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Abstract

We present a mixed integer programming model for prioritizing fuel treatments within a

landscape fuel break network to maximize protection against wildfires, measured by the

total fire size reduction or the sum of Wildland Urban Interface areas avoided from burning.

This model uses a large dataset of simulated wildfires in a large landscape to inform fuel

break treatment decisions. Its mathematical formulation is concise and computationally

efficient, allowing for customization and expansion to address more complex and challeng-

ing fuel break management problems in diverse landscapes. We constructed test cases

for Southern California of the United States to understand model outcomes across a wide

range of fire and fuel management scenarios. Results suggest optimal fuel treatment lay-

outs within the Southern California’s fuel break network responding to various model

assumptions, which offer insights for regional fuel break planning. Comparative tests

between the proposed optimization model and a rule-based simulation approach indicate

that the optimization model can provide significantly better solutions within reasonable

solving times, highlighting its potential to support fuel break management and planning

decisions.

1. Introduction

The escalation of wildland fire activity has raised significant concerns throughout the world.

The United States (US), for instance, has experienced pressing wildfire issues with longer fire

seasons, increased fire frequency, larger fire sizes, and higher levels of fire damage over the

past five decades [1–3], leading to the country’s surging expenditures on wildfire prevention,

suppression, and other fire adaptation programs [1, 4–8]. With global wildfire activity pre-

dicted to rise in the next century [9], wildfire concerns are likely to persist and effective man-

agement of wildfires will remain critical worldwide.
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One major emphasis of pre-fire mitigation is managing wildland fuels, which accumulate

over time and contribute to escalating wildfire hazards [10, 11]. For example, excessive fuel

build-up has put 230 million acres of US federal lands at moderate-to-high risk from wildfires

[3], driving the development of the 2022 National Strategy for fuel reduction in 50 million

acres of land over the next ten years [8]. Wildland fuels can be reduced by vegetation treat-

ments (as known as fuel treatments) such as tree thinning, prescribed burning, herbicides, and

other mechanical and chemical methods [12–15]. Past studies have shown that in both fire-

prone wildlands and wildland urban interface areas, fuel treatments can be effective e in slow-

ing fire spread [16], reducing fire size [17–19], decreasing fire intensity and severity [20, 21],

and facilitating timely suppression responses and firefighter safeguards [22, 23]. Two common

design patterns of fuel treatments within a landscape are area-wide treatments and linear fuel

breaks. Area-wide fuel treatments typically focus on reducing fuel loads in wide blocks of land

to decrease fire intensity and severity, while linear fuel breaks reduce or alter the arrangement

of fuels within narrow strips of land to assist in wildfire suppression [24, 25]. Fuel breaks are

often constructed around a fire break, which is a narrower feature with complete fuel removal

to act as a barrier to surface fire spread. Despite ongoing debates about the relative merits

between these two approaches [26], linear fuel breaks continue to draw interest for wildfire

management in various countries, such as the United States [27, 28], Portugal [29], China [30],

Belarus and Ukraine [31].

The strategic placement of fuel breaks is essential for their effectiveness in supporting wild-

fire suppression. Ideal locations for fuel breaks are areas that offer advantages for fire control

and containment activities, such as easy access for firefighting crews, proximity to roads, or

the presence of natural barriers like rivers, ridges, or sparsely vegetated terrain that can help

slow fire progression. Fuel breaks are often established as a network of interconnected linear

segments across the landscape to prevent fires from breaching the gaps among fuel breaks.

Designing and maintaining a fuel break network (FBN) is often a complex process that

requires both local expertise and spatial analyses of fire spread patterns and fire control oppor-

tunities [24, 29, 30, 32, 33]. Modeling techniques, including simulation and optimization, can

aid in evaluating FBN designs. Simulation typically examines a limited set of predefined sce-

narios, while optimization explores the entire feasible solution space to identify the most effi-

cient option that meets management objectives. Several comprehensive reviews indicate that

fuel treatment modeling research is heavily dominated by simulation [34, 35]. Optimization

models are less common and often confined to demonstrating modeling concepts with limited

real-world applicability [36], likely due to model complexity and time-consuming computa-

tion that inhibit their capability to provide scalable solutions for larger, more complex land-

scapes. Moreover, most existing models focus on area-wide fuel treatments, with little

attention to address the fuel treatment problem from an FBN perspective.

Although there are numerous modeling studies on fuel treatment management, few of

them specifically focus on treating FBNs. One option to manage an FBN is to treat all fuel

breaks within the network. Oliveira et al. found that more intense treatments across the entire

network led to greater reductions in both fire size and burn probability [37]. Similarly, Zong

et al. showed that treating an entire FBN with specific configurations of fuel break densities,

widths, and spatial locations may significantly decrease burn probability across a landscape.

Treating an entire FBN, especially a large one, may be challenging due to cost and time con-

straints. This is because fuel treatments are expensive [4, 38–40], and they often require peri-

odic retreatments to maintain their effectiveness over time [41, 42]. Consequently, recent

modeling research has shifted their focus to prioritizing limited fuel treatments within an

FBN. For example, Belavenutti et al. [27] developed a model to prioritize discrete projects (i.e.,

sub-networks within an FBN) for implementing fuel treatments over a 10 to 20-year time

PLOS ONE Fuel break network management and planning

PLOS ONE | https://doi.org/10.1371/journal.pone.0313591 December 17, 2024 2 / 23

Venture (agreement 19-JV-11221636-170 to YW)

between the USDA Forest Service Rocky Mountain

Research Station and Colorado State University.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0313591


frame. They designed 13 scenarios where the sequence of projects in each scenario was opti-

mized to achieve multiple fire management objectives. This work was extended by Ager et al.

[43] to further analyze the tradeoffs between two alternative treatment strategies within each

prioritized project, where fuel treatments were implemented in a set of fuel breaks that form

either a long linear or a “radical” (i.e., clustered) spatial pattern. Similarly, Aparı́cio et al. [29]

developed a simulation-based model to partition fuel treatments within an FBN into a

sequence of annual treatments over a 5-year period. They designed 11 scenarios to prioritize

the sequence of annual treatments according to their contributions to various fire manage-

ment goals. All these studies share a similar approach of prioritizing sequential fuel treatments

over time, which collectively select a new sub-set of fuel breaks to treat at each time step until

treatments cover the entire FBN. While sequential fuel treatments may provide opportunities

for budget preparation during the time gap between treatments, ensuring a sufficient treat-

ment budget at a discrete point of time may remain uncertain in real-world scenarios. The

budget limitation constraint has been considered in previous modeling studies for scheduling

area-wide fuel treatments [44–48]. However, it has not received adequate attention from exist-

ing FBN modeling studies.

In this study, we integrate a large set of simulated fires into an optimization model for pri-

oritizing fuel treatments within an FBN to maximize its protection against those wildfires,

while considering the limitations imposed by budget constraints. The model evaluates the rela-

tive importance of treating each fuel break in the FBN, enabling spatial coordination of treat-

ments to enhance fire containment. Our model possesses two key attributes that facilitate its

application: 1) the capability to address landscape-scale fuel break treatment and planning

problems for prioritizing the maintenance or expansion of existing FBNs; and 2) a simple but

flexible mixed integer programming (MIP) model formulation that can be customized and

extended to adapt to various fire management objectives and implementation requirements of

diverse landscapes. We tested this model in the Southern California region of the US to gain

insights into how fuel break maintenance under different investment scenarios can affect fire

management outcomes. Solutions for these test cases were visualized in an Earth Engine web-

application, available at https://thumit.users.earthengine.app/view/landscape-fuelbreak-

prioritization.

2. Materials and methods

2.1. Problem description

Our problem considers the need to strategically invest in fuel treatments within an FBN. Given

a specific budget, our primary objective is to prioritize treating a subset of existing or candidate

fuel breaks in the network to maximize the protective capacity of the FBN, measured by the

total reduction in fire size or the sum of Wildland Urban Interface (WUI) areas avoided from

burning. Fire suppressions along the treated fuel breaks are assumed effective in stopping fire

spread at certain intensities (or flame lengths). The coordination of treated fuel breaks and

associated suppressions creates opportunities for containing fires. We designed an optimiza-

tion model that can configure and evaluate multiple treatment strategies, each represents a dif-

ferent feasible subset of fuel breaks that can be selected, to identify the optimal solution

representing the best subset of fuel breaks for prioritizing treatment across the landscape.

We used a large set of simulated future wildfires (more details will be described in the test

cases) to guide fuel break selection decisions across the landscape. For each simulated fire, we

evaluated the feasibility for its containment by assessing the spatial interaction between the

fire’s simulated footprint and the fuel breaks. Containment success was determined based on

the treatments applied to the fuel breaks and the effectiveness of fire suppression efforts. The
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outcomes of containment, such as reductions in total fire size or the protection of WUI areas,

were aggregated across all simulated fires. These aggregated metrics were used by our model to

optimize the selection of fuel breaks for treatment across the landscape.

To determine the feasibility of fire containment, we employed an approach similar to Apar-

ı́cio et al. [29] to intersect fire footprints with fuel breaks in an FBN (more details in S1 Appen-

dix). In this approach, when a fire can be split by a set of fuel breaks into multiple polygons,

the smallest polygon enclosing the fire’s ignition point (also called the “ignition polygon”) is

identified. We built upon the ignition polygon approach by further considering two additional

conditions to warrant effective fire containment by the ignition polygon:

1. All fuel breaks constituting the ignition polygon must be treated or maintained up to a stan-

dard to allow for fire suppression activities.

2. The maximum fire intensity along fuel breaks that constitute the ignition polygon must not

exceed a certain threshold to ensure successful fire suppression. This can be customized to

consider factors other than fire intensity, such as topography or weather, that may also

influence suppression effectiveness.

We focus on providing opportunities to contain fires before they escape from the ignition

polygons to address the increasing need to developing safe and effective response strategies to

manage large fires [49]. Incorporating the above two conditions helps assess fire containment

in a more realistic context of wildfire management that accounts for the effects from both fuel

treatment and fire suppression. Our assumption that fire suppression activities are more effec-

tive along treated fuel breaks is consistent with evidence from past empirical research [23, 50,

51]. Other empirical studies also indicate that suppressing a fire along treated fuel breaks may

not always successfully halt fire spread, especially in cases of high-intensity fires [28, 51]. By

assuming successful suppression only when fire intensity (or flame length) falls below a prede-

fined controllable threshold, we aimed to not overestimate suppression effectiveness.

When either of the two specified conditions is unsatisfied for a fire, we assume the fire

would grow into its originally simulated footprint. Conversely, when both conditions are met,

we assume that a portion of the fire footprint would be contained within its ignition polygon,

while the remaining fire footprint portion outside of the ignition polygon would be protected.

A fire management objective can be set up to maximize the total protected area aggregated

across all fires or maximize the sum of the quantifiable values within the protected area, such

as timber volume or WUI area avoided from burning.

2.2. Model formulation

We developed a mixed integer program (MIP) to prioritize strategic investment in a land-

scape’s FBN to maximize the total value protected from wildfires. This MIP focuses on model-

ling the spatial coordination of fuel treatments within the FBN. In this model, each potential

fuel break serves as a treatment decision unit. Given a limited fuel treatment budget, the chal-

lenge lies in deciding which fuel breaks within the FBN to treat. Treated fuel breaks are

assumed to facilitate fire suppression along these breaks, providing opportunities for effective

fire containment under a predefined fire behavior condition (e.g., less extreme fires). It is

important to note that this model does not account for fire suppression details such as suppres-

sion resources, cost, and time. Although the MIP model is relatively simple compared to many

other fuel treatment optimization models, complex spatial analysis is required to identify the

spatial relationships between fire and fuel breaks and define model parameters.

Maximize :
X

j
Vjyj ð1Þ
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Subject to:

X

i
CF

i xi � B ð2Þ

yj �
1

Mj

X

i2SFj 6¼;
xi 8j ð3Þ

Where:

• i is index of a fuel break.

• j is index of a wildfire footprint.

• xi is binary variable: 1 if fuel break i is selected for investment.

• yj is binary variable: 1 if fire j is effectively contained within the ignition polygon.

• Mj is the number of breaks that defines the “ignition polygon” of fire j.

• Vj is the protected value within the unburned footprint area of fire j.

• F is a user-defined condition to warrant successful fire suppression along fuel breaks, which

can be defined based on a single or multiple factors/parameters such as topography (e.g.,

slope), weather (e.g., temperature, wind), fire characteristics (e.g., fire size, flame length),

treatment conditions (e.g., fuel type, time since last treatment, break’s width), suppression

response time, etc. For example, in our test cases, a constant flame length threshold FL (also

called the “escape flame length”) of either 2 feet, 4 feet or 8 feet was used as a parameter to

define F; every fire with its maximum flame length along a fuel break exceeding the FL
threshold will be assumed unstoppable by that break, regardless of whether the break is

invested in or not.

• CF
i is the investment in the break i up to a level that can support effective fire suppression

under the user-defined condition F.

• B is the total budget limit.

• ; is an empty set.

• SFj is the set of fuel breaks that constitutes the ignition polygon of fire j. If the user-defined

condition F is not met for fire j, Sj will be set to ;. The process to derive the SFj set is illus-

trated in Fig 1.

The objective function (1) maximizes the total landscape value protected by the FBN across

all sample future wildfires. This value can be quantified as the total area avoided from burning,

or other quantifiable values, such as timber volume or number of buildings within the avoided

burning area etc. Eq (2) sets the upper limit for the total investment in fuel treatments within

the FBN. Eq (3) is created only for the case when a fire ignition polygon exists for fire j (i.e., the

fire is fully split by a set of fuel breaks in the FBN), and the condition F must be met for every

fuel break segment constituting fire j’s ignition polygon (e.g., the maximum fire frame length

along those fuel break segments does not exceed a predefined threshold). For example, if xi = 1

for 8i 2 SFj 6¼ ;, fire j will be contained within its ignition polygon (i.e., yj = 1). Note that Eq

(3) allows for yj to receive the value of either 0 or 1, but due to impact of the objective function

(1), the model has the incentive to force yj to be 1.
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The optimization model allows for searching the entire feasible decision solution space to

find the best option for fuel break treatment. It can also be modified to examine predefined

fuel break prioritization decisions. For example, considering a scenario with S0 being a set of

fuel breaks in the FBN selected based on certain predetermined rules, two new equations can

be added to capture the pre-determined fuel break selections represented by the S0 set:

xi ¼ 1 8i 2 S0 ð4Þ

xi ¼ 0 8i =2 S0 ð5Þ

Eqs (4) and (5) reflect those rule-based decisions. Under this model set up, the other Eqs (1)

to (3) would be used to calculate the objective function value based on the pre-selected

decisions.

An example demonstrating the construction of a simple fuel break treatment problem is

provided in S2 Appendix. In this example, a network with four fuel breaks and four simulated

fire footprints are used to formulate an optimization model that select fuel breaks to minimize

weighted sum of fire footprint areas protected from burning. Under the same assumptions, a

rule-based model is also built for ranking and prioritizing fuel breaks selection. Solutions from

these two modeling approaches are compared to emphasize the advantage of using optimiza-

tion to achieve better outcomes.

Fig 1. A schematic illustration of how to derive the set of fuel breaks that constitutes a fire’s ignition polygon.

https://doi.org/10.1371/journal.pone.0313591.g001
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3. Test cases

Our study landscape encompasses four national forests, covering a total forest area of approxi-

mately 3.4 million hectares (Fig 2). It contains an existing FBN with 2,341 segments (lines vec-

tor [28]), spanning a total length of 5,021 kilometers. Anticipating future maintenance needs

for this FBN to sustain its effectiveness, we explored how to prioritize fuel treatments within

the FBN under a budget limit.

In the US, integrating wildfire simulation into landscape-scale fire risk assessment has

become a common approach [52]. Fire-behavior tools, such as NEXUS, FVS-FFE, FARSITE,

FLAMMAP, RANDIG, and FSIM, have been used for simulating wildfires [53]. FSIM, for

instance, possesses the capability to simulate numerous wildfire events based on historical fire

Fig 2. Southern California landscape. World Hillshade is used in the figure’s background (Sources: Esri, Airbus DS, USGS, NGA,

NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap, and the GIS

User Community).

https://doi.org/10.1371/journal.pone.0313591.g002
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occurrences and weather, terrain and current fuel conditions within a landscape (https://www.

firelab.org/project/fsim-wildfire-risk-simulation-software). Wildfires simulated by FSIM have

been leveraged to support past FBN research, including simulation based fuel break prioritiza-

tion [29], scenario-based optimization [27], and statistical analysis [28]. To facilitate our test

cases, we used existing FSIM wildfire data generated and calibrated for the Southern California

landscape by Pyrologix (https://pyrologix.com). FSIM was executed with 5000 replicates using

the recent 15-year historical wildfire information in Southern California, including a mean

annual burn probability of 0.0244, a mean annual number of 33 large fires, and a mean size of

5,141 acres for large fires. This extensive simulation process produced 259,654 fires, covering

6.9 million acres of land that extend beyond the 3.4 million acres of the four national forests

within the landscape. Prior research has shown that 600 replicates could adequately represent

the variance of fire situations across 10,000 fire seasons [54]. In our case, 5000 replications

could effectively capture the historical fire size distribution in the study area. The resulting

dataset includes fire footprints (polygons vector), their corresponding ignition locations

(points vector) and flame lengths (raster with 270-meter cell size). In addition to the FSIM

dataset, we also collected information on the landscape’s Wildland Urban Interface (WUI ras-

ter with 30-meter cell size, available at https://wildfirerisk.org/download), to facilitate testing

different fire management objectives (Fig 2).

Our data processing workflow consists of three main steps:

• Step 1: identifying fires for testing. We intersected all 259,654 fire footprints with the FBN

and identified 205,748 footprints (79%) that have no interaction with the FBN (i.e., they do

not encounter at least one fuel break). These 205,748 fires were excluded from all models

since they have no impact on the model solutions. The remaining 53,906 fires (21%) were

retained for model testing.

• Step 2: identifying parameters for the model constraints. For each of the 53,906 remaining

fires, we followed a systematic process, as depicted in Fig 3. We first intersected each fire

footprint and ignition point with the FBN to identify the ignition polygon (Fig 3A). Informa-

tion of the fuel breaks defining the ignition polygon was extracted for use as model inputs

Fig 3. Illustration of data processing for 1 of 53,906 FSIM fires. A: Intersecting fuel breaks with the fire footprint to

identify the ignition polygon and its associated fuel breaks. B: Intersecting the ignition polygon with the fire flame

length raster to identify the highest flame length along the fuel break segments enclosing the ignition polygon.

https://doi.org/10.1371/journal.pone.0313591.g003
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(Mj and SFj ). Next, we intersected the ignition polygon with the flame-length raster to identify

raster cells overlapping the polygon’s boundary (i.e., cells alongside the purple fuel break seg-

ments in Fig 3B). From these cells, we selected the one with the highest flame length value to

compare to a predefined flame length threshold (FL, where suppression is assumed to be

effective). If this highest flame length value does not exceed FL, the fire is qualified for con-

tainment (note that fire is successfully contained only when all fuel breaks that constitute the

ignition polygon are treated). In the other case when the highest flame length value exceeds

FL, the fire is assumed to escape the ignition polygon regardless of treatment. Note that FL is

just a simplification of the condition F, which can be customized for modeling more com-

plex conditions to warrant successful fire suppression, as previously described in section 2.2.

• Step 3: identifying parameters for the model objective function. For each fire (as illustrated

in Fig 3), the footprint area outside of the ignition polygon (i.e., the pink areas in Fig 3A)

represent the avoided fire area burned (AFB) assuming effective fire containment by the

ignition polygon. The WUI map consists of raster cells, each covering 0.09 hectares, with ras-

ter values indicating the amount of WUI area (in hectares) within each cell. The WUI area

may vary across cells, as shown by the gradient-green color in Fig 2. For each fire, we over-

layed the AFB with the WUI map to identify which cells fall within the AFB (i.e., the green

cells in Fig 3A), and sum their raster values to calculate the WUI area protected from burn-

ing, which is also referred to as the avoided WUI burned (AWB). We used both AFB and

AWB to simplify the value at risk (Vj) used in the test cases.

We designed scenarios to address several key challenges for wildfire management in South-

ern California, including WUI protection, suppression effectiveness in relation with fire inten-

sity, and budget limitations. We systematically built and tested 120 optimization models, each

represents a unique combination of the following scenario assumptions:

• Two policy preference scenarios that define the objective functions: maximizing either the

total AFB or the total AWB across all fires.

• Two methods of selecting fire samples for modeling: “all fires”, and “no large fires” where

20% fires of the largest sizes were excluded. This exclusion helps focus our analysis on wild-

fires that have a better chance of being contained by fuel breaks. Prior research has shown

that fuel break effectiveness declines under unfavorable conditions (e.g., strong wind, high

temperature) that produce extreme fire behavior and unsafe working environments [55],

which excludes potential suppression actions on many of the fuel breaks that interact with

the largest wildfires.

• Three threshold values for the escape flame length (FL): 4 FT, 8 FT, and infinity (INF) were

selected to represent increasingly challenging fire suppression scenarios. The 4 FT and 8 FT

thresholds reflect realistic expectations for successful fire control: fires with flame lengths

below 4 FT can typically be controlled using hand tools, while fires with flame lengths

between 4 and 8 FT may require heavy equipment such as plows, dozers, pumpers, or retar-

dant aircraft for effective suppression [56, 57]. The INF threshold was included to test an

optimistic scenario that assumes fire suppression could be effective even under extreme

fires. If the maximum flame length of a fire at the boundary of the ignition polygon exceeds

the FL threshold, all fuel break segments along the polygon’s boundary will be considered

ineffective in containing the fire regardless of whether they are treated or not. In this case,

the fire is assumed to escape the ignition polygon and fully grow into its originally simulated

footprint.
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• Ten different budgets (B): 10–100% of the total FBN’s length. These percentages were

selected to represent increasing levels of investment in treating the FBN, from minimal

investment to full network coverage. Using a range of budget levels allows us to assess how

different budget constraints impact fire management outcomes. We used simplified assump-

tions that the treatment cost for each break (CF
i ) is equal to the length of that break, and the

total length of the selected breaks for treatment could not exceed a predefined budget limit

B. To implement this assumption, Eq (2) is replaced by Eq (6):
X

i
Lixi � B ð6Þ

Where Li is the length of fuel break i, and B is the maximum total length of fuel breaks that

can be invested in (e.g., 10%, 20%, 30% of the network length).

In this study, we also designed a test case to evaluate the advantage of using the optimiza-

tion (OPT) approach over a rule-based selection (RBS) approach under a set of predefined

assumptions. For the RBS approach, we assumed that all fuel breaks in the FBN were treated to

calculate the cost effectiveness of each individual break (Ei) by Eq (7). Fuel breaks are then

selected into the S0 set based on Ei, from higher to lower values of Ei until the budget B is

reached (equal B, or close to but not exceeding B). The S0 set was used in Eqs (4) and (5) to

define the predetermined fuel break selections.

Ei ¼
X

j

Vj

CF
i

8i ð7Þ

Where j belongs to the set of fires that are either contained by break i individually or by the col-

laboration of break i with other breaks in the FBN, assuming that all breaks in the FBN are

treated.

For each of the 120 OPT models, we built a corresponding RBS model as described above.

By comparing solutions between the OPT and RBS models, we can evaluate the benefits of

using the optimization approach.

4. Results

4.1. The optimization model solutions

All models were solved by using IBM’s ILOG-CPLEX 12.8 on a 64-bit workstation equipped

with a dual-core 2.5 GHZ processor and 32 GB of RAM. The entire process of running 120

OPT models took approximately 17 hours (up to 1.8 hours to complete an individual run as

shown in S3.1 Fig in S3 Appendix), while it took only 0.3 hours to complete all 120 corre-

sponding RBS models. Here, the total run time was calculated as the sum of time to read and

process model inputs, time to solve models in CPLEX, and time to write model outputs.

Fig 4 shows the optimal objective values from all the optimization models that are organized

into four categories (A, B, C, D) based on the type of objective functions and the number of

modeled fires. Both assumptions of the objective functions including “maximizing AFB” (Fig

4A and 4B) and “maximizing AWB” (Fig 4C and 4D) show an obvious “diminishing marginal

returns” effect as increasing the budget limit (i.e., the proportion of the FBN to invest by

length) will result in smaller increases in the optimal objective values. For example, Fig 4

shows that increasing the budget from 0 to 0.5 would prevent 119 million acres from burning

by fires, while increasing the budget from 0.5 to 1 would additionally protect an extra 44 mil-

lion acres (note that overlapped protected acres were included in these calculations). In all

cases, the highest returns were obtained when the budget was increased from 0 to 0.1 of the

total FBN’s length. More investment exceeding a certain level may result in significantly low
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marginal returns. For instance, Fig 4D shows no benefit when investing in more than 70% of

the total FBN’s length. The greatest benefit comes from containing large fires, as illustrated by

significantly flatter lines in Fig 4B and 4D (where the top 20% largest fires are excluded from

modeling), in comparison to Fig 4A and 4C.

Each of the four panels (A, B, C, D) in Fig 4 presents the optimal solutions under a specific

assumption of the escaping fire flame length threshold. If investment can assure successful sup-

pression of fires with flame lengths not exceeding 8 feet, then the effectiveness of the solutions

is comparable to assuming successful suppression of fires with any (INF) flame lengths, espe-

cially when large fires are not considered in the models. This is evident from the nearly over-

lapping yellow and green lines in Fig 4B and 4D. However, assuming a 4-foot escape flame

length significantly reduces the effectiveness of the solutions compared to the other two

assumptions (8FT and INF).

Fig 5 shows a very large number of fires (87–89% of the total tested fires) being contained

under the assumptions that the entire FBN is treated and fires with any flame length (INF)

Fig 4. Objective function values of the optimal solutions. A: Maximizing AFB, all fires. B: Maximizing AFB, no large

fires. C: Maximizing AWB, all fires. D: Maximizing AWB, no large fires. Note that the unit is “million fire acres” in A

and C, while it is “thousand WUI acres” in B and D. Numbers are shown for the green lines only.

https://doi.org/10.1371/journal.pone.0313591.g004
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could not breach the treated breaks. Note that these percentages were calculated based on only

53,906 fires (or 43,121 when excluding large fires) that encountered (touched) at least one fuel

break. The findings suggest that the spatial arrangement of the breaks in the network is well-

designed for a portion of the Southern California landscape, providing a high likelihood of

successfully containing the fires that encounter treated fuel breaks. Across test cases, increasing

the treatment budget (i.e., treating a greater proportion of the total FBN length) resulted in a

larger number of fires being contained (Fig 5), but the objective function value may not

improve proportionally. For example, when assuming a 4-foot flame length suppression effec-

tiveness, doubling treatment from 50% to 100% of the network length significantly increased

the number of contained fires from 27,771 to 48,223 (AFB objective, green line in Fig 5A) or

from 32,659 to 48.088 (AFB objective, green line in Fig 5C). However, improvement in the

AWB objective value was less substantial (from 34 to 40, Fig 4C) compared to the AFB objec-

tive (from 48 to 66, Fig 4A).

Fig 5. Proportion (percentage) of number of fires being contained in the optimal solutions. A: Maximizing AFB,

all fires. B: Maximizing AFB, no large fires. C: Maximizing AWB, all fires. D: Maximizing AWB, no large fires. Note

that in A and C, the percentage is calculated by the number of contained fires divided by 53,906; while in B and D, the

percentage is calculated by the number of contained fires divided by 43,124. Percentages are shown for the green lines

only.

https://doi.org/10.1371/journal.pone.0313591.g005
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The spatial layouts of selected breaks in the optimal model solutions can be examined in an

interactive Google Earth Engine web-application, available at https://thumit.users.earthengine.

app/view/landscape-fuelbreak-prioritization. Out of the 120 OPT models, we selected 60 solu-

tion layouts for illustration in S3.2, S3.3, S3.4, S3.5 Figs in S3 Appendix. These layouts repre-

sent 60 model cases with budget limits of 0.1, 0.3, 0.5, 0.7, and 0.9. One notable distinction

between the layouts is that when the objective function changes from “maximizing AFB” to

“maximizing AWB”, the selected breaks tend to be allocated closer to the forest boundary,

especially when large fires are excluded from the models (Fig 6 and S3.4, S3.5 Figs in S3

Appendix for more details). When the objective is to maximize AFB, the model prioritizes

placing fuel breaks in locations where fires can be effectively contained before spreading over

larger areas, resulting in a more dispersed placement of fuel breaks across the landscape. In

contrast, when the objective is to maximize AWB, fuel breaks are allocated closer to areas with

a higher concentration of WUI assets, even if this leads to less overall fire containment. This

shift in fuel break layout occurs because WUI areas are primarily situated outside of the forests

(Figs 2 and 6), investing in breaks near the forest boundary will have a more significant impact

on WUI protection. Another finding is that when the budget is limited, the optimal solutions

prioritize investing in fuel breaks within the two forests at the bottom half of the landscape

(i.e., San Bernardino and Cleveland), after which investments expand to the other two forests

at the top half of the landscape (i.e., Los Padres and Angeles). We suppose that this is due to

the simulated fires having more interaction with San Bernardino and Cleveland forests than

the other two forests. Interestingly in many cases, increasing the budget while keeping all other

model assumptions fixed would generally result in expanding rather than drastically changing

the breaks selected in the optimal break layouts. While this pattern may be landscape-specific,

it can be useful for planning continuous investments when budget is a limiting factor. Lastly,

the models assuming 8FT and INF escape flame length produced nearly identical solution lay-

outs (S3.2 S3.3, S3.4, S3.5 Figs, in S3 Appendix). This can be explained by the small difference

between these two assumptions regarding the number of fires would escape, as illustrated by

Fig 5.

4.2. Comparing solutions from the optimization models and the rule-based

selection models

The OPT models produced substantially better solutions in comparation to the corresponding

RBS models (i.e., greater objective function values, as shown in Fig 7 and Table S3.1 in S3

Appendix). In the best-case scenarios, typically under low budgets, the OPT model objective

function values can be 28 times better than those from the RBS model solutions (Fig 7C). The

superiority of the OPT models over the RBS models decreases when larger fires are excluded

from testing (Fig 7B and 7D).

Compared to the OPT models, RBS models are less efficient because they lack the capability

to account for the dynamic coordination of limited fuel breaks selected for fuel treatments.

According to the RBS approach, all fuel breaks in the FBN are assumed treated to calculate the

effectiveness score for each individual fuel break (Ei); under a limited treatment budget, only a

smaller subset of fuel breaks with the highest Ei scores will be selected for investment. How-

ever, selecting the highest-ranking fuel breaks cannot guarantee that they would be the best

selections for fire containment. For example, some breaks may have high ranking scores due

to their coordination with many other low-ranking breaks to stop multiple fires, but selecting

only those high-ranking breaks without selecting their corresponding low-ranking ones will

result in less effective fire containment. While RBS models do not allow for changing the val-

ues of decision variables (xi) predetermined by the ranking rule, the OPT approach is more
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flexible in allowing all decision variables xi to change to find the best coordination of fuel

breaks for fire containment. Our findings that the optimization approach (OPT models) pro-

duced significantly better results compared to the rule-based selection approach (RBS models)

emphasize the importance of considering the spatial interaction among fuel treatments within

an FBN to make more effective and efficient selection decisions.

Fig 6. Some optimization treatment layouts considering the objective function of maximizing AWB and 20%

largest fires are excluded. A: Treating 10% FBN length. B: Treating 30% FBN length. C: Treating 50% FBN length.

This figure only shows a portion of the Southern California landscape. More detailed solutions are presented in S3.4,

S3.5 Figs in S3 Appendix. World Hillshade is used in the figure’s background (Sources: Esri, Airbus DS, USGS, NGA,

NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA,

Intermap, and the GIS User Community).

https://doi.org/10.1371/journal.pone.0313591.g006
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5. Discussion

Research exploring the potential benefits of FBNs in wildfire management and planning can

provide insights into the important role of fuel breaks. In this study, we developed an optimi-

zation model to examine the utility of an FBN to maximize the total landscape value to be pro-

tected (avoided area burned or avoided WUI area burned) from potential future wildfires. Our

model addresses the challenge of prioritizing fuel treatments within an FBN under a limited

treatment budget. It can assist wildfire managers in developing alternative plans for fuel treat-

ment prioritization and evaluating their tradeoffs to inform strategic FBN planning decisions.

Few optimization studies have been implemented to look at tradeoffs in FBN management

by considering its interactions with potential fire behavior and fire suppression opportunities.

Our model is built on the assumption that linear fuel breaks are designed to support safer and

more effective fire suppression. Thus, it explicitly incorporates fire behavior and fire suppres-

sion effectiveness by assuming a fire may be effectively contained when it is enclosed by a set

Fig 7. Comparing solutions from the optimization (OPT) models and the rule-based selection (RBS) models. A:

Maximizing AFB, all fires. B: Maximizing AFB, no large fires. C: Maximizing AWB, all fires. D: Maximizing AWB, no

large fires. Note that solutions presented here are rescaled (divided by the objective function values from the RBS

models). The original solutions can be found in Table S3.1 in S3 Appendix.

https://doi.org/10.1371/journal.pone.0313591.g007
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of fuel breaks; the model only considers these breaks effective if two conditions are met: 1)

those fuel breaks are treated to allow for suppression operations, and 2) suppression along

those treated fuel breaks would be successful when fire intensity does not exceed a predefined

threshold. Explicitly considering the coordination of treated fuel breaks to facilitate fire sup-

pression and containment represents a unique modeling approach that distinguishes our

research from existing FBN modeling studies.

Our optimization model is designed with a compact MIP formulation that can be custom-

ized to adapt to solving various fuel break prioritization problems in large and diverse land-

scapes. Integrating additional data can expand the model capability to consider other

management objectives and analyze their tradeoffs. For instance, in the Great Basin region of

the United States where there is a growing need to protect native species [58], a model objec-

tive focused on maximizing habitat protection might be more appropriate than WUI protec-

tion or fire size reduction. Data on the landscape’s ecological values can also be incorporated

to build additional model constraints that examine the ecological impacts of fuel breaks in a

landscape. These impacts, such as habitat fragmentation, have been addressed by empirical

and simulation-based FBN studies [59–61], but have rarely been explored using optimization

models. Including such ecological considerations to best meet management goals can improve

the model’s applicability. However, it’s important to balance the inclusion of these factors

against computational performance to ensure that the model remains solvable to deliver opti-

mal outcomes.

The capability to solve landscape scale (i.e., large scale) problems is another notable aspect

of our model. Existing optimization models in fuel treatment management often face the chal-

lenge of solving landscape-scale problems due to computational issues [35, 62, 63]. Conse-

quently, heuristics and simulation-optimization have been utilized in those models to allow

for solving larger-size problems, but they can only guarantee solution feasibility instead of

optimality [64–66]. Our test cases demonstrated that the optimization model can consistently

provide superior solutions compared to a rule-based heuristic selection approach. The optimi-

zation model also performs well, evidenced by the solution time which took less than two

hours for solving a regional-scale fuel break planning problem (see Fig S3.1 in S3 Appendix).

In optimization problems, particularly complex ones, it is common to stop when a near opti-

mal solution is found (e.g., within a 5% gap from the tur optimum). In our test cases, all mod-

els achieved true optimal solutions (with 0% gap), which demonstrates the computational

efficiency of our proposed optimization approach in producing quality results. It is important

to acknowledge that model performance was evaluated based on the two methods (optimiza-

tion vs rule-based heuristic selection) with specific designs. Comparing the efficiency of our

optimization model with other established methods would be interesting, but this is a broad

topic beyond the scope of our study.

5.1. Insights for regional fuel break planning

In 2020, the US Bureau of Land Management released a plan to fund the construction and

maintenance of up to 11,000 miles (17,700 km) of strategic fuel breaks across several western

states where wildfire threats are critical, including Idaho, Oregon, Washington, California,

Nevada and Utah (https://www.blm.gov/press-release/blm-releases-final-plan-construct-and-

maintain-11000-miles-fuel-breaks-great-basin). With continuous efforts to construct and

maintain extensive fuel break networks in these states, insights into fuel break prioritization

can benefit fire management decision-making, especially in situations with financial

constraints.
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We tested the MIP model on a case study prioritizing fuel break treatment in a Southern

California landscape. We constructed multiple test cases to explore the optimal model solu-

tions (i.e., how fuel breaks are selected for fuel treatment maintenance) in response to fire

management scenarios that varied the following characteristics: different management priori-

ties (i.e., WUI protection or fire-size reduction), including or excluding large fires in the mod-

els, different flame length thresholds beyond which fires are considered uncontainable, and a

range of budget limits for investment in treating the FBN. FSIM-simulated wildfires were col-

lected and used to facilitate model testing.

Several important insights can be derived from testing our optimization model on the

Southern California landscape. Overall, our findings suggest that a higher investment level in

the FBN would protect more of the landscape’s values from possible future wildfires. The mar-

ginal return of investment is higher at a lower budget level, and diminishes when the budget

level increases, especially when the management priority is to protect the WUI and/or when

large fires are excluded from fire management consideration. Investments beyond a certain

level may yield no substantial changes in protecting the landscape’s values (such as when prior-

itizing WUI protection against smaller fires as illustrated in Fig 4D). Our tests also suggest that

the spatial locations of selected fuel breaks would be driven by different management priori-

ties. For example, more breaks will be selected near WUI areas when protecting WUI is the

main objective. When increasing the budget level, the spatial fuel break layout from the higher

budget is generally an expansion of the layout from the lower budget; thus, fire managers

could consider making small initial investments in treating fuel breaks when budget is limited,

and expanding the scope of treatments when additional funds become available. It is also

worth noting that 79% of all the simulated wildfires have no interaction with the FBN and

were excluded from the models because they do not engage with fuel breaks. Expanding the

existing FBN to allow for more landscape protection can be considered but should be carefully

planned, as constructing new fuel breaks (such as into the WUI areas) may prompt negative

responses [26]. While we are aware of the 2022 National Strategy that supports more fuel

reduction across the US, we did not consider any plans to construct new fuel breaks in the

Southern California landscape since it is beyond the scope of our analysis.

5.2. Applications, limitations, and potential improvements

Having a candidate FBN preidentified is necessary for the application of our model. The

model can be used to evaluate the return on investment for those candidate fuel breaks and

suggest the optimal investment options to achieve the prioritized fire management objectives.

This assumption aligns with the real-world planning situation in Southern California, where

maintaining a well-established FBN requires regular prioritization of fuel break treatments. In

landscapes that do not have candidate FBN layouts in place, preliminary spatial analyses or

planning would be necessary to identify the candidate fuel breaks before implementing our

prioritization model. An inherent limitation of our model is that solution quality will strongly

depend on the preliminary identification of the plausible fuel breaks, which is a typical chal-

lenge in FBN modeling. Unlike area-wide fuel treatments which can cover a landscape entirely

by a limited set of treatment units, linear fuel breaks can be constructed with diverse shapes

and lengths in a landscape, resulting in unlimited options for fuel break configuration. The

preliminary identification of fuel break candidates establishes a finite solution space, allowing

for evaluation by the optimization model.

While our study exclusively focuses on FBN optimization modeling, it is important to

acknowledge numerous optimization models that have been developed for area-wide fuel

treatments. Instead of treating linear fuel breaks, these models consider treatment units
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represented by either raster cells [46, 67–71], nodes [72, 73], or polygons [45, 47, 74]. Besides

the difference in delineating treatment units, linear fuel breaks and area-wide fuel treatment

are also different in their primary use. Area-wide fuel treatments focus more on modifying fire

behavior or effects as fire moves across the treated areas, while linear fuel breaks primarily aim

to facilitate wildfire suppression along contiguous and narrow land strips [24, 25]. A strategic

wildfire management plan that incorporates both approaches could address criticisms directed

at solely using fuel breaks [26]. Integrating both fuel breaks and area-wide fuel treatments into

an optimization model is a potential future direction for our research, as to our knowledge,

this has not been addressed by existing studies.

It is worth noting that we have constructed test cases based on some specific assumptions

including the land value to be protected (Vj), the cost associated with investing in each break

(CF
i ), and suppression response efficiency under specific fire intensity thresholds (FL). To

apply our model in a more practical setting, it may be necessary to incorporate greater model

details and more accurate model parameters. For instance, the protected value should account

for a range of economic, environmental and social factors, including buildings, timber, wild-

life, and recreational value, among others. Similarly, the cost for treating a break should take

into account its current condition, such as the break type, break width, topography and time

since last treatment at each break’s location. Additionally, suppression details such as cost and

response time, could be explicitly integrated into the model for a more realistic evaluation of

suppression effectiveness [75]. The model objective can also be modified to maximize the net

value, considering benefits from protected land areas, losses due to burning, and costs from

both fuel treatment and suppression activities (see S4 Appendix). While incorporating these

additional details is a worthy goal, it also presents challenges due to increased model complex-

ity and data requirements [68, 69, 75, 76].

Our assumption of effective fire containment alongside the “ignition polygons” can hold

true when fire crews have enough time to respond, which may not be possible if the polygon

size is too small and the fire spreads too quickly for timely reaction. In such cases, fire can

cross the breaks before any suppression efforts occur. A possible enhancement to our model is

using fuel breaks beyond the ignition polygon to form additional contingent containment

areas. This requires extensive data processing to identify multiple containable polygons and

also requires modifications to the model formulation to evaluate various containment

outcomes.

Another limitation of our model is that it does not capture the impact of partial contain-

ment on fire size reduction. Even when treated fuel breaks do not fully enclose a fire (i.e., par-

tial containment), they can still be effective in blocking or slowing fire spread in certain

directions, and therefore the final fire size may decrease compared to the originally simulated

fire size. Because our model does not account for the partial containment effect, it may pro-

duce solutions that favor full containment of fewer fires rather than partial containment of a

larger number of fires, which could be an important consideration when prioritizing WUI

protection. Incorporating the impact of partial containment into the model is theoretically fea-

sible by rerunning FSIM simulations for every fire to pre-estimate fire size reductions associ-

ated with different fuel break treatment scenarios. However, this is impractical because it

would require an enormous amount of time and resources to rerun FSIM. Developing a practi-

cal method to account for partial containment is an area of research that we aim to explore in

future studies.

It would be also beneficial to improve the modeling approach to account for uncertainties

from both management and disturbances, as they may affect the reliability of predicted out-

comes [77]. For example, suppression response time and safety can be affected by unexpected

wind conditions that cause intense crowning and long-distance spotting fires [78, 79]. By
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further incorporating these details, we can improve the accuracy and effectiveness of our opti-

mization approach, making it more useful in practical applications. These also represent

potential future research.

6. Conclusions

This paper introduces an optimization modeling approach aimed at maximizing landscape

protection against wildfires. The primary objective is prioritizing fuel treatments within a fuel

break network to facilitate rapid wildfire suppression. Beyond developing a theoretically

sound modeling method, we strongly focused on ensuring the model scalability and adaptabil-

ity, which can promote its flexible and practical applications. We built 120 scenarios to demon-

strate a potential application of our optimization model for prioritizing fuel treatments within

a large fuel break network in Southern California, under varying treatment budgets and other

fire management assumptions. This model can adapt to solving the fuel break planning prob-

lems in diverse landscapes. Its capability to inform strategic fuel break treatment decisions can

draw interest from wildfire researchers and managers.
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