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Abstract. Climate warming is contributing to increases in wildfire activity throughout the
western United States, leading to potentially long-lasting shifts in vegetation. The response of
forest ecosystems to wildfire is thus a crucial indicator of future vegetation trajectories, and
these responses are contingent upon factors such as seed availability, interannual climate vari-
ability, average climate, and other components of the physical environment. To better under-
stand variation in resilience to wildfire across vulnerable dry forests, we surveyed conifer
seedling densities in 15 recent (1988–2010) wildfires and characterized temporal variation in
seed cone production and seedling establishment. We then predicted postfire seedling densities
at a 30-m resolution within each fire perimeter using downscaled climate data, monthly water
balance models, and maps of surviving forest cover. Widespread ponderosa pine (Pinus pon-
derosa) seed cone production occurred at least twice following each fire surveyed, and pulses
of conifer seedling establishment coincided with years of above-average moisture availability.
Ponderosa pine and Douglas-fir (Pseudotsuga menziesii) seedling densities were higher on more
mesic sites and adjacent to surviving trees, though there were also important interspecific dif-
ferences, likely attributable to drought and shade tolerance. We estimated that postfire seedling
densities in 42% (for ponderosa pine) and 69% (for Douglas-fir) of the total burned area were
below the lowest reported historical tree densities in these forests. Spatial models demonstrated
that an absence of mature conifers (particularly in the interior of large, high-severity patches)
limited seedling densities in many areas, but 30-yr average actual evapotranspiration and cli-
matic water deficit limited densities on marginal sites. A better understanding of the limitations
to postfire forest recovery will refine models of vegetation dynamics and will help to improve
strategies of adaptation to a warming climate and shifting fire activity.

Key words: climate filtering; conifer; Douglas-fir; dry forests; fire severity; ponderosa pine; regeneration;
seed production; seedling establishment; wildfire.

INTRODUCTION

Over the past several decades, global-scale climate
warming and extreme drought events have promoted
increases in wildfire activity across a range of forest
ecosystem types (Kasischke and Turetsky 2006, Brando
et al. 2014, Singleton et al. 2018). Wildfire activity, in
combination with the effects of warmer and drier condi-
tions on tree regeneration processes, is increasing the
potential for widespread forest losses (Enright et al.
2015, Stevens-Rumann et al. 2018). The rate of forest
recovery following wildfire is a crucial parameter that

controls the susceptibility of forests to type conversion
(Tepley et al. 2018), and in dry coniferous forests of the
western United States (i.e., lower-elevation forests with a
dominant component of ponderosa pine [Pinus pon-
derosa]), early postfire recovery differs drastically across
biophysical gradients (Chambers et al. 2016, Rother and
Veblen 2016, Kemp et al. 2019). Thus, forest resilience
(sensu Holling 1973) to wildfire is also likely to vary
across complex mountainous landscapes. Spatially expli-
cit predictions of postfire forest recovery (Tepley et al.
2017, Haffey et al. 2018, Shive et al. 2018) can provide
insight into relative differences in forest resilience across
gradients in climate and fire severity.
The empirical assessment of drivers of tree regenera-

tion (e.g., seed production, seedling germination, site
suitability) will help to identify key bottlenecks to forest
persistence in a warmer, drier future (Enright et al. 2015,
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Davis et al. 2018b). For the successful establishment of
seed-obligate conifers (i.e., those incapable of vegetative
reproduction) following wildfire, viable seed must be
available in sites that are suitable for germination and
survival. Together, these processes define the regenera-
tion niche (sensu Grubb 1977), which has a tremendous
influence on the distribution of forests. Following recent
wildfires throughout the western United States, it has
been noted that seedling densities of non-serotinous con-
ifers (i.e., trees without fire-adapted canopy seedbanks)
are highest near surviving trees (Haire and McGarigal
2010, Chambers et al. 2016, Kemp et al. 2016, Tepley
et al. 2017) due, in part, to greater seed availability.
While seed dispersal is also influenced by tree height,
seed characteristics, wind speed, and animal transport,
seed availability is typically highest in close proximity to
mature trees (McCaughey et al. 1986). This spatial com-
ponent is well documented, yet temporal variability in
seed cone production of many conifers is poorly under-
stood because the quantification of interannual variabil-
ity in seed cone production requires either long-term
monitoring or reconstruction based on persistent repro-
ductive structures (sensu Forcella 1981). Information
regarding ponderosa pine seed cone production is avail-
able in portions of the species’ range throughout the
western United States (Burns and Honkala 1990, Kran-
nitz and Duralia 2004, Shepperd et al. 2006, Mooney
et al. 2011, Keyes and Manso 2015), but strikingly little
is known about seed cone production in postfire land-
scapes. This knowledge is critical for a comprehensive
examination of seed availability and its influence on tree
regeneration.
Overstory forest cover and postfire vegetation also

have the potential to influence conifer establishment,
growth, and survival through competition, facilitation,
and microclimate modification. In mixed-species systems
in which conifers coexist with resprouting angiosperm
species, the postfire cover of resprouting vegetation
(shrubs and trees) typically increases with fire severity
(Welch et al. 2016). Competing vegetation can reduce
the growth rates of some conifers (Tepley et al. 2017)
and may also inhibit seedling establishment, particularly
for species such as ponderosa pine that regenerate well
on bare mineral soil (Pearson 1942, Schubert 1974).
Overstory forest cover modifies the understory environ-
ment by altering light availability (Battaglia et al. 2002)
and by moderating daily maximum temperatures and
diurnal fluctuations (Davis et al. 2018a). These buffering
effects have the potential to reduce the influence of cli-
mate variability on seedlings, particularly for more
shade-tolerant tree species capable of establishing and
surviving within densely forested sites (Dobrowski et al.
2015). Therefore, severe wildfire can reduce the potential
for conifer seedling establishment by removing seed
sources, altering the competitive environment, and elimi-
nating the microclimatic buffering effects of the canopy.
In dry forests of the western United States, postfire

conifer seedling densities are typically greater on wetter

sites such as north-facing slopes and higher elevations
(Dodson and Root 2013, Rother and Veblen 2016, Tep-
ley et al. 2017, Haffey et al. 2018, Shive et al. 2018,
Kemp et al. 2019). Postfire recovery in conifer forests is
also influenced by multiyear periods of drought and by
interannual climate variability. For example, recovery is
less likely in fires that are followed by abnormally dry
periods (Harvey et al. 2016, Stevens-Rumann et al.
2018, Davis et al. 2019). One plausible mechanism creat-
ing these patterns is that seedling establishment for some
montane conifer species is more likely in infrequent
years with above-average moisture (Savage et al. 1996,
League and Veblen 2006, Rother and Veblen 2017, Davis
et al. 2019). Douglas-fir (Pseudotsuga menziesii) and
ponderosa pine seedling survival is also greater under
cool and moist conditions (Rother et al. 2015), with
extreme drought years of particular importance to
regeneration failure (Young et al. 2019).
An improved understanding of the potential limita-

tions to postfire conifer regeneration requires a synthetic
approach that considers seed production, seedling estab-
lishment, and site suitability (Davis et al. 2018b). At 15
recent (1988–2010) fire events, we characterized annual
seed cone production, resprouting of angiosperm trees,
and conifer seedling establishment. We then combined
these data with surveys of postfire density for seedlings
of two dominant coniferous tree species (Douglas-fir
and ponderosa pine) and investigated the relationships
between key biophysical factors and postfire seedling
densities across the 15 fire events. Finally, we used these
data to predict seedling densities throughout each fire
perimeter to better infer landscape-scale patterns of con-
ifer forest resilience to wildfire. Specifically, we asked, (1)
How do seed cone production, conifer seedling establish-
ment, and angiosperm resprouting vary following each
fire? (2) Which biophysical factors best predict stand-
scale variability in postfire conifer seedling density? (3)
What percentage of each fire and of total burned area
has recovered to meet seedling density thresholds consis-
tent with historical tree densities? (4) What is the per-
centage of total burned area in which postfire conifer
seedling densities were limited by a lack of mature coni-
fers following fire?

METHODS

Study area and site selection

Our study sites include 15 recent (1988–2010) wildfires
that occurred in dry forests of southern Colorado and
northern New Mexico, USA (Table 1, Fig. 1). We
selected these fires as a subset of all large (>404 ha) wild-
land fires in the southern portion (<38.5° N) of the
Southern Rocky Mountains Ecoregion occurring from
1984 to 2010 (Eidenshink et al. 2007). We limited fire
selection using the following criteria: (1) vegetation type,
fires must have occurred in areas with dominant compo-
nents of pine-oak, ponderosa pine, or dry mixed-conifer
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vegetation types (Rollins 2009); (2) accessibility, fires
must have occurred on accessible public land, or on large
private parcels for which we were permitted access; and
(3) fires must have had only minimal areas of overlap
with other fire perimeters (i.e., “reburns”). Out of the 41
wildfires meeting each of these criteria, we selected and
were granted permission to sample in 15. Fire severity,
area burned, prefire vegetation (Table 1), and average
climate varied across the fires studied. Within fire
perimeters, average January minimum temperatures
range �14.9°C to �6.8°C and average July maximums
range 18.1°C to 30.2°C. Total annual precipitation
ranges 351–1,049 mm, with a pronounced dry period in
early summer (June and early July). Late-summer mon-
soons (mid-July to September) vary in importance
across the study area and account for 30–45% of average
annual precipitation, with increasing monsoonal contri-
butions to the south and east (1981–2010 normals from
the Parameter-Elevation Regression on Independent
Slopes Model [PRISM]; data available online).6

Regeneration plots and biophysical predictors

For field surveys of postfire conifer recovery, densities
of resprouting angiosperms, and biophysical factors
potentially influencing postfire vegetation trajectories,
we used a nested plot design with 8–12 transects within
each fire perimeter and 3–6 plots along each transect. To
identify the start of each transect, we first identified con-
tiguous areas of low-, moderate-, and high-severity fire
using thematic maps of dNBR (differenced Normalized
Burn Ratio)-derived fire severity from the Monitoring
Trends in Burn Severity project (Eidenshink et al. 2007).
To locate each transect within a relatively homogenous
area, we selected potential sites as contiguous patches of
each severity class that exceeded 300 m in diameter. We
excluded any areas with reforestation activities from site
selection. Next, we created an accessibility layer in which
we identified areas within each fire that were between
100 and 500 m of a system road or major trail. Finally,
we identified three or four patches of each fire-severity
class that intersected the accessibility layer and spanned
the geographic extent of the fire. We randomly located
transect starts within each selected patch. Along each
transect, we established plots with a 60-m systematic
spacing and random offsets (10 m at a random azi-
muth). We allowed the number of transects and plots to
vary within each fire perimeter based on the number of
suitable patches identified, with the goal of establishing
a total of 40 plots per fire (total n = 555).
Following Harvey et al. (2016), we used a variable-

sized plot design to survey postfire densities of conifer
seedlings and resprouting angiosperms. Plot sizes were
species-specific and based on initial surveys of abun-
dance in each plot. For tree species with fewer than
25 postfire stems within the full 15 m radius circular

plot (707 m2), we surveyed all stems. If more than 25
stems of a species were present in the full plot, sam-
pling areas were reduced to the following: 25–100
stems, 120 m2; 101–500 stems, 30 m2; >500 stems,
10 m2. We defined seedlings as all conifers establishing
following fire (as determined from bud scars [sensu
Urza and Sibold 2013] and ring counts from incre-
ment cores), but we did not survey first-year germi-
nants because of the high mortality rates for these
individuals. Because seedling ages derived from bud
scars can underestimate true seedling ages (Hankin
et al. 2018), we may have slightly overestimated post-
fire seedling densities in some low- and moderate-
severity plots. However, these biases are greater for
older and larger seedlings, for which we also used
increment cores to verify ages.
To develop field-derived estimates of fire severity and

to quantify pre- and postfire forest structure, we
recorded the species and diameter at breast height
(1.37 m above ground level; DBH) of all live and dead
overstory trees within each plot that likely pre-dated
each fire. We determined prefire status of trees using
stem diameter (>10 cm DBH for conifers and >5 cm
for angiosperms; Table 2), level of decay, and char char-
acteristics. We then estimated the relative dominance of
ponderosa pine, Douglas-fir, and Gambel oak (Quercus
gambelii) within each fire as the percentage of total pre-
fire basal area in regeneration plots that was attributed
to each species. We used branch morphology, wood
characteristics, and the color and texture of remaining
bark to identify the species of each dead individual. At
the plot level, we calculated the total prefire basal area
of all tree species as a potential indicator of site produc-
tivity. We calculated field-derived fire severity as the
percentage of total prefire basal area killed during the
fire. At each plot center, we recorded the distance to
the closest surviving mature conifer using a laser range-
finder. If these distances exceeded 500 m (the distance
limitation of the instrument) or if live trees were not
visible from plot center, we measured the distance from
plot center to the closest mature conifer using 2014 or
2015 aerial imagery (USFS 2015). Lastly, we quantified
ground cover on each plot using four 1-m2 quadrats
and noted any evidence of grazing or browse damage
by cattle or other ungulates (Table 2).
To quantify 30-yr average and 3-yr postfire climate in

each regeneration plot and within each fire perimeter,
we performed a statistical downscaling (following
Nalder and Wein 1998) of 30-yr monthly averages of
precipitation and temperature (i.e., 30-yr normals), as
well as monthly data from the fire year and each of the
three years following the fire (see footnote 6). Using
these data, we modeled actual evapotranspiration
(AET) and climatic water deficit (CWD) using a modi-
fied Thornthwaite-type method (Appendix S1; Lutz
et al. 2010). We summed monthly values to calculate
accumulated annual totals (by calendar year) of AET
and CWD in each 30-m cell. We then developed6 http://prism.oregonstate.edu
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predictors of (1) 30-yr annual average AET and CWD,
(2) 3-yr average postfire AET and CWD, and (3) the dif-
ference between 3-yr average postfire values and 30-yr
averages (Table 2). While CWD provides an estimate of
the intensity of drought stress because it estimates
unmet atmospheric moisture demand, AET is an indica-
tor of site productivity because high values are indicative
of sites with high availability of both moisture and
energy (Dobrowski et al. 2015).
As an alternative to field-derived distances to mature

conifers that could be characterized throughout each fire
perimeter, we quantified postfire canopy cover of mature
conifers using image processing (following Rodman
et al. 2019b) and classification of 1-m aerial imagery
from the National Agriculture Imagery Progam (USFS
2015; Appendix S2). Overall accuracy of this classifica-
tion was 90.2% at the level of a 1-m pixel (Appendix S2:
Table S1). We aggregated the 1-m thematic maps to a 30-
m resolution by extracting the percent cover of mature
conifers in circular areas of different sizes (30–600 m
radii in 30-m increments) surrounding each regeneration
plot to assess the influences of postfire canopy cover at
multiple spatial scales.

Seed cone production

To characterize interannual variability in ponderosa
pine seed cone production, we used the cone abscission
scar method (Forcella 1981, Redmond et al. 2016). We
performed these surveys within eight of the 15 fires, a
subset that we selected to span the geographic and cli-
matic ranges of our sites. Within each of these eight fires,
we reconstructed seed cone production in at least two
stands (27 stands total) and 4–6 trees/stand (154 total
trees). Most stands were in close proximity (<1 km) to
postfire regeneration plots, either in surviving stands
within fire perimeters or in adjacent unburned areas.
Following Redmond et al. (2016), we reconstructed seed
cone production on 6–8 branches per tree by recording
cone scars and remaining cones and conelets at each
annual bud scar from 2003–2017. We counted the total
number of cone bearing branches on each tree to scale
our estimates of cones per branch to cones per tree. For
individual trees, we defined seed-cone years as years in
which at least 25 cones were produced. Within fires,
years of widespread seed cone production were defined
as years in which at least 50% of trees produced more

FIG. 1. Map of the study area in southern Colorado and northern New Mexico, USA, showing the 15 wildfires surveyed for
postfire forest recovery. Green shading shows the distribution of forests based on the 1992 National Land Cover Dataset (NLCD),
which preceded most of the wildfires surveyed.
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than 25 cones. To quantify synchrony in cone produc-
tion, we calculated pairwise Spearman correlation coeffi-
cients (of seed cone counts by year) among all trees
surveyed for seed cone production (following Mooney
et al. 2011). To determine scales of synchrony, we then
calculated the mean pairwise correlations of seed cone
production for all trees (across fires), for trees within
each fire (within fires), and for trees within individual
stands.

Conifer seedling establishment and angiosperm
resprouting

To describe temporal variability in conifer establish-
ment and angiosperm resprouting following each fire,
we collected up to two destructive samples of postfire
stems in each regeneration plot (total n = 696 success-
fully dated). If present, Douglas-fir, ponderosa pine, or
lodgepole pine seedlings were excavated below soil level.
If these coniferous species were absent, we harvested
angiosperm (i.e., aspen [Populus tremuloides], Gambel
oak) stems. We followed the lab protocols of Telewski
(1993) and Rother and Veblen (2017) to identify the
establishment year of conifers. From each conifer seed-
ling, we cut and dated four cross sections at varying stem
heights. We then identified the establishment year as the
innermost ring in the cross section at, or immediately
above, the root–shoot boundary. While time consuming,
these methods are a notable improvement over node

counts for the quantification of temporal trends in estab-
lishment (Hankin et al. 2018). For angiosperm stems, we
determined the year of stem initiation from a single cross
section near ground level. This likely approximates
annual resolution given the rapid growth of these stems
in the first few years after stem initiation.
We identified annual pulses of establishment for pon-

derosa pine and Douglas-fir at the regional scale. First,
we developed a single time series of seedlings dated to
each year (1988–2015) by aggregating annual counts
across all fires. Next, we used a modified version of
CharAnalysis (sensu Andrus et al. 2018) to detect pulses
in this time series. CharAnalysis is an algorithm that iden-
tifies significant local outliers in time series data using a
combination of nonlinear detrending and Gaussian mix-
ture models (Higuera et al. 2010, Tepley and Veblen
2015). For parameters in CharAnalysis, we used a 5-yr
window width and a 90th percentile probability threshold.
Following pulse detection, we qualitatively compared
pulse years with interannual climate variables believed to
influence tree establishment. Because moisture during the
growing season may benefit conifer seedling establish-
ment (Rother and Veblen 2017), we calculated accumu-
lated climatic water deficit (CWD; Appendix S1) for
April–September of each year (1981–2015) within each
fire perimeter. We then calculated the mean value of
April–September CWD from all grid cells within the 15
fire perimeters, and standardized yearly values through
time to the series-wide mean and standard deviation

TABLE 1. Descriptions of the 15 surveyed fires in southern Colorado and northern New Mexico, USA.

Fire summary information Prefire species composition (% BA)

No.
plots, nFire Name Area (ha)

High
severity (%) Year

Elevation
range (m) Douglas-fir

Gambel
oak

Ponderosa
pine

Borrego 5,211 21 2002 2,163–3,111 11 <1 72 40
H12 1,778 10 2010 2,497–2,964 18 2 77 40
Hondo 3,339 69 1996 2,261–3,605 11 <1 59 31
Lakes 1,742 37 2002 2,290–2,673 43 <1 39 40
Mason 4,461 70 2005 1,861–2,494 14 1 78 37
Mato Vega 5,312 61 2006 2,568–3,235 45 0 18 36
Missionary
Ridge

27,891 34 2002 2,010–3,560 32 <1 23 33

Montoya 1,666 45 2002 2,437–2,870 0 13 42 37
Pine Canyon 1,656 21 2005 2,214–2,645 0 3 70 36
Ponil
Complex

36,051 32 2002 2,027–2,842 10 <1 86 33

Saw 1,259 0 1988 2,262–2,485 12 10 82 38
Spring 9,730 49 2002 2,316–2,867 29 1 60 45
Viveash 9,093 63 2000 2,418–3,539 49 <1 29 29
West Fork 2,200 15 2008 2,196–2,569 4 1 60 40
York 1,314 9 2001 2,389–2,800 6 3 85 40
All fires Total area:

112,703
Percentage of
total: 39

Range:
1988–2010

Range:
1,861–3,605

Percentage of
total: 23

Percentage
of total: 2

Percentage
of total: 56

Total:
555

Notes: “Area” is the areal extent of mapped fire perimeters from the Monitoring Trends in Burn Severity program (Eidenshink
et al. 2007). “High severity” is the percentage of each fire that burned at high severity (total canopy mortality), based on satellite-
derived burn severity classification with field validation. Prefire species composition, derived from field inventories of live and dead
trees, is given for the three most prevalent species across sites (Douglas-fir, Gambel oak, and ponderosa pine) and represents the
percentage of prefire basal area belonging to a given species in each fire. BA, basal area.

January 2020 LIMITATIONS TO POSTFIRE RECOVERY Article e02001; page 5

 19395582, 2020, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2001, W

iley O
nline L

ibrary on [22/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 2. Descriptions of predictor variables included in statistical models of postfire seedling density for ponderosa pine and
Douglas-fir across 15 fires in southern Colorado and northern NewMexico, USA.

Category and variable name Description PIPO PSME
Spatial
model

Average climate
30-yr average AET Average actual evapotranspiration (AET;

evaporative loss constrained by moisture
availability) calculated at a monthly time step from
downscaled 30-yr normals (1981–2010) and
summed by calendar year.

+ + or � x

30-yr average CWD Average climatic water deficit (CWD; the difference
between potential and actual evapotranspiration)
calculated at a monthly time step from downscaled
30-yr normals (1981–2010) and summed by
calendar year.

� � x

Postfire climate
3-yr postfire AET Average AET calculated from downscaled monthly

data in the first 3 yr after a fire (the mean of the
three annual values).

+ + or � x

3-yr postfire CWD Average CWD calculated from downscaled monthly
data in the first 3 yr after a fire (the mean of the
three annual values).

� � x

Postfire AET deviation Difference between 3-yr postfire AET and 30-yr
average AET.

+ + or � x

Postfire CWD deviation Difference between 3-yr postfire CWD and 30-yr
average CWD.

� � x

Fire severity
Canopy cover of mature
conifers

The percentage of total surface area surrounding
each field plot classified as mature conifer cover in
1-m postfire imagery. Calculated in 20 different
neighborhood sizes (i.e., circular areas with radii of
30–600 m in 30-m increments).

+ or � + x

Distance to mature
conifer

Field-derived distance (m) from plot center to
nearest surviving conifer.

� �

Percent BA mortality Field-derived percentage of prefire basal area killed
during event.

+ or � �

RdNBR Landsat-derived fire severity index using pre- and
postfire imagery.

+ or � � x

Topography/terrain
Topographic position
index

Index describing relative topographic position of
each 30-m cell. High values are associated with
ridgetops and low values are associated with valley
bottoms.

+ or � � x

Landform classification Categorical variable combining topographic
position, aspect, and soils at 30-m resolution. From
Theobald et al. (2015).

+ on intermediate
slopes

+ on cool/wet
slopes

x

Herbivory
Grazing/browsing Binary variable (presence/absence) of cattle grazing

or ungulate browse damage on each plot.
� �

Postfire recovery of other
tree species
Douglas-fir seedling
density

Density (seedlings/ha) of postfire Douglas-fir
seedlings. Used only as predictor of ponderosa pine
density.

+ N/A

Gambel oak sprout
density

Density (stems/ha) of postfire Gambel oak. + or � +

Other conifer seedling
density

Density (stems/ha) of postfire conifers of other
species (i.e., fir, spruce, lodgepole pine, pinyon pine,
and juniper).

� �

Prefire forest structure
Prefire basal area Combined basal area of live and dead overstory trees

of all species in a given plot.
+ +

Groundcover/seed bed
Bare ground Percent cover of bare ground in 1-m2 quadrats. + �
Percent coarse wood Percent cover of coarse wood in 1-m2 quadrats. + +
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(hereafter, z scores). Similarly, El Ni~no events (i.e., the
warm phase of the El Ni~no Southern Oscillation [ENSO])
have been associated with episodic conifer establishment
in the Southern Rocky Mountains (League and Veblen
2006), perhaps because of increases in winter precipita-
tion during these years (Kurtzman and Scanlon 2007).
Therefore, we obtained a Multivariate ENSO Index
(MEI; Wolter and Timlin 2011) for the 2-month period of
January–February (following League and Veblen 2006).

Seedling density

Statistical modeling.—To develop statistical models of
postfire seedling densities for ponderosa pine and Dou-
glas-fir, we used generalized linear mixed models
(GLMMs; sensu Bolker et al. 2009) in the glmmTMB
package (Brooks et al. 2017) in R (R Core Team 2018).
Potential predictors in each GLMM included factors
related to 30-yr average climate, 3-yr postfire climate,
fire severity, topography/terrain, herbivory, recovery of
other tree species, prefire forest structure, and postfire
groundcover (Table 2). All spatially extensive predictors
were obtained or created at a 30-m resolution. We con-
verted all continuous predictors to z scores prior to
model fitting to facilitate direct comparison of standard-
ized model coefficients and to improve model stability.
For GLMMs, we included data from the 555 regenera-
tion plots across the 15 surveyed fires. Because of the
hierarchical structure of data collection, we used nested
random intercepts (transect within fire) to account for
spatial dependence of plot data within each transect and
across each fire. Semivariograms of model residuals indi-
cated very little spatial dependence with this random
effect structure (nugget : sill ratio near 1; Bivand et al.
2013). To account for differences in sampling area
among plots (due to the variable-sized subplots used in
this study), we also included an offset term of log(sub-
plot area) for each species on each plot (Zuur et al.
2009). Following the development of initial zero-inflated
GLMMs with a Poisson error structure, we used simula-
tion-based tests of model residuals in the DHARMa
package (Hartig 2018) in R to examine issues of disper-
sion. Our initial models were underdispersed and we

therefore used a generalized Poisson error structure, a
preferred distribution in these cases (Hilbe 2014).
We performed variable selection for our GLMMs of

postfire seedling density using an information-theoretic
approach (Burnham and Anderson 2002). First, we fit
initial models by developing GLMMs that included all
potential predictors (Table 2) with the exception of those
in highly correlated groups (e.g., groundcover, postfire
canopy cover of mature conifers in different radii). We
then independently added predictors from each corre-
lated group and used AIC (Akaike information crite-
rion) to identify specific predictors in each group with
the greatest explanatory power. After including these
predictors, we then performed variable selection for final
GLMMs by minimizing AIC while also balancing parsi-
mony, in the case of two models with relatively similar
AIC (i.e., DAIC <2), we selected the simpler model. To
assess model accuracy, we used a k-fold cross-validation
procedure in which each GLMM was fit with the major-
ity of the data, while plots from a single transect were
withheld as the test set. We repeated this process with
each transect (143 folds). We were interested in the abil-
ity of models to predict seedling densities that exceeded
different density thresholds (Seedling density: Spatial
modeling). Therefore, we used balanced classification
accuracy, a metric that evenly weights sensitivity and
specificity, to quantify agreement between observed and
predicted values in cross validation.

Spatial modeling.—We developed spatially explicit pre-
dictions of ponderosa pine and Douglas-fir seedling den-
sities at a 30-m resolution (hereafter, grid cells) within
each of the 15 fire perimeters with an additional set of
GLMMs, using only predictors that could be character-
ized across the entirety of each fire (Table 2). This was
done by conducting GLMM analyses similar to those
described in Seedling density: Statistical modeling, but
excluding variables of groundcover, prefire forest struc-
ture, local vegetation characteristics, and field-derived dis-
tances to mature conifers (Table 2). These GLMMs were
then used to predict postfire seedling densities in each grid
cell throughout each fire (hereafter, spatial models).
Because Douglas-fir was only a minor component (<10%

TABLE 2. (Continued)

Category and variable name Description PIPO PSME
Spatial
model

Percent forb Percent cover of forbs in 1-m2 quadrats. + +
Percent grass Percent cover of graminoids in 1-m2 quadrats. � + or �
Percent litter Percent cover of litter in 1-m2 quadrats. � +
Percent rock Percent cover of rock in 1-m2 quadrats. � �
Percent shrub Percent cover of low (<1.4 m in height) shrubs in 1-

m2 quadrats.
+ or � +

Notes: Expected relationships of each variable with ponderosa pine (PIPO) and Douglas-fir (PSME) seedling densities are shown
with + (positive) or – (negative). Spatially extensive variables that could be used to inform spatial models of seedling densities within
fire perimeters (“Spatial model”) are denoted with x.
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basal area) of prefire basal area in five fires (Table 1), we
excluded these fires from summaries of spatial model
results for this species. We present results of spatial mod-
els for each fire, the total fire area (summed across all
fires), and the total high-severity area (38.7% of total fire
area). To identify these high-severity areas (i.e., grid cells
with total canopy mortality), we used field-derived fire
severity (percent basal area mortality) and fire name to
train a classification of Landsat-derived RdNBR (relative
differenced normalized burn ratio; Miller et al. 2009).
Balanced accuracy of this classification was 84.4%.
From the spatial model predictions, we quantified the

percentage of each fire, of total fire area, and of total
high-severity area that exceeded density thresholds of 25
ponderosa pine seedlings/ha and 10 Douglas-fir seed-
lings/ha. These values correspond to some of the lowest
reported stand densities in historical reconstructions of
ponderosa pine and dry mixed-conifer forests through-
out southern Colorado and the Southwest (Reynolds
et al. 2013, Rodman et al. 2017). In order to identify
sites most at risk of fire-facilitated conversion, we used
these thresholds as a broad/general approach to resili-
ence. We acknowledge that the use of these universally
low-density thresholds as a means of assessing recovery
from wildfire ignores the inherent variability in prefire
density and species composition within and among fires.
We tested the sensitivity of model results and classifica-
tion accuracies to different tree-density thresholds; the
25 and 10 seedlings/ha thresholds, for ponderosa pine
and Douglas-fir, respectively, yielded the highest bal-
anced accuracies of those tested (Appendix S3: Tables
S1, S2). To describe potential drivers of variability
among fires in these models, we calculated Spearman
rank correlation coefficients between the percentage of
each fire exceeding density thresholds and fire-level vari-
ables of (1) percentage of area within each fire perimeter
with total canopy mortality, (2) percentage of prefire
basal area belonging to ponderosa pine or Douglas-fir,
and (3) mean 30-yr CWD within each fire perimeter.
Finally, to identify areas in which postfire seedling den-

sities of Douglas-fir and ponderosa pine were limited by
the proximity to live conifers, we used the fitted GLMMs
to predict seedling densities throughout each fire with
observed climate surfaces (e.g., AET and CWD) and the-
oretically abundant canopy cover of mature conifers. We
interpreted grid cells to be climatically suitable for seed-
lings but limited by the availability of surviving conifers if
they were initially below the 25 and 10 seedlings/ha den-
sity thresholds with the observed postfire canopy cover of
mature conifers, but exceeded density thresholds given
abundant canopy cover. Limitations to recovery in these
grid cells likely reflect the combined influences of surviv-
ing forest cover on seed availability and on microclimatic
buffering. We interpreted grid cells remaining below the
25 and 10 seedlings/ha density thresholds in both spatial
models to have been limited by climatic predictors (e.g.,
AET, CWD) and/or fire-level random effects.

RESULTS

Q1. How do seed cone production, conifer seedling
establishment, and angiosperm resprouting vary following

each fire?

While the abundance of ponderosa pine seed cone pro-
duction varied through time and among the fires sur-
veyed, we estimate that ponderosa pine seed was widely
available in most areas with surviving mature trees
(Fig. 2). From 2003 to 2017 (the range of years that
could be reliably quantified using the cone abscission scar
method), 74% of all surveyed trees had at least two seed-
cone years and 40% had at least five seed-cone years
(Fig. 2a). Each fire surveyed using the cone abscission
scar method (n = 8) had multiple years of widespread
seed cone availability following fire occurrence (Fig. 2b).
These events occurred, on average, every 2–8 yr. Seed
cone production was asynchronous among fires (mean
pairwise Spearman correlation; q = 0.09), though region-
ally important years occurred in 2006, 2009, 2012, 2015,
and 2017 (Fig. 2c). Seed cone production was relatively
synchronous within fires (mean q = 0.25, range = 0.08–
0.40) and most synchronous within individual stands
(mean q = 0.38, range = 0.02–0.64).
Lodgepole pine (which often have serotinous cones),

as well as Gambel oak and aspen (which can resprout
from established root systems following wildfire),
showed abundant establishment immediately following
individual fire events (Fig. 3). Specifically, 96% of lodge-
pole pine seedlings and 54% of oak and aspen stems
were dated within 3 yr of fire occurrence. Stems of
resprouting angiosperms continued to initiate for many
years after some fires (Fig. 3). Only 23% of ponderosa
pine and Douglas-fir establishment occurred within 3 yr
of fire occurrence. Regional pulses of ponderosa pine
and Douglas-fire seedling establishment, as identified
through CharAnalysis, occurred in 1995, 1998, 2007,
2010, and 2014 (Fig. 4a). Three of the five pulses (1995,
1998, and 2007) took place during years with below-
average CWD during the growing season (Fig. 4b), and
four of the five pulses (1995, 1998, 2007, and 2010) were
associated with El Ni~no events (i.e., a positive MEI in
January and February; Fig. 4c). No strong temporal
associations were evident between ponderosa pine seed
cone production and seedling establishment at broad
scales (Fig. 4d).

Q2. Which biophysical factors best predict stand-scale
variability in postfire conifer seedling density?

Final GLMMs of postfire ponderosa pine seedling
density, created using all field-derived and spatially
extensive variables as potential predictors, included
30-yr average AET, 30-yr average CWD, field-derived
distances to mature conifers, prefire basal area, per-
cent basal area mortality, and postfire vegetation
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characteristics (Fig. 5a). Low 30-yr average CWD and
high 30-yr average AET, together indicative of produc-
tive areas with abundant moisture, were associated with
higher seedling densities (Fig. 5a). Interestingly, 30-yr
averages of CWD and AET were better predictors of
ponderosa pine seedling density than were 3-yr postfire
AET and CWD. Including 3-yr postfire climate vari-
ables did not improve predictive accuracy. Plots that
were adjacent to surviving mature conifers, had higher
prefire basal area, and burned at higher severity (i.e.,
greater percent basal area mortality) had higher densi-
ties of ponderosa pine (Fig. 5a). Grass cover and Gam-
bel oak sprouting densities were negatively related to
ponderosa pine density, while postfire Douglas-fir

seedling density was positively related to ponderosa
pine density (Fig. 5a). The Douglas-fir model with both
field-derived and spatially extensive variables did not
improve upon the model including only spatially exten-
sive variables, thus we only present the latter model for
Douglas-fir.
GLMMs developed for spatially explicit models of

ponderosa pine and Douglas-fir seedling densities were
relatively similar to one another, including both 30-yr
average CWD and postfire canopy cover of mature coni-
fers as top predictors, but also had some important dif-
ferences (Figs. 5b, c, 6). The ponderosa pine model
included 30-yr average CWD, 30-yr average AET, and
postfire canopy cover of mature conifers, with 30-yr

FIG. 2. A summary of ponderosa pine seed cone production at (a) the tree level and (b, c) the fire level in eight surveyed fires in
southern Colorado and northern New Mexico, USA. Tree-level production gives (a) the percentage of trees (across all sites;
n = 154) exceeding different numbers of individual seed years (2003–2017), where seed years were defined as individual years with
at least 25 seed cones produced. Fire-level production gives (b) the percentage (bar heights) and number of postfire years (between
fire occurrence and the time of surveys; numbers above each bar) with widespread seed cone production (at least 50% of surveyed
trees recording seed years), as well as (c) the estimated annual cone production per tree within each fire. Bar colors and fire names
in panel b match lines in panel c. Cone production prior to 2003 could not be reliably quantified using the cone abscission scar
method.
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CWD being the most important predictor. Low 30-yr
average CWD and high 30-yr average AET were associ-
ated with higher ponderosa pine densities (Figs. 5b, 6b,

c). The Douglas-fir model included only 30-yr average
CWD and postfire canopy cover of mature conifers.
Canopy cover was more important than was 30-yr aver-
age CWD for Douglas-fir (Fig. 5c). The most notable
difference between the two species was the relationship
with postfire canopy cover of mature conifers, which we
assessed at a range of neighborhood sizes (30–600 m
radii in 30-m increments). Ponderosa pine densities were
highest in areas with intermediate (46%) canopy cover
and the most influential neighborhood size was rela-
tively broad: a 240-m radius (Figs. 5b, 6a). A nonlinear
term for canopy cover led to a slightly improved model
fit (DAIC = 1.8) and a more ecologically realistic
response given the shade-intolerant nature of ponderosa
pine. In contrast, Douglas-fir densities were highest in
dense stands (100% cover) and a localized 60-m neigh-
borhood size was most influential (Figs. 5c, 6d), consis-
tent with overstory microclimatic buffering and the
greater shade tolerance of this species.
While the GLMM of ponderosa pine density includ-

ing all field-derived and spatially extensive predictors
had an improved fit when compared to the GLMM
developed for spatially explicit models (DAIC = 11.8),
the differences in classification accuracy from cross vali-
dation were relatively minor (71.8% balanced accuracy
for the full model vs. 70.6% for the spatial model). For
Douglas-fir, the GLMM used to inform spatial models
had a balanced classification accuracy of 77.3%. Zero-
inflation components of final GLMMs included only
intercept terms and are not presented here.

Q3. What percentage of each fire and of total burned area
has recovered to meet seedling density thresholds

consistent with historical tree densities?

Spatially explicit predictions of postfire seedling densi-
ties for each species indicated that 42% and 69% of total
fire area had densities below 25 ponderosa pine and
10 Douglas-fir seedlings/ha, respectively (Figs. 7, 8). In
the portions of these fires with total canopy mortality
(high severity), predicted densities were lower. We esti-
mated that 57% of the total high-severity area did not
exceed 25 ponderosa pine seedlings/ha and 79% of the
total high-severity area did not exceed 10 Douglas-fir
seedlings/ha (Appendix S3: Tables S1, S2).
Recovery also varied substantially among fires. For

example, the Montoya Fire had 0% of total fire area

FIG. 3. Temporal patterns of conifer seedling establishment
(for Douglas-fir, ponderosa pine, and lodgepole pine) and the
timing of resprouting (for aspen and Gambel oak) across each
of 15 surveyed fires in southern Colorado and northern New
Mexico, USA. Counts are derived from destructive samples col-
lected throughout each fire and dated with annual precision.
Years of fire occurrence are shown with a triangle and dashed
line. The total number of seedlings and stems aged in each fire
is given by n. Information on prefire species composition and
burn severity in each fire are provided in Table 1.
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exceeding 25 ponderosa pine and 10 Douglas-fir seed-
lings/ha, while the Saw Fire had 100% (ponderosa pine)
and 98% (Douglas-fir) of fire area above these same den-
sity thresholds (Figs. 7, 8). The percentage of fire area
exceeding density thresholds was positively correlated
with prefire basal area for each species (q = 0.55 for
ponderosa pine, q = 0.38 for Douglas-fir) and negatively
correlated with the percentage of fire area with total
canopy mortality (q = �0.50 for ponderosa pine,
q = �0.52 for Douglas-fir). There were weaker relation-
ships with mean 30-yr CWD within fire perimeters
(q = �0.15 for ponderosa pine, q = �0.25 for Douglas-
fir). The percentage of fire area with total canopy mor-
tality was not related to 30-yr CWD (q = �0.01), and
the 15 fires spanned broad ranges in both predictors.

Q4. What is the percentage of total burned area in which
postfire conifer seedling densities were limited by a lack of

mature conifers following fire?

The drivers of limited conifer regeneration varied by
species, within fire perimeters, and among fires. By sub-
stituting a theoretically abundant canopy cover into our
final models, we determined that 25% of total fire area
was predicted to have less than 25 ponderosa pine seed-
lings/ha due to a lack of mature conifers following fire
(as measured through canopy cover in 1-m image classi-
fication; Appendix S3: Table S1). An additional 16% of
fire area was predicted to be below 25 seedlings/ha (even
with abundant canopy cover) due to 30-yr average AET,
30-yr average CWD, and random effects of fire

FIG. 4. A summary of conifer establishment, angiosperm resprouting, interannual climate variability (1988–2015), and pon-
derosa pine seed cone production across 15 surveyed fires in southern Colorado and northern New Mexico, USA. Destructively
sampled seedlings (conifers) and stems (angiosperms) were collected throughout each fire and (a) dated with annual precision. Bar
colors correspond to each of the five sampled species and bar heights correspond to the number of samples dated to each year. Tri-
angles and vertical dashed lines show significant pulses of ponderosa pine and Douglas-fir establishment (1995, 1998, 2007, 2010,
and 2014) based on CharAnalysis, a pulse detection algorithm that identifies local outliers. Interannual climate variability was char-
acterized with (b) CWD (climatic water deficit) during the growing season (April–September) and (c) the multivariate El Ni~no
Southern Oscillation index (MEI). Last, (d) ponderosa pine establishment across all sites (green bars) is overlaid with the mean
annual seed cone production per tree (in a subset of eight fires) in the year prior to seedling establishment (hollow circles).
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(Appendix S3: Table S1). In contrast, Douglas-fir may
be more strongly influenced by the canopy cover of
mature conifers. For Douglas-fir, 68% of the total fire
area was limited (below 10 seedlings/ha) by a lack of
mature conifers (Appendix S3: Table S2).

DISCUSSION

Limited recovery of seed-obligate conifers has been
widely documented following recent wildfires throughout
the western United States (Harvey et al. 2016, Rother
and Veblen 2016, Shive et al. 2018, Stevens-Rumann
et al. 2018, Kemp et al. 2019), yet the spatial and tempo-
ral variability in factors limiting postfire forest recovery
are still poorly understood. Building on the existing
knowledge of recovery processes in dry forests, we note
four key findings. First, our results indicate that seed cone
production was not a major limitation to postfire recov-
ery of ponderosa pine. Second, five peak years of seedling
establishment coincided with above-average moisture
availability. Third, variability in postfire conifer seedling
density related to gradients in climate and fire severity,
and seedling densities were highest on mesic sites and
near surviving conifers. Fourth, Douglas-fir and pon-
derosa pine postfire seedling densities were relatively low
across a substantial percentage of the total burned area.
Together, the initial filter of seed availability (a combina-
tion of seed production and proximity to mature conifers)
and the secondary filter of climate limited conifer forest
recovery across 15 recent wildfires in southern Colorado
and northern NewMexico, USA.

Spatial and temporal limitations to seed availability and
other effects of live trees

To date, little research has focused on the role of seed
production in postfire recovery of dry forests in the

western United States. In the present study, we found that
the limited establishment of ponderosa pine following
wildfires was not due to a lack of years of abundant seed
cone production (i.e., mast years). Previous studies of
seed cone production in ponderosa pine indicate that
mast years may occur every 2–6 yr (Maguire 1956, Kran-
nitz and Duralia 2004, Shepperd et al. 2006), similar to
our estimates of 2–8 yr within fires. These findings have
two important implications. First, the time interval
between the initial disturbance and the time of our sur-
veys was long enough to allow for at least one widespread
ponderosa pine seed-cone year in each fire. Second, given
the relatively frequent seed cone production observed in
this study, the patterns of surviving trees are a useful
proxy for spatial variability in ponderosa pine seed avail-
ability throughout the landscape. Still, temporal variation
in seed availability and alignment with climate conditions
suitable for germination (sensu Savage et al. 1996, 2013,
Petrie et al. 2017) is a poorly understood component of
postfire recovery needing additional research.
Fire severity, measured here using a combination of

variables including field-derived distance to mature coni-
fers, percent basal area mortality, postfire canopy cover
of mature conifers in aerial imagery, and satellite-derived
RdNBR, was one of the factors best predicting postfire
ponderosa pine and Douglas-fir seedling densities. Fire
severity relates to the availability of live conifers
throughout the landscape, which then drives spatial pat-
terns of seed availability. Surviving trees also modify
temperature (Davis et al. 2018a), relative humidity (Par-
itsis et al. 2015), and light availability in the understory
(Battaglia et al. 2002), thereby influencing seedling sur-
vival and resource availability in harsh postfire environ-
ments. While canopy moderation may benefit both
ponderosa pine and Douglas-fir, Douglas-fir is better
adapted to benefit from microclimatic buffering (sensu
Dobrowski et al. 2015) given its greater ability to

FIG. 5. Standardized coefficients and significance levels for each of the predictors included in generalized linear mixed models
predicting postfire (a, b) ponderosa pine and (c) Douglas-fir seedling densities. Error bars are �SE of the coefficient estimate.
Models were developed from (a) all potential predictors (both field-derived and the spatially extensive variables) and (b, c) spatially-
extensive predictors only (for later use in spatial modeling). We do not present a model for Douglas-fir seedling density using field-
based predictors because these did not improve model accuracy. Coefficients are for the conditional models only and zero-inflation
terms or random intercept coefficients are not shown. Orthogonal polynomial terms (nonlinear predictors) are given with the vari-
able name preceded by “poly” and variable interactions are given by linking two variable names with “9”. AET, actual evapotran-
spiration; BA, basal area; CWD, climatic water deficit.
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tolerate the shaded understories of densely forested
areas (Burns and Honkala 1990). For example, the areas
predicted to have the highest densities of ponderosa pine
seedlings were under intermediate levels of canopy cover
(i.e., 46% in a 240 m radius). In contrast, Douglas-fir
had higher seedling densities in dense stands (i.e., 100%
cover in a 60 m radius). At a fine scale, we found that
plots with high fire severity (as indicated by high percent
basal area mortality), but in close proximity to seed trees
had high postfire ponderosa pine seedling densities,
likely due to fire-induced modifications of the seedbed
and increased light availability on these sites (thus bene-
fitting shade-intolerant ponderosa pine). Localized
patches of high-severity fire may drive the abundant,
aggregated establishment of ponderosa pine due to the
presence of an adjacent seed source as well as bare min-
eral soil, available light, and increases in growing space
(S�anchez Meador et al. 2009, Larson and Churchill
2012). Fire severity, influencing seed availability and
conditions in the understory environment, is one of the
most important factors limiting the recovery of seed-
obligate conifers in postfire environments.

Climate and site suitability as constraints on postfire
regeneration

Average climate (described by 30-yr CWD and AET)
was another strong predictor of postfire densities for

both ponderosa pine and Douglas-fir. Consistent with
the findings of other studies (Dodson and Root 2013,
Chambers et al. 2016, Kemp et al. 2016, Rother and
Veblen 2016), we found that moisture-limited sites at
low elevations and on southerly aspects typically had
low conifer seedling densities, even in areas adjacent to
a seed source. Many previous studies have utilized indi-
vidual climate variables such as precipitation and tem-
perature or terrain variables such as aspect and
elevation to explain variability in postfire conifer den-
sity. Water balance metrics such as CWD and AET
provide a more useful alternative because they effec-
tively combine the influence of climate, topography,
and soils, and are functionally tied to the environmen-
tal conditions experienced by plants (Stephenson 1998,
Dilts et al. 2015). When calculated at fine spatial reso-
lutions that mirror the operational scales of postfire
recovery processes (as done in this study), AET and
CWD are useful and complementary predictors of
postfire recovery in semiarid landscapes and are help-
ful indicators of susceptibility to fire-driven conver-
sions in vegetation.
Interestingly, 3-yr postfire CWD and AET had little

predictive power in our seedling density models, yet
postfire climate has been noted as an influential driver
of postfire recovery in other studies (Harvey et al. 2016,
Stevens-Rumann et al. 2018, Davis et al. 2019). A recent
synthesis spanning much of the Rocky Mountains noted

FIG. 6. Results of generalized linear mixed models that were used to predict postfire seedling densities of ponderosa pine and
Douglas-fir across each of the surveyed fires in southern Colorado and northern New Mexico, USA. Predicted values (solid lines)
represent the marginal effects of each predictor when assuming optimal values for the other predictors and mean values of random
effects. Dotted lines are �SE of prediction. Variables include (a, d) canopy cover (the percent surface area of mature conifers within
a circular radius), (b, e) 30-yr average CWD (climatic water deficit), and (c) 30-yr average AET (actual evapotranspiration): mea-
sures of unmet evaporative demand and evaporation constrained by moisture availability, respectively. Variation among fires is
shown with (f ) random intercept coefficients for each species, where colors indicate positive (blue) or negative (red) deviations from
the mean value across all sites.
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the postfire climate was most predictive of forest recov-
ery during cooler, wetter periods (Stevens-Rumann et al.
2018). Given that many of our fires occurred in the
early-mid 2000s, a warm and dry period in which

postfire conditions may have been more universally
unfavorable for seedlings, this is one possible explana-
tion for differences between our findings and those of
previous studies in regard to average postfire conditions.

FIG. 7. Predicted ponderosa pine seedling densities throughout each surveyed fire in southern Colorado and northern New Mex-
ico based on based on GLMMs using only spatially extensive predictors. The percentage values in each panel give the percentage of
fire area exceeding a density threshold of 25 seedlings/ha, which corresponds to some of the lowest reported historical densities for
this species in ponderosa-pine-dominated forests of the southern Rocky Mountains and Southwest (Rodman et al. 2017). Blue areas
in each map exceed this threshold while red areas are below this threshold. Note that cartographic scales differ among panels.
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In addition, we found that only 23% of ponderosa pine
and Douglas-fir establishment occurred within 3 yr of
fire occurrence; interannual climate variability after the
initial 3-yr postfire period also plays an important role
in postfire vegetation trajectories.

At an annual resolution, extreme drought years
influence longer-term forest trajectories, likely by
increasing seedling mortality (Young et al. 2019), while
wetter years lead to pulses of conifer establishment
(Rother and Veblen 2017, Davis et al. 2019). Short-

FIG. 8. Predicted Douglas-fir seedling densities throughout each surveyed fire in southern Colorado and northern New Mexico
based on based on GLMMs using only spatially extensive predictors. The percentage values in each panel give the percentage of fire area
exceeding a density threshold of 10 seedlings/ha, which corresponds to some of the lowest reported historical densities for this species in
dry mixed-conifer forests of the southern Rocky Mountains and Southwest (Rodman et al. 2017). Blue areas in each map exceed this
threshold while red areas are below this threshold. Fire names followed by daggers (†) are those in which Douglas-fir represented less than
10% of prefire basal area. These fires were excluded from summaries of spatial models. Note that cartographic scales differ among panels.
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term (e.g., 3–5 yr) averages of postfire climate may
mask the importance of these extreme years. In the pre-
sent study, the 1995, 1998, 2007, 2010, and 2014 estab-
lishment pulses coincided with below-average CWD
during the April–September growing season or with
the warm (i.e., El Ni~no) phase of ENSO (which is asso-
ciated with wet winters in the study area; Kurtzman
and Scanlon 2007). Though these two components of
interannual climate variability are generally related,
they are not perfectly correlated (Fig. 4), and thus they
represent slightly different seasonal effects that could
influence establishment. For example, years with a pos-
itive MEI (El Ni~no conditions) may have above-average
spring snowpack, yet may still accumulate CWD dur-
ing the growing season due to above-average summer
temperatures. Similar effects of interannual and sub-
annual climatic variability are now well-documented in
conifer forests throughout the Southern Rocky Moun-
tains and Southwest (Savage et al. 1996, League and
Veblen 2006, Rother and Veblen 2017, Andrus et al.
2018, Davis et al. 2019). As such, demographic models
that tie interannual climate variability to specific com-
ponents of the conifer reproductive cycle are more
informative than 3–5 yr postfire climatic averages
(Feddema et al. 2013, Savage et al. 2013, Petrie et al.
2017, Davis et al. 2019). The consideration of longer
time periods, both to assess the adequacy of recovery
and to identify potential windows for seedling estab-
lishment, is warranted in dry forests of the Southern
Rocky Mountains.
Additional factors that helped to predict postfire

seedling densities included seedbed characteristics,
postfire recovery of other tree species, and prefire forest
density. For example, our results indicated that grass
cover and Gambel oak density both had negative rela-
tionships with ponderosa pine density at the stand
scale. Bunch grasses (e.g., Festuca arizonica) may com-
pete with ponderosa seedlings for soil moisture (Pear-
son 1942), potentially limiting seedling densities
(Flathers et al. 2016). In contrast to our findings, previ-
ous studies have noted that ponderosa pine may have
weak (Owen et al. 2017) or even strong (Ziegler et al.
2017) positive spatial associations with resprouting
angiosperm trees in postfire environments. Gambel oak
is believed to facilitate the establishment of another
southwestern pine species (i.e., Pinus edulis; Floyd
1982) through microclimatic buffering and perhaps by
attracting avian dispersers (such as corvids). Therefore,
our finding of a negative relationship between Gambel
oak density and ponderosa pine density may also reflect
the occupancy of different site types rather than com-
petitive or inhibitory interactions between these species.
We also noted that high prefire basal area and postfire
Douglas-fir seedling density were positively related to
ponderosa seedling density, perhaps indicative of wetter
sites with better growing conditions. Postfire seedling
density is locally variable, reflecting variability in the

seedbed, local vegetation characteristics, and growing
conditions (as influenced by moisture availability and
topoclimate).

Landscape-scale variability in resilience to fire

Spatial variability in conifer seedling density was
effectively predicted throughout each fire using statisti-
cal models developed from field data and spatially exten-
sive data sets. Using these predictions, we determined
that ponderosa pine and Douglas-fir regeneration was
below the lowest reported historical tree densities in
large percentages (42% and 69%, respectively) of the
total area burned throughout 15 recent wildfires in
southern Colorado and northern New Mexico, USA.
Importantly, there was also pronounced variability in
forest recovery among fires. Individual fire events ranged
widely in postfire recovery (with both species ranging
from 0% to 100% across fires), which makes broad gen-
eralizations about causal mechanisms difficult. Still,
much of this limited regeneration could be attributed to
a lack of postfire canopy cover of mature conifers and
the unfavorable climate in portions of the surveyed sites
(specifically 30-yr average AET and CWD). In addition,
recovery among fires was strongly related to differences
in prefire species dominance, indicative of important
legacy effects. Our spatial models provided an effective
means of scaling stand-level observations to extensive
postfire landscapes (Tepley et al. 2017, Haffey et al.
2018, Shive et al. 2018), thus permitting broader
inferences about vulnerability to postfire vegetation type
conversion.
Projections of future shifts from forest to non-forest

vegetation types are inherently uncertain due to
unknown future climatic variability as well as uncertain-
ties about rates and specific drivers of vegetation change.
Because our surveys were performed in relatively recent
wildfires (1988–2010), it may be too early to suggest that
transitions to non-forest vegetation types are permanent
(Baker 2018). Still, the spatial variability in predicted
densities across our study area indicates that some site
types (e.g., xeric sites and those in the interior of high-
severity patches) are more vulnerable to vegetation type
conversions than others. Forest response to wildfire is
often presented as a simplistic binary outcome of resili-
ent vs. non-resilient based on observations over periods
of one to a few decades, yet a more nuanced approach to
forest resilience considers rates of recovery, which can
then create gradients of “relative resilience” across the
landscape (Tepley et al. 2017, 2018, Shive et al. 2018).
Given the importance of canopy cover and 30-yr average
CWD in predicting densities of both ponderosa pine and
Douglas-fir, results from the current study imply that
under continued warming and altered fire activity, some
forested areas in the Southern Rocky Mountains are
likely to undergo fire-driven conversions to non-forested
vegetation (Parks et al. 2019).
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ADAPTATION AND MANAGEMENT IMPLICATIONS

Continued climate warming will increase the vulnera-
bility of many low-elevation forests to conversion to
non-forest vegetation types, and this presents complex
challenges to land managers. Adequately addressing
these challenges requires consideration of societal values
and forest ecosystem services, as well as the best possible
technical understanding of the potential for success of a
variety of possible management interventions (Higuera
et al. 2019). Potential management options include
actions that attempt to forestall change through
enhanced ecosystem resistance to fire effects, interven-
tions aimed at improving postfire resilience, and actions
such as assisted migration aimed at facilitating ecosys-
tem transformation to systems consistent with a chang-
ing climate (Millar et al. 2007, Halofsky et al. 2014). All
management interventions have considerable risk due to
uncertainties in predicting the rate and pattern of future
climate change and the complexity of climate impacts on
ecosystem dynamics. Therefore, a diverse range of
approaches to adaptation and management should be
considered (Millar et al. 2007, Baker 2018). Currently,
reforestation is one of the most common management
responses to large severe fires in the western U.S. (North
et al. 2019), and the effectiveness of postfire planting
can vary widely (e.g., 0–70% survival in fires throughout
Arizona and New Mexico; Ouzts et al. 2015). The likeli-
hood of successful reforestation can benefit from the
type of site-specific research on regeneration processes
presented in the current study. If reforestation of recently
burned areas remains an important goal, relatively cool/
wet sites should be prioritized first because seedling sur-
vival in these areas is likely to be greatest, now and into
the future. Within these wetter areas, planting units
should be limited to locations where available seed
sources are most distant (Stevens-Rumann and Morgan
2019). The statistical analyses and spatial models pre-
sented here help to locate these types of sites in heteroge-
nous burned landscapes by identifying areas that are
climatically suitable, but in which recovery is limited by
the proximity to live conifers. Our results are also impor-
tant in informing discussions among stakeholders of the
likelihood of future changes in the extent of forest cover,
the probable changes in forest ecosystem services, and
the costs and benefits of a range of adaptation strategies.

CONCLUSION

The factors limiting forest recovery to wildfire vary by
species and across gradients in fire severity and climate.
Because seed cone production was relatively frequent
within each fire, the proximity to surviving conifers (as
controlled by fire severity) is a reliable proxy for seed
availability and is one of the most important factors
driving postfire recovery. Consistent with other recent
studies (Dobrowski et al. 2015, Tepley et al. 2017), 30-yr
averages of actual evapotranspiration and climatic water

deficit helped to quantify the climatic constraints on
seedlings. In general, postfire seedling densities of pon-
derosa pine and Douglas-fir were highest on wetter sites
and near surviving trees. Anthropogenic climate change
has led to increases in wildfire area burned throughout
much of the western United States (Abatzoglou and Wil-
liams 2016) and these trends are likely to continue (Liu
et al. 2013, Kitzberger et al. 2017), highlighting the
importance of understanding the patterns of ecosystem
recovery following these events. Postfire recovery in dry
forests is constrained by the initial filter of seed availabil-
ity and the secondary filter of climatic suitability,
together controlling the susceptibility to fire-driven
forest loss.
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