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Abstract

The tassel-eared squirrel (Sciurus aberti) is often used as an indicator species in southwestern ponderosa pine (Pinus ponderosa) forests.
Because of more than a century of fire suppression, grazing, and timber harvest, these forests have become increasingly prone to catastrophic
wildfire, resulting in pressure to implement large-scale treatments to reduce fire threat and restore ecosystem function. However, such
treatments could have dramatic effects on tassel-eared squirrels and other wildlife. Because of emerging plans for thinning southwestern forests
to reduce fire threat, we undertook a modeling effort to produce spatial data to examine the results of proposed management actions on squirrel
habitat. We used squirrel density and recruitment data from 9 study areas located in the Flagstaff region of northern Arizona, USA, linked with
spatial data on forest structure developed from remote-sensing imagery. We used a multiscale approach to analyze relationships between forest
structure and squirrel density and recruitment. We then used an information-theoretic approach to identify the most parsimonious models for
both squirrel density and recruitment. Thermostistrongly supportedsmodelsrofisquirrel densityrincludedrlocal=scalerbasal arearand==60%
¢anopy/cover atithel65%halspatial'scale) For squirrel recruitment, 4 different models that included both local-scale basal area (m?/ha) and
variations of canopy cover over extents of approximately 160-305 ha were strongly supported. Using the most parsimonious models, we
created spatial data layers representing both squirrel density and recruitment across an 800,000-ha landscape in northern Arizona. Our
approach resulted in spatially explicit models that can be used in efforts to predict the effects of forest management on squirrel populations.

(JOURNAL OF WILDLIFE MANAGEMENT 70(3):723-731; 2006)
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tassel-eared squirrel.

The tassel-eared squirrel (Sciurus aberti) is a ponderosa pine (Pinus
ponderosa)—obligate species, endemic to the southwestern United
States (Keith 1965). It plays an important role in these systems,
where it facilitates essential symbiotic interactions of mycorrhizal
fungi with ponderosa pine through consumption of fruiting bodies
and dispersal of spores (States and Gaud 1997, States and
Wettstein 1998). It also serves as an important prey for the
southwestern subspecies of the northern goshawk (decipiter
gentilis; Reynolds et al. 1992, Beier and Drennan 1997). Previous
research has suggested that squirrel population parameters are
highly dependent on forest structure, particularly canopy cover and
ponderosa pine basal area (Ratcliff et al. 1975, Patton 1984,
Patton et al. 1985, Dodd et al. 1998, 2003, Dodd 2003). For these
reasons, the tassel-eared squirrel is considered an important
management indicator species in southwestern forests.

Changes in forest structure over the past 100 years, decreases in
forest health, and associated increases in the frequency of
catastrophic wildfire, have resulted in a call for intensive forest
restoration treatments over hundreds of thousands of hectares of
southwestern dry coniferous forests (Covington and Moore 1994,
Allen et al. 2002, Zimmerman 2003). Since the late 1800s, timber

harvest, fire suppression, and livestock grazing have contributed to
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substantial changes in the structure of ponderosa pine-dominated
forests in this region. Presettlement forests were generally
savannah-like and were often dominated by patches of large, old
trees (Cooper 1960, Covington and Moore 1994, Belesky and
Blumenthal 1997), whereas today’s forests are often more
homogenous and dominated by smaller-diameter trees (Johnson
1994, Covington et al. 1997, Mast et al. 1999). As these
conditions have resulted in increased potential for catastrophic
wildfire and disease and decreased ecosystem health (Covington
and Moore 1994, Covington et al. 1997), restoration initiatives
(e.g., Moore et al. 1999) have advocated aggressive thinning and
prescribed fire to return forests to a structural condition closer to
presettlement conditions (Covington and Moore 1994, Covington
et al. 1997). However, these treatments are often very intensive
(Covington et al. 1997, Fulé et al. 1997, Mast et al. 1999) and may
result in rapid and dramatic changes in forest structure within
treated areas. Such treatments have the potential to adversely
affect many wildlife species (Wagner et al. 2000, Allen et al. 2002,
Chambers and Germaine 2003), including tassel-eared squirrels,
though few studies have specifically addressed potential impacts.

Spatially explicit models linking population parameters for
sensitive species with forest structural conditions would aid forest
management planning in the Southwest by allowing land managers
to predict the effects of management scenarios on sensitive taxa. As
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a key management indicator species (Chambers and Germaine
2003), the tassel-eared squirrel is a prime candidate species for
habitat modeling. Prior work on the relationships between squirrel
populations and forest structure has indicated that squirrel
populations are affected by both local forest structural conditions
and structure over larger spatial extents (Dodd 2003, Dodd et al.
2006). These studies used forest structural characteristics measured
on 24-ha ground plots, along with a measure of the ratio of
optimal-to-marginal habitat (ROMPA; Krohne 1997) derived
from Enhanced Thematic Mapper (ETM) imagery over a 500-ha
area around each plot. Using these predictor variables, they were
able to document strong relationships between forest structure and
squirrel populations, and they were able to identify forest structural
characteristics that could be used to define optimal and marginal
habitat. However, they did not create spatially explicit models, nor
did they identify the spatial extents over which forest structure
influences tassel-eared squirrel populations.

In 2003, the Forest Ecosystem Restoration Analysis (Fores-
tERA) project finished developing highly accurate spatial data
representing basic forest structural characteristics, such as basal
area (m?/ha), tree density (stems/ha), and percentage of canopy
cover, in the region of the aforementioned tassel-eared squirrel
studies. Thus, the opportunity arose to reanalyze these squirrel
population data along with new spatial data within a Geographic
Information System (GIS). The purpose of our research was to 1)
assess which forest structural characteristics were the best for
modeling tassel-eared squirrel density and recruitment, 2) assess
the spatial extent over which those variables affect squirrel
populations, 3) model squirrel density and recruitment using
forest structure at multiple spatial scales, 4) use an information-
theoretic approach to determine the best models for prediction of
squirrel density and recruitment, and 5) produce spatially explicit
models of squirrel density and recruitment. Spatially explicit data
layers can be vital to achieving effective integration of landscape-
and patch-scale management prescriptions with the rapidly
escalating emphasis on ponderosa pine restoration in the South-
west that will occur over large contiguous areas (Allen et al. 2002,
Zimmerman 2003) and with our increased understanding of
landscape-scale habitat influences on squirrel populations (Dodd
2003, Dodd et al. 2006). Our research addresses the difficulty in
conceptualizing the complexities of tassel-eared squirrel popula-
tion response at multiple spatial scales.

Study Area

Our study area for this habitat mapping effort encompassed
approximately 800,000 ha of forested land on the western
Mogollon Plateau extending from just north and west of Flagstaff,
Arizona, USA, southeast to the western edge of the 180,000-ha
Rodeo-Chediski burn of 2002 (Fig. 1). Elevations ranged from
approximately 1,500 m in deeper canyons on the edge of the
plateau to more than 3,600 m on the San Francisco Peaks. The
vegetation in the region was dominated by stands of nearly pure
ponderosa pine and pine mixed with Gambel oak (Quercus
gambelii). Smaller stands of mixed-conifer, dominated by
Douglas-fir (Pseudotsuga menziesii), white fir (4bies concolor), and
white pine (Pinus strobiformis), pinyon-juniper (Pinus edulis and
Juniperus spp.) woodlands, aspen (Populus tremuloides) groves, and
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Figure 1. Map of the 800,000-ha study area on the western Mogollon Plateau
in northern Ariz., USA, showing dominant vegetation types, major highways,
the city of Flagstaff, and the location of study sites where both training (1999-
2002) and validation (1996-1997) data on tassel-eared squirrel density and
recruitment were measured.

open grasslands were also common (Fig. 1). The primary land
manager in the region was the U.S. Department of Agriculture,
Forest Service, with parts of 4 national forests (Coconino, Kaibab,
Tonto, and Apache-Sitgreaves) comprising more than 75% of the
study area. The remaining land was owned by various private,
state, and federal entities.

Methods

Squirrel Population Data

We measured squirrel density and recruitment on 2 plots, each 24
ha in size, from each of 9 280-ha study sites (» = 18 sampling
plots; Fig. 1) on the Coconino National Forest in north-central
Arizona, USA. For each plot, we averaged density and recruitment
values from the 4 consecutive years (1999-2002) of the field study.
Although the 2 study plots within a site were occasionally in close
proximity, they usually differed considerably in structure (see
Dodd 2003, Dodd et al. 2006). In addition, of the 696 individual
tassel-eared squirrels trapped during the study, only 7 ever
occurred on >1 plot. Thus, we considered the plots to be
independent sampling units.

All of the study sites were located within the ponderosa pine
association of the montane coniferous forest community described
by Brown (1994) and between elevations of 2,050 and 2,400 m.
Sites were oriented along a gradient of habitat quality so that we
could assess differences in forest structure in relation to squirrel
population parameters (Dodd 2003, Dodd et al. 2006). Within
sites, we placed each plot in an area with relatively homogenous
forest structure.

On the sampling plots, we estimated squirrel density using the

724

The Journal of Wildlife Management ¢ 70(3)



feeding-sign index technique developed by Dodd et al. (1998) and
validated by Dodd et al. (2006). This index provided for efficient
and reliable estimation of squirrel density on multiple sampling
plots, which can otherwise be impractical because of the costly,
labor-intensive capture—recapture techniques typically used to
obtain density estimates (Pollock et al. 1990, Dodd et al. 1998).
We estimated juvenile recruitment on each plot by capturing
squirrels using an 8 X 8 trapping grid (7= 64 trap stations) with 70-
m spacing between each sampling point. We used live traps
(Tomahawk® No. 202, Tomahawk Live Trap Co., Tomahawk,
Wisconsin) baited with unshelled peanuts (Patton et al. 1976). We
immobilized captured squirrels using Isoflurane® (Halocarbon
Laboratories, River Edge, New Jersey). We affixed a numbered
metal ear tag (Monel No. 3; National Band and Tag Co., Newport,
Kentucky) and colored plastic collar to each squirrel. Observers
visually determined sex and obtained body mass with a 1,000-g
spring scale (Pesola AG, Barr, Switzerland), and we separated
juvenile and adult cohorts using body mass and morphological
characteristics (Keith 1965, Farentinos 1972, Dodd et al. 2003).
We assumed that squirrels were juveniles if body mass was <550 g
(Dodd et al. 2003). We trapped squirrels over 5 consecutive days at
each sampling plot, with all 18 plots trapped over a 12-day period
in mid- to late-October of each year. We expressed recruitment as
juveniles/ha because this measure better reflected variation in
recruitment among plots than juveniles/adult female (Brown 1984,
Dodd et al. 2003). For additional details on the study sites and
estimation of squirrel density and recruitment see Dodd (2003) and
Dodd et al. (2006).

Spatial Data Layers

In 2003, the Forest ERA project mapped vegetation composition
and structure over the study area (Hampton et al. 2003). We
derived all of the vegetation layers from remote-sensing imagery
using associated ground measurements of forest structure as
training data. We converted the layers to GIS format using
Imagine 8.6 (ERDAS Corp., Leica Geosystems, Heerbrugg,
Switzerland) and ArcGIS 8.3 (ESRI Corp., Redlands, California)
software. We derived the canopy-cover layer from digital
orthophoto quads (primarily from the year 1997), using an
advanced exploratory data-analysis method (Xu et al. 2006). We
derived the dominant overstory vegetation layer from ETM (year
2001) imagery using a classification-tree methodology (Breiman et
al. 1984; Hansen et al. 1996) and a machine-learning procedure
known as boosting (Freund and Schapire 1995). We derived the
basal area and tree-density layers from ETM imagery using a
regression-tree methodology (Breiman et al. 1984) and See5/
Cubist 1.7 software (Rulequest Research, St. Ives, New South
Wiales, Australia). The resolution of each of these layers was 90 m
(90 X 90 m cells, 0.81 ha or 2-acre extent), and we believe this
represented the most accurate spatial data available in this region.
Additional details of the vegetation mapping effort and accuracy
of the layers can be found in Hampton et al. (2003).

Model Development

Because we were interested in creating a landscape-level model
using available spatial-data layers, we could not use all of the
relationships between tassel-eared squirrel population parameters
and forest structure that were documented in previous studies

using these data (Dodd 2003, Dodd et al. 2006). Instead, we were
limited to using those forest structural characteristics we could
measure with the remotely sensed data as predictor variables in the
models, namely canopy cover, basal area, and tree density. To
assure that the forest structure predictions from the remote-
sensing imagery did not differ significantly from actual forest
structure on the ground, we assessed the correlations between data
on forest structure measured at ground-based field plots and the
data derived from remote sensing using a Pearson correlation
coefficient (r = test statistic).

Using the remotely sensed data, we developed a priori
hypotheses about the influence of forest structure on squirrel
density and recruitment. As squirrel populations respond to local
forest conditions, particularly mature trees and cover, we
hypothesized that a single, local-scale variable would be most
influential in a predictive model of squirrel density and recruit-
ment. Using the plot-level data, we chose to test this hypothesis
using the local-scale variables basal area (BA), tree density, and
canopy cover (CC). We combined the local-scale variable that had
the most influence on squirrel density and recruitment with a
landscape-scale variable (see below) to create our predictive
models.

As we were interested in looking at the effects of forest structure
on squirrel density and recruitment at multiple spatial scales, we
also considered the effects of forest structure across multiple
spatial extents. Because such an approach can result in a
cumbersome number of possible models, we considered only
biologically meaningful hypotheses that also minimized the total
number of predictor variables. For example, Dodd (2003) and
Dodd et al. (1998, 2006) found canopy cover and interlocking
trees to be important forest features facilitating squirrel move-
ment, survival, and habitat connectivity. Therefore, we hypothe-
sized that canopy cover across multiple spatial scales would have a
strong influence on squirrel density and recruitment. We
constructed additional spatial data layers using 4 variations of
canopy cover: 1) the number of pixels in which canopy cover
exceeded 40% (CC40), 2) the number of pixels in which canopy
cover exceeded 50% (CC50), 3) the number of pixels in which
canopy cover exceeded 60% (CC60), and 4) mean canopy cover
(CCM). Although these variations on canopy cover were not
independent and were often highly correlated (r generally >0.5),
we did not have any a priori reason to select one variant on canopy
cover over another. We did not consider variations on canopy
cover based on categories above 60% or below 40% because
relatively few pixels had values for canopy cover in those ranges.

Using the center of the ground-based plots where squirrel
density and recruitment were measured, we quantified the 4
variations on canopy cover over 4 spatial extents: 1) a 5-pixel
radius (~65 ha), 2) an 8-pixel radius (~160 ha), 3) an 11-pixel
radius (~305 ha), and 4) a 14-pixel radius (~430 ha). We did not
assess spatial scales in between those chosen because of the high
correlation among those layers (r often >0.8). Although canopy
cover still tended to be correlated (» > 0.4) across spatial scales, we
were interested in identifying patterns in squirrel density and
recruitment based on scale, so obtaining completely independent
input layers was not possible given this criterion.

Using the layers described above, we constructed multiple
biologically relevant models and employed an information-theoretic
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approach (Anderson et al. 2000, Burnham and Anderson 2002) to
select the best model from among this set of candidate models.

Model Selection and Inference

We used multiple linear regression within the fit model option in
JMP Version 4.0 software (SAS Institute, Carey, North Carolina)
to determine relationships between forest structural character-
istics, spatial scale, and squirrel density and recruitment. We used
Akaike’s Information Criterion, corrected for small sample size
(AICc; Akaike 1973, Burnham and Anderson 2002), to assess the
overall strength of each model in the candidate set. We then
ranked these models, from lowest to highest, according to their
AAICc values. We chose those models <2 AICc of the most
parsimonious model (AAICc = 0; Anderson and Burnham 2002,
Burnham and Anderson 2002), as the final set of candidate models
to be used for prediction and inference. To provide a measure of
model support and selection uncertainty, we calculated the Akaike
weight (w,) for each candidate model (Burnham and Anderson
2002). Finally, to assess how well the model fit the original data

we calculated adjusted # values for each candidate model.

Creation of Spatially Explicit Models

We used the most strongly supported candidate model, for both
squirrel density and recruitment, to create spatially explicit data
layers predicting these population attributes across the 800,000-ha
study area (Fig. 2a,b). We created layers in ArcGIS 8.3 (ESRI
Corp.) using the predictive spatial layers, the raster calculator, and
the mathematical relationships from the statistical analyses. As
squirrels are a ponderosa pine—obligate and not typically found
outside ponderosa pine-dominated stands, we used a map of
dominant overstory vegetation created from ETM imagery by the

ForestERA project to identify areas of the landscape with habitat
types other than ponderosa pine. In those areas, we assumed
squirrels were absent, and we assumed squirrel density and
recruitment was zero.

Model Validation

Because estimation of density and recruitment values for squirrels
is costly and time-consuming, we were unable to validate our
models using new field data. However, we were able to do a
limited validation using data from 7 study sites, each approx-
imately 60 ha in extent, where squirrel population parameters were
measured during 1996 and 1997 (Dodd et al. 2003; Fig. 1). At
each of these sites, we measured squirrel density and recruitment
using the same techniques outlined above.

Because the locations of the 7 study sites were precisely
documented using a geographic positioning system, we were able
to obtain predicted values for squirrel density and recruitment on
those sites using our models. We determined these values by
taking the mean value for all the 90-m pixels in the spatial model
that fell within the extent of the field plots. Using simple linear
regression (7 = test statistic), we assessed the relationship between
the predicted values for squirrel density and recruitment, based on
the spatial model, with the estimated density and recruitment

values from the field study (as reported in Dodd et al. 2003).
Results

Correlations between predicted values for forest structural variables
in the spatial data layers and values for the same variables measured
on the ground were 0.93 for basal area (n = 63), 0.87 for canopy
cover (n = 200), and 0.91 for tree density (n = 63), respectively.

a Predicted
. Tassel-eared Squirrel
Density (squirrels / ha)

Jo

[Joo1-0.10
0.10-0.30
Blos0-075
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— Major Highways

Kilometers
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b Predicted
\ Tassel-eared Squirrel
Recruitment (juv / ha)

o
[Joo1-005
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Figure 2. (a) Map of predicted squirrel density (individuals/ha) across the 800,000-ha study area on the western Mogollon Plateau in Ariz., USA; (o) Map of
predicted squirrel recruitment (juveniles/ha) across the same study area. Maps are based on field data collected on squirrel density and recruitment from 1999-
2002 and predicted forest structural characteristics derived from years 1999-2000 Enhanced Thematic Mapper satellite imagery and year 1997 digital

orthophotos.
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Table 1. Delta Akaike’s Information Criterion, corrected for small sample size
(AAICc) for 3 simple linear-regression models predicting tassel-eared squirrel
density (individuals/ha) and recruitment (juveniles/ha) on the western Mogollon
Rim, Ariz., USA. All models contain an intercept and error term in addition to
the listed parameters (K = 3 for all models). From this model set, we chose the
best local-scale (24-ha plot) variable to use in the creation of our set of
candidate multiple linear-regression models for prediction of squirrel density
and recruitment.

Density Recruitment
Model parameters AlICc AAICc AlCc AAICc
Basal area (m?/ha) —100.06 0.00 —107.59 0.00
Tree density (stems/ha) —95.79 4.27 —105.36 2.23
Canopy cover (%) —83.00 17.06 —99.35 8.24

Because of the strength of these correlations, we felt confident that
we could use the spatial data layers to model squirrel population
parameters across the full extent of our study area.

Based on our initial analysis, using only a local-scale variable,
basal area showed the strongest relationships with both squirrel
density and recruitment (Table 1). We chose to use basal area as
the only local-scale variable in further model development because
the tree density and canopy cover models were only weakly
supported by the data and because the 3 local-scale variables were
highly correlated (r > 0.7).

For prediction of both squirrel density and recruitment, our
methodology resulted in a final set of 17 candidate models for
analysis. This set included 1 model with a plot-level variable (basal
area) only and 16 additional models that included basal area at the
plot level, a canopy cover variant over a specific spatial extent (4
variations on canopy cover at 4 spatial extents = 16 variations), and
an interaction effect (see Table 2 for variables used in the models).
Although we could have included models without an interaction
effect, we believed that an interaction effect was likely because
squirrels require both mature trees (high basal area) and overhead
cover (canopy). It is likely these factors work in combination,

Table 2. Variables used to model and predict tassel-eared squirrel density
(individuals/ha) and recruitment (juveniles/ha) in relation to forest structure and
spatial scale on the western Mogollon Rim, Ariz., USA.

Variable code Variable description

BA Basal area (m%/ha) at the 24-ha plot level

65CC40 Cells with canopy cover >40% at the 65-ha spatial extent
160CC40 Cells with canopy cover >40% at the 160-ha spatial extent
305CC40 Cells with canopy cover >40% at the 305-ha spatial extent
430CC40 Cells with canopy cover >40% at the 430-ha spatial extent
65CC50 Cells with canopy cover >50% at the 65-ha spatial extent
160CC50 Cells with canopy cover >50% at the 160-ha spatial extent
305CC50 Cells with canopy cover >50% at the 305-ha spatial extent
430CC50 Cells with canopy cover >50% at the 430-ha spatial extent
65CC60 Cells with canopy cover >60% at the 65-ha spatial extent
160CC60 Cells with canopy cover >60% at the 160-ha spatial extent
305CC60 Cells with canopy cover >60% at the 305-ha spatial extent
430CC60 Cells with canopy cover >60% at the 430-ha spatial extent
65CCM Mean percent canopy cover at the 65-ha spatial extent
160CCM Mean percent canopy cover at the 160-ha spatial extent
305CCM Mean percent canopy cover at the 305-ha spatial extent
430CCM Mean percent canopy cover at the 430-ha spatial extent
INT Interaction effect (e.g., BA X 160CC50)

Table 3. Statistics for the set of 17 candidate multiple linear-regression models
used to predict squirrel density (individuals/ha) on the western Mogollon
Plateau, Ariz., USA. Results for the intercept-only (null) model provided for
comparison.

Model parameters® K® AICc® AAICcH w)°
BA 3 —100.06 0.00 0.302
BA, 65CC60, INT 5 —99.99 0.07 0.291
BA, 160CC40, INT 5 —97.72 2.34 0.094
BA, 160CCM, INT 5 —96.96 3.10 0.064
BA, 65CC50, INT 5 —96.54 3.52 0.052
BA, 305CC40, INT 5 —96.32 3.74 0.047
BA, 65CC40, INT 5 —94.88 5.18 0.023
BA, 305CCM, INT 5 —94.80 5.26 0.022
BA, 65CCM, INT 5 —94.59 5.47 0.020
BA, 430CC40, INT 5 —94.35 5.71 0.017
BA, 305CC50, INT 5 —98.52 6.54 0.011
BA, 160CC50, INT 5 —93.45 6.61 0.011
BA, 430CC60, INT 5 —93.24 6.82 0.010
BA, 160CC60, INT 5 —93.18 6.88 0.010
BA, 430CCM, INT 5 —93.11 6.95 0.009
BA, 430CC50, INT 5 —93.00 7.06 0.009
BA, 305CC60, INT 5 —92.99 7.07 0.008
Intercept only 2 —69.17 30.89 0.000

@ See Table 2 for a description of model parameters.

® Number of parameters in the model (including intercept and error
terms).

¢ Akaike’s Information Criterion values adjusted for small sample size
(AICc).

9 Delta AICc values.

¢ Akaike weights.

rather than independently, to influence squirrel population
parameters.

From among our candidate set, the two best models of squirrel
density included BA with or without a landscape-level variable
and >60% canopy cover at the 65-ha spatial scale (Table 3).
These models represented 59% of the total weight among all
possible models, and the maximum adjusted 72 value from among
these models was 0.90, also indicating a good fit with the data. All
other models were less supported by the data (AAICc > 2.3;
Burnham and Anderson, 2002). Nevertheless, other models that
included canopy cover at smaller spatial extents (65 and 160 ha)
accounted for 38% of the total weight. All of the models in the
candidate set received considerably higher support than the
intercept-only model (Table 3).

Unlike squirrel density, there was greater model selection
uncertainty associated with predicted squirrel recruitment and 4
models had AAICc values <2 (Table 4). We included the model
with CCM at the 160-ha spatial scale among our final set of
models selected for inference because its AAICc value was 2.02. In
general, there was strongest support for models containing
landscape-level variables with 160- or 305-ha spatial extents and
less support for models containing variables at the largest and
smallest spatial extents. This was a consistent pattern for models
containing each of the 4 variations of canopy cover. Akaike
weights indicated that the top 2 models, both of which included
canopy cover variations at the 160-ha spatial extent, received about
46% of the overall support among the set of candidate models. As
with squirrel density, all of the models in the candidate set
received considerably higher support than the intercept-only
model (Table 4). In total, the top 5 models in the set received
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Table 4. Statistics for the set of 17 candidate models used to predict squirrel
recruitment (juveniles/ha) on the western Mogollon Plateau, Ariz., USA. Results
for the intercept-only (null) model provided for comparison.

Model parameters® K® AICc® AAICc? (w)°
BA, 160CC50, INT 5 —108.65 0.00 0.239
BA, 160CC40, INT 5 —108.46 0.19 0.217
BA 3 —107.59 1.06 0.141
BA, 305CC50, INT 5 —107.01 1.64 0.105
BA, 160CCM, INT 5 —106.63 2.02 0.087
BA, 305CC40, INT 5 —106.21 2.44 0.070
BA, 305CCM, INT 5 —104.45 4.20 0.029
BA, 430CC40, INT 5 —104.16 4.49 0.025
BA, 430CC50, INT o —104.13 4.52 0.025
BA, 65CC50, INT 5 —103.19 5.46 0.016
BA, 305CC60, INT 5 —-102.07 6.58 0.009
BA, 65CC40, INT 5 —102.03 6.62 0.009
BA, 430CCM, INT 5 —-101.84 6.82 0.008
BA, 65CC60, INT 5 —101.57 7.08 0.007
BA, 430CC80, INT 5 —101.42 7.23 0.006
BA, 65CCM, INT o —100.52 8.13 0.004
BA, 160CC60, INT 5 —100.47 8.18 0.003
Intercept only 2 —95.92 12.73 0.000

@ See Table 2 for a description of model parameters.

® Number of parameters in the model (including intercept and error
terms).

¢ Akaike’s Information Criterion values adjusted for small sample size
(AICc).

9 Delta AICc values.

¢ Akaike weights.

about 79% of the support, based on Akaike weights. Adjusted 2
values for these models ranged from 0.53 (BA only) to 0.66 (BA,
160CC50, interaction effect [INT]), suggesting the regression
model fit was reasonably strong.

We chose to make inference about the relationships between
forest structure and squirrel density and recruitment based on the
most strongly supported model for squirrel density and the 5 most
strongly supported models for squirrel recruitment (Table 5). Our
validation suggested that the most strongly supported models for
both squirrel density and recruitment accurately predicted patterns
of squirrel density and recruitment on 7 independent study sites
(Table 6). There were strong linear relationships between the
predicted values for density and recruitment from the most
strongly supported models, and the measured values for density
and recruitment taken in the field (density 7 =0.60, slope =0.84;
recruitment 7 = 0.65, slope 0.47). Residuals from each

relationship ranged between 0.01 and —0.01 and showed no
obvious pattern in relation to predicted values.

Discussion

In this effort, we were able to link tassel-eared squirrel population
characteristics with spatial data layers representing forest structure
and vegetation composition and create spatially explicit models of
squirrel density and recruitment (Fig. 2a,b). Our results indicate
that squirrel density is best predicted using only basal area at the
plotlevel (Table 3). Basal area is probably the best predictor, among
those used in this analysis and those available for large spatial
extents, of the presence of mature pines, on which squirrels depend
in part for survival. The relatively weak support for some other
models containing forest structure at the smaller (65 ha or 160 ha)
spatial scales suggests there may be only limited influence of forest
structure on squirrel densities at spatial extents larger than 24 ha.

Our models of squirrel recruitment resulted in different patterns.
Although the lack of a single model that received overwhelming
support (Table 4) indicates model-selection uncertainty in our
candidate model set (Burnham and Anderson 2002), this result is
not completely unexpected because the variables we used in the
different models are not completely independent and often have
moderate-to-high correlation. However, we can infer from the
analysis that canopy cover threshold values of around 40-50%
have a great deal of influence on squirrel recruitment. Cover values
in the 40-50% range are probably indicative of the lower
thresholds for connectivity in the landscape (Andren 1994).
Models containing canopy cover above 60% were not strongly
supported in the analysis, suggesting that lower values of canopy
cover are suitable for facilitating squirrel recruitment.

Based on our results, it appears that tassel-eared squirrel
recruitment is influenced by spatial extents far larger than
individual home ranges, which typically do not exceed 26 ha
(Farentinos 1979, Patton et al. 1985, Lema 2001). Our models
suggest that canopy conditions over spatial extents of about 160
305 ha have the most influence on squirrel recruitment. Models
incorporating canopy cover at spatial extents of 65 ha were not so
strongly supported, suggesting that squirrels are recruited from
larger areas. Likewise, there was less support for models with
canopy cover at spatial extents of 430 ha suggesting that these
extents may be larger than those at which squirrel recruitment
typically occurs. A post hoc analysis using models with canopy
cover variations over extents larger than 430 ha and smaller than 65
ha revealed that those models would receive even less support.

Table 5. Parameter estimates for each of the final multiple linear-regression models used for prediction of tassel-eared squirrel density (individuals/ha) and
recruitment (juveniles/ha) on the western Mogollon Plateau, Ariz., USA (— indicates parameter not included in the model).

Basal area Canopy cover Interaction
Model® Intercept (m%/ha) derivative effect
Squirrel density, BA only —0.1815 0.0206 — —
Squirrel recruitment
BA, 160CC50, INT —0.1710 0.0076 0.0007 0.0001
BA, 160CC40, INT —0.2090 0.0084 0.0006 0.0002
BA only —0.1019 0.0079 — —
BA, 305CC40, INT —0.1890 0.0083 0.0003 0.0001
BA, 305CC50, INT —0.1580 0.0073 0.0003 0.0001
BA, 160CCM, INT —0.2568 0.0088 0.0003 0.0001

@ See Table 2 for a description of model parameters.
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Table 6. Field-measured values for tassel-eared squirrel density (individuals/
ha) and recruitment (juveniles/ha), during the summers of 1996 and 1997, at 7
study sites on the western Mogollon Plateau, Ariz., USA, and predicted values
for density and recruitment for the same plots, based on the most strongly
supported models.

Density Recruitment
Study site Field Predicted Field Predicted
Clint's Well 0.20 0.31 0.14 0.15
Fort Tuthill 0.16 0.20 0.02 0.04
Long Valley 0.07 0.07 0.05 0.01
Marshall Mesa 0.33 0.41 0.33 0.19
Mormon Lake 0.08 0.19 0.14 0.11
Parks 0.11 0.23 0.24 0.08
Pumphouse 0.27 0.20 0.07 0.04

With regard to the relationships we found between squirrel
density and forest structure our results are not surprising. Previous
research has consistently documented strong relationships between
squirrel density and basal area (Ratcliff et al. 1975, Patton et al.
1985, Dodd 2003). Dodd (2003) and Dodd et al. (2006) found that
their multiple regression model, which incorporated basal area (at
the patch scale) and ROMPA (at the landscape scale) as
parameters, explained 89% of the variation in squirrel density on
all plots; however, basal area exhibited a substantially greater partial
regression coefficient (0.79) than the landscape parameter
(ROMPA; 0.30). Squirrels depend on the seeds of mature
ponderosa pine and fungi associated with healthy pines, as food
sources (Patton et al. 1985, States et al. 1988, Dodd et al. 2003).

Our results in regard to squirrel recruitment were also consistent
with previous research. Dodd (2003) and Dodd et al. (2006) found
that their multiple regression model, incorporating total number of
interlocking trees (at the patch level) and ROMPA (at the
landscape level), explained about 60% of the variation in squirrel
recruitment across plots. However, unlike their density model,
their landscape variable had a greater partial regression coefficient
than the patch variable. Squirrels require cover to hide from
predators and to move safely across the landscape (Austin 1990), as
well as for successful recruitment (Dodd 2003, Dodd et al. 2003).

The results of our validation exercise suggest that our models can
accurately predict patterns of squirrel density and recruitment on
the western Mogollon Plateau. Although our validation was
spatially constrained, we believe forest structural conditions on
both the plots where training data and validation data were
collected, encompass most of the range of conditions that would
be encountered within this region. Moreover, patterns of forest
composition are relatively homogenous across our study area.
Thus, the patterns predicted by our models should apply across the
entire study area.

Many density-independent factors, such as weather, food
availability, and predation, have been shown to affect tassel-eared
squirrel populations (Keith 1965). Because of this, our modeled
estimates for squirrel density and recruitment may lack some
degree of precision. Indeed, the relationship between squirrel
recruitment, as predicted by our model, and squirrel recruitment
measured on the 7 validation plots, was not one to one (slope =
0.47). Weather may be a particularly important factor in causing
fluctuations in tassel-eared squirrel populations across our study

area. For example, Dodd et al. (2006) found that recruitment was
positively related to winter—spring precipitation. Hypogeous fungi
fruiting body production and consumption during spring is vital to
the onset of breeding in tassel-eared squirrels (Stephenson 1975)
and may be associated with the importance of November-May
precipitation in recruitment (Dodd et al. 2006). Although
important, for the period of our study, the influence of
precipitation on recruitment appeared secondary to that of habitat,
as evidenced by poor recruitment at some sites in high-
precipitation years and by the consistent response among years
along a ROMPA gradient (Dodd 2003, Dodd et al. 2006).
Therefore, we do not believe density-independent factors limited
our ability to reliably model patterns of squirrel density and
recruitment. Although our models cannot be used to predict
absolute values for squirrel density and recruitment, our validation
exercise suggested that the predicted patterns for these population
parameters in relation to forest structure were robust (Table 6).
Validation plots, where measured values for squirrel density and
recruitment were higher, also had higher predicted values for these
population parameters based on our models.

Management Implications

Many forest management alternatives, especially intensive thin-
ning treatments, have been shown to result in declines in squirrel
abundance, particularly where large overstory tree removal has
occurred (Patton et al. 1985, Pederson et al. 1987, Sullivan et al.
1996, Carey 2000). To mediate these effects in ponderosa pine—
dominated forests, we recommend that large-scale restoration or
fuels-reduction efforts focus on the removal of smaller trees and
maintain areas with high basal area to minimize impacts on
squirrel populations. InWmanywareasythenimpactiof vintensive
thinning on small understory trees may be lessened by the
retention of large overstory trees. We further recommend that
managers leave larger patches (>160 ha) of habitat with
moderate-to-high canopy cover (>40%) as part of any treatment
matrix. These untreated or lightly treated patches could serve as
important sources for recolonization of treated areas.

Currently, the ForestERA project describes the effects of various
forest restoration and fuels-reduction treatments on the structure
of ponderosa pine forests. Our flexible and spatially explicit GIS-
based tools will allow users to place various treatment types on a
virtual landscape and assess their effects on forest structure.
Because our squirrel models also link to forest structure, managers
will be able to use these tools to qualitatively compare the
predicted effects on squirrel populations of alternative treatments
that vary in spatial extent and intensity. Several large-scale
management efforts that are in the planning stages within this
region intend to incorporate the findings from our study and use
these models to help design their treatment plans. Once
treatments are underway, there will be new opportunities to
validate and revise our models.
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