

March 19, 2025

To: Objection Reviewing Officer
USDA Forest Service Northern Region
26 Fort Missoula Road
Missoula, MT 59804

Dear Objection Reviewing Officer:

Thank you for considering our Objection against the Draft Decision Notice, FONSI, and Environmental Assessment for the lacy Lemoosh Project, Forest Service, Idaho Panhandle National Forest (IPNF), St. Joe Ranger District.

Identification of Objectors: Lead Objector:
Michael Garrity,
Executive Director,
Alliance for the Wild Rockies (Alliance)

PO Box 505 Helena, MT 59624

Phone 406-459-5936.

And for
Sara Johnson, Director
Native Ecosystems Council
PO Box 125
Willow Creek, MT 59760

And for

Jeff Juel
Forest Policy Director
Friends of the Clearwater
509-688-5956
jeffjuel@wildrockies.org
<https://www.friendsoftheclearwater.org>

And for
Steve Kelly, Director
Council on Wildlife and Fish
P.O. Box 4641
Bozeman, MT 59772

And for

Kristine Akland
Center for Biological Diversity
P.O. Box 7274 Missoula, MT 59807
kakland@biologicaldiversity.org

Signed for Objectors this 19th day of March 2025
/s/
Michael Garrity

NOTICE IS HEREBY GIVEN that Alliance objects
pursuant to 36 CFR section 218 to the Responsible

Official's selection of the proposed action, which includes logging on 2977 acres including clearcutting on 286 acres and building 23.9 miles of new roads, 17 miles of road reconstruction, and 7.4 miles of road reconditioning. Alliance is objecting to this project on the grounds that implementation of the Selected Alternative would not be fully in accordance with the laws governing management of the national forests such as Clean Water Act, the ESA, NEPA, NFMA, the IPNF Forest Plan and the APA, and will result in additional degradation in already degraded watersheds and mountain slopes, further upsetting the wildlife habitat, ecosystem and human communities. Our objections are detailed below.

As a result of the Draft DN, individuals and members of the above-mentioned groups would be directly and significantly affected by the logging and associated activities. Appellants are conservation organizations working to ensure protection of biological diversity and ecosystem integrity in the Wild Rockies bioregion (including the IPNF). The individuals and members use the project area for recreation and other forest related activities. The selected alternative would also further degrade the water quality, wildlife and fish habitat. These activities, if implemented, would adversely impact and irreparably harm the natural qualities of the Project Area, the surrounding area, and would further degrade the watersheds and wildlife habitat.

1. Objectors names and addresses:

Lead Objector Mike Garrity, Executive Director

Alliance for the Wild Rockies
P.O. Box 505; Helena, MT 59624
Phone 406 459-5936

Objector Sara Jane Johnson
Director, Native Ecosystems Council,
P.O. Box 125
Willow Creek, MT;

Objector Steve Kelly, Director
Council on Wildlife and Fish
P.O. Box 4641
Bozeman, MT 597722.

Objector Kristine Akland
Center for Biological Diversity
P.O. Box 7274 Missoula, MT 59807

kakland@biologicaldiversity.org

Objector Jeff Juel
Forest Policy Director
Friends of the Clearwater
509-688-5956
jeffjuel@wildrockies.org
<https://www.friendsoftheclearwater.org>

Signature of Lead Objector:

Signed this 19th day of March, 2025 by Lead Objector,
/s/ Michael Garrity

3. Lead Objector: Michael Garrity, Alliance for the
Wild Rockies

4. Name of the Proposed Project, Responsible Official,
National Forest and Ranger District where Project is:
Lacy Lemoosh Project;

Staś Moszynski, Acting District Ranger St of the St. Joe Ranger
District, Idaho Panhandle National Forests is the Responsible
Official.

The project is in the St. Joe Ranger District, Idaho Panhandle
National Forest, Benewah and Latah County, Idaho. Acting
Ranger Moszynski chose Alternative 2 in the Draft Decision No-
tice and FONSI.

This Draft Decision Notice (DDN) calls for will implement al-
ternative 2, the proposed action as it is described in the Draft
Decision Notice on pages 1-3.

The DDN authorizes 3729 acres of logging, including 22
clearcuts bigger than 40 acres is size ranging from 40 to 291
acres, totaling 2290 acres. The DDN also authorizes 925 acres of
intentional burning, 15 miles of new permanent roads, 11 miles

of new, so-called, temporary roads, 20 miles of road reconstruction, and 13 miles of road reconditioning.

The project is located in all or part of sections 12, 13 and 24 in T43N., R 3W.; sections 1,2,4,7,9- 28, and 34-36 in T43N., R 2W.; sections 6, 7, 17-20,29-32 in T43N., R 1W (Boise Meridian). The forested project site is within the Charlie Creek and Upper Santa Creek Watersheds, which are tributaries of the St Maries River and flow into the St Joe River. The project area is approximately 16,100 acres with about 50 acres of privately owned lands.

5. Specific Issues Related to the Proposed Projects, including how Objectors believes the Environmental Analysis or Draft Decision Notice and FONSI specifically violates Law, Regulation, or Policy: We included this under number 8 below.

Thank you for the opportunity to object on the Lacy Lemoosh Project. Please accept this objection from me on behalf of the Alliance for the Wild Rockies, Friends of the Clearwater, Native Ecosystems Council, Center for Biological Diversity, and Council on Wildlife and Fish.

6. Suggested Remedies that would Resolve the Objection: We recommend that the “No Action Alternative” be selected. We have also made specific recommendations after each problem.

7. Supporting Reasons for the Reviewing Office to

Consider:

This landscape has very high wildlife values, including for Grizzly bears, Bull trout, Canada lynx, North American wolverine, and one candidate species, Monarch butterfly are on the list for Endangered Species Act.

The project area is considered occupied by Canada lynx so project activities will affect habitat potentially used by Canada lynx and snowshoe hare. Wolverine habitat may be affected by project activities in the short-term but individuals during the denning period are unlikely to be disturbed. Wolverines and their habitat in the long-term would not be affected. big game species, and wildlife dependent upon unlogged forests.

The project area will be concentrated within some of the best wildlife habitat in this landscape which is an important travel corridor for wildlife such as bull trout, lynx, grizzly bears, and wolverine. The agency will also be exacerbating an ongoing problem of displacing elk to adjacent private lands in the hunting season due to a lack of security on public lands. The public interest is not being served by this project.

Suggested Remedies to Resolve the Objection:

The agency can choose the No Action Alternative and the agency needs to complete the surveys for bull trout, grizzlies, lynx, birds, big game, and whitebark pine. The agency also needs to ensure that all road that are listed as closed or no longer counted as roads are effectively closed or have an effective barrier preventing motorized use.

The IPNF must also consult with the Fish and Wildlife Service forest wide on and the impact of the project on lynx, lynx critical habitat, bull trout, bull trout critical habitat, grizzly bears, whitebark pine, monarch butterflies, and wolverines. The IPNF must also survey the project area for whitebark pine. Without these corrective actions, implementation of the Lacy Lemoosh project, will lead to severe, irretrievable impacts on almost all wildlife species on the Forest. These impacts, if continued across the IPNF for other projects, will erode the viability of a huge number of wildlife species across this landscape.

8. Statements that Demonstrates Connection between Prior Specific Written Comments on the Particular Proposed Project and the Content of the Objection.

We wrote in our November 8, 2024 comments:

*Lacy Lemoosh
222 South 7th Street Ste. 1
St. Maries, Idaho 83861*

To whom it may concern:

Thank you for the opportunity to comment on the EA for the Lacy Lemoosh project.

The EA seems to have ignored much of our scoping comments so I will repeat many of them below.

Please better analyze the cumulative impacts of this project on grizzly bears, lynx, lynx critical habitat, whitebark pine, wolverine, monarch butterflies, goshawks, and all native fish and wildlife in the St. Joe Ranger District.

Page 62 of the EA states:

Improvement activities, including reforestation, planting site preparation (slashing, prescribed burning, piling and burning slash piles, etc.), aquatic restoration (down wood placement, riparian plantings, etc.), and gopher baiting may contribute to disturbance effects however these activities are generally relatively short-lived and are unlikely to disrupt normal elk use patterns. Impacts to elk would be minimal.

What would be the effect of baiting gophers with poison on species protected under the Endangered Species Act such as wolverines, grizzly bears, and lynx?

What would be the effect of baiting gophers with poison on birds such as bald eagles, golden eagles, and raptors or any species that eat carrion?

How many wolverines, grizzly bears, lynx, and bald eagles do you expect to die or become ill from eating poisoned gophers?

Following the list of necessary elements, Alliance has also included a general narrative discussion on possible impacts of the Project, with accompanying citations to the relevant scientific literature.

Please include a no commercial logging alternative.

NECESSARY ELEMENTS FOR PROJECT EIS or an EA if you choose to write an EA.

We still believe that you should write an EIS for this project but if you refuse to, please include the following:

- A. Disclose all IPNF Plan requirements for logging/burning projects and explain how the Project complies with them;*
- B. Disclose the acreages of past, current, and reasonably foreseeable logging, grazing, and road-building activities within the Project area;*
- C. Solicit and disclose comments from the Idaho Department of Fish and Game regarding the impact of the Project on wildlife habitat;*
- D. Solicit and disclose comments from the Idaho Department of Environmental Quality regarding the impact of the Project on water quality;*
- E. Disclose the biological assessment for the candidate, threatened, or endangered species with potential and/or actual habitat in the Project area;*

F. Disclose the biological evaluation for the sensitive and management indicator species with potential and/or actual habitat in the Project area;

G. Disclose the snag densities in the Project area, and the method used to determine those densities;

H. Disclose the current, during-project, and post-project road densities in the Project area; and disclose the number of road closure violations in the St. Joe Ranger District during the last 5 years.

I. Disclose the IPNF's record of compliance with state best management practices regarding stream sedimentation from ground-disturbing management activities;

J. Disclose the IPNF's record of compliance with its monitoring requirements as set forth in its Forest Plan;

K. Disclose the IPNF's record of compliance with the additional monitoring requirements set forth in previous DN/FONSI's and RODs on the IPNF;

L. Disclose the results of the field surveys for threatened, endangered, sensitive, and rare plants in each of the proposed units;

M. Disclose the level of current noxious weed infestations in the Project area and the cause of those infestations;

N. Disclose the impact of the Project on noxious weed infestations and native plant communities;

O. Disclose the amount of detrimental soil disturbance that currently exists in each proposed unit from previous logging and grazing activities;

P. Disclose the expected amount of detrimental soil disturbance in each unit after ground disturbance and prior to any proposed mitigation/remediation;

Q. Disclose the expected amount of detrimental soil disturbance in each unit after proposed mitigation/remediation;

R. Disclose the analytical data that supports proposed soil mitigation/remediation measures;

S. Disclose the timeline for implementation;

T. Disclose the funding source for non-commercial activities proposed;

U. Disclose the current level of old growth forest in each third order drainage in the Project area;

V. Disclose the method used to quantify old growth forest acreages and its rate of error based upon field review of its predictions;

W. Disclose the historic levels of mature and old growth forest in the Project area;

X. Disclose the level of mature and old growth forest necessary to sustain viable populations of dependent wildlife species in the area;

Y. Disclose the amount of mature and old growth forest that will remain after implementation;

Z. Disclose the amount of current habitat for old growth and mature forest dependent species in the Project area;

AA. Disclose the amount of habitat for old growth and mature forest dependent species that will remain after Project implementation;

BB. Disclose the method used to model old growth and mature forest dependent wildlife habitat acreages and its rate of error based upon field review of its predictions;

CC. Disclose the amount of big game (moose and elk) hiding cover, winter range, and security currently available in the area;

DD. Disclose the amount of big game (moose and elk) hiding cover, winter range, and security during Project implementation;

EE. Disclose the amount of big game (moose and elk) hiding cover, winter range, and security after implementation;

FF. Disclose the method used to determine big game hiding cover, winter range, and security, and its rate of error as determined by field review;

GG. Disclose and address the concerns expressed by the ID Team in the draft Five-Year Review of the Forest Plan regarding

the failure to monitor population trends of MIS, the inadequacy of the Forest Plan old growth standard, and the failure to compile data to establish a reliable inventory of sensitive species on the Forest;

HH. Disclose the actions being taken to reduce fuels on private lands adjacent to the Project area and how those activities/or lack thereof will impact the efficacy of the activities proposed for this Project;

II. Disclose the efficacy of the proposed activities at reducing wildfire risk and severity in the Project area in 8the future, including a two-year, five-year, ten-year, and 20-year projection;

JJ. Disclose when and how the IPNF made the decision to suppress natural wildfire in the Project area and replace natural fire with logging and prescribed burning;

KK. Disclose the cumulative impacts on the Forest-wide level of the IPNF's policy decision to replace natural fire with logging and prescribed burning;

LL. Disclose how Project complies with the Roadless Rule;

MM. Disclose the impact of climate change on the efficacy of the proposed treatments;

NN. Disclose the impact of the proposed project on the carbon storage potential of the area;

OO. Disclose the baseline condition, and expected sedimentation during and after activities, for all streams in the area;

PP. Disclose maps of the area that show the following elements:

1. Past, current, and reasonably foreseeable logging units in the Project area;

2. Past, current, and reasonably foreseeable grazing allotments in the Project area;

3. Density of human residences within 1.5 miles from the Project unit boundaries;

4. Hiding cover in the Project area according to the Forest Plan definition;

5. Old growth forest in the Project area;

6. Big game security areas;

7. Moose winter range;

The IPNF responded:

Cumulative effects are discussed in the Past, Ongoing and Reasonably Foreseeable Activities (Appendix B) section of the Lacy Lemoosh EA and in individual specialist reports.

Wildland fire management decisions are incident specific. The decision to suppress, manage naturally occurring fire for the benefit of resources, or a combination of both is made when a fire occurs; decisions are based on numerous factors (such as time of year, fuel and weather conditions, and values at risk) and often in consultation with multiple entities (local, state, federal and Tribal government involvement). The Forest Plan provides direction regarding both wildfire suppression and the use of natural fire to meet objectives, as outlined in the Lacy Lemoosh Fire and Fuels report.

The Fuels Report and supporting documentation on the project webpage (FIR-007) disclose the 97th percentile weather utilized to model fire behavior and the 10-year average collected locally to generate that percentile. The Interagency Fuels Treatment Decision Support System (IFDSS) modeling program was utilized to determine flame length, rate of spread and crown fire for existing conditions and the proposed action. Assumptions for IFDSS can be found on the project webpage FIR-030.

Modeled analysis of the proposed fuels treatments demonstrates a reduction of flame lengths, crown fire, and rate of spread in proposed units, fuel breaks, and natural fuels burn units. This reduction occurs after hazardous fuels mitigation is complete and has a roughly 10-year effectiveness time frame for fine fuels and brush. Longevity of fuels treatments is discussed in the Fire and Fuels Report.

While roads may increase the chance of human caused wildfire, the majority of fire occurrences within the project area are due to lightning. Additional roads will also allow for quicker and more effective fire response for both human and lightning caused wildfires, counteracting the negative impact public access may have on increased wildfire starts.

Proposed roads and proposed units were included when modeling for flame lengths, crown fire, and rate of spread changes between the proposed action and current fuels conditions.

Modeling still showed a reduction in all three elements due to proposed fuels treatments and hazardous fuels reductions regardless of additional roads or clearcuts.

Mixed and high severity wildfires have existed on the landscape as long as there was an ignition source and fuel available, meaning these fire types could have existed for many millennia. Human intervention has been occurring much longer than typical Western fire intervention that started after 1910. Concerns about fuel reduction treatments and effects on fire behavior.

Regeneration harvest of units creates more slash in the short term than other alternatives, but design features and compliance with the Idaho Forest Practices Act would mitigate haz-

ardous fuels. Slash is treated as quickly as it is available; the ability to treat slash is based on numerous factors (such as time of year, fuel and weather conditions, values at risk, resource availability, smoke approval) and often in consultation with multiple entities (local, state, federal and Tribal government involvement). The Fire/Fuels analysis addresses the fact that harvest and/or precommercial thinning slash can create a fire hazard when left untreated or prior to treatment. Proposed harvest activities in the Lacy Lemoosh Project include slash treatment and site preparation for planting, which would substantially reduce the residual fuels and fire hazard. Much of the science that states logging increases fuels and fire hazard refers to harvest without subsequent fuel treatment such as prescribed burning, which is not applicable to the Lacy Lemoosh Project.

The EA, Fuels Report, and associated documentation can be referenced to show modeled reduction of flame lengths, crown fire, and rate of spread in proposed units, fuel breaks, and natural fuels burn units due to proposed fuels treatments. This reduction occurs after hazardous fuels mitigation is complete and has a roughly 10-year effectiveness time frame for fine fuels and brush. While roads may increase the chance of human caused wildfire, the majority of fire occurrences within the project area are due to lightning. Additional roads will also allow for quicker and more effective fire response for both human and lightning caused wildfires, counteracting the negative impact public access may have on increased wildfire starts.

There is a need for future treatments because forest succession adds to the fuel loading and structure of stands as trees grow

and die and decay. No treatment will last forever and will require subsequent entries and treatments detailed in the silvicultural prescriptions.

Recent fires have been kept small due to successful fire suppression. However, with the 100 years of fire exclusion, excessive growth of brush and ladder fuels, deterioration of forest resilience, and effects of climate change there is a high likelihood of a fire regime type 3 or 4 fire event occurring within the project area. We analyzed the direct effects of activities on fuel characteristics for both the short- and long-term, and those effects will be discussed in the Fire/Fuels report and the EA.

The analysis does not speculate on future fire ignitions, the rate of high-severity fire within the project area, or whether those unknown future fires would encounter fuel treatments.

Fettig, et al., 2022 synthesized a vast array of research on the effects between insect activity and wildfire/prescribed fire.

They state that while bark beetles and defoliator insects can exert large effects on fuels, their effects on wildfires are mixed. The presence of insect activity and tree mortality does not have a measurable effect on any increase in wildfire ignition, but has been shown to affect spatial patterns, especially during the red phase (1-5 years post impact). Whitebark pine and Douglas fir show rapid decreases in foliar moisture and increases in flammability are common. During the "grey phase" (5-15 years post impact), fine fuels accumulate on the forest floor and the loss of crown fuels exposes the surface fuels to increase solar radiation and wind.

Wildfires during this stage have been shown to have a greater intensity than expected. Large accumulation of woody debris

on the forest floor occurs during the post epidemic stage (after the grey phase). This can also increase intensity and flame lengths for surface fuels and ladder fuels are generally present again due to new growth. The presence of insect activity and tree mortality does not have a measurable effect on any increase in wildfire ignition but has been shown to affect spatial patterns, especially during the red phase.

While the Eagle Creek example may be valid, the Lacy Lemoosh project does not have proposed units with any old growth. One fuel break contains old growth, but no large trees will be removed in this treatment.

Proposed actions for harvest and vegetation treatments are proposed in MA-6 land classified as suitable for timber harvest, and are designed to support Forest Plan goals, trend the project area and forest toward desired conditions and acreage objectives for vegetation; and they comply with Forest Plan vegetation standards and guidelines. See the IPNF Forest Plan Consistency Worksheet (20250203Datax1USFS1xLacyLemooshFPconsistencyWorksheet, formerly 20250116-Datax1USFS1xLacyLemooshFPconsistencyWorksheet) for details.

Private property is not considered part of the Lacy Lemoosh project area and generally not applicable to this project; however, see Cumulative Effects section of the vegetation report for an analysis of harvests including adjacent landownerships. The Lacy Lemoosh project does not propose any “fire-proofing”. The project aims to increase resiliency of the forest stands that are targeted and reduce hazardous fuel loadings. Wildlife reports address this inquiry regarding effects to wildlife species. Broadly speaking, improvements in forest

landscape resiliency provides for forest compositions and structure that best resists insect and disease. Vegetation projects, such as the Lacy Lemoosh Project, become a balancing act between short-term needs and long-term benefits for some terrestrial wildlife species.

The project is in violation of NEPA, the APA, and the Appeals Reform Act. The project is also in violation of the Forest Plan because the EA, FONSI, and DDN did not demonstrate that the project complies with the Forest Plan.

Remedy

Choose the No Action Alternative or Withdraw the Draft Decision Notice, EA and FONSI and write an EIS that fully complies with the law.

We wrote in our comments:

Please take a hard look at the impact of the project on climate change.

Do unlogged old growth forests store more carbon than the wood products that would be removed from the same forest in a logging operation?

What is the cumulative effect of National Forest logging on U.S. carbon stores? How many acres of National Forest lands

are logged every year? How much carbon is lost by that logging?

Is this Project consistent with “research recommendations (Krankina and Harmon 2006) for protecting carbon gains against the potential impacts of future climate change? That study recommends “[i]ncreasing or maintaining the forest area by avoiding deforestation,” and states that “protecting forest from logging or clearing offer immediate benefits via prevented emissions.”

The IPNF has not yet accepted that the effects of climate risk represent a significant issue, and eminent loss of forest resilience already, and a significant and growing risk into the “foreseeable future?”

It is now time to speak honestly about unrealistic expectations relating to desired future condition. Forest managers have failed to disclose that at least five common tree species, including aspens and four conifers, are at great risk unless atmospheric greenhouse gases and associated temperatures can be contained at today’s levels of concentration in the atmosphere. This cumulative (“reasonably foreseeable”) risk must not continue to be ignored at the project-level, or at the programmatic (Forest Plan) level.

Global warming and its consequences may also be effectively irreversible which implicates certain legal consequences under NEPA and NFMA and ESA (e.g., 40 CFR § 1502.16; 16 USC §1604(g); 36 CFR §219.12; ESA Section 7; 50 CFR §§402.9, 402.14). All net carbon emissions from logging represent “irretrievable and irreversible commitments of resources.”

It is clear that the management of the planet’s forests is a nexus for addressing this largest crisis ever facing humanity. Yet the FSEIS fails to even provide a minimal quantitative analysis of project- or agency-caused CO₂ emissions or consider the best available science on the topic. This is immensely unethical and immoral. The lack of detailed scientific discussions in the FSEIS concerning climate change is far more troubling than the document’s failures on other topics, because the consequences of unchecked climate change will be disastrous for food production, sea level rise, and water supplies, resulting in complete turmoil for all human societies. This is an issue as serious a nuclear annihilation (although at least with the latter we’re not already pressing the button).

The EA provided a pittance of information on climate change effects on project area vegetation. The FSEIS provides no analysis as to the veracity of the project’s Purpose and Need,

the project's objectives, goals, or desired conditions. The FS has the responsibility to inform the public that climate change is and will be bringing forest change. For the Galton project, this did not happen, in violation of NEPA.

The FEA fails to consider that the effects of climate change on the project area, including that the “desired” vegetation conditions will

likely not be achievable or sustainable. The EA fails to provide any credible analysis as to how realistic and achievable its desired conditions are in the context of a rapidly changing climate, along an un- predictable but changing trajectory.

The Forest Plan does not provide meaningful direction on climate change. Nor does the EA acknowledge pertinent and highly relevant best available science on climate change. This project is in violation of NEPA.

The EA does not analyze or disclose the body of science that implicates logging activities as a contributor to reduced carbon stocks in forests and increases in greenhouse gas emissions. The EA fails to provide estimates of the total amount of carbon dioxide (CO₂) or

other greenhouse gas emissions caused by FS management actions and policies—forest-wide, regionally, or nationally.

Agency policy-makers seem comfortable maintaining a position that they need not take any leadership on this issue, and obfuscate via this EA to justify their failures.

The best scientific information strongly suggests that management that involves removal of trees and other biomass increases atmospheric CO₂. Unsurprisingly the FSEIS doesn't state that simple fact.

The EA fails to present any modeling of forest stands under different management scenarios. The FS should model the carbon flux over time for its proposed stand management scenarios and for the various types of vegetation cover found on the IPNF.

The EA also ignores CO₂ and other greenhouse gas emissions from other common human activities related to forest management and recreational uses. These include emissions associated with machines used for logging and associated activities, vehicle use for administrative actions, and recreational motor vehicles. The FS is simply ignoring the climate impacts of these management and other authorized activities.

The Committee of Scientists, 1999 recognize the importance of forests for their contribution to global climate regulation. Also, the 2012 Planning Rule recognizes, in its definition of Ecosystem services, the “Benefits people obtain from ecosystems, including: (2) Regulating services, such as long term storage of carbon; climate regulation...”

We have no more time to prevaricate, and it’s not a battle we can afford to lose. We each have a choice: submit to status quo for the profits of the greediest 1%, or empower ourselves to limit greenhouse gas emissions so not just a couple more generations might survive.

The District Court of Montana ruled in Case 4:17-cv-00030-BMM that the Federal government did have to evaluate the climate change impacts of the federal government coal program.

In March 2019, U.S. District Judge Rudolph Contreras in Washington, D.C., ruled that when the U.S. Bureau of Land Management (BLM) auctions public lands for oil and gas leasing, officials must consider emissions from past, present and foreseeable future oil and gas leases nationwide. The case was brought by WildEarth Guardians and Physicians for Social Responsibility.

In March of 2018 the Federal District Court of Montana found the Miles City (Montana) and Buffalo (Wyoming) Field Office's Resource Management Plans unlawfully overlooked climate impacts of coal mining and oil and gas drilling. The case was brought by Western Organization of Resource Councils, Montana Environmental Information Center, Powder River Basin

Resource Council, Northern Plains Resource Council, the Sierra Club, and the Natural Resources Defense Council.

The project is in violation of NEPA, NFMA, the APA, the ESA for not examining the impacts of the project on climate change. The project will eliminate the forest in the project area. Forests absorb carbon. The project will destroy soils in the project area. Soils are carbon sinks.

The Forest Service wrote a generic carbon white paper and a Blue Sky Report that does not take a hard look at the impacts of project on climate change.

The IPNF has not yet accepted that the effects of climate risk represent a significant issue, and eminent loss of forest resilience already, and a significant and growing risk into the “foreseeable future?”

It is now time to speak honestly about unrealistic expectations relating to desired future condition. Forest managers have failed to disclose that at least five common tree species, including aspens and four conifers, are at great risk unless atmospheric greenhouse gases and associated temperatures can be contained at today's levels of concentration in the atmosphere. This cumulative ("reasonably foreseeable") risk must not continue to be ignored at the project-level, or at the programmatic (Forest Plan) level.

Global warming and its consequences may also be effectively irreversible which implicates certain legal consequences under NEPA and NFMA and ESA (e.g., 40 CFR § 1502.16; 16 USC §1604(g); 36 CFR §219.12; ESA Section 7; 50 CFR §§402.9, 402.14). All net carbon emissions from logging represent "irretrievable and irreversible commitments of resources."

It is clear that the management of the planet's forests is a nexus for addressing this largest crisis ever facing humanity. Yet the FSEIS fails to even provide a minimal quantitative analysis of project- or agency-caused CO₂ emissions or consider the best available science on the topic. This is immensely unethical and immoral. The lack of detailed scientific discussions in the FSEIS concerning climate change is far more

troubling than the document’s failures on other topics, because the consequences of unchecked climate change will be disastrous for food production, sea level rise, and water supplies, resulting in complete turmoil for all human societies. This is an issue as serious a nuclear annihilation (although at least with the latter we’re not already pressing the button).

The EA provided a pittance of information on climate change effects on project area vegetation. The FSEIS provides no analysis as to the veracity of the project’s Purpose and Need, the project’s objectives, goals, or desired conditions. The FS has the responsibility to inform the public that climate change is and will be bringing forest change. For the Galton project, this did not happen, in violation of NEPA.

The FEA fails to consider that the effects of climate change on the project area, including that the “desired” vegetation conditions will

likely not be achievable or sustainable. The EA fails to provide any credible analysis as to how realistic and achievable its desired conditions are in the context of a rapidly changing climate, along an un- predictable but changing trajectory.

The Forest Plan does not provide meaningful direction on climate change. Nor does the EA acknowledge pertinent and

highly relevant best available science on climate change. This project is in violation of NEPA.

The EA does not analyze or disclose the body of science that implicates logging activities as a contributor to reduced carbon stocks in forests and increases in greenhouse gas emissions. The EA fails to provide estimates of the total amount of carbon dioxide (CO₂) or

other greenhouse gas emissions caused by FS management actions and policies—forest-wide, regionally, or nationally.

Agency policy-makers seem comfortable maintaining a position that they need not take any leadership on this issue, and obfuscate via this EA to justify their failures.

The best scientific information strongly suggests that management that involves removal of trees and other biomass increases atmospheric CO₂. Unsurprisingly the FSEIS doesn't state that simple fact.

The EA fails to present any modeling of forest stands under different management scenarios. The FS should model the carbon flux over time for its proposed stand management scenarios and for the various types of vegetation cover found on the IPNE.

The EA also ignores CO₂ and other greenhouse gas emissions from

other common human activities related to forest management and recreational uses. These include emissions associated with machines used for logging and associated activities, vehicle use for administrative actions, and recreational motor vehicles. The FS is simply ignoring the climate impacts of these management and other authorized activities.

The Committee of Scientists, 1999 recognize the importance of forests for their contribution to global climate regulation. Also, the 2012 Planning Rule recognizes, in its definition of Ecosystem services, the “Benefits people obtain from ecosystems, including: (2) Regulating services, such as long term storage of carbon; climate regulation...”

We have no more time to prevaricate, and it’s not a battle we can afford to lose. We each have a choice: submit to status quo for the profits of the greediest 1%, or empower ourselves to limit greenhouse gas emissions so not just a couple more generations might survive.

The District Court of Montana ruled in Case 4:17-cv-00030-BMM that the Federal government did have to evaluate the climate change impacts of the federal government coal program.

In March 2019, U.S. District Judge Rudolph Contreras in Washington, D.C., ruled that when the U.S. Bureau of Land Management (BLM) auctions public lands for oil and gas leasing, officials must consider emissions from past, present and foreseeable future oil and gas leases nationwide. The case was brought by WildEarth Guardians and Physicians for Social Responsibility.

In March of 2018 the Federal District Court of Montana found the Miles City (Montana) and Buffalo (Wyoming) Field Office's Resource Management Plans unlawfully overlooked climate impacts of coal mining and oil and gas drilling. The case was brought by Western Organization of Resource Councils, Mon- tana Environmental Information Center, Powder River Basin

Resource Council, Northern Plains Resource Council, the Sierra Club, and the Natural Resources Defense Council.

The project is in violation of NEPA, NFMA, the APA, the ESA for not examining the impacts of the project on climate change. The project will eliminate the forest in the project area. Forests absorb carbon. The project will destroy soils in the project area. Soils are carbon sinks.

The Forest Service wrote a generic carbon white paper and a Blue Sky Report that does not take a hard look at the impacts of project on climate change.

The IPNF responded:

The proposed action is consistent with internationally recognized climate change adaptation and mitigation practices, see Lacy Lemoosh carbon report. On January 7, 2025, the Chief of the US Forest Service withdrew the Notice of Intent to prepare a National Old Growth Amendment environmental impact statement. A notice was published in the Federal Register on Friday, January 10, 2025. Therefore, the old growth related "Plan Elements" and "Monitoring Elements" of the Idaho Panhandle National Forest Land Management Plan will remain unmodified.

The Lacy Lemoosh proposed action may have short-term carbon losses resulting from timber harvest and prescribed burning. Although clearcuts and regeneration harvests may have an impact on forest soils, many desired fire-adapted early seral species, including western white pine, western larch, and ponderosa pine, regenerate most effectively on bare mineral soils. While the regeneration treatments will reduce carbon stocks in the short term, harvesting and prescribed burning activities are designed to emulate mixed-severity fires to enable the essential ecosystem process of nutrient cycling, and increased nitrogen fixation and community diversity will promote more vigorous growth. Long-term carbon gains may be expected due to improved stand health, adaptability to disturbance, and increased carbon uptake in the form of young stands as diseased

areas regenerate.

Maintaining landscape diversity, including diverse species compositions with various adaptations to fire, insects, diseases, and other disturbances, will increase resilience to those disturbances.

*For example, healthy stands of fire-adapted species such as ponderosa pine, western larch, and western white pine will more likely survive wildfire than the current grand fir-dominated stands that form vast swaths of contiguous fuels across the project area; additionally, having a diversity of size classes with different fuel conditions and flammability can reduce fire spread and facilitate suppression in the event that a fire occurs. Maintaining species and size class diversity also reduces susceptibility to bark beetles and root diseases, which are currently abundant throughout the project area due to the prevalence of grand fir and Douglas-fir which are the primary hosts of *Armillaria* and *Heterobasidion* root diseases as well as Douglas-fir beetle and fir engraver beetle (see Forest Health and Protection trip report, 20200306Rptx1ZambinoP1xFHP). A diversity of sizes classes over the long term also ensures on-going recruitment of vigorous young stands with higher productivity and greater carbon accumulation potential. There are inherent trade-offs to address the ever-increasing risks of wildfire and disturbances that could have much more devastating impacts upon forest vegetation, soil exposure, carbon sequestration, and watershed health. Large-scale disturbances that remove significant quantities of trees are a normal part of these ecosystems to which the early seral vegetation communities and the wildlife species dependent upon them are well adapted. While localized mortality can indeed be beneficial, the*

lack of diversity in this mature, grand fir-dominated project area has set the landscape up for widespread problems, and this homogeneity and lack of disturbance has already facilitated extensive root disease and rising levels of bark beetle mortality, reduced productivity and carbon sequestration, and is creating increasing fuel loadings that put it at risk for wildfire. Reducing tree densities in overstocked stands will decrease carbon in the short term but may lower the risk of carbon losses from mortality and wildfire, thus resulting in greater stability and longer landscape-level storage of carbon.

The cumulative effects of the proposed harvest on carbon are compared to national forest unit level carbon stocks and fluxes as the national forest unit is the smallest spatial scale for which we have nationally consistent and accurate carbon estimates. The cumulative net harvest emissions are 186,270 tonnes C02eq with a 20-year reduced growth potential of 22,981 tonnes C02eq compared to the no action alternative. The cumulative effects analysis does state that the no action alternative will result in less resilient forest stands at a higher risk to disturbance that may result in them becoming a carbon source.

The IPNF has not yet accepted that the effects of climate risk represent a significant issue, and eminent loss of forest resilience already, and a significant and growing risk into the “foreseeable future?”

It is now time to speak honestly about unrealistic expectations relating to desired future condition.

Global warming and its consequences may also be effectively irreversible which implicates certain legal consequences under NEPA and NFMA and ESA (e.g., 40 CFR § 1502.16; 16 USC §1604(g); 36 CFR §219.12; ESA Section 7; 50 CFR §§402.9, 402.14). All net carbon emissions from logging represent “irretrievable and irreversible commitments of resources.”

It is clear that the management of the planet’s forests is a nexus for addressing this largest crisis ever facing humanity. Yet the Draft Decision Notice and Final EA fail to even provide a minimal quantitative analysis of project- or agency-caused CO₂ emissions or consider the best available science on the topic. This is immensely unethical and immoral. The lack of detailed scientific discussions in the FSEIS concerning climate change is far more troubling than the document’s failures on other topics, because the consequences of unchecked climate change will be disastrous for food production, sea level rise, and water supplies, resulting in complete turmoil for all human societies. This is an issue as serious a nuclear annihilation (although at least with the latter we’re not already pressing the button).

The EA provided a pittance of information on climate change effects on project area vegetation. The EA provides no analysis as to the veracity of the project’s Purpose and Need, the project’s objectives, goals, or desired conditions. The FS has the respon-

sibility to inform the public that climate change is and will be bringing forest change. For the Coyote=Divide project, this did not happen, in violation of NEPA.

The Final EA fails to consider that the effects of climate change on the project area, including that the “desired” vegetation conditions will likely not be achievable or sustainable. The EA fails to provide any credible analysis as to how realistic and achievable its desired conditions are in the context of a rapidly changing climate, along an unpredictable but changing trajectory.

The Forest Plan does not provide meaningful direction on climate change. Nor does the EA acknowledge pertinent and highly relevant best available science on climate change. This project is in violation of NEPA.

The EA does not analyze or disclose the body of science that implicates logging activities as a contributor to reduced carbon stocks in forests and increases in greenhouse gas emissions. The EA fails to provide estimates of the total amount of carbon dioxide (CO₂) or other greenhouse gas emissions caused by FS management actions and policies—forest-wide, regionally, or nationally. Agency policy-makers seem comfortable maintaining a position that they need not take any leadership on this issue, and obfuscate via this EA to justify their failures.

The best scientific information strongly suggests that management that involves removal of trees and other biomass increases atmospheric CO₂. Unsurprisingly the FSEIS doesn't state that simple fact.

The EA fails to present any modeling of forest stands under different management scenarios. The FS should model the carbon flux over time for its proposed stand management scenarios and for the various types of vegetation cover found on the CGNF.

The EA also ignores CO₂ and other greenhouse gas emissions from other common human activities related to forest management and recreational uses. These include emissions associated with machines used for logging and associated activities, vehicle use for administrative actions, and recreational motor vehicles. The FS is simply ignoring the climate impacts of these management and other authorized activities.

The Committee of Scientists, 1999 recognize the importance of forests for their contribution to global climate regulation. Also, the 2012 Planning Rule recognizes, in its definition of Ecosystem services, the "Benefits people obtain from ecosystems, including: (2) Regulating services, such as long term storage of carbon; climate regulation..."

We have no more time to prevaricate, and it's not a battle we can afford to lose. We each have a choice: submit to status quo for the profits of the greediest 1%, or empower ourselves to limit greenhouse gas emissions so not just a couple more generations might survive.

The District Court of Montana ruled in Case 4:17-cv-00030-BMM that the Federal government did have to evaluate the climate change impacts of the federal government coal program.

In March 2019, U.S. District Judge Rudolph Contreras in Washington, D.C., ruled that when the U.S. Bureau of Land Management (BLM) auctions public lands for oil and gas leasing, officials must consider emissions from past, present and foreseeable future oil and gas leases nationwide. The case was brought by WildEarth Guardians and Physicians for Social Responsibility.

In March of 2018 the Federal District Court of Montana found the Miles City (Montana) and Buffalo (Wyoming) Field Office's Resource Management Plans unlawfully overlooked climate impacts of coal mining and oil and gas drilling. The case was brought by Western Organization of Resource Councils, Montana Environmental Information Center, Powder River Basin Resource Council, Northern Plains Resource Council, the Sierra Club, and the Natural Resources Defense Council.

The project is in violation of NEPA, NFMA, the APA, the ESA for not examining the impacts of the project on climate change. The project will eliminate the forest in the project area. Forests absorb carbon. The project will destroy soils in the project area. Soils are carbon sinks.

Please find attached, the Montana Federal District Court order on the Black Ram project in the Kootenai N.F. that deals with the same issue.

REMEDY

Withdraw the DDN Notice, EA/FONSI and please take a hard look at the impact of the project on temperature/climate change and how it will effect fish and wildlife and people by writing an EIS that fully complies with the law or choose the NO action alternative.

TES Species

We wrote in our comments:

The Forest Plan weakened grizzly bear habitat protections by allowing new roadbuilding throughout the IPNF, without meaningful and permanent reclamation of other roads else-

where in the Forest to compensate for the new road construction.

New roadbuilding in the Forest without meaningful reclamation to ensure no net increase in the road system presents a significant threat to grizzly bears, because motor vehicle users and other recreationists can trespass on the supposedly “impassable” roads and thus encroach on grizzly bear habitat.

Further, even unused roads cause detrimental impacts to grizzly bear survival and reproduction, because grizzly bears are displaced from roaded habitat, regardless of whether the roads receive public or administrative use.

However, in concluding that the Forest Plan will not jeopardize the species, FWS’s Revised Biological Opinion failed to adequately examine adverse impacts to grizzly bears from unauthorized motorized use on roads closed according to the Forest Plan’s weaker closure standards; failed to consider the displacement impacts caused by roads even when they do not receive motorized use; and failed to account for increased roadbuilding enabled by the Forest Service’s abandonment of stringent road-reclamation requirements.

Please find attached to our scoping comments the paper titled, “The importance of natural forest stewardship in adaptation planning in the United States” by Faison et al 2023 which found that protecting more forests with natural stewardship is a cost effective way to harness the inherent adaptation and mitigation powers in forests and ensure that they are at their most functional to regulate planetary processes. Which is the opposite of the purpose and need of this project.

Please better analyze the cumulative impacts of this project on grizzly bears, lynx, lynx critical habitat, whitebark pine, wolverine, monarch butterflies, goshawks, and all native fish and wildlife in the St. Joe Ranger District. What would be the effect of baiting gophers with poison on species protected under the Endangered Species Act such as wolverines, grizzly bears, and lynx?

Please disclose whether you have conducted surveys in the Project area for this Project for whitebark pine, Monarch butterflies, wolverines, grizzly bears, pine martins, northern goshawk bull trout, bull trout critical habitat, lynx critical habitat, and lynx, as required by the Forest Plan.

Has the IPNF removed any lynx analysis units without going through NEPA and taking public comment?

Please disclose the last time the Project area was surveyed for whitebark pine, Monarch butterflies, grizzly bears, wolverines, pine martins, northern goshawk, and lynx.

Please disclose how often the Project area has been surveyed for whitebark pine, wolverines, Monarch butterflies, grizzly bears, pine martins, northern goshawks, and lynx.

Would the habitat be better for whitebark pine, Monarch butterflies, grizzly bears, wolverines, pine martins, northern goshawks, bull trout, bull trout critical habitat, Lynx critical habitat, and lynx if roads were removed in the Project area?

Please provide us with the full BA for the whitebark pine, Monarch butterflies, bull tout, bull trout critical habitat, grizzly bears, wolverines, pine martins, northern goshawks, lynx critical habitat, and lynx.

Please formally consult with the U.S. Fish and Wildlife Service on the impact of the project on bull trout, bull trout critical habitat, whitebark pine, Monarch butterflies, grizzly bears, wolverines, pine martins, northern goshawks, lynx critical habitat, and lynx.

The Forest Plan and the Lucy Lemoosh project weakens grizzly bear habitat protections by allowing new roadbuilding throughout the IPNF, without meaningful and permanent reclamation of other roads elsewhere in the Forest to compensate for the new road construction. This new management direction is a significant departure from former Forest Plan Amendment 19, which required the Forest Service to reclaim roads according

26to stringent requirements such that a reclaimed road would “no longer function as a road or trail.”

The New roadbuilding in the Lucy Lemoosh project without meaningful reclamation to ensure no net increase in the road system presents a significant threat to grizzly bears, because motor vehicle users and other recreationists can trespass on the supposedly “impassable” roads and thus encroach on grizzly bear habitat. Further, even unused roads cause detrimental impacts to grizzly bear survival and reproduction, because

grizzly bears are displaced from roaded habitat, regardless of whether the roads receive public or administrative use.

The vast majority of the project area is in lynx critical habitat.

What would be the effect of baiting gophers with poison on birds such as bald eagles, golden eagles, and raptors or any species that eat carrion?

How many wolverines, grizzly bears, lynx, and bard eagles of you expect to die or become ill from eating poisoned gophers?

Please disclose if the project is meeting:

- 5(1) Forest Plan Standard - Hiding Cover,*
- (2) Forest Plan Standard - Thermal Cover,*
- (3) Forest Plan Standard - Open Road Density & Hiding Cover,*
- (4) Habitat Effectiveness,*
- (5) Hillis Elk Security at Elk Herd Unit level (i.e., including all lands), and*
- (6) Hillis-derived Elk Security at Elk Analysis Unit level (i.e., lands within National Forest boundary).*

Please disclose or address the displacement of elk from public land to private land during hunting season due to inadequate security habitat on National Forests.

**THE AGENCIES MUST REINITIATE
CONSULTATION ON THE NORTHERN ROCKIES LYNX
MANAGEMENT DIRECTION.**

The Northern Rockies Lynx Management Direction is inadequate to ensure conservation and recovery of lynx. The lynx amendment fail to use the best available science on necessary lynx habitat elements, including but not limited to, failing to include standards that protect key winter habitat.

The Endangered Species Act requires the FS to insure that the lacy Lamoosh project is not likely to result in the destruction or adverse modification of critical habitat. 16 U.S.C. §1536(a) (2). Activities that may destroy or adversely modify critical habitat are those that alter the physical and biological features to an extent that appreciably reduces the conservation value of critical habitat for lynx. 74 Fed. Reg. 8644. The Northern Rockies Lynx Management Direction (NRLMD) as applied in the project violates the ESA by failing to use the best available science to insure no adverse modification of critical habitat. The NRLMD carves out exemptions from Veg Standards S1, S2, S5, and S6. In particular, fuel treatment projects may occur in the WUI even though they will not meet standards Veg S1, S2, S5, or S6, provided they do not occur on more than 6% of lynx habitat on each National Forest. Allowing the agency to destroy or adversely modify any lynx critical habitat has the potential to appreciably reduce the conservation value of such habitat. The agency cannot simply set a cap at 6% forest-wide without looking at the individual characteristics of

each LAU to determine whether the project has the potential to appreciably reduce the conservation value. The ESA requires the use of the best available science at the site-specific level. It does not allow the agencies to make a gross determination that allowing lynx critical habitat to be destroyed forest-wide while not appreciably reduce the conservation value.

The FS violated NEPA by applying the above-mentioned exception without analyzing the impacts to lynx in the individual LAUs. The Project violates the NFMA by failing to insure the viability of lynx. The FS has not shown that lynx will be well distributed in the planning area. The FS has not addressed how the project's adverse modification of denning and foraging habitat will impact distribution. This is important because the agency readily admits that the LAUs already contain a "relatively large percentage of unsuitable habitat."

The national forests subject to this new direction will provide habitat to maintain a viable population of lynx in the northern Rockies by maintaining the current distribution of occupied lynx habitat, and maintaining or enhancing the quality of that habitat.

The FS cannot insure species viability here without addressing the impacts to the already low amount of suitable habitat. By cutting in denning and foraging habitat, the agency will not be "maintaining or enhancing the quality of the habitat."

This project is in Canada lynx habitat. In order to meet the requirements of the FS/USFWS Conservation Agreement, the FS agreed to insure that all project activities are consistent with the Lynx Conservation Assessment and Strategy (LCAS) and the requirements of protecting lynx critical habitat. The FS did not do so with its project analysis. This project will adversely affect lynx critical habitat in violation of the Endangered Species Act.

The BA/BE needs to be rewritten to reflect this information to determine if this project will adversely modify proposed critical habitat for lynx and if so conference with USFWS.

The Programmatic Lynx BA's "likely to adversely affect" conclusion was based upon the following rationale. Plans within the Northern Rockies:

- Generally direct an aggressive fire suppression strategy within developmental land allocations. ...this strategy may be contributing to a risk of adversely affecting the lynx by limiting the availability of foraging habitat within these areas.*
- Allow levels of human access via forest roads that may present a risk of incidental trapping or shooting of lynx or access by other competing carnivores. The risk of road-related adverse effects is primarily a winter season issue.*
- Are weak in providing guidance for new or existing recreation developments. Therefore, these activities may contribute to a risk of adverse effects to lynx.*
- Allow both mechanized and non-mechanized recreation that may contribute to a risk of adverse effects to lynx. The poten-*

tial effects occur by allowing compacted snow trails and plowed roads which may facilitate the movements of lynx competitors and predators.

- *Provide weak direction for maintaining habitat connectivity within naturally or artificially fragmented landscapes. Plans within all geographic areas lack direction for coordinating construction of highways and other movement barriers with other responsible agencies. These factors may be contributing to a risk of adverse effects to lynx.*
- *Fail to provide direction for monitoring of lynx, snowshoe hares, and their habitats. While failure to monitor does not directly result in adverse effects, it makes the detection and assessment of adverse effects from other management activities difficult or impossible to attain.*
- *Forest management has resulted in a reduction of the area in which natural ecological processes were historically allowed to operate, thereby increasing the area potentially affected by known risk factors to lynx. The Plans have continued this trend.*

The Plans have also continued the process of fragmenting habitat and reducing its quality and quantity. Consequently, plans may risk adversely affecting lynx by potentially contributing to a reduction in the geographic range of the species.

- *The BA team recommends amending or revising the Plans to incorporate conservation measures that would reduce or eliminate the identified adverse effects to lynx. The programmatic conservation measures listed in the Canada Lynx Conservation Assessment and Strategy (LCAS) should be considered in this regard, once finalized. (Programmatic Lynx BA, at 4.)*

The Programmatic Lynx BA notes that the LCAS identifies the following risk factors to lynx in this geographic area:

- *Timber harvest and pre-commercial thinning that reduce denning or foraging habitat or converts habitat to less desirable tree species*
- *Fire exclusion that changes the vegetation mosaic maintained by natural disturbance processes*
- *Grazing by domestic livestock that reduces forage for lynx prey* **How many road closure violations have been found in the St. Joe Ranger District in the last 5 years?**

It is fair to assume that there are many more violations that regularly occur and are not witnessed and reported. It is also fair to assume that you have made no effort to request this available information from your own law enforcement officers, much less incorporate it into your analysis. Considering your own admissions that road density is the primary factor that degrades elk and grizzly habitat, this is a material and significant omission from your analysis— all of your ORD and HE calculations are wrong without this information.

The Forest Service responded:

TES species occurrence has been documented in the botany, aquatics and wildlife Biological Evaluation and Biological As-

essment specialist reports, which each include summaries of field surveys and species sightings, analysis and discussion of impacts from proposed activities to each TES species, and determinations of effects. “No Effect” determinations have been documented for bull trout, bull trout critical habitat, whitebark pine, Spalding’s catchfly, monarch butterfly, woodland caribou, woodland caribou critical habitat, grizzly bear, wolverine, lynx and lynx critical habitat. A “Not Likely to Jeopardize” call for Suckley’s Cuckoo bumble bee was determined.

Proposed activities may impact habitat or individual western pearlshell mussels, little brown myotis, fisher, western bumblebee, and western toad, but will not likely contribute to trends towards federal listing or cause loss of viability to the populations or species. Proposed activities will have no impact on American bittern, bighorn sheep, black swift, common loon, harlequin duck, horned grebe, trumpeter swan, and white-headed woodpecker. There are 63 sensitive plant species known or suspected to occur on the IPNF. Two of these species were found during surveys of the project area, Bug-on-a-stick moss, and globe ball lichen. Proposed activities May Impact Individuals or Habitat of these two species, but will not likely contribute to a trend towards federal listing or cause loss of viability to populations or species. An additional 38 species have suitable habitat in the project area but there are no known occurrences within it. It was determined that proposed activities May Impact Individuals or Habitat of these species, but will not likely contribute to a trend towards federal listing or cause loss of viability to populations or species. The remaining 23 sensitive plant species on the RFSS list for the

IPNF have no suitable habitat in the project area, therefore, proposed activities will have No Effect to these species.

Remedy

Withdraw the EA/FONSI and DDN and write an EIS that fully complies with the law and consult the FWS on the effect of the project on all threatened, Endangered and candidate species.

Or choose the No Action Alternative.

The FS violated NEPA by applying the above-mentioned exception without analyzing the impacts to lynx in the individual LAUs. Did the IPNF remove any LAUs without taking public comment?

The Project violates the NFMA by failing to insure the viability of lynx. According to the 1982 NFMA regulations, fish and wildlife must be managed to maintain viable populations of Canada lynx in the planning area. 36 C.F.R. 219.19. The FS has not shown that lynx will be well distributed in the planning area. The FS has not addressed how the project's adverse modifications

tion of denning and foraging habitat will impact distribution. This is important because the agency readily admits that the LAUs already contain a “relatively large percentage of unsuitable habitat.”

Did the Forest Service withdraw any parts of LAUs or eliminate an LAU’s without going through NEPA?

The national forests subject to this new direction will provide habitat to maintain a viable population of lynx in the northern Rockies by maintaining the current distribution of occupied lynx habitat, and maintaining or enhancing the quality of that habitat.

The FS cannot insure species viability here without addressing the impacts to the already low amount of suitable habitat. By cutting in denning and foraging habitat, the agency will not be “maintaining or enhancing the quality of the habitat.”

This project is in Canada lynx habitat. In order to meet the requirements of the FS/USFWS Conservation Agreement, the FS

agreed to insure that all project activities are consistent with the Lynx Conservation Assessment and Strategy (LCAS) and the requirements of protecting lynx critical habitat. The FS did not do so with its project analysis. This project will adversely affect lynx critical habitat in violation of the Endangered Species Act.

The BA/BE needs to be rewritten to reflect

this information to determine if this project will adversely modify proposed critical habitat for lynx and if so conference with USFWS.

The Idaho Panhandle National Forest (IPNF) is home to the Canada lynx, listed as a Threatened species under the Endangered Species Act (ESA). In December 1999, the Forest Service and Bureau of Land Management completed their “Biological Assessment Of The Effects Of National Forest Land And Resource Management Plans And Bureau Of Land Management Land Use Plans On Canada Lynx” (Programmatic Lynx BA). The Programmatic Lynx BA concluded that the current pro-

grammatic land management plans “may affect, and are likely to adversely affect, the subject population of Canada lynx.”

The Lynx BA team recommended amending or revising Forest Plans to incorporate conservation measures that would reduce or eliminate the identified adverse effects on lynx. The Programmatic Lynx BA’s determination means that Forest Plan implementation is a “taking” of lynx, and makes Section 7 formal consultation on the IPNF Forest Plan mandatory, before actions such as the proposed project are approved.

Continued implementation of the Forest Plan constitutes a “taking” of the lynx. Such taking can only be authorized with an incidental take statement, issued as part of a Biological Opinion (B.O.) during of Section 7 consultation. The IPNF must incorporate terms and conditions from a programmatic B.O. into a Forest Plan amendment or revision before projects affecting lynx habitat, such as this one, can be authorized.

The Programmatic Lynx BA’s “likely to adversely affect” conclusion was based upon the following rationale. Plans within the Northern Rockies:

- Generally direct an aggressive fire suppression strategy within developmental land allocations. ...this strategy may be contributing to a risk of adversely affecting the lynx by limiting the availability of foraging habitat within these areas.
- Allow levels of human access via forest roads that may present a risk of incidental trapping or shooting of lynx or access by other competing carnivores. The risk of road-related adverse effects is primarily a winter season issue.
- Are weak in providing guidance for new or existing recreation developments. Therefore, these activities may contribute to a risk of adverse effects to lynx.
- Allow both mechanized and non-mechanized recreation that may contribute to a risk of adverse effects to lynx. The potential

effects occur by allowing compacted snow trails and plowed roads which may facilitate the movements of lynx competitors and predators.

- Provide weak direction for maintaining habitat connectivity within naturally or artificially fragmented landscapes. Plans within all geographic areas lack direction for coordinating construction of highways and other movement barriers with other responsible agencies. These factors may be contributing to a risk of adverse effects to lynx.
- Are weak in providing direction for coordinating management activities with adjacent landowners and other agencies to assure consistent management of lynx habitat across the landscape. This may contribute to a risk of adverse effects to lynx.
- Fail to provide direction for monitoring of lynx, snowshoe hares, and their habitats. While failure to monitor does not directly result in adverse effects, it makes the detection and as-

essment of adverse effects from other management activities difficult or impossible to attain.

- Forest management has resulted in a reduction of the area in which natural ecological processes were historically allowed to operate, thereby increasing the area potentially affected by known risk factors to lynx. The Plans have continued this trend. The Plans have also continued the process of fragmenting habitat and

reducing its quality and quantity. Consequently, plans may risk adversely affecting lynx by potentially contributing to a reduction in the geographic range of the species.

- The BA team recommends amending or revising the Plans to incorporate conservation measures that would reduce or eliminate the identified adverse effects to lynx. The programmatic conservation measures listed in the Canada Lynx Con- servation

Assessment and Strategy (LCAS) should be considered in this regard, once finalized. (Programmatic Lynx BA, at 4.)

The Programmatic Lynx BA notes that the LCAS identifies the following risk factors to lynx in this geographic area:

- Timber harvest and pre-commercial thinning that reduce denning or foraging habitat or converts habitat to less desirable tree species
- Fire exclusion that changes the vegetation mosaic maintained by natural disturbance processes
- Grazing by domestic livestock that reduces forage for lynx prey

The DDN and EA do not adequately explain how burning 10,000 acres a year for up to 10 years provides for habitat that contributes to long-term persistence of lynx in violation of NEPA, NFMA, the APA, the ESA and the revised Forest Plan.

The DDN and EA did not adequately consider the cumulative impacts of this project and other projects on native species including lynx, grizzly bears and old growth dependent species. None of these species benefit from more logging roads and more logging and clearcuts.

Recent scientific findings undermine the Forest Plan/NRLMD direction for management of lynx habitat. This creates a scientific controversy the FS fails to resolve, and in fact it essentially ignores it.

For one, Kosterman, 2014 (attached) found that 50% of lynx habitat must be mature undisturbed forest for it to be optimal lynx habitat where lynx can have reproductive success and no more than 15% of lynx habitat should be young clearcuts, i.e. trees under 4 inches dbh. Young regenerating forest should occur only on 10-15% of a female lynx home range, i.e. 10-15% of an LAU. This renders inadequate the agency's assumption in the Forest Plan/NRLMD that 30% of lynx habitat can be open, and that no specific amount of mature forest needs to be conserved. Kosterman, 2014 demonstrates that Forest Plan/NRLMD standards are not adequate for lynx viability and recovery.

Also, the Forest Plan essentially assumes that persistent effects of vegetation manipulations other than regeneration logging and some intermediate treatments are essentially nil. However, Hol-

brook, et al., 2018 “used univariate analyses and hurdle regression models to evaluate the spatio-temporal factors influencing lynx use of treatments.” Their analyses “indicated ...there was a consistent cost in that lynx use was low up to ~10 years after all silvicultural actions.” (Emphasis added.) From their conclusions:

First, we demonstrated that lynx clearly use silviculture treatments, but there is a ~10 year cost of implementing any treatment (thinning, selection cut, or regeneration cut) in terms of resource use by Canada lynx. This temporal cost is associated with lynx preferring advanced regenerating and mature structural stages (Squires et al., 2010; Holbrook et al., 2017a) and is consistent with previous work demonstrating a negative effect of precommercial thinning on snowshoe hare densities for ~10 years (Homyack et al., 2007). Second, if a treatment is implemented, Canada lynx used thinnings at a faster rate post-treatment (e.g., ~20 years posttreatment to reach 50% lynx use) than either selection or regeneration cuts (e.g., ~34–40 years post-treatment to reach 50% lynx use). Lynx appear to use regeneration and selection cuts similarly over time suggesting the difference in vegetation impact between these treatments made little difference concerning the potential impacts to lynx (Fig. 4c). Third, Canada lynx tend to avoid silvicultural treatments when a preferred structural stage (e.g., mature, multi-storied forest or advanced regeneration) is abundant in the surrounding landscape, which highlights the importance of considering landscape-level composition as well as recovery time. For instance, in an area with low amounts of mature forest in the neighborhood, lynx use of recovering silvicultural treatments would be higher versus treatments surrounded by

an abundance of mature forest (e.g., Fig. 3b). This scenario captures the importance of post-treatment recovery for Canada lynx when the landscape context is generally composed of lower quality habitat. Overall, these three items emphasize that both the spatial arrangement and composition as well as recovery time are central to balancing silvicultural actions and Canada lynx conservation.

So Holbrook et al., 2018 fully contradict Forest Plan assumptions that clearcuts/regeneration can be considered useful lynx habitat as early as 20 years post-logging.

Results of a study by Vanbianchi et al., 2017 also conflict with Forest Plan/NRLMD assumptions: “Lynx used burned areas as early as 1 year postfire, which is much earlier than the 2–4 decades postfire previously thought for this predator.” The NRLMD erroneously assumes clearcutting/regeneration logging have basically the same temporal effects as stand-replacing fire as far as lynx re-occupancy.

Kosterman, 2014, Vanbianchi et al., 2017 and Holbrook, et al., 2018, Holbrook 2019 demonstrate that the Forest Plan direction is not adequate for lynx viability and recovery, as the FS assumes. Holbrook 2019 such all lynx habitat must be surveyed. You have not done demonstrated that this was done. The Forest Service did minimal lynx surveys but they did not need the requirements in Holbrook.

Please find Holbrook 2019 attached.

The EA claims that lynx are only transitory so they are not required to follow the ESA. This is in correct. The project area is

in lynx habitat and their duty under the ESA to recover species and protect their habitat not keep them in a threatened state.

Page 23 of the final EA/Draft Decision Notice states:

- ***Habitat for a transient lynx would remain in the analysis area across 3 LAUs as demonstrated above.***

Did the Forest Service eliminate or reduce any lynx analysis units (LAUs) without taking public comment? The EA does not mention if the Forest Service did this or not. If the Forest Service eliminated or reduced the size of LAUs without taking public comment then the Coyote Divide Project is in violation of NEPA.

The Forest Service is violating NEPA by failing to prepare a stand-alone NEPA analysis, either an EA or an EIS, for remapping of lynx habitat and LAUs on the IPNF.

NEPA requires federal agencies to prepare a detailed EIS for any “major Federal actions significantly affecting the quality of the human environment.” 42 U.S.C. § 4332(2)(c).

1. Major Federal actions “include new and continuing activities, including projects and programs entirely or partly financed, assisted, conducted, regulated, or approved by Federal agencies; new or revised agency rules, regulations, plans, policies, or procedures; and legislative proposals.” 40 C.F.R. § 1508.18(a) (2020).

2. Major Federal actions typically fall into one of four categories:

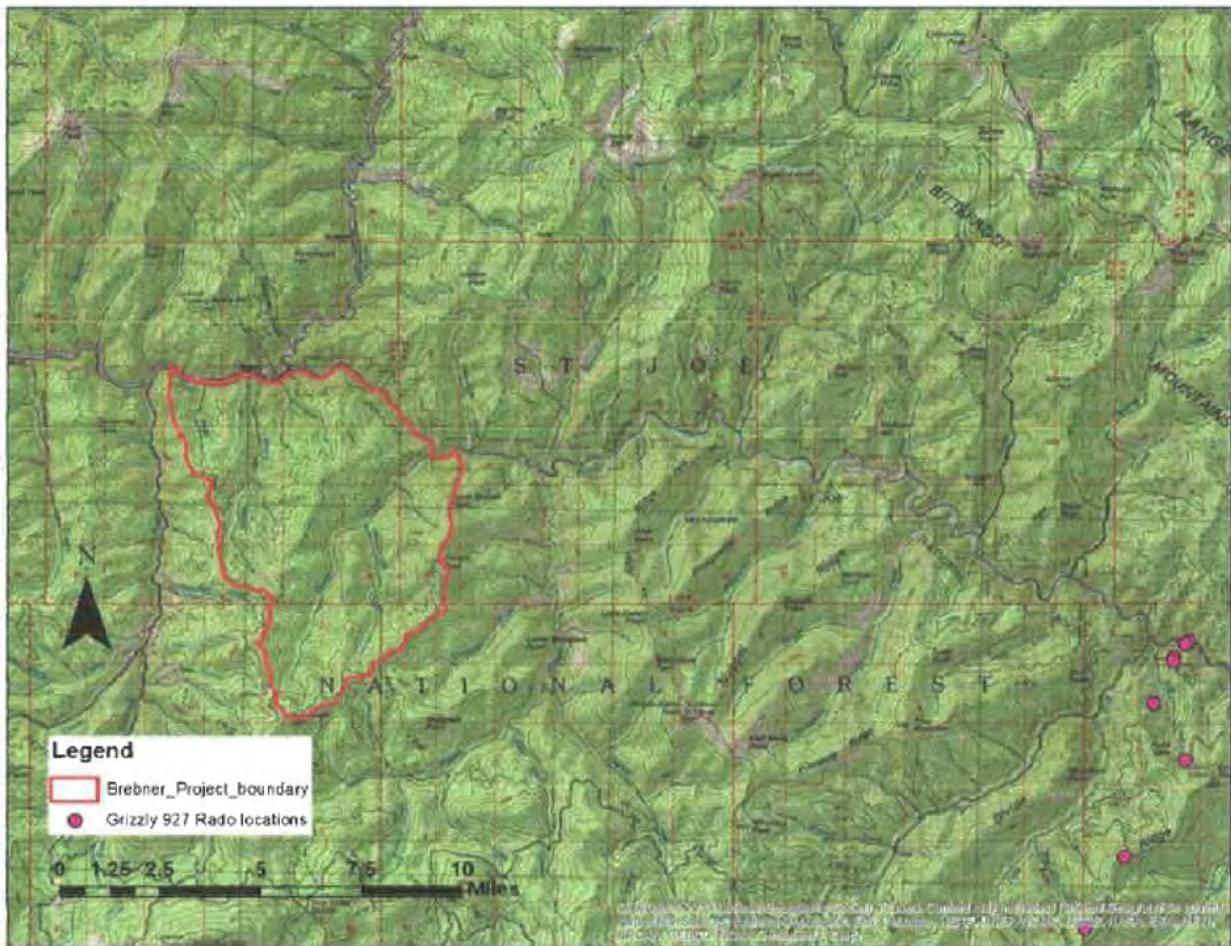
- (i) Adoption of official policy, such as rules, regulations, and interpretations adopted pursuant to the Administrative Procedure Act, 5 U.S.C. 551 et seq.; treaties and international conventions or agreements; formal documents establishing an agency's policies which will result in or substantially alter agency programs.
- (ii) Adoption of formal plans, such as official documents prepared or approved by Federal agencies, which prescribe alternative uses of Federal resources, upon which future agency actions will be based.
- (iii) Adoption of programs, such as a group of concerted actions to implement a specific policy or plan; systematic and connected agency decisions allocating agency resources to implement a specific statutory program or executive directive. (d. iv) Approval of specific projects, such as construction or management activities located in a defined geographic area. Projects include actions approved by permit or other regulatory decision as well as Federal and federally assisted activities. Id. § 1508.18(b).

- An EIS must provide a “full and fair discussion of significant environmental impacts,” and inform “decisionmakers and the public of the reasonable alternatives which would avoid or minimize adverse impacts or enhance the quality of the human environment.” Id. § 1502.1.

1. Remapping of lynx habitat on the Forest removes mapped lynx habitat and thereby stripping the legal protections of the NRLMD from those acres.
2. If the Forest Service did this it was an official agency action that was reviewed and approved by the Forest Service Region One office.
3. Remapping of lynx habitat and removal of LAUs is a major federal action that requires NEPA analysis.

In October 2019, Idaho Fish and Game provided information to the Forest Service regarding a grizzly bear den found in the area in 2017: “Near Blackdome Peak, St. Joe National Forest. Drive road 301 from Avery to road 457. Park in turnout at saddle before peak. Den is on west aspect near the top of the ridge in boulder field among large (i.e. >5ft diameter boulders). There were two main caves beneath the rocks with hair, scat etc. It

looked like there were remains of several birds, snowshoe hairs, ground squirrels etc as well as a few ungulate hairs. I collected 20 envelopes full of hair and scat (sample names: Den2017_1 – Den2017_20). Coordinates: 46.98791, -115.82269 Elevation: 6308 ft.” The email further states: “We submitted 11 scat samples and 6 hair samples to Wildlife Genetics International (WGI) for species testing and the results are as follows: 7 samples: Red Fox[,] 1 (scat) sample: Grizzly Bear[,] 9 samples: Failed.” and 9 miles south of EMU 7-6, which is the analysis area used to assess wildlife security for the Project area.


In 2019, a grizzly bear was confirmed via radio collar traveling through this Forest on the St. Joe Ranger District and a different grizzly bear was confirmed via DNA in 2017 in a den 10-15 miles south of the Project area. From the Brebner Flats case, Exhibit 3 at 1-2; USFS AR:014798. Unlike in Krueger, here there is no highway between the Project area and these two verified locations. Thus, here there is even better connectivity than in Krueger. Furthermore, as previously noted, this region is marked as a potential grizzly linkage zone in the Grizzly Bear Recovery Plan. USFS AR:008229.

In October 2019, Idaho Fish and Game provided information to the Forest Service regarding a den with confirmed grizzly DNA, which was incidentally observed in the area during an aerial mountain goat survey in 2017.

In its response to our ESA 60-day notice for the Brebner Flats project in the St. Joe Ranger District, the Forest Service also disclosed a map showing that a different grizzly bear, radio-col-

lared grizzly bear 927, was tracked traveling approximately 13 miles east of the Project area, and apparently within one mile of EMU 7-6, which is the analysis area used to assess wildlife security for the Project area:

In April of 2020, an Idaho Fish & Game press release provided more evidence of grizzly bear presence in Idaho: “Fresh grizzly bear tracks were confirmed by a Fish and Game conservation

hunters and recreationists to be Bear Aware because it is uncertain if the grizzly is still in the area or has moved on. Fish and Game's first evidence of a grizzly in the area came from game camera pictures in the same general vicinity in spring 2019, and biologists collected a hair sample. The hair sample was sent for genetic testing. Recent results matched a male grizzly bear radio collared by the U.S. Fish and Wildlife Service as a yearling in 2017 near the Idaho-British Columbia border. The radio collar fell off the bear in 2018."

Idaho's 2020 hunting regulations state that for Elk Management Zone 6, 7: "Caution: grizzly bears may be encountered."

The T&E, Wildlife Report on the Lacy Lemoosh project website states the project area is in Elk management zone 6-8.

Please see the following article from the Spokesman-Review which reports a grizzly bears was killed just north of the project area but within the home range of a grizzly bear would include the project area.

*By Michael Wright
michaelw@spokesman.com
(509) 459-5508*

A hunter in North Idaho shot and killed a grizzly bear last week after mistaking it for a black bear.

The hunter killed the subadult male grizzly on June 10 in the lower St. Joe River drainage near St. Maries, according to the Idaho Department of Fish and Game.

Grizzlies in the Lower 48 are protected as threatened under the Endangered Species Act. The hunter identified the bear as a grizzly after shooting it and reported it to the authorities, according to Fish and Game.

T.J. Ross, an Idaho Fish and Game spokesman, said the hunter was given a warning and was not cited.

Ross said that decision was made because the hunter has been “extremely cooperative” with the investigation, and because while grizzlies are around in North Idaho, the bear was shot in an area where sightings are uncommon.

“That’s an area where we would not expect to see a grizzly bear,” Ross said.

The bear was killed in the Panhandle region’s Unit Six, a broad area that stretches south from the divide between the St. Joe River drainage and the Coeur d’Alene River drainage.

Wayne Kasworm, a biologist for the U.S. Fish and Wildlife Service’s grizzly recovery program, said the nearest established population is about 50 miles north in the Cabinet-Yaak ecosystem of far northwestern Montana and parts of North Idaho. The Clark Fork River is generally considered the southern edge of grizzly distribution in that area.

Grizzlies wander long distances, particularly young males, and they have occasionally been seen south of the Clark Fork River. Kasworm can recall bears that wandered from the Cabinet-Yaak to the Kelly Creek drainage or to the Selway-Bitterroot

Wilderness. He also said there was a bear years ago that went from the U.S.-Canada border in the Selkirk Mountains all the way to near Grangeville, Idaho.

Please see the following article from the Spokesman-Review

Hunter mistakenly shoots grizzly bear near St. Maries

June 18, 2024 Updated Tue., June 18, 2024

<https://www.spokesman.com/stories/2024/jun/18/hunter-mistakenly-shoots-grizzly-bear-in-north-ida/>

In this case, he said it was notable how close the bear got to the town of St. Maries.

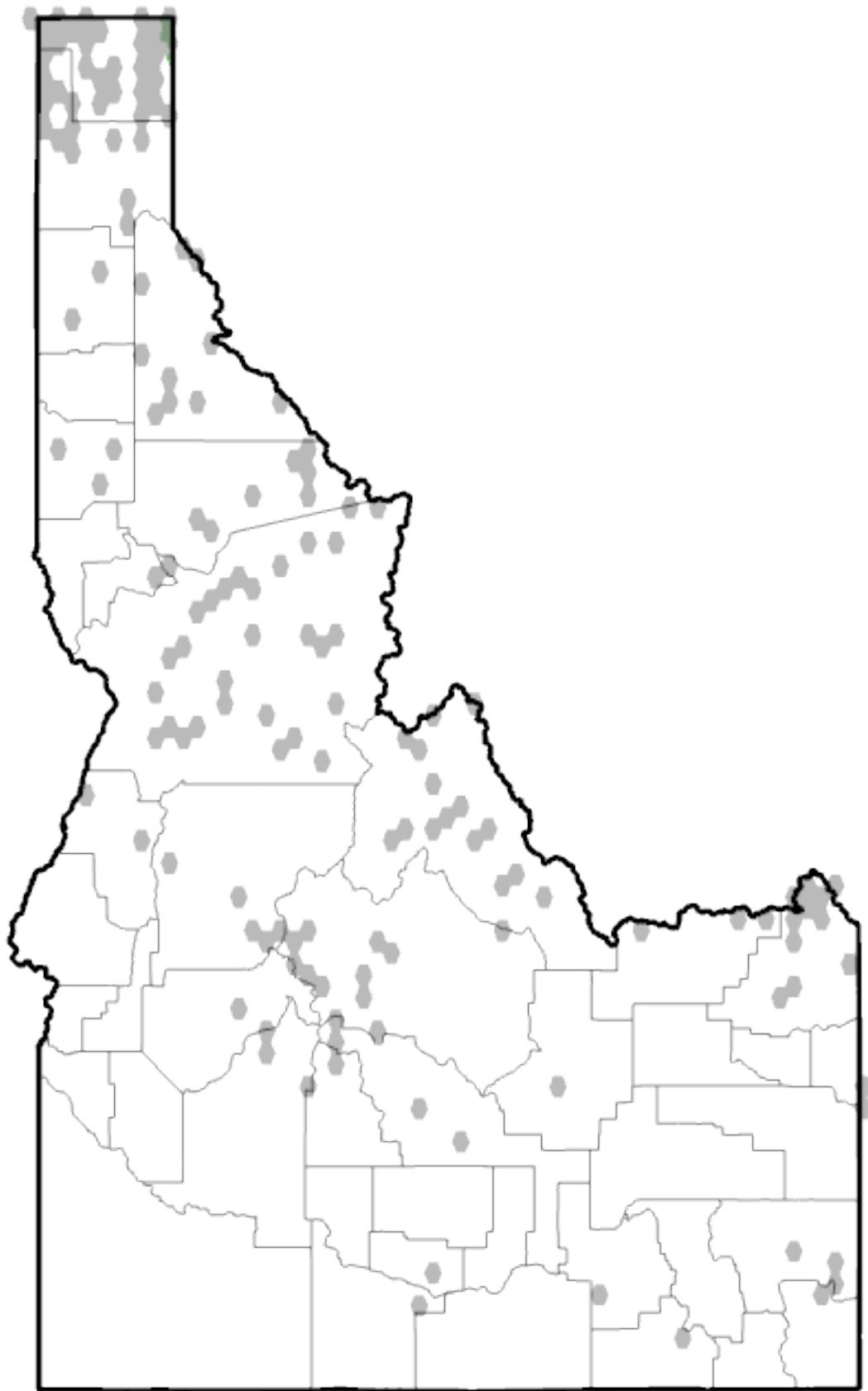
“Certainly there have been a few making it down there,” Kasworm said. “I think one of the more interesting things about this one was maybe how far west it was.”

Where the bear came from is unclear. Kasworm said genetic testing might help biologists learn more.

It’s one of a handful of recent grizzly sightings in unusual places. Earlier this month in northeast Washington, a young male grizzly got into a chicken coop north of Chewelah. That bear had been trapped outside of Colville in the fall and relocated to the Selkirks.

In Idaho, Fish and Game officials have reported recent sightings near Salmon and west of Interstate 15 in the upper Snake River region.

The Forest Service's failure to include the grizzly bear in the Project Biological Assessment and Letter of Concurrence violates the ESA; the "no effect" conclusion is arbitrary and capricious; and to the extent the FWS species list for the area does not include grizzly bears, it too is arbitrary and capricious and in violation of the ESA.


Lynx

The agencies' failure to include the lynx in the Project Biological Assessment and Letter of Concurrence violates the ESA, and the "no effect" conclusion is arbitrary and capricious.

The Idaho Department of Fish and Game state that lynx may be present in the project area:

<https://idfg.idaho.gov/species/taxa/16860>

Lynx canadensis (Canada Lynx)

Species Occurrence

Elk

The Forest Service's failure to take a hard look at cumulative effects on the elk population in the area, and failure to address the efficacy of the proposed mitigation measure for elk security, violates NEPA and requires a full EIS. The Project will cause a net loss in elk security in violation of the Revised Forest Plan and NFMA.

Remedy

Withdraw the Draft Decision Notice and write an EIS that fully complies with the law or Choose the No Action Alternative.

We wrote in our comments, starting with:

The Forest Service is violating the National Environmental Policy Act (NEPA), the National Forest Management Act (NFMA), the Neotropical Migratory Bird Act (N MBA), and

the Administrative Procedures Act (APA) in the regards to disclosing impacts of a large suite of forest birds to the public, a failure to take a “hard look” at direct, indirect and cumulative impacts of the logging and fuels management on forest birds, a failure to maintain a diversity of wildlife in the project area, and a failure to integrate bird conservation principles, measures and practices into the proposed project, and a failure to avoid “taking” of neotropical migratory birds.

The Forest Service responded:

The species chosen did not currently (at the time of writing) have viability concerns but were selected because they would be expected to respond to progress made towards the Desired Conditions for vegetation. The individual species that comprise the landbird assemblage were selected because they represented components (e.g. openings, snags, large trees, mature stands, shrub/forb/grass understory) that would be expected to change due to progress towards the Desired Conditions.

On June 23, 2016, the IPNF administratively changed the monitoring under the Plan to comply with the 2012 Planning Rule. At that time, MIS were removed and the land bird assemblage (olive-sided flycatcher, dusky flycatcher, Hammond’s flycatcher, chipping sparrow and hairy woodpecker) were added as Focal Species to monitor integrity of terrestrial vegetation structure and function. These species are annually monitored on the IPNF through the Northern Region Landbird Monitoring Program. Monitoring data (including population

trends at varying scales) can be accessed at <http://rmbo.org/v3/avian/ExploretheData.aspx>

We also wrote in the comments submitted by Sara Johnson for the Alliance:

In effect, the vegetation DCs direct that wildlife forage be limited. However, there was no analysis in the IPNF forest plan or associated FEIS as to how these vegetation DCs will impact forage for wildlife. This NEPA violation also triggers an NFMA violation, as forest plan direction is required to maintain viable populations of wildlife as per diversity. The DCs for vegetation will result in what are certainly significant adverse impacts on wildlife populations based on forage reduction, impacts that were never evaluated in the Forest Plan FEIS. Implementation of a Forest Plan without the required analysis of plan direction is both a NEPA and an NMFA violation.

As previously noted the DCs for vegetation in the IPNF forest plan do not require viability of wildlife associated with snags.

These DCs require expansive management (logging and burning) across forested landscapes where no effective snag habitat will be maintained. The lack of effective snag management in logged habitats was not addressed as per designation of vegetation DCs, and as such, management towards these DCs are a violation of both the NEPA and the NFMA.

As previously noted, the DCs for vegetation do not actually represent historical habitat conditions for snags, but as well, for old growth, even though the agency claims that vegetation DCs are based on achieving the natural range of variation.

There are no requirements in the vegetation DCs for old growth. Historical levels of old growth have been reported in a published scientific paper as ranging from 20-50% in the Northern Rockies. These historical levels are not included in the vegetation DCs for the IPNF. Nor does the Forest Plan FEIS evaluate how the DCs will affect over the 30 or more species of wildlife that depend upon old growth forests, in violation of both the NEPA and the NMFA.

The DCs for vegetation on the IPNF have no relationship to meeting the Migratory Bird Treaty Act (MBTA). The Forest Plan FEIS identifies many forest birds, including many neotropical migratory birds, that are to be managed for persistence on public forest lands. However, the Forest Plan has no requirements for these species except for an\ invalid snag management and old growth management plan. As we noted, the snag management plan provides an invalid "proxy" for viability of associated species, and even if some snags are left in clearcuts, the persistence of these snags into the future is very limited. AS per old growth, the Forest Plan only requires that existing old growth be maintained. This direction actually allows the eventual elimination of all old growth for associated species as logging is allowed to remove most of these stands.

The Forest Plan DCs for vegetation regarding management to reduce the incidence of insects and disease reduction do not provide any analysis in the FEIS as to how these objectives are

expected to affect wildlife habitat and wildlife populations. As we noted previously, insect and disease processes provide valuable forage for wildlife. In addition, insect and disease infestations are essential natural processes to create snags for many dozens of species of forest wildlife. Yet the Forest Plan never addresses how this vegetation goal will impact wildlife.

The Forest Service responded:

These comments are directed at the Forest Plan and are not specific to the Proposed Action or project analysis. There is no project- or site-specific comment to respond to. Amending the ForestLacy Lemoosh Plan is not within the scope of this project. The associated FEIS is outside of the scope of the Lacy Lemoosh Project. Proposed vegetation management activities in the Lacy Lemoosh project area are not planned in old growth stands.

The Project violates the Forest Plan; the Project EA violates NEPA; MBTA, and/or the Revised Forest Plan violates the NFMA planning regulations regarding old growth.

The 2012 Planning Rule mandates: "Ecosystem diversity. The plan must include plan components, including standards or guidelines, to maintain or restore the diversity of ecosystems and habitat types throughout the plan area. In doing so, the plan must include plan components to maintain or restore: . . . (ii) Rare . . . terrestrial. . . animal communities . . ." 36 C.F.R. §219.9 (a)(2). Compliance with this provision "is intended to . . . support the

persistence of most native species in the plan area." 36 C.F.R. §219.9.

The primary "rare terrestrial animal community" on the Forest is the old growth dependent wildlife species community.

The enforceable numeric old growth forest standards found in the prior forest plans – to protect old growth dependent wildlife species – were removed from the Revised Forest Plan, and replaced with a desired condition and a guideline.

In the IPNF Forest Plan old growth stands are defined as those that meet the definitions in Green et al. 1992.

The IPNF also states: *Old Growth – Old growth forests generally contain trees that are large for their species and the site, and are sometimes decadent with broken tops. Old growth often contains a variety of tree sizes, large snags, and logs, and a developed and often patchy understory.*

The IPNF Forest Plan also states:

Recruitment Potential Old Growth

Forest stands that do not meet the definition of old growth in Green et al. 1992 (errata corrected 12/11) but are being managed with the goal of meeting that definition in the future.

The IPNF Forest Plan also states:

Sensitive Species The Forest Service Manual (2670.5) defines Sensitive Species as "those plant and animal species identified by a regional forester for which population viability is a concern as evidenced by significant current or predicted down-

ward trend in numbers or density" and "habitat capability that would reduce a species' existing distribution."

The IPNF Forest Plan also states:

FW-GDL-VEG-07. Evaluate proposed management activities and project areas for the presence of occupied or suitable habitat for any plant species listed under the Endangered Species Act or on the regional sensitive species list. If needed, based on pre-field review, conduct field surveys and provide mitigation or protection to maintain occurrences or habitats that are important for species sustainability.

The IPNF Forest Plan also states:

FW-DC-AQH-03. Conservation subwatersheds provide habitats that can support population strongholds of federally listed and sensitive species. Conditions in restoration subwatersheds improve to support population strongholds.

The IPNF Forest Plan also states:

Goals

GOAL-WL-01. The IPNF manages wildlife habitat through a variety of methods (e.g., vegetation alteration, prescribed burning, invasive species treatments, etc.) to promote the diversity of species and communities and to contribute toward the recovery of threatened and endangered terrestrial wildlife species.

GOAL-WL-02. The IPNF manages and schedules activities to avoid or minimize disturbance to sensitive species and manages habitat to promote their perpetuation into the future.

Desired Condition

FW-DC-WL-01. Nests and den sites and other birthing and rearing areas for terrestrial threatened, endangered, proposed, or sensitive species are relatively free of human disturbance during the period they are active at these sites. Individual animals that establish nests and den sites near areas of pre-existing human use are assumed to be accepting of that existing level of human use at the time the animals establish occupancy.

The Project violates the Forest Plan because the EA, DDN, and FONSI so not demonstrate that the project complies with the Forest Plan. The Project EA violates NEPA because it fails to take a hard look at whether old growth complies with desired percentages discussed above, and is widely distributed and contributes to connectivity across the Forest and in every Geographic Area in violation of the Forest Plan and NFMA. There are no Forest-wide or Geographic Area-wide disclosures of percentages of existing old growth, or maps showing distribution and connectivity of old growth at these scales. Thus, the Project EA fails to take a hard look and fully and fairly inform the public and agency as to whether the Project

is consistent with the text, purpose, and intent of Forest Plan Desired Condition FW-VEGF-DC-05, and fails to take a hard look at the ways that the Project could help to restore and achieve wide distribution and connectivity of old growth habitat as envisioned by the Forest Plan. Furthermore, under Kern v. BLM, the Project EA must include the cumulative effects analysis on old growth dependent wildlife species that is missing from the Revised Forest Plan EIS. Without this analysis at the Project EA level, the Project analysis unlawfully tiers to the Revised Forest Plan EIS. As discussed below, the Revised Forest Plan EIS fails to provide any meaningful cumulative effects analysis as to how the removal of enforceable minimum standards for old growth retention, and the allowance of commercial logging in old growth forest stands across the Forest, will cumulatively degrade habitat for old growth dependent wildlife species and prevent the Forest from maintaining viable populations of this rare, native terrestrial wildlife community.

The Revised Forest Plan violates the 2012 NFMA Planning Rule and/or NEPA. The old growth provisions in the Revised Forest Plan, which fail to set enforceable numeric minimum percentages of old growth retention for the Forest, and at the same time allow significant commercial logging in old growth while still labeling it as “old growth” post-logging, lack ecological integrity, including lacking appropriate elements to ensure function and connectivity of old growth forest for the rare terrestrial wildlife community of old growth dependent wildlife species, and therefore the Revised Forest Plan vio-

lates the NFMA planning regulations, NFMA, and the APA. Furthermore, there is no adequate cumulative effects analysis in the Revised Forest Plan EIS regarding the impact on old growth dependent wildlife species across the Forest from this new, piecemeal, project-by-project, death by a thousand cuts approach to old growth forest management. Without a Forest-wide cumulative effects analysis of how old growth logging will impact old-growth dependent wildlife species, the Forest Service cannot demonstrate that its Forest Plan complies with NEPA or the NFMA planning rule mandate that the Forest Plan maintains or restore the “rare terrestrial animal community” of old growth dependent wildlife species.

To investigate whether the removal of small trees might compromise broader forest resilience (that is, to more hazards than just fire), William Baker and Mark Williams from the University of Wyoming, USA, study the historical significance of smaller trees in dry forests in the western USA. Their systematic surveys reveal that small trees dominated (52–92% of total trees) and that the forests contained diverse tree sizes and species (in the late 1800s).

Removal of most of the small trees to reduce wildfire risk may therefore compromise the resilience provided by small trees and diverse tree sizes and species against unpredictable future disturbances.

REMEDY

Withdraw the DDN and write an EIS that fully complies with the law or choose the No Action Alternative.

What specific areas of the project area have departed from their historical vegetation characteristics, fuel composition, and fire regime and how much have they departed from their historical vegetation characteristics, fuel composition, and fire regime?

The project does not meet the purpose and need of the project. Please see the attached paper by Baker et al. 2023. This landmark study found a pattern of "Falsification of the Scientific Record" in government-funded wildfire studies.

This unprecedented [study](#) was published in the peer-reviewed journal *Fire*, exposing a broad pattern of scientific misrepresentations and omissions that have caused a "falsification of the scientific record" in recent forest and wildfire studies funded or au-

thored by the U.S. Forest Service with regard to dry forests of the western U.S. Forest Service related articles have presented a falsified narrative that historical forests had low tree densities and were dominated by low-severity fires, using this narrative to advocate for its current forest management and wildfire policies.

However, the new study comprehensively documents that a vast body of scientific evidence in peer-reviewed studies that have directly refuted and discredited this narrative were either misrepresented or omitted by agency publications. The corrected scientific record, based on all of the evidence, shows that historical forests were highly variable in tree density, and included "open" forests as well as many dense forests. Further, historical wildfire severity was mixed and naturally included a substantial component of high-severity fire, which creates essential snag forest habitat for diverse native wildlife species, rivaling old-growth forests.

These findings have profound implications for climate mitigation and community safety, as current forest policies that are driven by the distorted narrative result in forest management policies that reduce forest carbon and increase carbon emissions, while diverting scarce federal resources from proven community wildfire safety measures like home hardening, defensible space pruning, and evacuation assistance.

"Forest policy must be informed by sound science but, unfortunately, the public has been receiving a biased and inaccurate presentation of the facts about forest density and wildfires from

government agencies," said Dr. William Baker in their press release announcing the publication of their paper.

"The forest management policies being driven by this falsified scientific narrative are often making wildfires spread faster and more intensely toward communities, rather than helping communities become fire-safe," said Dr. Chad Hanson, research ecologist with the John Muir Project in the same press release. "We need thinning of small trees adjacent to homes, not backcountry management."

"The falsified narrative from government studies is leading to inappropriate forest policies that promote removal of mature, fire-resistant trees in older forests, which causes increased carbon emissions and in the long-run contributes to more fires" said, Dr. Dominick A. DellaSala, Chief Scientist, Wild Heritage, a Project of Earth Island Institute concluded in the press release.

Following is a summary of their paper.

Landmark Study Finds Pattern of "Falsification of the Scientific Record" in Government-Funded Wildfire Studies

Short Summary of the Newly Release Study

"Countering Omitted Evidence of Variable Historical Forests and Fire Regime in Western USA Dry Forests: The Low-Severity-Fire Model Rejected":

An unprecedented new study, Baker et al. (2023), published in the peer-reviewed journal *Fire*, exposed a broad pattern of scientific misrepresentations and omissions by government forest and wildfire scientists. This "falsification of the scientific record" is

driving bad policies and government mismanagement of public forests, including clearcutting and commercial logging of mature and old-growth trees under deceptive euphemisms like “thinning”, “restoration”, and “fuel reduction”. In particular, studies funded by the U.S. Forest Service, an agency that financially benefits from commercial logging on public lands, have presented a falsified narrative that historical forests had low tree densities and were heavily dominated by low-severity fires, using this narrative to push for increased commercial logging.

While Baker et al. (2023) documents a broad pattern of scientific omissions by Forest Service studies, it focuses on Hagmann et al. (2021), a Forest Service study that has received much media attention and has been used as the justification for a series of unprofessional public attacks and character assassination efforts by Forest Service-funded scientists against independent forest/fire scientists. Centrally, Baker et al. (2023) found that, while Hagmann et al. (2021) was presented ostensibly as a review, that paper listed a series of studies by independent scientists, and then listed the Forest Service’s published critiques of those studies, but never mentioned the stacks of reply studies by independent scientists that completely refuted and discredited the Forest Service critiques. Through this glaring omission of a huge body of scientific evidence, Hagmann et al. (2021) created the false appearance that the Forest Service critiques were the last word on the subject. The scientific reply studies by independent scientists note that the Forest Service critiques do not challenge the central evidence or conclusions of the initial studies, and the reply articles provide exhaustive evidence documenting why the tangential critiques in the Forest Service articles are unfounded

and inaccurate—all of which was concealed by Hagmann et al. (2021).

The corrected scientific record, based on all of the evidence, shows that historical forests were highly variable in tree density, and included "open" forests as well as many dense forests. Further, historical wildfire severity was mixed and naturally included a substantial component of high-severity fire, which creates essential snag forest habitat that rivals old-growth forest in terms of native biodiversity. These findings have profound implications for climate change mitigation and community safety, as current forest policies that are driven by the distorted narrative result in forest management policies that reduce forest carbon and increase carbon emissions, while diverting scarce federal resources away from proven community wildfire safety measures like home hardening, defensible space pruning, and evacuation assistance.

This project is in violation of NEPA because the IPNF appears to be using the same false narrative that Baker et al. criticize?

The project as proposed is in violation of NEPA, NFMA and the APA because it is claiming that historical were not highly variable in tree density.

Baker et al. 2023 state in their abstract: Management is guided by current conditions relative to the historical range of variability (HRV). Two models of HRV, with different implications, have been debated since the 1990s in a complex series of papers, replies, and rebuttals. The "low-severity" model is that dry forests were relatively uniform, low in tree density, and domi-

nated by low- to moderate-severity fires; the “mixed-severity” model is that dry forests were heterogeneous, with both low and high tree densities and a mixture of fire severities.

What HRV model is the Idaho Panhandle National Forest (IDNF) using?

Baker et al. 2023 also state in their abstract: Here, we simply rebut evidence in the low-severity model’s latest review, including its 37 critiques of the mixed-severity model. A central finding of high-severity fire recently exceeding its historical rates was not supported by evidence in the review itself. A large body of published evidence supporting the mixed-severity model was omitted. These included numerous direct observations by early scientists, early forest atlases, early newspaper accounts, early oblique and aerial photographs, seven paleo-charcoal reconstructions, ≥ 18 tree-ring reconstructions, 15 land survey reconstructions, and analysis of forest inventory data. Our rebuttal shows that evidence omitted in the review left a falsification of the scientific record, with significant land management implications. The low-severity model is rejected and mixed-severity model is supported by the corrected body of scientific evidence.

What areas of the forest are outside of the normal range of variability?

Page 3 of the EA states:

Across many areas of the IPNF, conditions are denser than they were historically, species composition has changed, and fuels are more contiguous.

Contiguous fuels are combustible materials that can be continuously consumed by a fire.

What is the habitat type of the project area?

Without using Pfister to determine habitat types present in the project area, the Forest Service has no idea what "type conversions" widespread burning roadless areas will create, which will most likely lead to an irreversible and irretrievable loss of vegetative and animal diversity.

The project is also in violation of the Forest Plan because the EA, FONSI, and DDN did not demonstrate that the project complies with the Forest Plan.

Remedy

Choose the No Action Alternative or Withdraw the Draft Decision Notice, EA and FONSI and write an EIS that fully complies with the law.

We wrote in our comments:

**THE AGENCIES MUST REINITIATE
CONSULTATION ON THE NORTHERN ROCKIES LYNX
MANAGEMENT DIRECTION.**

The Northern Rockies Lynx Management Direction is inadequate to ensure conservation and recovery of lynx. The lynx amendment fail to use the best available science on necessary lynx habitat elements, including but not limited to, failing to include standards that protect key winter habitat.

The Endangered Species Act requires the FS to insure that the lacy Lamoosh project is not likely to result in the destruction or adverse modification of critical habitat. 16 U.S.C. §1536(a) (2). Activities that may destroy or adversely modify critical habitat are those that alter the physical and biological features to an extent

that appreciably reduces the conservation value of critical habitat for lynx. 74 Fed. Reg. 8644. The Northern Rockies Lynx Management Direction (NRLMD) as applied in the project violates the ESA by failing to use the best available science to insure no adverse modification of critical habitat. The NRLMD carves out exemptions from Veg Standards S1, S2, S5, and S6. In particular, fuel treatment projects may occur in the WUI even though they will not meet standards Veg S1, S2, S5, or S6, provided they do not occur on more than 6% of lynx habitat on each National Forest. Allowing the agency to destroy or adversely modify any lynx critical habitat has the potential to appreciably reduce the conservation value of such habitat. The agency cannot simply set a cap at 6% forest-wide without looking at the individual characteristics of

each LAU to determine whether the project has the potential to appreciably reduce the conservation value. The ESA requires the use of the best available science at the site-specific level. It does not allow the agencies to make a gross determination that allowing lynx critical habitat to be destroyed forest-wide while not appreciably reduce the conservation value.

The FS violated NEPA by applying the above-mentioned exception without analyzing the impacts to lynx in the individual LAUs. The Project violates the NFMA by failing to insure the viability of lynx. The FS has not shown that lynx will be well distributed in the planning area. The FS has not addressed how the project's adverse modification of denning and foraging habitat will impact distribution. This is important because the agency readily admits that the LAUs already contain a "relatively large percentage of unsuitable habitat."

The national forests subject to this new direction will provide habitat to maintain a viable population of lynx in the northern Rockies by maintaining the current distribution of occupied lynx habitat, and maintaining or enhancing the quality of that habitat.

The FS cannot insure species viability here without addressing the impacts to the already low amount of suitable habitat. By cutting in denning and foraging habitat, the agency will not be "maintaining or enhancing the quality of the habitat."

This project is in Canada lynx habitat. In order to meet the requirements of the FS/USFWS Conservation Agreement, the FS agreed to insure that all project activities are consistent with the Lynx Conservation Assessment and Strategy (LCAS) and the requirements of protecting lynx critical habitat. The FS did not do so with its project analysis. This project will adversely affect lynx critical habitat in violation of the Endangered Species Act.

The BA/BE needs to be rewritten to reflect this information to determine if this project will adversely modify proposed critical habitat for lynx and if so conference with USFWS.

The Programmatic Lynx BA's "likely to adversely affect" conclusion was based upon the following rationale. Plans within the Northern Rockies:

- Generally direct an aggressive fire suppression strategy within developmental land allocations. ...this strategy may be contributing to a risk of adversely affecting the lynx by limiting the availability of foraging habitat within these areas.*
- Allow levels of human access via forest roads that may present a risk of incidental trapping or shooting of lynx or access by other competing carnivores. The risk of road-related adverse effects is primarily a winter season issue.*
- Are weak in providing guidance for new or existing recreation developments. Therefore, these activities may contribute to a risk of adverse effects to lynx.*
- Allow both mechanized and non-mechanized recreation that may contribute to a risk of adverse effects to lynx. The poten-*

tial effects occur by allowing compacted snow trails and plowed roads which may facilitate the movements of lynx competitors and predators.

- *Provide weak direction for maintaining habitat connectivity within naturally or artificially fragmented landscapes. Plans within all geographic areas lack direction for coordinating construction of highways and other movement barriers with other responsible agencies. These factors may be contributing to a risk of adverse effects to lynx.*
- *Fail to provide direction for monitoring of lynx, snowshoe hares, and their habitats. While failure to monitor does not directly result in adverse effects, it makes the detection and assessment of adverse effects from other management activities difficult or impossible to attain.*
- *Forest management has resulted in a reduction of the area in which natural ecological processes were historically allowed to operate, thereby increasing the area potentially affected by known risk factors to lynx. The Plans have continued this trend.*

The Plans have also continued the process of fragmenting habitat and reducing its quality and quantity. Consequently, plans may risk adversely affecting lynx by potentially contributing to a reduction in the geographic range of the species.

- *The BA team recommends amending or revising the Plans to incorporate conservation measures that would reduce or eliminate the identified adverse effects to lynx. The programmatic conservation measures listed in the Canada Lynx Conservation Assessment and Strategy (LCAS) should be considered in this regard, once finalized. (Programmatic Lynx BA, at 4.)*

The Programmatic Lynx BA notes that the LCAS identifies the following risk factors to lynx in this geographic area:

- *Timber harvest and pre-commercial thinning that reduce denning or foraging habitat or converts habitat to less desirable tree species*
- *Fire exclusion that changes the vegetation mosaic maintained by natural disturbance processes*
- *Grazing by domestic livestock that reduces forage for lynx prey* **How many road closure violations have been found in the St. Joe Ranger District in the last 5 years?**

It is fair to assume that there are many more violations that regularly occur and are not witnessed and reported. It is also fair to assume that you have made no effort to request this available information from your own law enforcement officers, much less incorporate it into your analysis. Considering your own admissions that road density is the primary factor that degrades elk and grizzly habitat, this is a material and significant omission from your analysis— all of your ORD and HE calculations are wrong without this information.

-

The Forest Service responded:

The wildlife report “Biological Evaluation/Biological Assessment” describes how the proposed actions of the Lacy

Lemoosh project comply with law, regulation, and policy, as well as analyzing how the proposed actions will impact the habitat of each sensitive or threatened species. Although the proposed action analyzed for the Lacy Lemoosh Restoration Project may impact individuals, the project would not affect the viability of any species across its range.

The USFS needs to take a hard look at impacts to lynx under NEPA, apply the lynx conservation measures and standards of the NRLMD, and consult on lynx via section 7 of the ESA b/c the best available science -- including recent tracking surveys conducted by WTU -- confirm lynx's presence and use of the Area.

The USFS has failed to survey for lynx as required by the Biological Opinion on the Northern Rockies Lynx Management Direction (NRLMD).

In order to meet the requirements of the FS/USFWS Conservation Agreement, the FS agreed to insure that all project activities are consistent with the Lynx Conservation Assessment and Strategy (LCAS).

LCAS requirements include:

Project planning—standards.

1. Within each LAU, map lynx habitat. Identify potential denning habitat and foraging habitat (primarily snowshoe hare habitat, but also habitat for important alternate prey such as red squirrels), and topographic features that may be important for lynx movement (major ridge systems, prominent saddles, and riparian corridors). Also identify non-forest vegetation (meadows), shrub-grassland communities, etc.)adjacent to and intermixed with forested lynx habitat that may

provide habitat for alternate lynx prey species.

2. Within a LAU, maintain denning habitat in patches generally larger than 5 acres, comprising at least 10 percent of lynx habitat. Where less than 10 percent denning habitat is currently present within a LAU, defer any management actions that would delay development of denning habitat structure.

3. Maintain habitat connectivity within and between LAUs. Programmatic planning-standards.

1. Conservation measures will generally apply only to lynx habitat on federal lands within LAUs.

2. Lynx habitat will be mapped using criteria specific to each geographic area to identify appropriate vegetation and environmental conditions. Primary vegetation includes those types necessary to support lynx reproduction and survival. It is recognized that other vegetation types that are intermixed with the primary vegetation will be used by lynx, but are considered to contribute to lynx habitat only where associated with the primary vegetation. Refer to glossary and description for each geographic area.

3. To facilitate project planning, delineate LAUs. To allow for assessment of the potential effects on an individual lynx, LAUs should be at least the size of area used by a resident lynx and contain sufficient year-round habitat.

4. To be effective for the intended purposes of planning and monitoring, LAU boundaries will not be adjusted for individual projects, but must remain constant.

5. Prepare a broad-scale assessment of landscape patterns that compares historical and current ecological processes and vegetation patterns, such as age-class distributions and patch

size characteristics. In the absence of guidance developed from such an assessment, limit disturbance within each as follows: if more than 30 percent of lynx habitat within an LAU is currently in unsuitable condition, no further reduction of suitable conditions shall occur as a result of vegetation management activities by federal agencies.

Project planning-standards.

1. Management actions (e.g., timber sales, salvage sales) shall not change more than 15 percent of lynx habitat within a LAU to an unsuitable condition within a 10- year period.

Programmatic planning-standards.

1. Identify key linkage areas that may be important in providing landscape connectivity within and between geographic areas, across all ownerships.
2. Develop and implement a plan to protect key linkage areas on federal lands from activities that would create barriers to movement. Barriers could result from an accumulation of incremental projects, as opposed to any one project.

Please demonstrate that project activities are consistent with above and all other applicable programmatic and project requirements.

The U.S. Court of Appeals for the Ninth Circuit hold that “[o]nce an agency is aware that an endangered species may be present in the area of its proposed action, the ESA requires it to prepare a biological assessment” Thomas v. Peterson, 753 F. 2d 754, 763 (9th Cir. 1985). If the biological assessment concludes that the proposed action “may affect” but will “not adversely affect” a threatened or endangered species, the action agency must consult informally with the appropriate expert agency. 50 C.F.R. §§ 402.14 (b)(1), 402.12(k)(1).

Canada lynx are listed under the ESA.

Canada lynx may be present in the project area and the proposed project may affect lynx by temporarily increasing road density, removing vegetative cover, and engaging in mechanized activities that could displace lynx.

The project is in violation of the Forest Plan, NEPA, NFMA, the APA and the ESA.

REMEDY

Withdraw the EA/FONSI and DDN and write an EIS that fully complies with the law or choose the No Action Alternative.

Please complete a biological assessment for lynx and formally consult with USFWS regarding the project's potential impacts on lynx.

Roads

We wrote in our comments:

It is fair to assume that there are many more violations that regularly occur and are not witnessed and reported. It is also fair to assume that you have made no effort to request this available information from your own law enforcement officers, much less incorporate it into your analysis. Considering your own admissions that road density is the primary factor that degrades elk and grizzly habitat, this is a material and significant

omission from your analysis— all of your ORD and HE calculations are wrong without this information.

The veracity of the FS's inventory of system and nonsystem (“undetermined” or “unauthorized”) roads is at issue here also.

This is partly because the FS basically turns a blind eye to the situation with insufficient commitment to monitoring, and also because violations are not always remedied in a timely manner.

The Lacy Lemoosh project would violate the Forest Plan/Access standards, a violation of NFMA because of road closure violations.

Please disclose how many years the existing core ares have provided the habitat benefits assumed under the Forest Plan. As pointed out, some has been lost (due to “private infrastructure development”) and we’re not told of other likely and foreseeable reductions.

Please take a hard look as road closure violations. Additionally, your emphasis on elk populations across entire hunting districts is disingenuous and has little relevance to whether you are meeting your Forest Plan obligations to maintain sufficient elk habitat on National Forest lands. As you note, the Forest Plan estimated that 70% of elk were taken on National Forest lands in 1986. What percentage of elk are currently taken on National Forest lands?

Have you asked Idaho Fish and Game for this information? Any honest biologist would admit that high elk population numbers do not indicate that you are appropriately managing National Forest elk habitat; to the contrary, high elk numbers indicate that you are so poorly managing elk habitat on National Forest lands that elk are being displaced to private lands where hunting is limited or prohibited. Your own Forest Service guidance document, Christensen et al 1993 states: “Reducing habitat effectiveness should never be considered as a means of controlling elk populations.”

What is the existing condition of linear motorized route density on National Forest System lands in the action area and what would it increase to during implementation.

Do your open road density calculations include the “non-system” i.e. illegal roads in the Project area?

Do your open road density calculations include all of the recurring illegal road use documented in your own law enforcement incident reports?

Has the IPNF closed or obliterated all roads that were promised to be closed or obliterated in the your Travel Plans in the St. Joe Ranger District? Or, are you still waiting for funds to close or obliterate those roads? This distinction matters because you cannot honestly claim that you are meeting road density standards promised by the Travel Plan if you have not yet completed the road closures/obliterations promised by the Travel Plan. Furthermore, as noted above, you have a major problem with re-

curing, chronic violations of the road closures created by the Travel Plan, which means that your assumptions in the Travel Plan that all closures would be effective has proven false. For this reason, you cannot tier to the analysis in the Travel Plan because it is invalid. You must either complete new NEPA analysis for the Travel Plan on this issue or provide that new analysis in the NEPA analysis for this Project. Either way, you must update your open road density calculations to include all roads receiving illegal use.

Christensen et al (1993) states: “Any motorized vehicle use on roads will reduce habitat effectiveness. Recognize and deal with all forms of motorized vehicles and all uses, including administrative use.” Please disclose this to the public and stop representing that roads closed to the public should not be included in habitat effectiveness calculations. The facts that (a) you are constructing or reconstructing over 40 miles of road for this project, (b) you have problems with recurring illegal use, and (c) you already admit that you found another 25 miles of illegal roads in the project area that you have not committed to obliterating, means that your conclusion that this Project will have no effect on open road density or habitat effectiveness is implausible to the point of being disingenuous. You cannot exclude these roads simply because you say they are closed to the public. Every road receiving motorized use must be included in the HE calculation.

You must consider all of this road use in order to take a hard look that is fully and fairly informed regarding habitat effectiveness. In the very least you must add in all “non-system” roads, i.e. illegal roads, as well as recurring illegal road use (violations) in your ORD calculations. Also, as a side note, your calculations in Christensen et al 1993 finds: “Areas where habitat effectiveness is retained at lower than 50 percent must be recognized as making only minor contributions to elk management goals. If habitat effectiveness is not important, don't fake it. Just admit up front that elk are not a consideration.”

Will the project comply with Forest Plan Management Area Goal of: “Maintain or enhance existing elk habitat by maximizing habitat effectiveness as a primary management objective. Emphasis will also be directed toward management of indigenous wildlife species. Commodity resource management will be practiced where it is compatible with these wildlife management objectives.”

Also – MA C Standard: “Habitat effectiveness will be positively managed through road management and other necessary controls on resource activities.” Also – “Elk habitat effectiveness will be maintained.” Please demonstrate that the project will comply with all of these provisions for all of the above-stated reasons.

Do the action alternatives comply with PACFISH-INFISH? Are you meeting the INFISH Riparian Management Objectives for temperature, pool frequency, and sediment?

The best available science shows that roads are detrimental to aquatic habitat and logging in riparian areas is not restoration.

Fish evolved with fire, they did not evolve with roads and logging.

The EA did not fully and completely analyze the impacts to bull trout and their habitat and westslope cutthroat trout habitat.

What is the standard for sediment in the Forest Plan? Sediment is one of the key factors impacting water quality and fish habitat. [See USFWS 2010]

The Forest Plan and the Lucy Lemoosh project weakens bull trout habitat protections by allowing new roadbuilding throughout the IPNF without meaningful reclamation of existing roads to compensate for the new road construction.

New roadbuilding proposed in the Lucy Lemoosh project without meaningful reclamation to ensure no net increase in the road system threatens stream sedimentation that will degrade bulltrout habitat. Surface runoff on roads, including roads unused by motorized vehicles, threatens to cause sediment discharge to nearby waterbodies, including bull trout streams.

Culverts inevitably clog and fail, causing the affected stream to run over the roadbed with associated erosion and sedimentation. Such sedimentation threatens to degrade stream conditions and harm bull trout, which require very cold and clean water to survive and reproduce.

Connectivity for wildlife is fragmented in the project area and this project will exacerbate that situation with oversized clearcuts and more roads. This is already impacting small mammals that are prey for larger animals and birds yet there is no analysis of how this impacts wildlife foraging.

We also wrote starting with:

The agency is violating the NEPA by a failure to evaluate project impacts on elk, which is a Management Indicator Species for the RFP; the agency is also violating the NFMA by failing to adhere to Revised Forest Plan (RFP) direction for elk regarding security and management of big game winter ranges; and the agency is violating the NEPA by failing to define claimed mitigation measures that are supposed to avoid the triggering of significant impacts without ever demonstrating how this will be achieved.

A. There is no valid analysis of project impacts on elk.

a. There is no analysis of project impacts on hiding cover.

The Forest Service responded:

Through analysis it has been recommended that the five sections of new system roads either be gated with no public access, barriered with no public access, or closed with no public access,

preventing motorized traffic from breaching the 0.5-mile buffer around existing elk security. These sections are located behind FSR 1950 gate, behind FSR 1955 gate, or off either FSR 1947 or FSR 377. This should greatly discourage the possibility of motorized traffic breaching these road systems. New roads with gates may continue to get administrative use for miscellaneous forest related work. All temporary roads will either be recontoured or obliterated within three years of project completion and closed to public access during project activities.

This project is in compliance with ESA section 7. Road closures on the St. Joe Ranger District are primarily for Elk Security, not security areas for Bear Management Units. Motorized routes that are not open to the public for motorized use during the hunting season (including temporary roads) are considered security habitat because they do not fit the recommendations in Hillis et al. (1991) (i.e., they do not provide motorized access during the hunting season).

We coordinate with law enforcement about road violations. Generally, road violations are known to occur; however EMU 6-8 Security Habitat is above the baseline (FEIS 2015 <https://www.fs.usda.gov/detail/ipnf/landmanagement/planning/?cid=stelprdb5436518>).

Post implementation, Security Habitat in EMU 6-8 will remain above the baseline approximately 768 acres. Although we do not quantify road closure violations in the analysis, elk security in EMU 6-8 is expected to remain above the baseline. Design Features for big game can be found in the "Wildlife Biological Evaluation/Biological Assessment".

We are maintaining and adding gates to better manage unauthorized use.

Since road closure violations are pervasive throughout the project area and the Forest, the FNF is in violation of not only the Forest Plan but also the big game security standards.

It is fair to assume that there are many more violations that regularly occur and are not witnessed and reported. It is also fair to assume that you have made no effort to request this available information from your own law enforcement officers, much less incorporate it into your analysis. Considering your own admissions that road density is the primary factor that degrades elk and grizzly habitat, this is a material and significant omission from your analysis— all of your ORD and HE calculations are wrong without this information.

The 2016 A19 report, Table 8b, shows the results of closure device monitoring on the Flathead National Forest from 2006 through 2015. This table shows from 3-13 percent of the barrier devices were found to be ineffective in preventing unauthorized use, depending on the year, with an average of 6.9 percent per year from 2006-2015. Since 2011, the average road closure effectiveness has improved, not declined. Since 2011, the average percentage of ineffective closures improved to 5 percent (project file exhibit L-012).

The veracity of the FS's inventory of system and nonsystem ("undetermined" or "unauthorized") roads is at issue here also. This is partly because the FS basically turns a blind eye to the situation with insufficient commitment to monitoring, and also because violations are not always remedied in a timely manner. The Lacy Lemoosh project would violate the Forest Plan/Access

standards, a violation of NFMA because of road closure violations.

The EA does not disclose how many years the existing core areas have provided the habitat benefits assumed under the Forest Plan. As pointed out, some has been lost (due to “private infrastructure development”) and we’re not told of other likely and foreseeable reductions.

The EA does not take a hard look at road closure violations. It also shows the inadequacy of Forest Plan road density metrics.- Have you closed or obliterated all roads that were promised to be closed or obliterated in the Travel Plan? Or, are you still waiting for funds to close or obliterate those roads? This distinction matters because you cannot honestly claim that you are meeting road density standards promised by the Travel Plan if you have not yet completed the road closures/obliterations promised by the Travel Plan. Furthermore, as noted above, you have a major problem with recurring, chronic violations of the road closures created by the Travel Plan, which means that your assumptions in the Travel Plan that all closures would be effective has proven false. For this reason, you cannot tier to the analysis in the Travel Plan because it is invalid.

Christensen et al (1993) states: “Any motorized vehicle use on roads will reduce habitat effectiveness. Recognize and deal with all forms of motorized vehicles and all uses, including administrative use.” Please disclose this to the public and stop representing that roads closed to the public should not be included in habitat effectiveness calculations. The facts that (a) you are constructing or reconstructing over 13.3 miles of new system roads and 5.3 miles of temporary roads for this project,

(b) you have problems with recurring illegal use, which means that your conclusion that this Project will have no effect on open road density or habitat effectiveness is implausible to the point of being disingenuous. You cannot exclude these roads simply because you say they are closed to the public. Every road receiving motorized use must be included in the HE calculation. You must consider all of this road use in order to take a hard look that is fully and fairly informed regarding habitat effectiveness. In the very least you must add in all “non-system” roads, i.e. illegal roads, as well as recurring illegal road use (violations) in your ORD calculations.

The Lacy Lemoosh project did not adequately analyze the cumulative effects on grizzly bears of the Lacy Lemoosh project and other cumulative effects on grizzly bears.

The Lacy Lemoosh project fails to adequately distinguish between and quantify the risks to grizzly bears and other wildlife by decommissioned, abandoned, temporary, open, gated, impassable, and barricaded roads. As a result, it draws arbitrary and capricious conclusions to support the building and rebuilding of more roads and culvert crossings while claiming 2011 grizzly bear habitat conditions will somehow be retained. Moreover, the Lacy Lemoosh project builds and rebuilds roads in order to support specious logging and other “vegetation management” that will not protect neighboring structures from fire and will instead make the fire risk situation worse. Nor will the project “improve the diversity and resilience of terrestrial ecosystems and vegetation.” It will instead degrade the habitat

and habitat security for grizzly bear, lynx and wolverine, among other wildlife species.

On the whole, the Lacy Lemoosh project does not “maintain the on- he-ground [2011] conditions that have contributed to the growth and expansion of the NCDE grizzly bear population,” as required by the 2018 Forest Plan (see the 10/31/17 Biological Assessment on the revised Forest Plan, at 127). Nor does it provide the protections necessary to sustain wolverine, a species once again proposed for ESA listing. This is a violation of the Administrative Procedures Act, the National Environmental Policy Act, the National Forest Management Act, the Endangered Species Act, and the Clean Water Act.

FW-STD-IFS-03 really is nothing more than an attempt to water down the true impacts of increased road access for logging and other projects. What the bears experience is an immediate and years-long impact from increased motorized access, not a ‘running 10- year average. The actual impacts of using gated roads for motorized project activities goes unaccounted for as what should be continued increases in Open Road Density. The Forest Service’s inability to adequately explain how all this works is testament to the fact it is one big scam for denying grizzly bears adequate habitat security while claiming the opposite.

Key Findings in Judge Molloy’s June 24, 2021, Opinion and Order

We present here a few of the key findings in Judge Molloy’s Order, followed by an explanation of how this affects public review of the Project:

“Plaintiffs succeed on their ESA claims related to grizzly bears:

that the Revised Plan is arbitrary and capricious to the extent it did not consider the impacts of its departure from Amendment 19's road density and reclamation standards, did not consider the impact on the entire grizzly population, did not adequately explain the adoption of the 2011 access conditions, and adopted a flawed surrogate in its take statement concerning grizzly bears. Plaintiffs also succeed on the narrow argument that departing from Amendment 19's culvert removal requirements violated the ESA as it relates to bull trout. Plaintiffs also succeed on their ESA claim that the Forest Service improperly relied on the flawed aspects of the 2017 BiOp." (p 11-12, emphasis added)

"But, as Plaintiffs note, the baseline was established in 2011 while Amendment 19 was in effect. FS-052052. Consequently, though the Fish and Wildlife Service did not need to directly compare Amendment 19 with the Revised Plan, it did need to consider whether the Revised Plan would have an effect on the 2011 baseline, which was the product of the 1986 Forest Plan and its amendments, including Amendment 19." (p 21)

"In other words, are 'closure devices' an 'important aspect of the problem' to be addressed by the Revised Plan? The answer is yes." (p 22)

"This [A19] 'reclaimed road' standard is the standard underlying the 2011 baseline. See FS-052052. The Revised Plan replaced the 'reclaimed road' standard with an 'impassable road' standard . . . Thus, the science indicates that, even where 'permanent barriers' are used, road closures may be ineffective and use may occur or continue. Both the Swan View Coalition Study and the Forest Service Study support that argument . . . Fish and Wildlife Service's failure to consider the effect of ineffective road closures was arbitrary and capricious . . . Fish and Wildlife Service violated the ESA by not considering the impact of ineffective road

closures in its 2017 BiOp.” (p 22-25)

“The scientific evidence does not support the Revised Plan's shift away from mandatory culvert removal, particularly since the Fish and Wildlife Service endorsed culvert removal as one of the most effective bull trout protection tools just two years prior to the 2017 BiOp.” (p 25-26)

“The Fish and Wildlife Service concluded that ‘[r]oad decommissioning reduces the long-term risk of sediment delivery to streams from roads and roadside ditches through reducing culvert failures and landslides,’ FWS- 001936-37, but road decommissioning under the Revised Plan does not include mandatory culvert removal, see FS-052079 (defining ‘impassable’ road) . . . it is inexplicable why, two years after the Recovery Plan, the Fish and Wildlife Service determined that culvert removal is no longer required.” (p 27-28) “For example, one of the Revised Plan's objectives is to decommission or place into storage 30 to 60 miles of road over roughly the next 15 years, which the Fish and Wildlife Service avers will have the effect of improving watershed conditions by decreasing road density. FWS-00 193 7 (citing Guideline FW-OBJ-

IFS-01). This Guideline does not mention culverts.” (page 28)

“Because the 2015 conclusion that road decommissioning, which included culvert removal, was an effective sedimentation reduction measure, the Fish and Wildlife Service has not explained its conclusion just two years later that culvert removal was not required on decommissioned roads . . . the record supports Plaintiffs' arguments that the Fish and Wildlife Service's abandonment of the culvert removal requirement was arbitrary and capricious.” (p 29)

“While the Service did provide a thorough overview of the status

of the grizzly bear species in the United States, it failed to analyze how the Revised Plan would affect grizzly bears outside of the NCDE.” (p 31)

“Plaintiffs persuasively argue that the Service cannot arbitrarily pinpoint 2011 as the point in time at which to attach significance to the NCDE population. The mere fact that the population was increasing from 2004-2011 does not justify moving away from the existing management requirements of Amendment 19. In effect, by recognizing that Amendment 19 laid the foundation for recovery of the NCDE population and then using that recovery as justification for getting rid of the existing access conditions, the Fish and Wildlife Service eschews Amendment 19 precisely because it was working. This action is arbitrary and capricious. C.f, *Shelby Cty., Ala. v. Holder*, 510 U.S, 529, 590 (2013)

‘Throwing out preclearance when it has worked and is continuing to work to stop discriminatory changes is like throwing away your umbrella in a rainstorm because you are not getting wet.’) (Ginsburg, J., dissenting). The Fish and Wildlife Service violated the ESA by arbitrarily adopting the 2011 access conditions as a target for protecting grizzly bears.” (p 34-35)

“Plaintiffs successfully challenge all three deficiencies they identify concerning the road density and secure core habitat surrogate. The surrogate trigger is ambiguous, lacks a deadline, and the supposed requirement to maintain 2011 access conditions is not linked to a requirement in the Revised Plan.” (p 41)

“Plaintiffs persuasively argue that the surrogate is inadequate because there is no requirement in the Revised Plan to return to 2011 access conditions. As explained above, the 2011 access conditions were the result of Amendment 19's road density requirements. The Revised Plan does not incorporate those requirements, so it is unclear how the 2011 access conditions

ensure that 'temporary changes' will not be indefinite. (Cf. Doc. 91 at 36.) As a result, the road density and secure core habitat surrogate violates the ESA." (p 43)

"[Plaintiffs] allege that the Service violated the ESA by relying on the flawed 2017 BiOp without satisfying its independent obligation to consider how the Revised Plan could jeopardize grizzly bears, bull trout, and bull trout habitat. (Doc. 77 at 48 (citing Save our Cabinets, 255 F. Supp. 3d at 1063).) Plaintiffs are correct . . . insofar as the 2017 BiOp was invalid based on its determinations that the Revised Plan's shift away from Amendment 19' s road closure requirements would not jeopardize grizzly bears, the non-mandatory culvert removal aspect of the Revised Plan would not jeopardize bull trout, the Revised Plan considered its effect on the nationwide grizzly population, the adoption of the 2011 access conditions was reasonable, and the road density and secure core surrogate for grizzly bears was adequate.

As discussed above, the 2017 BiOp did not consider the impact of ineffective road closures on the 2011 baseline population for grizzly bears, nor did it consider the effects of the Revised Plan on the grizzly species as a whole. The BiOp's road density and secure core surrogate concerning grizzly bears is also deficient, as described above. Such failures render the 2017 BiOp faulty in its conclusions concerning grizzly bears. See All. for Wild Rockies, 412 F. Supp. at 1204 (finding that biological opinion was flawed because the Service failed to consider temporary increases in motor route density as a result of ineffective road closures).

The BiOp also did not consider the effect on bull trout of withdrawing the mandatory culvert removal requirement. The problem with the Forest Service's reliance on the 2017 BiOp' s conclusion that the less stringent culvert removal plan would not significantly adversely affect bull trout is magnified in light of the

Recovery Plan, which identified culvert removal as an aspect of successful bull trout recovery just two years before the 2017 BiOp and three years before the Revised Plan . . .

In conclusion, the Forest Service violated the ESA to the extent it relied on the BiOp's flawed road reclamation determinations and road density surrogate." (p 52-53)

As we have argued in previous comment letters to the Flathead and here, the Forest Plan and this Project are similarly flawed for abandoning A19 management, adopting the notion of "impassable" roads that don't count in TMRD and need not have their stream-aligned culverts removed, and by adopting a flawed 2011 baseline. This allows the permanent expansion of the road and culvert system in grizzly bear and bull trout habitat while not appearing to increase them over an arbitrarily defined 2011 baseline, the parameters of which contribute to the surrogates and triggers being ruled unlawful by Judge Molloy. We have no way to compare the Project to a newly revised Plan, its BiOp and its ITS that remedy these problems because they do not yet exist. We are not encouraged that the Flathead has failed to learn lessons from our numerous project Objections, Plan Objection and Judge Molloy's Order. The Scoping Notice says nothing about how stream crossings and culverts on newly constructed and reconstructed roads will be managed, yet it shows a number of such roads that cross streams will be managed in the "impassable" status essentially rejected by Judge Molloy for not requiring the removal of culverts.

Moreover, the Project builds road in grizzly bear Secure Core, but does not discuss how this will maintain the 2011 Baseline or existing conditions. As noted above, Judge Molloy rejected the 2011 Baseline scheme in part because the Forest Plan does not guarantee that changes in road densities and Secure Core won't

become permanent.

\

REMEDY

Choose the No Action Alternative or you must either complete new NEPA analysis for the Travel Plan on this issue or provide that new analysis in the NEPA analysis for this Project. Either way, you must update your open road density calculations to include all roads receiving illegal use.

Creating barriers on roads to prevent motorized access will not affect recreational use, including hiking, hunting, bike riding, and berry picking, for example, Where are these impacts to grizzly bear displacement and mortality risk addressed?

The agency failed to define total road densities at present, what these will be during the 5 years of project implementation, and what these will be once the project is completed. So the impacts to grizzly bear displacement and mortality risk are not identified to the public.

In Case 9:19-cv-0056-DWM the United States District Court for the District of Montana ruled on 6/24/21 that the Flathead Forest Plan was illegal because the Fish and Wildlife Service violated the ESA by not considering the impacts of ineffective road closures in its 2017 BiOp. The court also ruled that the FWS violated the ESA by using a flawed incidental take statement for grizzly bears and the core density standards and secure core habitat surrogate violate the ESA.

The Revised Forest Plan and the Lacy Lemoosh project weakens grizzly bear habitat protections by allowing new roadbuilding throughout the Flathead National Forest, without meaningful and permanent reclamation of other roads elsewhere in the Forest to

compensate for the new road construction. This new management direction is a significant departure from former Forest Plan Amendment 19, which required the Forest Service to reclaim roads according to stringent requirements such that a reclaimed road would “no longer function as a road or trail.” Amendment 19 EA.

The New roadbuilding in the Lacy Lemoosh project without meaningful reclamation to ensure no net increase in the road system presents a significant threat to grizzly bears, because motor vehicle users and other recreationists can trespass on the supposedly “impassable” roads and thus encroach on grizzly bear habitat. Further, even unused roads cause detrimental impacts to grizzly bear survival and reproduction, because grizzly bears are displaced from roaded habitat, regardless of whether the roads receive public or administrative use.

However, in concluding that the Revised Forest Plan will not jeopardize the species, FWS’s Revised Biological Opinion failed to adequately examine adverse impacts to grizzly bears from unauthorized motorized use on roads closed according to the Revised Forest Plan’s weaker closure standards; failed to consider the displacement impacts caused by roads even when they do not receive motorized use; and failed to account for increased roadbuilding enabled by the Forest Service’s abandonment of stringent road-reclamation requirements.

The Forest Service has failed to rationally determine, based on a consideration of all relevant factors, whether the Revised Forest Plan’s new management direction will jeopardize the survival of grizzly bears in the Flathead and therefore the project is illegal.

The FWS's Revised Biological Opinion is therefore arbitrary, capricious, and not in accordance with law, and should be set aside pursuant to the ESA and APA and therefore can not be used as a basis for the Lucy Lemoosh Project.

Purpose and Need

We wrote in our comments:

A new study by Dominick A. DellaSala et al. found that reviewed 1500 wildfires between 1984 and 2014 found that actively managed forests had the highest level of fire severity. Please find DellaSala et al. attached to our scoping comments.. While those forests in protected areas burned, on average, had the lowest level of fire severity. In other words, the best way to reduce severe fires is to protect homes from the Home out in the Home Ignition Zone, not log forests outside the home ignition zone, therefore the purpose and need of the Lucy Lemoosh is not valid.

The best available science shows that Commercial Logging does not reduce the threat of Forest Fires. What best available science supports the action alternatives?

Please find Schoennagel et al (2004) attached to our scoping comments. Schoennagel

states: "we are concerned that the model of historical fire effects and 20th-century fire suppression in dry ponderosa pine forests is being applied incorrectly across all Rocky Mountain forests, including where it is inappropriate.

Schoennagel et al (2004) states: “High-elevation subalpine forests in the Rocky Mountains typify ecosystems that experience infrequent, high-severity crown fires []. . . The most extensive subalpine forest types are composed of Engelmann spruce (*Picea engelmannii*), subalpine fir (*Abies lasiocarpa*), and lodgepole pine (*Pinus contorta*), all thinbarked trees easily killed by fire. Extensive stand-replacing fires occurred historically at long intervals (i.e., one to many centuries) in subalpine forests, typically in association with infrequent high-pressure blocking systems that promote extremely dry regional climate patterns.”

Schoennagel et al (2004) states: “it is unlikely that the short period of fire exclusion has significantly altered the long fire intervals in subalpine forests. Furthermore, large, intense fires burning under dry conditions are very difficult, if not impossible, to suppress, and such fires account for the majority of area burned in subalpine forests.

Schoennagel et al (2004) states: “Moreover, there is no consistent relationship between time elapsed since the last fire and fuel abundance in subalpine forests, further undermining the idea that years of fire suppression have caused unnatural fuel buildup in this forest zone.”

⁷¹Schoennagel et al (2004) states: “No evidence suggests that spruce–fir or lodgepole pine forests have experienced substantial shifts in stand structure over recent decades as a result of fire suppression. Overall, variation in climate rather than in fuels appears to exert the largest influence on the size, timing, and severity of fires in subalpine forests [].

We conclude that large, infrequent stand replacing fires are ‘business as usual’ in this forest type, not an artifact of fire suppression.”.

Schoennagel et al (2004) states: “Contrary to popular opinion, previous fire suppression, which was consistently effective from about 1950 through 1972, had only a minimal effect on the large fire event in 1988 []. Reconstruction of historical fires indicates that similar large, high-severity fires also occurred in the early 1700s []. Given the historical range of variability of fire regimes in high-elevation subalpine forests, fire behavior in Yellowstone during 1988, although severe, was neither unusual nor surprising.”

Schoennagel et al (2004)(emphasis added) states: “Mechanical fuel reduction in sub- alpine forests would not represent a restoration treatment but rather a departure from the natural range of variability in stand structure.”

Schoennagel et al (2004) states: “Given the behavior of fire in Yellowstone in 1988, fuel reduction projects probably will not substantially reduce the frequency, size, or severity of wildfires under extreme weather conditions.”

Schoennagel et al (2004) states: “The Yellowstone fires in 1988 revealed that variation in fuel conditions, as measured by stand age and density, had only minimal influence on fire behavior. Therefore, we expect fuel- reduction treatments in high- elevation forests to be generally unsuccessful in reducing fire frequency, severity, and size, given the overriding importance of extreme climate in controlling fire regimes in this zone. Thinning also will not restore subalpine forests, because they were dense historically and have not changed significantly in response to fire suppression. Thus, fuel reduction efforts in most

Rocky Mountain sub- alpine forests probably would not effectively mitigate the fire hazard, and these efforts may create new ecological problems by moving the forest structure outside the historic range of variability.”

Likewise, Brown et al (2004) states: “At higher elevations, forests of subalpine fir, Engelmann spruce, mountain hemlock, and lodgepole or whitebark pine predominate. These forests also have long fire return intervals and contain a high proportion of fire sensitive trees. At periods averaging a few hundred years, extreme drought conditions would prime these forests for large, severe fires that would tend to set the forest back to an early successional stage, with a large carryover of dead trees as a legacy of snags and logs in the regenerating forest natural ecological dynamics are largely preserved because fire suppression has been effective for less than one natural fire cycle. Thinning for restoration does not appear to be appropriate in these forests. Efforts to manipulate stand structures to reduce fire hazard will not only be of limited effectiveness but may also move systems away from pre-1850 conditions to the detriment of wildlife and water- sheds.” “Fuel levels may suggest a high fire ‘hazard’ under conventional assessments, but wildfire risk is typically low in these settings.”

Likewise, Graham et al (2004) states: “Most important, the fire behavior characteristics are strikingly different for cold (for example, lodgepole pine, Engelmann spruce, subalpine fir), moist (for example, western hemlock, western redcedar, western white pine), and dry forests. Cold and moist forests tend to have long fire- return intervals, but fires

that do occur tend to be high- intensity, stand-replacing fires. Dry forests historically had short intervals between fires, but most important, the fires had low to moderate severity.”

According to Graham et al (2004), thinning may also increase the likelihood of wildfire ignition in the type of forests in this Project area: “The probability of ignition is strongly related to fine fuel moisture content, air temperature, the amount of shading of surface fuels, and the occurrence of an ignition source (human or lightning caused) There is generally a warmer, dryer microclimate in more open stands (fig. 9) compared to denser stands. Dense stands (canopy cover) tend to provide more shading of fuels, keeping relative humidity higher and air and fuel temperature lower than in more open stands. Thus, dense stands tend to maintain higher surface fuel moisture contents compared to more open stands. More open stands also tend to allow higher wind speeds that tend to dry fuels compared to dense stands. These factors may increase probability of ignition in some open canopy stands compared to dense canopy stands.”

We also wrote:

*Which wildlife species and ecosystem processes, if any, does the fire-proofing in the proposed project benefit? Which species and processes do fire-proofing harm?
What is your definition of healthier?*

What is your definition of resilient?

How will building 25 miles of new roads and clearcutting openings greater than 40 acres in size reduce sediment in streams?

The Forest Service responded:

While allowing ecosystem processes such as wildfire to occur unchecked could have potential benefits for these ecosystems and their resilience in the long term, the risks of severe wildfire to the public, their water quality, and the many timber, wildlife, and recreation resources these project areas provide would be socially unacceptable in a project area so close to communities.

The purpose and need of the project must consider not only the health of the forest itself but also its values and risks for the surrounding community; therefore, active management is necessary for forest stewardship that is effective and responsive to the public.

A discussion of ecosystem health and resilience, and supporting literature, for the IPNF can be found in the FEIS. See also the Forest Plan desired conditions for each resource to see quantifiable indicators of ecosystem health, also designed to promote ecosystem resilience to disturbance and changing climatic conditions.

The proposed action to regenerate 17% of the Lacy Lemoosh landscape, using large openings greater than 40 acres to regenerate early seral species, is designed in accordance with the IPNF Forest Plan goals, desired conditions, and objectives for Vegetation and also for fuels, which were developed from

decades of research on conifer regeneration, fuel management, landscape management, and Inland Northwest ecology, as well as the latest climate adaptation strategies including those developed through regional collaborative efforts such as the Northern Rockies adaptation partnership; these literature are documented in the FEIS and indicate that large openings are consistent with Inland Northwest disturbance regimes. The size and location of the regeneration harvest units are designed to treat areas adversely impacted by disease while emulating landscape patterns created by the natural disturbance regime. Regenerating large acreages with harvest treatments, similar in extent to that of mixed-severity fires, is an effective way to increase biodiversity through restoration of early seral communities; support fire resilience by enhancing landscape heterogeneity and the distribution of fire adapted species; promote long- term water quality by reducing the probability of catastrophic wildfires, and promote overall ecosystem health by maintaining key ecosystem processes such as fire and ensuring the survival and persistence of its components, especially including those early seral communities that have declined due to fire suppression and white pine blister rust. All resources have evaluated the positive and negative consequences of implementing openings greater than 40 acres to achieve Forest Plan vegetation goals and desired conditions for the project area (see 20241212DocOpeningsGreaterThan40AcresResourcesRationale), and by incorporating the design features they have included into the strategic layout and design of these large openings that occurs as the units are further refined during sale preparation, we will minimize the short-term

negative consequences for other resources to promote the long-term health and resilience of the Lacy Lemoosh landscape.

The project is also in violation of NFMA, NEPA, the Forest Plan and the APA for not meeting the purpose and need.

REMEDY

Withdraw the DDN and FONSI and write an EIS that fully complies with the law or choose the No Action Alternative. We wrote in our comments:

Parts of this very large project area are big game winter range as per the Forest Plan. Please define what the specific habitat objectives are for this winter range, including hiding and thermal cover, as well as forage.

The Forest Plan direction for this management area is binding. If the agency is going to claim that the Forest Plan is being implemented, you need to specifically define how this is being done, instead of simply claiming that tree removal is improvement on big game winter range. Also, the science and monitoring behind this claim need to be provided. Currently mule deer populations have been in decline across the western U.S.. We haven't seen any science that reported increases of mule deer populations following removal of trees on their winter ranges.

Please explain what shrubs are present, and will be targeted for masticating and burning. The actual replacement species the agency claims are going to be managed for are never identified. But at a minimum, the rationale for removing shrubs and replacing them with grasses on winter range needs to be documented, as is required by the NEPA.

The claim that this project will increase diversity is pure unsupported rhetoric. There is no definition as to what constitutes diversity. What criteria are being used to measure diversity, and why isn't this information provided to the public? The NEPA requires that the agency provide reliable, valid information to the public on projects. This claim that removing trees and shrubs will improve diversity is a clear violation of the NEPA, as there is no actual basis for it. Worse, it is not clear why eliminating trees and shrubs increases diversity as per the standard definitions. What science claims that a grassland has higher habitat diversity than a woodland or forest, or shrubland? One likely factor driving the proposed project is not promotion of big game species and wildlife, but instead is being done for livestock. Please explain in the EA or EIS the impact of current livestock grazing practices in this landscape.

The claim that burning will increase resiliency of this area is highly questionable. First, these forests are not highly flammable

as per the current science. Second, thinning will likely increase flammability by increasing wind speeds and vegetation drying due to a reduction of shade. Third, flammability will surely be increased over current conditions due to an increase of grasses, including exotic species as cheatgrass. Please provide evidence that any actual published scientific papers that show that prescribed on such a large scale will reduce fires, and thereby increase “resiliency” of this winter range.

Please provide in the EA or EIS monitoring data on the effect of the fire on as winter range, or how this fire affected the extent of exotic vegetation, such as cheatgrass and other weeds. Since the proposed actions will be somewhat similar in effect, it would seem to be important for the agency to provide this information to the public.

Please provide in the EA or EIS any monitoring data, or references any current science, as to what the specific problems are in this landscape for wildlife. How did the agency determine that the current conditions are causing problems for wildlife? In general, one would not expect trees to be a problem for wildlife, especially juniper which is a highly valuable resource for wildlife, not just for forage, including berries, but as hiding and thermal cover. How has the agency determined that hiding cover are too

high in this winter range? What are the objectives for hiding and thermal cover which are the target for management intervention?

Please explain what species of shrubs are going to be slashed and burned. Why aren't these shrubs being used by wildlife?

NEPA requires that the Forest Service provide the public is provided information as to why this project will benefit wildlife. At a minimum, the agency needs to demonstrate to the public that this is in fact the case. The EA or EIS must document any scientific information as to how the resource specialists determined that the project will not lead to any significant effects on wildlife. These conclusions need to be documented for the public, including criteria that were used and evaluated to measure levels of significant impact. As just one question, if the Forest Plan standard to manage this area to promote big game species on their winter range is not being followed, this would most likely trigger significant impacts. It seems like that this is an intentional Forest Plan violation to promote livestock grazing over wildlife in this landscape.

Please discuss the current grazing use of this area by livestock. This information needs to be included as important information to the public.

The best available science, Christensen et al (1993), recommends elk habitat effectiveness of 70% in summer range and at least 50% in all other areas where elk are one of the primary resource considerations. According to Figure 1 in Christensen et al (1993), this equates to a maximum road density of approximately 0.7 mi/sq mi. in summer range and approximately 1.7 mi/sq mi. in all other areas.

th
Do any of the 6 Code watersheds in the Project area meet either of these road density thresholds? It appears the

Project area as a whole also far exceeds these thresholds. Please disclose this type of Project level or watershed analysis on road density.

Christensen et al (1993) state that if an area is not meeting the 50% effectiveness threshold of 1.7 mi/sq mi, the agency should admit that the area is not being managed for elk: “Areas where habitat effectiveness is retained at lower than 50 percent must be recognized as making only minor contributions to elk management goals. If habitat effectiveness is not important, don't fake it. Just admit up front that elk are not a consideration.” The Project EIS does not make this admission.

The Forest Service should provide an analysis of how much of the Project area, Project area watersheds, affected landscape areas, or affected Hunting Districts provide “elk security area[s]” as defined by the best available science,

Christensen et al (1993) and Hillis et al (1991), to be comprised of contiguous 250 acre blocks of forested habitat 0.5 miles or more from open roads with these blocks encompassing 30% or more of the area.

Please provide a rational justification for the deviation from the Hillis security definition and numeric threshold that represent the best available science on elk security areas.

What best available science supports the action alternatives?

Schoennagel et al (2004) states: “we are concerned that the model of historical fire effects and 20th-century fire suppression in dry ponderosa pine forests is being applied uncritically across all Rocky Mountain forests, including where it is inappropriate.

Schoennagel et al (2004) states: “High-elevation subalpine forests in the Rocky Mountains typify ecosystems that experience infrequent, high-severity crown fires []. . . The most extensive subalpine forest types are composed of Engelmann spruce (*Picea engelmannii*), subalpine fir (*Abies lasiocarpa*), and lodgepole pine (*Pinus contorta*), all

thin-barked trees easily killed by fire. Extensive stand-replacing fires occurred historically at long intervals (i.e., one to many centuries) in subalpine forests, typically in association with infrequent high-pressure blocking systems that promote extremely dry regional climate patterns.”

Schoennagel et al (2004) states: “it is unlikely that the short period of fire exclusion has significantly altered the long fire intervals in subalpine forests. Furthermore, large, intense fires burning under dry conditions are very difficult, if not impossible, to suppress, and such fires account for the majority of area burned in subalpine forests.

Schoennagel et al (2004) states: “Moreover, there is no consistent relationship between time elapsed since the last fire and fuel abundance in subalpine forests, further undermining the idea that years of fire suppression have caused unnatural fuel buildup in this forest zone.”

Schoennagel et al (2004) states: “No evidence suggests that spruce-fir or lodgepole pine forests have experienced substantial shifts in stand structure over recent decades as a result of fire suppression. Overall, variation in climate rather than in fuels appears to exert the largest influence on the size, timing, and severity of fires in subalpine forests [].

We conclude that large, infrequent standreplacing fires are ‘business as usual’ in this forest type, not an artifact of fire suppression.”.

Schoennagel et al (2004) states: “Contrary to popular opinion, previous fire suppression, which was consistently effective from about 1950 through 1972, had only a minimal effect on the large fire event in 1988 []. Reconstruction of historical fires indicates that similar large, high-severity fires also occurred in the early 1700s []. Given the historical range of variability of fire regimes in high-elevation subalpine forests, fire behavior in Yellowstone during 1988, although severe, was neither unusual nor surprising.”

Schoennagel et al (2004), states: “Mechanical fuel reduction in subalpine forests would not represent a restoration treatment but rather a departure from the natural range of variability in stand-structure.”

Schoennagel et al (2004) states: “Given the behavior of fire in Yellowstone in 1988, fuel reduction projects probably

will not substantially reduce the frequency, size, or severity of wildfires under extreme weather conditions.”

Schoennagel et al (2004) states: “The Yellowstone fires in 1988 revealed that variation in fuel conditions, as measured by stand

age and density, had only minimal influence on fire behavior. Therefore, we expect fuel- reduction treatments in high-elevation forests to be generally unsuccessful in reducing fire frequency, severity, and size, given the overriding importance of extreme climate in controlling fire regimes in this zone. Thinning also will not restore subalpine forests, because they were dense historically and have not changed significantly in response to fire suppression. Thus, fuel- reduction efforts in most Rocky Mountain subalpine forests probably would not effectively mitigate the fire hazard, and these efforts may create new ecological problems by moving the forest structure outside the historic range of variability.”

Likewise, Brown et al (2004) states: “At higher elevations, forests of subalpine fir, Engelmann spruce, mountain hemlock, and lodgepole or whitebark pine predominate. These forests also have long fire return intervals and contain a high proportion of fire sensitive trees. At periods

averaging a few hundred years, extreme drought conditions would prime these forests for large, severe fires that would tend to set the forest back to an early successional stage, with a large carry- over of dead trees as a legacy of snags and logs in the re- generating forest natural ecological dynamics are largely preserved because fire suppression has been effective for less

than one natural fire cycle. Thinning for restoration does not appear to be appropriate in these forests. Efforts to manipulate stand structures to reduce fire hazard will not only be of limited effectiveness but may also move systems away from pre-1850 conditions to the detriment of wildlife and watersheds.” “Fuel levels may suggest a high fire ‘hazard’ under conventional assessments, but wildfire risk is typically low in these settings.”

Likewise, Graham et al (2004) states: “Most important, the fire behavior characteristics are strikingly different for cold (for example, lodgepole pine, spruce, subalpine fir), moist (for example, western hemlock, western redcedar, western white pine), and dry forests. Cold and moist forests tend to have long fire- return intervals, but fires that do occur tend to be high- intensity, stand-replacing fires. Dry forests

historically had short intervals between fires, but most important, the fires had low to moderate severity.”

According to Graham et al (2004), thinning may also increase the likelihood of wildfire ignition in the type of forests in this Project area: “The probability of ignition is strongly related to fine fuel moisture content, air temperature, the amount of shading of surface fuels, and the occurrence of an ignition source (human or lightning caused) There is generally a warmer,

dryer microclimate in more open stands (fig. 9) compared to denser stands. Dense stands (canopy cover) tend to provide more shading of fuels, keeping relative humidity higher and air and fuel temperature lower than in more open stands. Thus, dense stands tend to maintain higher surface fuel moisture contents compared to more open stands. More open stands also tend to allow higher wind speeds that tend to dry fuels compared to dense stands. These factors may increase probability of ignition in some open canopy stands compared to dense canopy stands.”

Please see the attached paper by Dr. William Baker titled: “Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?”

Dr. Baker writes: “Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change.”

Dr. Baker concluded: “Dry forests were historically renewed, and will continue to be renewed, by sudden, dramatic, high-intensity fires after centuries of stability and lower-intensity fires.”

The purpose of this project is the need to restore a fire regime to the landscape. Based on Dr. Baker's paper, the proposed action will not meet the purpose and need of the project.

Dr. Baker's paper is the best available science. Please explain why this project is not following the best available science.

Much of the acreage that has burned in the Rockies is higher elevation lodgepole pine and subalpine fir forests that have long fire rotations of hundreds of years and have not been influenced to any great degree by fire suppression.

Furthermore, fuel treatment often enhances fire advancement by increasing the fine fuels (needles, branches, grass growth) on the surface. Plus, opening the forest by thinning can lead to greater drying and wind penetration, both major factors in fire spread.

The advocates for thinning continue to ignore that most large fires around the West, including those in mixed conifer and ponderosa pine, have occurred in lands under "active forest management." That includes the Dixie Fire and Bootleg Fires, which were among the two largest blazes this past summer in California and Oregon.

For instance, 75% of the Bootleg fire, which burned over 400,000 acres, had previously been "treated" by some form of "fuels management" with no discernible effect on fire spread.

There is plenty of proof from numerous fires where active forest management had no apparent effect on fire behavior or fire spread.

A review of 1500 fires across the West found that as a generalization, areas under "active forest management," which includes thinning and prescribed burning, tend to burn at higher severity than lands like wilderness areas where "fuel treatments" are prohibited.

There is an equally strong consensus among scientists that wild-fire is essential to maintain ecologically healthy forests and native biodiversity. This includes large fires and patches of intense fire, which create an abundance of biologically essential standing dead trees (known as snags) and naturally stimulate regeneration of vigorous new stands of forest. These areas of "snag forest habitat" are ecological treasures, not catastrophes, and many native wildlife species, such as the rare black-backed woodpecker, depend on this habitat to survive.

Fire or drought kills trees, which attracts native beetle species that depend on dead or dying trees. Woodpeckers eat the larvae of the beetles and then create nest cavities in the dead trees, because snags are softer than live trees. The male woodpecker creates two or three nest cavities each year, and the female picks the one she likes the best, which creates homes for dozens of other forest wildlife species that need cavities to survive but cannot create their own, such as bluebirds, chickadees, chipmunks, flying squirrels and many others.

[More than 260](#) scientists wrote to Congress in 2015 opposing legislative proposals that would weaken environmental laws and increase logging on National Forests under the guise of curbing wildfires, noting that snag forests are "quite simply some of the best wildlife habitat in forests."

We can no more suppress forest fires during extreme fire weather than we can stand on a ridgeline and fight the wind. It is hubris and folly to even try. Fires slow and stop when the weather changes. It makes far more sense to focus our resources on protecting rural homes and other structures from fire by creating “defensible space” of about 100 feet between houses and forests. This allows fire to serve its essential ecological role while keeping it away from our communities.

What evidence do you have that shows fire has been suppressed in the area?

Please explain why a lack of fire has degraded wildlife habitat.

There is a considerable awareness today regarding the problems of noxious weed infestations on public lands. One activity that is clearly promoting noxious weeds are fuels reduction and prescribed burning projects. We cite only a few examples at this time. One example is a Joint Fire Science Report by Coop and Magee (Undated), where they note that fuels treatments resulted in rapid, large and persistent increases in the frequency, richness and cover of 20 non-native plant species including cheatgrass; exotic plant expansion appeared linked to the disturbance associated with treatment activities, reduction in tree canopy, and alterations to ground cover; exotic species were much more frequently encountered at treated than control sites, occurring at

86% of sample plots in treatments and 51% of untreated sample plots; richness of exotic species in treatments was more than double that of controls. What is also interesting in this study is that cheatgrass showed a negative effect of tree canopy, which means that cheatgrass was benefited by canopy removal. They noted that models for cheatgrass alone and all non-native species together indicate strong negative associations with tree canopies, indicating that increased light availability, or perhaps below-ground resources such as moisture or nitrogen, enhance colonization and growth in treatments. Increases in exotic plant species in treatment areas was one of the reasons these researchers concluded that managers need to be cautious about implementing treatments in light of the persistent, negative ecological impacts that accompany woodland thinning this includes an increase in fire frequency.

REMEDY

Withdraw the EA/FONSI and DDN and write an EIS that fully complies with the law or choose the No Action Alternative.

Sincerely yours,

/s/

Mike Garrity

Executive Director

Alliance for the Wild Rockies

P.O. Box 505
Helena, MT 59624

And for
Sara Johnson,

Director Native Ecosystems Council
PO Box 125

Willow Creek, MT 59760

And for

Jeff Juel
Forest Policy Director
Friends of the Clearwater
509-688-5956
jeffjuel@wildrockies.org
<https://www.friendsoftheclearwater.org>

And for

Steve Kelly

Council on Wildlife and Fish

P.O. Box 4641
Bozeman, MT 59772

And for

Kristine Akland
Center for Biological Diversity

P.O. Box 7274 Missoula, MT 59807

kakland@biologicaldiversity.org