Italian Alps: firm size and type, annual product Journal of Forest Engineering 24(2): 109–120. <https://doi.org/10.1080/14942119.2013.838376>.

Spinelli R., Visser R., Thees O., Sauter H.U., Krajnc N., Riond C., Magagnotti N. (2015). Cable logging contract rates in the Alps: the ef Croatian Journal of Forest Engineering 36(2): 195–203. <http://www.crofe.com/site/assets/files/4012/spinelli.pdf>. [Cited 12 Feb 2020]

Spinelli R., Visser R., Riond C., Magagnotti N. (2017). A survey of logging contract rates in the southern European Alps. Small Scale Forestry 16: 935-948. <https://doi.org/10.1080/16828198.2017.1390500>

Spinelli R., Lombardini C., Marchi E., Aminti G. (2019). A low-investment technology for the simplified processing of energy wood from 138: 31–41. <https://doi.org/10.1007/s10342-018-1150-z>.

Stampfer K, Leitner T, Visser R. (2010). Efficiency and ergonomic benefits of using radio controlled chokers in cable yarding. Croatian http://www.crofe.com/site/assets/files/3843/01-stampfer_1-9.pdf. [Cited 18 Jun 2019].

Stokes B.J., Schilling A. (1997). Improved harvesting systems for wet sites. *Forest Ecology and Management* 90(2-3): 155-160. [https://doi.org/10.1016/S0378-1049\(96\)80020-5](https://doi.org/10.1016/S0378-1049(96)80020-5)

Studier D., Binkley V. (1974). Cable logging systems. Reprinted in 1979 by O.S.U. Book Stores Inc. Corvallis, Oregon, USA. 190 p.

Sturos J.A., Thompson M.A. (1996). Cable yarding as low-impact alternative on sensitive sites in the lake states. In: Proceedings of the Marquette, MI. p.109–116.

Teleforest (2019). <https://www.teleforest.com/>. [Cited 05 Sep 2019].

Teschner J. (2016). Die ökonomische und ökologische Beurteilung eines Kurzstreckenseilkraneneinsatzes im horizontalen Rückeverfahren [Economical and ecological evaluation of short distance horizontal cable yarding on wet sites on the Rostock heath]. BSc diploma thesis, Germany. 124 p.

Thompson M.A., Mattson J.A., Sturos J.A., Dahlman R., Blinn C.R. (1998). Case studies of cable yarding on sensitive sites in Minnesota: sustainability. Conference proceedings. p. 118–124. https://www.forestry.umn.edu/sites/forestry.umn.edu/files/cfans_asset_356674.pdf

TU Dresden (2016). Verbundvorhaben: Entwicklung und Prototypenbau eines Seilkransystems für den Holztransport auf nicht befahrbaren Flächen [Development and prototype construction of a cable yarding system for timber extraction on non-trafficable, flat and wet sites]. Bunde, Germany. 90 p. <https://doi.org/10.2314/GBV:890448337>.

Visser R., Stampfer K. (1998). Cable extraction of harvester felled thinnings: An Austrian case study. *Journal of Forest Engineering* 9:

Wassermann C., Kühmaier M., Stampfer K. (2019). Marktübersicht - Europäische Mastseilgeräte. [Market overview - European tower crane manufacturers].

Williams A.S. (1908). Logging by steam. *Journal of Forestry* 6: 1-33.

Worrell W.C., Bolding C.M., Aust M.W. (2010). Comparison of potential erosion following conventional and cable yarding timber harvests. Proceedings of the 33th COFE Meeting – June 6 to 9 2010, Auburn, AL. 8 p.

Ziemer I. (1980). Preliminary study to establish the feasibility of cable yarding in the Lake States. Final report for Cooperative Agreement Service, 410 MacInnes Drive, Houghton, MI.

Total of 70 references.

Search

Match any word

- Match all words
- Match whole string
- Include archives before 1999

Register

Click this link to register to Silva Fennica.

Log in

If you are a registered user, log in to save your selected articles for later access.

Contents alert

Sign up to receive alerts of new content

Export reference to EndNote / RefWorks

Related articles

Your selected articles

Your search results

Silva Fennica · Finnish Society of Forest Science