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Abstract

Protecting the climate system requires urgently reducing carbon emissions to

the atmosphere and increasing cumulative carbon stocks in natural systems.

Recent studies confirm that large trees accumulate and store a disproportion-

ate share of aboveground forest carbon. In the temperate forests of the western

United States, a century of intensive logging drastically reduced large-trees and

older forest, but some large trees remain. However, recent changes to large tree

management policy on National Forest lands east of the Cascade Mountains

crest in Oregon and southeastern Washington allows increased harvesting of

large-diameter trees (≥53 cm or 21 inches) that account for just 3% of all stems,

but hold 42% of total aboveground carbon. In this article, we describe synergies

with protecting large trees for climate mitigation, biodiversity, and forest resil-

ience goals to shift species composition, reduce fuel loads and stem density,

and adapt to climatically driven increases in fire activity in eastern Oregon.
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1 | INTRODUCTION

Society has a narrow window of opportunity left to avert
catastrophic consequences from the intertwined climate
and biodiversity crises (IPCC, 2022), and forests offer
major solutions at the intersection of these urgent imper-
atives. Forests account for 92% of all terrestrial biomass
globally (Pan et al., 2013), store about 45% of the total
organic carbon on land in their biomass and soils
(Bonan, 2008), and removed the equivalent of about 30%
of fossil fuel emissions annually from 2009 to 2018, of
which 44% was by temperate forests (Friedlingstein
et al., 2019). Moreover, forests provide critical habitats to

more than half of all known plant and animal species on
Earth (Gibson et al., 2011; Vié et al., 2009). As climate
change increases and accelerates amplifying feedbacks,
preserving species- and carbon-rich forests becomes ever
more important, alongside a rapid transition to net-zero
fossil fuel CO2 emissions (Matthews et al., 2022).

Forests of the western US contain large stocks of car-
bon and remove significant quantities of CO2 from the
atmosphere to help protect climate, biodiversity, and
water security (Buotte et al., 2020; Law et al., 2021). But
how we manage these forests will play a large role in
determining future outcomes (Fargione et al., 2018;
Hudiburg et al., 2009; Law et al., 2018). Oregon stands
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out with the most forested area in the western USA, yet
the lowest proportion of its forests protected (Law
et al., 2021), and significant opportunities to create strate-
gic forest reserves (Law, Berner, et al., 2022). About 80%
of tree mortality in Oregon and Washington is attributed
to harvest (Berner et al., 2017). In this article we provide
insights from a recent study that quantified large tree
carbon stocks in diverse forests of eastern Oregon
(Mildrexler et al., 2020), and describe synergies with
protecting disproportionately valuable large trees for
biodiversity and climate mitigation, and forest resil-
ience goals.

2 | LARGE TREES DOMINATE
ABOVEGROUND CARBON STORAGE

Trees capture and store massive amounts of carbon, thus
forests are an essential component of limiting global
warming to 1.5–2�C (IPCC, 2018). However, trees are not
all equal in their capacity to slow climate change in the
coming critical decades. Large trees play an inordinately
large role in removing carbon from the atmosphere and
storing it in long-lived tissues (Figure 1; Lutz et al., 2012;
Leverett et al., 2021). Globally, studies have found that
about half the aboveground carbon is concentrated in a
small proportion of large trees (1%–5% of total stems)
(Lutz et al., 2018; McNicol et al., 2018). Because most
global forests are well below their potential carbon stocks
due to past and current land management practices, they
could store twice the carbon than now (Erb et al., 2018).
As large trees grow larger, small increases in diameter
add a relatively large amount of volume and biomass
(Mildrexler et al., 2020; Stephenson et al., 2014). Protect-
ing existing forests with large trees and letting more for-
ests mature and develop additional large trees is crucial
for preventing carbon emissions and for continued

accumulation of carbon from the atmosphere in the com-
ing decades (Birdsey et al., 2023; Law, Moomaw,
et al., 2022; Moomaw et al., 2019).

2.1 | The 21-inch rule and carbon stocks

Forests in eastern Oregon and southeastern Washington
are recovering from a century of intensive logging that
eliminated much of the region's large trees by selective
harvest of the largest, most robust trees including clear-
cutting older forests. Nevertheless, the United States For-
est Service (USFS) recently weakened protection for trees
21 inches diameter at breast height (DBH) and larger
(“21-inch rule”) across six national forests in this region.
The 21-inch rule specifically applied to large-diameter
trees on millions of acres of federal public lands. To
assess the consequences of the loss of these trees it is
essential to quantify large tree carbon stocks prior to
changes in management actions. Mildrexler et al. (2020)
evaluated carbon storage in large-diameter trees across
the six national forests located east of the Cascade Crest
in Oregon and Washington (“eastside forests”) (Figure 2).
Specifically, we quantified the relative contribution of
large trees (≥21 inches DBH) to aboveground carbon
(AGC) storage based on analysis of 636,520 trees on 3335
USFS Forest Inventory & Analysis (FIA) plots, and also
assessed the carbon implications of relaxing the 21-inch
rule. In these forests, large trees compose a small fraction
of total stems (2.0% to 3.7% of all stems among five domi-
nant tree species) yet hold 33% to 46% of total AGC stored
by each species (Figure 3). The very largest trees, >30
inches DBH, held an even greater proportion of carbon
(16.6%) relative to their small numbers (0.6%) demon-
strating the importance of letting large trees grow larger
and accumulate more carbon. Our research contributes
to growing recognition that forests with large trees play a

FIGURE 1 Large-diameter grand

fir (Abies grandis) in a mesic, mixed-

conifer forest of northeast Oregon.

These carbon-rich forests have a large

cooling effect on maximum

temperatures, provide thermal refugia

for biodiversity including sensitive

species, and are a high priority for

protection. Large grand fir form the best

hollow trees for wildlife (Rose

et al., 2001).
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very important role in climate mitigation now and in the
near future (Lutz et al., 2018; Stephenson et al., 2014).

2.2 | A wildlife protection measure with
a crucial carbon co-benefit

The 21-inch rule was implemented in the early 1990s as a
habitat and species protection measure to recover large

tree structure and to protect remaining late successional and
old-growth forest and associated species (e.g., American
Marten, Northern Goshawk) (Bull et al., 2005; Bull &
Hohmann, 1994; Henjum et al., 1994), similar to the North-
west Forest Plan (NWFP) that was implemented to ensure
persistence of old-growth forest species and their habitat in
the western portion of the region (FEMAT, 1993). The
NWFP resulted in a strong carbon benefit for climate mitiga-
tion, in addition to protecting sensitive species and riparian

FIGURE 2 Forest and climatic diversity across the state of Oregon. (a) Extent of National Forests in Eastern Oregon. (Note a small

portion of southeastern Washington included in our original study is not shown in this figure). (b) Distribution of forest groups. (c) Mean

annual total precipitation from 1981 to 2010. (d) Mean annual maximum land surface temperature [LSTmax] from 2003 to 2020. Data

sources include forest groups from Ruefenacht et al. (2008), precipitation climatology from Daly et al. (2008), and annual LSTmax derived

using MODIS Aqua satellite data from Wan (2014).
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systems (Turner et al., 2011). Mildrexler et al. (2020) showed
that carbon storage associated with the 21-inch rule on the
six eastside national forests is a significant co-benefit of this
protective measure (Pörtner et al., 2021).

Detailed analysis of stand structure and carbon impacts
is essential for science-based decision-making about large-
tree forest management policies because such policies affect
many different values and services provided by forests
(Davis et al., 2019; Teich et al., 2022), including conse-
quences on greenhouse gas emissions and for increasing
atmospheric carbon removal and accumulation in forests
(Fargione et al., 2018; Griscom et al., 2017). Moreover, large
live trees eventually create large-diameter snags and
downed wood that continue to store carbon for decades and
contribute directly to biodiversity by providing unique spe-
cialized habitats such as hollow trees and logs, and micro-
environments (Lutz et al., 2021; Rose et al., 2001). However,
the USFS General Technical Report on the 21-inch rule did
not assess large tree carbon stocks (Hessburg et al., 2020),
even though storage and accumulation of carbon in forests
is an increasing priority in National Forests (Depro
et al., 2008; Dilling et al., 2013; Dugan et al., 2017). Conse-
quently, quantitative assessments of management effects on
both forest carbon and biodiversity are important, including
assessment of the effects of long-standing rules before they
are eliminated or weakened (Mildrexler et al., 2020).

The 21-inch rule has since been amended. Grand fir
(DBH ≥53 cm and <150 years) has lost protections in
stands not designated as Late and Old Structure, and pro-
tections for all tree species have been significantly weak-
ened from a standard to a guideline (USDA, 2021). This
represents a major shift in management of large trees
across the region, highlighting escalating tradeoffs
between goals for carbon sequestration to mitigate cli-
mate change, and efforts to increase the pace, scale, and
intensity of cutting across national forest lands. The
potential impacts of removal of large grand fir on wildfire

are unclear, although a trait-based approach to assess fire
resistance found that the grand fir forest type had the sec-
ond highest fire resistance score, and one of the lowest
fire severity values among forest types of the Inland
Northwest USA (Moris et al., 2022).

3 | ARE LARGE GRAND FIR
OUTCOMPETING LARGE
PONDEROSA PINE AND LARCH?

The key rationale for amending the 21-inch rule is that
increased cutting of large-diameter fir trees (≥53 cm
DBH and <150 years) is needed to facilitate the conserva-
tion and recruitment of early-seral, shade-intolerant old
ponderosa pine (Pinus ponderosa) and western larch
(Larix occidentalis) by reducing competition from shade-
tolerant large grand fir (Abies grandis) (USDA, 2021). Pre-
vious studies have looked at tree age-size relationships
(Merschel et al., 2019; Perry et al., 2004), large tree num-
bers, and changes in basal area (Hessburg et al., 2022),
but there has been no spatial analysis of close-range co-
mingling of large-diameter tree species across the six
national forests covered by the 21-inch rule. This is an
important consideration because the competitive interac-
tion among large-diameter trees, and their protection
under the 21-inch rule, should not be conflated with
small tree dynamics and common dry forest restoration
strategies to reduce small tree density and favor retention
of early-seral species.

We therefore examined how often large trees (≥53 cm
DBH) of these species co-mingle on USFS FIA plots
(�1 acre) across the same six eastside national forests
where we previously examined carbon storage by large
trees (Mildrexler et al., 2020). Drawing on the same USFS
FIA measurements as our prior study, we found that large
ponderosa pine, grand fir, and western larch were present

FIGURE 3 Percentage of

all tree stems above and below

the 21-inch DBH threshold and

their total aboveground carbon

(AGC) stores overall, and for

five dominant tree species,

evaluated based on

measurements from USFS

inventory plots located in the six

eastside national forests.
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on 56%, 18%, and 7% of all plots (n = 3335). Large ponder-
osa pine co-mingle with large grand fir about 14% of the
time (259 plots), leaving 86% of plots with large ponderosa
pine without large grand fir (1616 plots). Similarly, large
western larch co-mingle with large grand fir about 56% of
the time. Large ponderosa pine and grand fir are found
together on only 8% of all plots in the region, while large
larch and grand fir are found together on only 4% of all
plots in the region. In other words, large ponderosa pine
are by far the most common tree species found in these six
National Forests and infrequently co-mingle with large
grand fir at the FIA plot scale, whereas large western larch
are far less common and co-mingle with large grand fir
about half the time, which is expected since these species
occupy similar environmental settings that receive more
moisture (Table 1, Johnson & Clausnitzer, 1992).

The relative prevalence of large ponderosa pine in
eastside forests is good for climate resilience given that
large-diameter pines are exceptionally drought and fire-
resistant trees (Irvine et al., 2004; Irvine et al., 2007). In
the drought-prone region of central Oregon, mature and
old ponderosa pine forests had 60% to 85% higher sea-
sonal gross photosynthesis than a young forest (Irvine
et al., 2004). Large ponderosa pine trees experienced only
34% mortality in moderate severity fire, and accounted
for 91% of post-fire stemwood production, while small
trees experienced 82% mortality (Irvine et al., 2007).

Across the entirety of all six national forests large grand
fir represent 2% of the total species population, a proportion
slightly lower, but roughly on par with other dominant spe-
cies (Figure 3, Mildrexler et al., 2020). It is not uncommon
for grand fir to reach 250 to 300 years of age (Howard &
Aleksoff, 2000). Thus, large grand fir ≥53 cm DBH and
<150 years of age can continue growing and play an impor-
tant role in storing and accumulating carbon from the
atmosphere to help abate the climate crisis.

Synergy: Enhancing forest resilience does not necessi-
tate widespread cutting of any large-diameter tree spe-
cies. Favoring early-seral species can be achieved with a

focus on smaller trees and restoring surface fire, while
retaining the existing large tree population.

4 | LARGE TREES,
VULNERABILITY, STAND
DYNAMICS, AND THE CARBON
COST OF THINNING

As eastside forests recover from a century of intensive
logging, it is important to distinguish between the shift of
AGC stocks into small-diameter, fire-sensitive trees and
the retention of a small fraction of the largest more fire-
resistant trees that store disproportionately massive
amounts of carbon. Small tree carbon stores are relatively
unstable and at risk of loss to fire and drought, whereas
large tree carbon stores are relatively stable and resistant
(Hurteau et al., 2019). Physiological-based studies in pon-
derosa pine forests of Oregon have found that small trees
are most vulnerable during drought relative to mature
trees that have reached full root, bark and canopy devel-
opment and respond to climate variability better than
smaller trees (Domec et al., 2004; Irvine et al., 2004;
Vickers et al., 2012). Buotte et al. (2019, 2020) identified
forests in the western U.S. with high potential carbon
accumulation and low vulnerability to future drought
and fire using the Community Land Model and two cli-
mate models with high CO2 emissions (RCP8.5), and
species-specific traits capturing sensitivity of different
species to water limitations and to drought and fire. The
Eastern Cascades and Blue Mountains contain substan-
tial area with opportunity to enhance forest carbon in
large trees (Buotte et al., 2020; Law et al., 2018).

In dry forests historically maintained by a frequent, low-
severity fire regime, the priority ought to be restoring the
process of periodic surface fire. Prescribed fires create land-
scape heterogeneity, reduce surface and ladder fuels, lower
stand density, and confer drought resistance to surviving
trees (Knapp & Keeley, 2006; van Mantgem et al., 2016). In

TABLE 1 Coverage, mean annual precipitation from 1981 to 2010, and mean annual maximum land surface temperature from 2003 to

2020 for the major FTG's within the six national forests, standard deviations in parenthesis (excludes lands in Washington and Idaho).

Forest type group Area (km2)

Mean annual precipitation Mean annual maximum LST

mm in �C �F

Douglas-fir 2372 679.9 (187.3) 26.8 (7.4) 37.8 (3.5) 100.1 (6.3)

Fir/Spruce/Hemlock 12,224 974.3 (369.5) 38.4 (14.5) 33.2 (2.8) 91.8 (5.0)

Lodgepole pine 3573 822.0 (274.6) 32.4 (10.8) 37.2 (3.8) 99.0 (6.8)

Pinyon/Juniper 634 329.5 (96.0) 13.0 (3.8) 50.4 (3.7) 122.7 (6.6)

Ponderosa pine 18,514 548.3 (139.2) 21.6 (5.5) 39.8 (3.5) 103.6 (6.3)

Western larch 47 746.9 (78.9) 29.4 (3.1) 31.5 (2.4) 88.7 (4.3)
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these forests prescribed fire can modulate future fire activity
(Schoennagel et al., 2017), and favor early-seral species such
as ponderosa pine, western larch and Douglas-fir. Large trees
of these species and grand fir are resilient to prescribed fire
because they have attained the thick bark that provides resis-
tance to low- and moderate-severity fire (Howard &
Aleksoff, 2000; Pellegrini et al., 2017).

Thinning also has an inherent carbon cost that increases
as larger trees are harvested, thereby putting thinning of
larger trees in conflict with carbon goals because it takes so
long to replace the harvested biomass (James et al., 2018;
Law & Harmon, 2011). The underlying principle for these
losses is the negative relationship between harvest intensity
and forest carbon stocks whereby as harvest intensity
increases, forest carbon stocks decrease and emissions
increase (Hudiburg et al., 2009; Mitchell et al., 2009; Simard
et al., 2020). Claims that carbon stores will be “stabilized” by
increasing harvest of large-diameter trees that store and
accumulate the most carbon (Johnston et al., 2021) are
inconsistent with basic science on thinning (Zhou
et al., 2013) and the carbon cycle (Campbell et al., 2012; Law
et al., 2018). These claims ignore the large amounts of CO2

rapidly released to the atmosphere following harvest
(Hudiburg et al., 2019), and that large trees cannot be
replaced in short timeframes. It can take centuries to reaccu-
mulate forest carbon stocks reduced by harvest of large trees
(Birdsey et al., 2006).

Even thinning smaller trees involves substantial carbon
tradeoffs in the short term, a 30%–40% reduction in live tree
carbon stores in some forests (Krofcheck et al., 2017; North
et al., 2009). To minimize reductions in carbon stocks and
emissions, focus on removing smaller-sized trees, restoring
surface fire, and managed wildfire in favorable weather
conditions (Mitchell et al., 2009; Stenzel et al., 2021).

Synergy: Small trees are more relevant to drought and
fire vulnerability and store less carbon, whereas large
trees are more resilient to fire and drought and are the
highest priority for keeping carbon in the forest.

5 | DIVERSE CLIMATE REGIMES
AND FOREST TYPES REDUCE
CLIMATIC EXTREMES

It is critical to accurately represent the diversity of climatic
regimes and forest types in decisions affecting large tree
management because large trees play unique roles in ecosys-
tem water and energy cycles, and these biophysical effects
can promote local climate stability by reducing extreme tem-
peratures in all seasons and times of day (Lawrence
et al., 2022). Forest modulation of summer maximum tem-
perature is especially powerful (Mildrexler et al., 2018) and
can partly offset the projected increases in temperature due

to anthropogenic climate change (de Frenne et al., 2019).
With heatwave frequency and severity projected to increase,
the capacity of forests to buffer against temperature
extremes and provide refugia is increasingly recognized as
important to sustaining biodiversity in a warming world
(Davis et al., 2019; de Frenne et al., 2019).

The six eastside national forests affected by the 21-inch
rule cover a region of pronounced geographic and climatic
variation and associated forest types (Figure 2; Johnson &
Clausnitzer, 1992; Wyatt, 2017). Mean annual precipitation
varied from 484 to 571 mm per year on the Ochoco and
Malheur National Forests, to �800 mm per year on the
Deschutes, Umatilla and Wallowa Whitman National For-
ests (Mildrexler et al., 2020). We further examined the cli-
matic regimes of the major forest types across the six
national forests using satellite-based annual maximum land
surface temperature (LSTmax) and mean annual precipita-
tion datasets (Figure 2D, Table 1). Our analysis shows that
ponderosa pine and fir/spruce/hemlock types cover the
largest area on the six national forests. The fir/spruce/
hemlock type received the most total precipitation
(�974 mm yr�1) and had the second lowest annual
LSTmax (33.2�C). Average LSTmax for the fir/spruce/hem-
lock type was 6.6�C (�12 �F) cooler than ponderosa pine
(39.8�C), and 4.6�C (�8 �F) cooler than Douglas-fir
(37.8�C). The pinyon juniper type had the lowest total pre-
cipitation (329 mm yr�1) and highest annual LSTmax

(50.4�C) due to low canopy cover and heating of the dry
surface during summer. These results show the region's
pronounced variability in hydrologic and forest thermal
regimes and highlight the thermal offsetting capacity of
closed-canopied mesic forest systems. These valuable eco-
system services can be severely degraded by industrial log-
ging (Lindenmayer et al., 2009).

Synergy: Mature and old mesic forests are a high pri-
ority for protection, provide crucial biophysical benefits
on climate, including a large cooling effect on maximum
temperatures regulating climate extremes and protecting
biodiversity. Large grand fir is essential to this ecology.

6 | CONCLUSIONS

The 21-inch rule is an excellent example of a policy initiated
for wildlife and habitat protection that has also provided
significant climate mitigation values across extensive forests
of the PNW Region. The rule resulted in a valuable resource
of large-diameter trees in a landscape that remains below
historical levels for large live trees and large snags due to
historical logging (Bell et al., 2021). We have described
synergies between protecting these disproportionately
valuable large trees and forest resilience goals, providing
common potential solutions for these urgent challenges.
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Inland PNW forests can make a significant contri-
bution to climate mitigation goals by protecting and
enhancing carbon stores in large trees that accumulate
and store the most carbon and are much more resis-
tant to fire and drought than small trees, even when
the current status of ecosystems has changed from his-
torical baselines. Climate science makes clear that we
do not have time to wait for regrowth after logging
to accomplish these important ecosystem services
(IPCC, 2022).
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