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Abstract 
Acoustic monitoring is an important tool for determining presence or probable absence of 

threatened and endangered bats in the United States (US). Federal guidance requires the 

use of automated identification programs that classify audio files and calculate a Maximum 

Likelihood Estimator (MLE) for each bat species during each night of a survey. Acoustic 

presence or absence of species is based on a significant or non-significant MLE, which 

can have profound regulatory effects, positive or negative. Despite relying on this metric to 

determine presence of rare species for the past ten years, little is known about the number 

of files required by available programs to trigger significant MLE or the effect of species 

ratio on this calculation. We used 1,120 audio files containing echolocation calls from nine 

northeastern US bat species to simulate survey nights containing variable absolute counts 

and ratios of species’ audio files. We developed models to estimate the number of audio 

files that Kaleidoscope Pro (KPro) and SonoBat programs required to establish acoustic 

presence for each species, and we then applied our best model to a long-term acoustic 

dataset collected at the Fort Drum Military Installation in New York. Each program required 

a similar number of files to detect presence for some species, such as Myotis septen-

trionalis and M. sodalis (8 to 10 files), but differed in file requirements for other species, 

such as Lasiurus cinereus (KPro =  4; SonoBat =  7) and Perimyotis subflavus (KPro =  10; 

SonoBat =  6). Both programs performed poorly with determining presence for any species 

at low species ratio (<25%). Applying our model to the Fort Drum dataset revealed that 

the total number of audio files recorded within a night had a great effect on whether a 

rare species was correctly determined to be present. We conclude that MLE should be 

used with caution during surveys of rare species and could produce misleading results in 

certain conditions.

Introduction
In the United States (US), several once-common species of bats are in severe decline. Range-
wide summer occupancy has markedly decreased for northern long-eared bats (Myotis 
septentrionalis), little brown bats (M. lucifugus), and tricolored bats (Perimyotis subflavus; 

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0320646&domain=pdf&date_stamp=2025-04-01
https://doi.org/10.1371/journal.pone.0320646
https://doi.org/10.1371/journal.pone.0320646
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0006-7539-5133
mailto:bhopp@contractor.epri.com


PLOS ONE | https://doi.org/10.1371/journal.pone.0320646  April 1, 2025 2 / 16

PLOS ONE Maximum likelihood estimators for acoustic detection of rare bat species

[1]) due to White Nose Syndrome (WNS), a disease caused by an invasive, pathogenic fungus 
(Pseudogymnoascus destructans) that impacts hibernating species [2]. The U.S. Fish and Wild-
life Service (USFWS) recently upgraded the status of M. septentrionalis from threatened to 
endangered [3], proposed that P. subflavus be listed as endangered [4], and placed M. lucifugus 
on the National Domestic Listing Workplan for review in 2026 [5]. In addition to WNS, bats 
face other stressors. For example, hoary bats (Lasiurus cinereus) may be in decline due to col-
lisions with wind turbine blades [6,7], and are on the National Domestic Listing Workplan for 
review in 2028 [7]. As these bats become less abundant on the landscape, traditional capture 
and hibernacula survey methods may become less adequate for tracking population trends or 
determining regulatory compliance.

Acoustic monitoring has become an important tool for surveys of rare species in general 
[8–10] and is already an important component for surveys of M. septentrionalis and Indiana 
bats (M. sodalis), another endangered US species [11]. During these surveys, ultrasonic detec-
tors are deployed for a prescribed number of nights to record bat echolocation calls. Auto-
mated classification software programs, such as Kaleidoscope Pro (KPro; Wildlife Acoustics, 
Massachusetts) and SonoBat (Arcata, California), are used to classify recorded audio files to 
species and calculate nightly maximum likelihood estimator (MLE) values for each species 
detected [12]. This metric compares the absolute count of files classified as a species with the 
known cross-species misclassification error rate for other species that were identified during a 
night of recordings [13]. An MLE P-value ≤  0.05 indicates that the number of classified audio 
files exceeds the known misclassification rates for that species in the program’s classifier algo-
rithm [14], and establishes statistical, acoustic presence for that night of the survey.

The MLE calculations are program-specific because manufacturers use different sets of echo-
location calls to create cross-classification rates. Also, P-values can be affected by the number of 
audio files classified as a particular species, the ratio of bat species recorded on a particular night, 
and the accuracy of those classifications. Solick et al. [15] recently found that the file identifica-
tion accuracy of KPro and SonoBat varies for northeastern US species, with lower accuracy for 
acoustically ambiguous species, such as M. septentrionalis and M. sodalis that can have a high 
degree of echolocation characteristic overlap with other species, and higher accuracy for species 
that produce more distinct calls, such as L. cinereus and P. subflavus. For example, with file iden-
tification sensitivity ranging between 0.38 and 0.52 for M. septentrionalis [15] acoustic surveys 
would likely need to record many high-quality bat calls by this species on a single night to be 
considered acoustically present (MLE P ≤  0.05), compared to P. subflavus (sensitivity 0.91-0.97; 
[15]). Recording enough echolocation calls to trigger a determination of presence by automated 
classifiers could be a challenge for rare species [16,17]. However, low sensitivity may not be an 
issue if a program can compensate for misclassification rates when calculating MLE.

Understanding the minimum number of audio files needed to yield accurate MLE-based 
acoustic presence for a species by software under a range of different species ratios would be 
valuable for making informed bat conservation and management decisions. We simulated 
survey nights containing variable counts and ratios of audio files for nine northeastern US bat 
species to develop models that estimated the number of audio files each program requires to 
establish acoustic presence for each species. We then applied our best model to a long-term 
acoustic dataset collected at the Fort Drum Military Installation in New York, USA, to evaluate 
the implications of using MLE to determine species presence in a real-world scenario.

Methods
We used 1,120 full-spectrum audio files that contained known echolocation calls for nine bat 
species that occur in the northeastern US: big brown bat (Eptesicus fuscus), eastern red bat 



PLOS ONE | https://doi.org/10.1371/journal.pone.0320646  April 1, 2025 3 / 16

PLOS ONE Maximum likelihood estimators for acoustic detection of rare bat species

(Lasiurus borealis), hoary bat, silver-haired bat (Lasionycteris noctivagans), eastern small-
footed bat (Myotis leibii), little brown bat, northern long-eared bat, Indiana bat, and tricolored 
bat. This species assemblage included endangered US species of interest, and consisted of the 
nine species found in New York, as well as the greater New England region including also New 
Hampshire, Vermont, Connecticut, Rhode Island, and Massachusetts. Collection methods for 
these audio files are described in Solick et al. 2024 [15]. All files were high-quality recordings 
of single, free-flying bats positively identified prior to release, and contained a minimum of 
five search phase pulses [18].

Software parameters
We used the most recent version of SonoBat (30.1) [19], and version 5.4.7 for KPro, which 
is the most recent USFWS-approved version for stand-alone acoustic surveys of endangered 
species in the eastern U.S. [20]. SonoBat is currently a candidate for approval and must be 
used in conjunction with KPro for acoustic surveys of endangered species in the eastern 
U.S [11]. For SonoBat, we used the nE[c20240921] region pack and the NY-PA subregion 
pack within the SonoBat classifier for northeast North America. We used default settings for 
Sequence Decision Threshold (0.90), Acceptable Call Quality (0.6), and Maximum Number 
of Calls to Consider per File (32). For KPro, we used the New York set of species, limited to 
the nine species in this study, and the Bats of North America 5.4.0 classifier. We used default 
settings with the following modifications: we selected Advanced Signal Processing, Minimum 
and Maximum Frequency Range (8–120 kHz), Minimum and Maximum Length of Detected 
Pulses (2-500 ms), and Maximum Inter-syllable Gap (500 ms). We also selected 5 as the Min-
imum Number of Pulses and “-1 (More Sensitive)” as the Sensitivity setting, as per USFWS 
guidance [21].

Simulated nights
We designed nightly simulations for KPro and SonoBat that incorporated all nine northeast-
ern US bat species at a range of species ratios. We define ‘species ratio’ as the proportion of 
echolocation calls recorded for a particular species within nights or across seasons and can 
either be manufactured for controlled simulations (this study) or based on a robust set of 
identified echolocation calls for a site or region. The study design for our simulations was 
based on the current USFWS protocol for testing of automated classifier software to detect 
acoustic presence of M. septentrionalis and M. sodalis [21]. To ensure we were evaluating the 
MLE algorithm of a program and not its identification algorithm, our simulations only used 
audio files that had previously been correctly classified to species by KPro and SonoBat auto-
mated classification programs [15]. However, due to a new release of the northeast US Region 
Pack (nE[c20240921]) by SonoBat we reran accuracy metrics using the methods outlined in 
Solick et al. 2024 ([15]; new SonoBat metrics found in S1 Table and S2 Table). This led to some 
species (M. leibii and M. sodalis) with duplicate audio files within a subset due to an insuffi-
cient number of correctly identified audio files (S3 Table). Preliminary analyses did not indi-
cate an effect of duplicate files on MLE values for these species. For each program we created 
a set of 225 files with 25 randomly selected audio files for each species (Fig 1). Ford et al. [16] 
determined that 25 audio files consistently yielded correct MLE values for M. septentrionalis 
and M. sodalis using Kaleidoscope Pro (version 5.1.0), so we selected 25 audio files for each of 
the nine species.

For each program set we created 25 subsets per species, for a total of 225 subsets per 
program (Fig 1). The first subset for a species (hereby called ‘Target Species’) contained all 
225 audio files from the set. For subsequent subsets, the number of audio files for the Target 
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Species was reduced by one whereas the number of audio files for all other species (hereby 
called ‘Other Species’) remained 25. Subset 25 contained 1 audio file for the Target Species and 
25 audio files for each Other Species. This process was repeated for each species until every 
species had been the Target Species once.

To better examine the effect of Other Species ratio on MLE we created 25 ‘simulated nights’ 
from each subset. Simulated nights had the same number of Target Species audio files as the 
subset they were derived from, but the number of audio files for each of the Other Species 
was reduced by one on each subsequent simulated night. A total of 5,625 simulated nights (9 
species *  25 subsets per species *  25 simulated nights per subset) were used for each program 
during the study. This created sets whereby the mean relative abundance for all nights was 
0.11 with a standard deviation of 0.05 (S1 Fig). Simulated nights were created using custom R 
scripts [22] (S1 Script and S2 Script). Each simulated night had nine MLE values, one for the 
Target Species and one for each of the Other Species, for a grand total of 50,625 MLE values. 
Hereafter, we use the term ‘Examined Species’ to refer to the species that MLE values pertain 
to in our analysis.

Simulated nights dataset
Each simulated night processed by KPro and by SonoBat generated MLE values for each 
Examined Species. We considered MLE values with P ≤  0.05 to be a true positive (TP) indi-
cation of acoustic presence for that Examined Species because we knew at least one audio file 
was present for each species. We considered MLE values with P >  0.05 to be a false negative 
(FN) indication of acoustic presence for an Examined Species. TP/FN indications were then 
grouped by species and by the number of Examined Species audio files present in the simu-
lated night for visualization in R [22].

Fig 1.  Diagram of simulated night generation. 1,120 acoustic files with known species identity were used to generate simulated nights for 
Kaleidoscope Pro and SonoBat. Subsets were used to assist in the creation of simulated nights but were not tested.

https://doi.org/10.1371/journal.pone.0320646.g001

https://doi.org/10.1371/journal.pone.0320646.g001
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To compare performance of the MLE algorithm between programs, we created the metric 
critical count (CC), or the minimum number of correctly classified audio files required for 
an automated classifier to accurately indicate statistical, acoustic presence of a species (MLE 
P ≤  0.05) at a given species ratio on a simulated night, knowing that it was actually present. 
We created another metric, real-world recordings (RWR), to estimate the number of field-
recorded audio files each program would need for MLE P ≤  0.05. The RWR is the quotient 
of CC divided by the sensitivity for the species (provided in [15] for KPro and S1 Table for 
SonoBat). The RWR assumes that no other species were misclassified as the species of interest 
and that all species were either correctly classified or given no classification. For example, if 
many M. lucifugus and M. sodalis were recorded, a portion of each species would be expected 
to be misclassified as the other. For simplicity, RWR assumes this does not happen and there-
fore may overestimate the number of audio files needed since misclassified files could errantly 
contribute to a correct detection. In summary, CC informs how many correctly identified files 
are needed for a species to be declared present while RWR estimates how many files may need 
to be collected in the field to account for incorrect identification rates.

Modeling
We trained general linear models on our simulated nights dataset to estimate program MLE 
values from species counts and species ratios not already explicitly tested in our simulated 
nights dataset. The simulated nights dataset for each program was run through custom R 
scripts (S3 Script–S5 Script). The script generated a model for each of the nine species in the 
study to estimate program MLE from the modeled species audio file count and species ratio 
(full output can be found in S1 File and S2 File). We used the R function ‘glm’ in the ‘stats’ 
package [22] using family ‘gaussian’ and evaluated using ‘leave one out’ cross-validation. The 
different variable sets used are listed in S4 Table and coefficient, p-value, R2, root mean square 
error (RMSE) and mean absolute error (MAE) values can be found in S1 File and S2 File. All 
variables tested were derived from species count and species ratio and were tested to deter-
mine if different functions (i.e., logarithmic, exponential) better described the dataset. When 
visualizing the models the species ratio for all non-Examined Species were set equal. For 
example, if the Examined Species ratio was 0.20 then the eight non-Examined Species each 
had a species ratio of 0.10.

Fort drum military installation case study
To understand how KPro and SonoBat might perform for determining acoustic presence at a 
site with known species counts and species ratio, we applied our model to acoustic survey data 
collected at the Fort Drum Military Installation (Fort Drum) in northwestern New York, U.S. 
[23,24]. Relative activity levels (bat passes per detector-night) for each of the nine species at 
Fort Drum were calculated during pre-WNS (summers, 2004-2007) and post-WNS (summers, 
2008-2017; [24]). The two time periods allowed us to determine how population declines at 
a site might affect MLE values. The average number of bat audio files recorded on AnaBat 
detectors (including II, SD1, and SD2 models, Titley Electronics, Australia) across all species 
at Fort Drum was approximately 174 per night during pre-WNS and 73 during post-WNS 
(M. Ford, pers comm). For simplicity, we used 75 and 175 total bat audio files per night to 
represent the observed range of bat files recorded at Fort Drum. We also included arbitrary 
counts of 275 and 475 total bat audio files per night to show the effect of larger sample sizes 
on MLE presence. These larger numbers may also be more representative of nightly bat files 
recorded on full-spectrum detectors that typically detect more bats than zero-crossing AnaBat 
detectors [25]. We calculated the species ratio of each species during the pre- and post-WNS 
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periods by dividing the mean activity level of each species reported in [23] by the sum of mean 
activity levels for all species by time period. We then determined the number of hypothetical 
audio files (count) for each species by multiplying the species ratio and the total number of 
representative audio files. We allowed for fractional counts, such as 0.1 bat calls in some cases. 
Though biologically unrealistic, our model does not distinguish between whole and fractional 
numbers, and this convention allowed us to estimate species ratios more precisely.

We applied known sensitivities and specificities for KPro and SonoBat ([15] and this study) 
to calculate the total positives (audio file true positives +  audio file false positives) for each 
species and program during pre- and post-WNS periods. For KPro, we used sensitivities and 
specificities reported in [15]. For SonoBat, the version of the Region Pack classifier used in 
Solick et al. 2024 ([15]; nE[c20231222]) has since been updated to version nE[c20240921], so 
we calculated the sensitivity and misclassification rates for nE[c20240921] (S1 Table and S2 
Table). New species ratios were found based on each species’ total positive audio files, 

total positives derived species ratio
total positive audio files f

=
oor Examined Species

total positive audio files for all nine speci
( )

ees( )
 . 

We input these total positive audio files and total positives derived species ratios into the 
nine species models to estimate MLE for KPro and SonoBat during each period. If the total 
positive audio files for a species was ≥  25 then the MLE was set to 0.00 regardless of the mod-
el’s prediction. This was due to our simulated nights dataset showing both programs yielded 
MLE P ≤  0.05 once or before the file count reached 25 for each Examined Species. We visual-
ized resultant MLEs in R with the ggplot2 package along with the ±  2 MAEs for each model. 
The R code can be found in S3 Script–S5 Script.

Results

Simulated nights dataset
The proportion of simulated nights that Examined Species were correctly determined to 
be present (MLE P ≤  0.05; ‘true positives’) by each program increased with the number of 
Examined Species’ audio files included in the simulated night (i.e., ‘Count’; Fig 2). Overall, the 
average Count required to yield a high percentage of TP simulated nights was similar between 
KPro (mean =  6.6 audio files) and SonoBat (7.5), though it was more variable for KPro (stan-
dard deviation =  4.1) than SonoBat (1.1) among the nine species. KPro required much lower 
Counts than SonoBat to yield a high percentage of TP simulated night for three species: L. 
borealis, L. cinereus, and M. leibii. For example, to correctly determine presence of L. borealis 
on > 75% of simulated nights, KPro only required ≥  2 audio files of that species to be included 
in a simulated night, whereas SonoBat required ≥  8 audio files (Fig 2). In contrast, SonoBat 
required fewer audio files for L. noctivagans (8 files) and P. subflavus (6) than KPro (14 and 10, 
respectively). Counts only differed by one or two files for the remaining four species (Fig 2).

Modeling
The best model was designated Ratio_Bats and included variables for the log10 of the Count 
and the ratio of the species’ Count to all other audio files (‘S11 Table 4.xlsx’). Many models 
had similar MAE and RMSE values (S6 File and S7 File). Due to our training simulated night 
dataset having mostly low species ratios (mean =  0.11, standard deviation =  0.05, S1 Fig) 
many of the more complex models tested suffered from overfitting at high and at very low 
species ratios. Therefore, we chose Ratio_Bats as our preferred model because it contained the 
fewest number of variables and improved performance over a large range of species ratios.
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The GLM models we created let us examine species counts and species ratios not included 
in the simulated nights dataset. Fig 3 shows modeled interpolations of CC and RWR needed 
by KPro and SonoBat to obtain MLE P ≤  0.05 for each species across a range of species ratios. 
Each data point represents a CC or RWR for a given species ratio and the shaded areas repre-
sent ±  2 MAE. Across species and programs, CC and RWR were low at high species ratio ( ≥ 
0.75) and increased as the species ratio of the Examined Species decreased (Fig 3). In general, 
our model predicted KPro to have slightly lower CC than SonoBat for most species (except 
L. noctivagans and P. subflavus, consistent with Fig 2). For both programs, CC was higher for 
more ambiguous species, such as M. sodalis, than for more distinct species, such as L. cinereus 
(Fig 3). The RWR was nearly identical to CC across species ratios for four species analyzed 
by KPro (E. fuscus, L. cinereus, M. lucifugus, P. subflavus) and for two species analyzed by 
SonoBat (E. fuscus and, P. subflavus; Fig 3), reflecting high sensitivity for these species by these 
programs ( ≥ 0.76; [15], S1 Table). Both RWR and CC diverged greatly for M. leibii and M. 
sodalis for both programs. The disparity between RWR and CC was also great for L. borealis 

Fig 2.  Percent of true positive (TP) and false negative (FN) simulated nights generated by Kaleidoscope Pro and SonoBat programs at different Counts for 
each species, using a MLE P  ≤  0.05 threshold for acoustic presence. All Count categories were equal across species and had 225 observations each. EPFU =  Ept-
esicus fuscus, LABO =  Lasiurus borealis, LACI =  Lasiurus cinereus, LANO =  Lasionycteris noctivagans, MYLE =  Myotis leibii, MYLU =  Myotis lucifugus, MYSE =  
Myotis septentrionalis, MYSO =  Myotis sodalis, PESU =  Perimyotis subflavus.

https://doi.org/10.1371/journal.pone.0320646.g002

https://doi.org/10.1371/journal.pone.0320646.g002
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analyzed by KPro, and for L. noctivagans, M. lucifugus, and M. septentrionalis analyzed by 
SonoBat (Fig 3).

Fort drum military installation case study
In our Fort Drum Military Installation simulations, MLE presence for a species was more 
likely if that species was relatively common (e.g., E. fuscus, L. cinereus) and less likely if the 
species was relatively rare (e.g., M. leibeii, M. septentrionalis; Fig 4; Table 1). As expected, the 
MLE P-value of species decreased as the number of total bat audio files increased (e.g., L. noc-
tivagans, P. subflavus; Fig 4; Table 1).

The MLE P-values were very similar between pre and post-WNS within programs for 
most species (e.g., L. borealis, L. noctivagans; Fig 4). KPro was more likely than SonoBat 
to correctly determine acoustic presence (MLE P ≤  0.05) of rare, acoustically ambiguous 

Fig 3.  Model interpolations for Kaleidoscope Pro (KPro) and SonoBat of critical count (CC, purple) and real-world recordings (RWR, green) for a given 
species ratio of each Examined Species. Note that the upper limit on the y-axis is different between species. EPFU =  Eptesicus fuscus, LABO =  Lasiurus borealis, 
LACI =  Lasiurus cinereus, LANO =  Lasionycteris noctivagans, MYLE =  Myotis leibii, MYLU =  Myotis lucifugus, MYSE =  Myotis septentrionalis, MYSO =  Myo-
tis sodalis, PESU =  Perimyotis subflavus.

https://doi.org/10.1371/journal.pone.0320646.g003

https://doi.org/10.1371/journal.pone.0320646.g003
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species, such as M. septentrionalis and M. sodalis, though KPro still required many total bat 
audio files to do so (Fig 4). Post-WNS, both programs performed better for correctly deter-
mining presence of L. noctivagans, whose species ratio doubled between pre- and post-WNS 
periods, and performed worse for P. subflavus, whose species ratio halved between periods 
(Fig 4; Table 1). Despite the large decrease in species ratio of M. lucifugus at Fort Drum 
between periods, KPro reliably detected M. lucifugus at pre and post-WNS abundances 
whereas SonoBat had decreased performance post-WNS when the total count of files was 75 
(Fig 4; Table 1).

Discussion
Federal guidelines for determining presence of endangered bat species from acoustic monitor-
ing were first established in 2014 and are largely contingent upon MLE P-values derived from 
automated classification programs during individual nights of sampling [26]. These programs 
are routinely tested to ensure that they accurately report acoustic presence for M. septentrion-
alis and M. sodalis (and potentially P. subflavus in coming years) under simulated conditions 

Fig 4.  Model-predicted MLE values by Kaleidoscope Pro (KPro) and SonoBat (Sono) programs for northeastern bat species on nights with 75, 175, 275, 
and 475 total bat audio files using species counts and species ratios during pre- and post-White Nose Syndrome (WNS) periods at the Fort Drum Military 
Installation. Scatter plot error bars show ±  two MAE. Blue dashed line shows MLE =  0.05. EPFU =  Eptesicus fuscus, LABO =  Lasiurus borealis, LACI =  Lasiurus 
cinereus, LANO =  Lasionycteris noctivagans, MYLE =  Myotis leibii, MYLU =  Myotis lucifugus, MYSE =  Myotis septentrionalis, MYSO =  Myotis sodalis, PESU =  
Perimyotis subflavus.

https://doi.org/10.1371/journal.pone.0320646.g004

https://doi.org/10.1371/journal.pone.0320646.g004
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[21]. Results from our own simulations indicate that calculation of correct MLE P-values by 
KPro and SonoBat for these and other northeastern US species is highly dependent on the a) 
count of audio files for a species of interest; b) species ratio of audio files for a species of inter-
est; and c) total number of audio files that were collected within a single night of monitoring. 
While KPro and SonoBat are capable of reporting acoustic presence of species using the fed-
eral methodology, we find that the number of recordings required for accurate presence may 
be difficult to achieve, particularly for rare species recorded under real-world conditions.

Similar to observations of others [16,17], we found that the likelihood a species is acous-
tically present on a night increased as the number of audio files for that species (or Count) 
was increased. Both programs reported false negatives for all species at Counts of a single 
audio file, indicating that automated classifiers can struggle to correctly determine presence 
for a species when it is rare in a sample. The programs performed similarly for E. fuscus, M. 
lucifugus, M. septentrionalis, and M. sodalis, but required very different Counts to determine 
acoustic presence of the remaining five species. Our simulations only used species files that 
had previously been correctly identified by programs [15], so differences between programs 
reflect differences in their MLE algorithms, not in their file identification algorithms. For 
example, SonoBat required a minimum of 8 L. borealis files to determine acoustic presence 
of this species whereas KPro required a minimum of 2 files, even though SonoBat has much 
higher sensitivity for this species (0.92) compared to KPro (0.24; [15]). Therefore, the accuracy 
of a program’s file identification algorithm does not necessarily reflect the performance of its 
MLE algorithm.

Neither program was able to achieve reliable TPs ( > 90% of simulated nights) for L. 
noctivagans until approximately 8-14 files from the species were included in the sample. This 
likely reflects a high overlap in parameters with E. fuscus [27]. KPro and SonoBat were also 
conservative for M. lucifugus and M. sodalis, not providing reliable TPs until simulated nights 
contained 8 to 10 files from these species. SonoBat has not yet been approved for acoustic 
surveys of M. septentrionalis and M. sodalis because the Master Test Library maintained by 

Table 1.  Species ratios (bold; as percentages) at Fort Drum Military Installation, New York, during pre- and 
post-White Nose Syndrome periods derived from Nocera et al. (2019) and used to generate models used in Fig 4. 
‘Count’ indicates the number of files input to our model for each species and was derived by multiplying species 
ratio by the total number of files in the simulation (75, 175, 275, or 475). Fractional counts better reflect abun-
dances despite the impossibility of fractional call files.

EPFU LABO LACI LANO MYLE MYLU MYSE MYSO PESU
Pre-WNS 
Species ratio

0.216 0.092 0.088 0.055 0.003 0.490 0.007 0.009 0.041

Count 75 16.2 6.9 6.6 4.1 0.2 36.7 0.5 0.7 3.1
175 37.8 16.1 15.4 9.7 0.5 85.7 1.2 1.5 7.2
275 59.4 25.3 24.1 15.2 0.8 134.7 1.9 2.4 11.2
475 102.7 43.6 41.7 26.3 1.3 232.6 3.2 4.2 19.4

Post-WNS 
Species ratio

0.246 0.097 0.332 0.136 0.001 0.157 0.003 0.011 0.017

Count 75 18.4 7.3 24.9 10.2 0.1 11.8 0.2 0.8 1.3
175 43.0 17.0 58.1 23.8 0.2 27.5 0.5 1.9 3.0
275 67.6 26.7 91.3 37.4 0.3 43.3 0.8 2.9 4.8
475 116.7 46.1 157.7 64.5 0.6 74.7 1.4 5.0 8.3

EPFU =  Eptesicus fuscus, LABO =  Lasiurus borealis, LACI =  Lasiurus cinereus, LANO =  Lasionycteris noctivagans, 
MYLE =  Myotis leibii, MYLU =  Myotis lucifugus, MYSE =  Myotis septentrionalis, MYSO =  Myotis sodalis, PESU =  
Perimyotis subflavus.

https://doi.org/10.1371/journal.pone.0320646.t001

https://doi.org/10.1371/journal.pone.0320646.t001
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the USFWS is just now acquiring full-spectrum calls for testing this program (A. King, pers 
comm). Based on our results, we predict that SonoBat (using default settings) should perform 
similar to KPro (using USFWS-recommended settings) on USFWS tests for these Myotis 
species. On the other hand, our simulations indicate that SonoBat required approximately half 
the number of calls from P. subflavus to establish acoustic presence compared to KPro, despite 
both programs having high sensitivity for this species (0.97 and 0.91, respectively; [15]). We 
predict that SonoBat will require fewer files than KPro to establish presence of P. subflavus 
when the USFWS begins testing programs for this species.

Our modeling exercise illustrates the potential limitations for using MLE to detect the pres-
ence of rare species via acoustic monitoring. Modelled predictions of CC and RWR for Exam-
ined Species across a range of species ratios found that, in general, the number of audio files 
needed to establish acoustic presence for a species increased as species ratio of that species 
decreased within a sample. Values for CC and RWR were nearly identical across the range of 
species ratios for species with high sensitivity (E. fuscus, P. subflavus; [15], S1 Table) while the 
number of RWR needed to determine acoustic presence was much greater than CC for species 
with low sensitivity, particularly at low species ratio (M. leibii, M. sodalis).

Uncertainty for CC and RWR became very high for most Examined Species when their 
species ratios were less than 25%. This pattern may be an effect of using log10 to describe 
Count in our model. The species ratio coefficients are negative, so MLE increases as species 
ratio decreases (see coefficient estimates in S6 File and S7 File). The Count term is also nega-
tive and, if species ratio is constant, the only way to decrease MLE to 0.05 is to increase Count. 
At higher Count values, increases in Count have less effect on MLE due to the log10 term. 
That is, the change in MLE at Counts 1-2 is greater than the change in MLE at Counts 24-25. 
Therefore, a larger increase in Count is needed to achieve MLE P ≤  0.05 at lower species 
ratios. This mathematical relationship may hint that at lower Counts the effect of variables 
not included in our model (such as the species ratio of other species with similar echolocation 
calls) have a larger impact on MLE. Since our model does not include those specific variables, 
their effect comes out in the error term.

Our results are consistent with Ford et al. 2024 [16] that found KPro required > 15 files 
to calculate MLE P <  0.05 for M. septentrionalis and M. sodalis when these species were at 
low proportion to other high-frequency species. These results suggest that using MLE to 
determine acoustic presence for rare species may be unreliable in some instances. Recording 
enough high-quality echolocation calls from rare species to establish accurate acoustic pres-
ence may be difficult in most parts of their range. This issue is exacerbated for M. septentrion-
alis, a gleaning species that produces low-intensity echolocation calls and is difficult to detect 
relative to other bats [28,29].

The difficulty of detecting rare species may be increased if relatively few total bats are 
recorded within a night. Applying our model to historical acoustic data from the Fort Drum 
Military Installation revealed that the species declared present generated by KPro and SonoBat 
for the site were quite different when 75 files were examined (three and two species, respec-
tively) compared to 475 files (eight and six species, respectively). That is, even at unrealistically 
high total numbers of bats calls, neither program was able to detect presence for the full suite of 
nine species at Fort Drum. These results suggest the total number of bat files recorded during 
a night may be more important for determining accurate species inventories than the program 
used, which has implications for surveying rare species in low activity areas. For example, of 
50 pre-construction wind energy development areas monitored for bat use, none exceeded an 
average bat activity rate of 15 passes per detector-night [30], suggesting that using MLE values 
to determine acoustic presence of bat species at proposed wind energy facilities may be inade-
quate for all but the most common species. The risk for false negatives is higher when the total 
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number of bat files recorded within a night is low. During presence/absence surveys, we recom-
mend that researchers place ultrasonic detectors at or near features attractive to bats (e.g., forest 
edges and water features) to maximize the total number of bat files recorded each night, and 
that this number be reported to the USFWS so that MLE P-values can be fully evaluated.

Remarkably, despite differences in accuracy [15], proportion of false negative nights, and 
the number of files required to establish acoustic presence, KPro and SonoBat performed 
similarly for determining acoustic presence of non-Myotis species at Fort Drum when the file 
classification and MLE algorithms are combined. This was true across pre- and post-WNS 
periods and across total number of files sampled in the Fort Drum data. For example, both 
programs indicated L. borealis was absent when total sample size was 75 files but indicated 
presence when sample size was 175 files or greater.

Differences between programs were more nuanced for Myotis species. Both programs 
failed to determine presence for M. leibii at any sample size, demonstrating the limitation 
of these programs to detect species that compose < 1% of a population. For the other three 
Myotis species we tested, KPro was more likely to establish acoustic presence for M. lucifugus, 
M. septentrionalis, and M. sodalis at lower numbers of total files than SonoBat. Interestingly, 
KPro was able to accurately determine acoustic presence of M. sodalis with just 1-5 files, 
which was far fewer than the ~10 files predicted by our data (Fig 2). This was likely driven 
by misclassification of M. lucifugus as M. sodalis (i.e., false positives). The species ratio of M. 
sodalis did not change between periods (1%), while the abundance of M. lucifugus drastically 
declined from 49% to 16% after WNS. Misclassification of M. lucifugus as M. sodalis allowed 
the total positive (true positives +  false positives) count for M. sodalis to reach MLE P ≤  0.05 
only when the M. lucifugus count was high during pre-WNS. A similar ‘swamping effect’ was 
observed by [16] when nightly counts of target species were low. Our models are imperfect 
and were designed to measure the false negative rate of the programs, not the false positive 
rates. The programs may have more sophisticated means to reduce false positives not captured 
in our models. Therefore, we cannot say with confidence that misclassified files contribute 
true positives for rare species as they did in our models.

Considering the difficulties for establishing acoustic presence of rare species using MLE 
presented here, we argue that alternative approaches should be considered. Rather than 
determining species presence using the audio files recorded by a single detector on individual 
nights, one could determine presence using all audio files recorded by a single detector for 
all nights or using the audio files recorded by all detectors for individual nights. Both options 
would increase the total number of bat files examined by the MLE algorithm and increase the 
likelihood of detecting true presence of rare species. Another possibility could be raising the 
USFWS MLE P-value threshold for presence from 0.05 to a higher number. However, our 
Fort Drum modeling suggests this may not be effective. For the scenarios we tested, an MLE 
threshold of 0.10 would have still missed many rare species. Additionally, increasing the MLE 
threshold may increase the risk of false positives.

A better solution might involve manual review, or visual inspection, of files flagged as 
possible rare or endangered species by automated software. The current guidelines require 
that all files be visually reviewed for any nights that MLE P ≤  0.05 for M. septentrionalis, M. 
sodalis or P. subflavus [11]. However, our results indicate that relatively low numbers of files 
for these species (or low total numbers of files) may result in nights with MLE P >  0.05, or 
false absence. To overcome this issue and provide a more conservative measure of presence, 
we suggest that any files classified as these three species be visually reviewed by one or more 
bat acoustic experts. Owing to the rarity of protected species, visually reviewing files flagged 
by software should not be overly burdensome [16,17], and while manual review is more sub-
jective than automated classification, manual classifications can be defended.
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If a more objective, automated approach is preferred, then another option could be to 
have programs calculate MLE for Myotis as a whole. Solick et al. (2024) [15] found that pro-
grams were more accurate at correctly classifying calls to the genus Myotis than to individual 
Myotis species. Perhaps triggering manual review of all files when MLE P ≤  0.05 for any 
Myotis would be more likely to capture echolocation calls produced by individual Myotis 
species.

Lastly, there are other possible approaches for determining acoustic presence instead of 
MLE (Review Article:[31]). Promising work has been done incorporating a multivariable 
Bayesian framework [32] which has the potential to improve bat inventories and expand 
knowledge of important environmental variables influencing bat activity.

The results from our simulations and modelling are based on the quality of the echolo-
cation calls chosen for these tests, the specific versions of the programs used, and a species 
composition specific to just six northeastern US states. Our model is a useful tool but was 
simple and did not account for false positives or the species ratios of other species. As well, the 
species ratios of bat species are often unknown prior to a study. We therefore caution the use 
of specific numbers of files required to trigger MLE P ≤  0.05 that we reported here, and we 
encourage further testing and simulation work in areas with different species composition and 
species ratios. Areas with different species ratio of these nine northeastern species, or areas 
with different species altogether, will yield different results. But we do believe the influence of 
count and species ratio on MLE/acoustic presence will be consistent and should be considered 
when designing bat acoustic species surveys and interpreting the results of those surveys.

Our study shows that while automated bat echolocation classification is an impressive 
and time-saving tool, it is not reliable for detecting rare species. Relatively large numbers 
of total bat echolocation recordings are needed to detect species with relatively low abun-
dances. Reevaluation of current MLE thresholds and methodologies used to determine species 
presence/absence may be warranted, particularly when making species-specific conservation, 
regulatory, and permitting decisions.
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