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Abstract: The spatial pattern of forest fire locations is important in the study of the dynamics of fire
disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects
of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported
between 1970 and 2002 in the Missouri Ozark Highland forests, where more than 90% of fires are human-
caused. We used the AIC (Akaike information criterion) method to select an appropriate inhomogeneous Poisson
process model to best fit to the data. The fitted model was diagnosed using residual analysis as well. Our results
showed that fire locations were spatially clustered, and high fire occurrence probability was found in areas that
(1) were public land, (2) within 6 km to 17 km of municipalities, and (3) �500 m from roads where forests are
accessible to humans. In addition, fire occurrence probability was higher in pine-oak forests on moderate (�25
degree) slopes and xeric aspects and at higher (�270 m) elevations, reflecting the effects of natural factors on
fire occurrence. The results serve as a provisional hypothesis for expanding fire risk estimation to surrounding
areas. The spatial scale of analysis (approximately 1 ha) provides new information to guide planning and risk
reduction efforts. FOR. SCI. 53(1):1–15.
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THE SPATIAL PATTERN of fire occurrence is a major
focus in the study of the dynamics of forest fire
and its role in determining landscape structure

and vegetation community composition (Turner and
Romme 1994, Guyette et al. 2002, Ryan 2002, Larjavaara
et al. 2005, Mermoz et al. 2005). Although there is an
inherent stochasticity in fire occurrence, there are many
biotic and abiotic factors that affect where forest fires
occur. Many studies have found that fuel characteristics
(type, loading, moisture, and inflammability) and topog-
raphy (elevation, slope, and aspect) are prominent factors
in shaping spatial patterns of natural-caused fires (e.g.,
Kushla and Ripple 1997, Diaz-Avalos et al. 2001,
Latham and Williams 2001, Wotton and Martell 2005).
However, the effects of these factors on fire occurrences
can vary among ecosystems and across spatial and tem-
poral scales. For example, Tanskanen et al. (2005)
showed that differences in the moisture regime of surface
fuels between stands of different age classes dominated
by Picea abies (L.) Karst. or Pinus sylvestris L. can result
in significantly different ignition conditions in boreal
forests of southern Finland. Contrarily, Moritz et al.
(2004) analyzed several hundred wildfires over a broad
expanse of California shrub lands, and their results re-
vealed that there was generally not a strong relationship
between fuel age and fire probabilities in their study area.
These apparently contradictory results suggest that fire
occurrence is a complex process in which fuel character-

istics and abiotic factors cannot provide the full
explanation.

Fire ecologists and historians have found that fire
regimes of many forest ecosystems are anthropogenic and
shaped largely by human settlement and management
(e.g., Veblen et al. 1999, Guyette et al. 2002, Bergeron et
al. 2004, Hessburg et al. 2005). They have identified,
mainly using dendrochronology, temporal stages (e.g.,
pre-European-settlement and modern eras) of fire re-
gimes related to human population density levels and
shifting cultural behaviors. There are usually more hu-
man-caused fires than natural-caused fires in modern fire
regimes. For example, lightning-caused fires contribute
only 35% of the fires reported in the boreal forest of
Canada (Weber and Stocks 1998), and less than 1% of the
fires reported in Missouri between 1970 and 1989 (Wes-
tin 1992).

Despite of the prevalence of human-caused fires in
modern fire regimes, only a few researchers have sought
to assess human factors influencing wildfires (e.g., Dono-
ghue and Main 1985, Cardille et al. 2001, Prestemon and
Butry 2005). Humans directly influence fire regimes both
by igniting fires and by suppressing the spread of those
fires (Sturtevant et al. 2004). Studies have shown that
socioeconomic variables reflecting land use, fuel man-
agement, law enforcement, and human access are signif-
icant predictors of human-caused wildfires, and wildfires
caused by different reasons respond differently to these
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factors (Prestemon et al. 2002, Mercer and Prestemon
2005). Most of these studies focused on the temporal
pattern of daily fire ignition counts at a broad spatial
scale. For example, Butry and Prestemon (2005) evalu-
ated the spatio-temporal pattern of wildland arson igni-
tion counts at a daily temporal scale and a spatial scale
related to US census tracts. These broad spatial scale
analyses hold promise for aggregate fire risk assessment,
but modeling at finer scales is also needed to improve our
understanding of spatial variation in human-caused fires
(Prestemon et al. 2002).

The growing body of contemporary data about where,
when, and how individual fires occur provides new oppor-
tunities to study the spatial pattern of fire occurrence in
landscapes at spatial scales ranging from square kilometers
to hectares in resolution. Spatial point pattern (SPP) data
analysis can be useful in modeling the spatial pattern of fire
ignition locations. SPP data are a set of event locations,
often referred to as a point pattern. Point pattern and marked
point pattern analysis methods have been previously used in
forestry, particularly for describing the variability of forest
stands in which the “points” are tree locations and the
“marks” are tree characteristics such as tree species and dbh
(e.g., Larsen and Bliss 1998, Stoyan and Penttinen 2000,
Kokkila et al. 2002). Few researchers (e.g., Podur et al.
2003, Genton et al. 2006) have applied SPP in characteriz-
ing the spatial clustering pattern of forest fire occurrences
by using the K function, L function, and kernel intensity
estimation. The nonparametric statistics they used were
exploratory and offered limited power for spatially specific
inferences. However, recent theoretical development within
the realm of SPP, such as the provision of formal likeli-
hood-based methods of inference for a wide range of mod-
els, provides tools for statistically rigorous modeling of
spatial patterns of fire occurrence.

In this study we used both nonparametric and para-
metric statistical analysis to describe and model spatial
point patterns of fire occurrences over a long modern
period for a landscape in the Missouri Ozark Highlands.
We considered both human-caused and lighting-caused
wildfires reported between 1970 and 2002. The primary
objectives of our study were to (1) characterize spatial
point patterns exhibited in the fire occurrence data, (2)
model the human-caused fire occurrence process with the
consideration of both environmental heterogeneity (in-
cluding human effects) and interactions with neighboring
fire occurrences (if there are any), (3) estimate the spatial
distribution of fire occurrence probability, and (4) deter-
mine how specific spatial covariates contribute to the
probability of fire occurrence.

Study Area and Fire Occurrence Data

The study area, located in the Missouri Ozark High-
lands, is about 1,287 km2 in size (Figure 1). The geo-
graphical bounding coordinates are: 91.5°W, 91.1°W,
37.0°N, and 36.7°N. A large proportion (86%) of the
study area is forested, and 71% of the area is in the Mark
Twain National Forest. White oak (Quercus alba L.),

post oak (Quercus stellata Wangenh.), black oak (Quer-
cus velutina Lam.), and shortleaf pine (Pinus echinata
Mill.) are the dominant tree species. Topographic varia-
tion is high, with elevations averaging 260 m and ranging
from 140 m to 350 m. The Eleven Point River crosses the
study area, and the landscape is dissected by a dense
stream network creating ridges and valleys, some with
steep slopes. There were 1,299 fires reported to either the
Mark Twain National Forest or the Missouri Department
of Conservation (MDC) in the study area between 1970
and 2002. Only 16 (1.2%) of the fires were caused by
lightning, 970 (74.7%) fires were caused by arson (in-
cluding grudge fire and pyromania), and the others were
accidental fires caused by escaped campfires, railroads,
smoking, debris-burning, or for unspecified (unknown)
reasons. The annual temporal variations of fire counts
across different ignition sources are shown in Figure 2.
The years 1976 and 1986 – 88 were the worst fire years
and strongly correlated with dry climate (Patrick Guinan,
Missouri State Climatologist, personal communication,
Apr. 24, 2006). For our research objectives, we studied
only aggregated spatial patterns over the three-decade
period.

Methods

The overall modeling approach is shown in Figure 3.
Reported fire ignition (origin) locations, which were geo-
graphically referenced using the UTM (Universal Trans-
verse Mercator) coordinate system, and spatial covariates
such as roadways, land cover, and topography were mapped
and processed using a GIS. Nonparametric spatial statistics
such as kernel intensity estimation and Ripley’s K function
were calculated to characterize spatial patterns (e.g., clus-
tering or regularity) within the fire occurrence data. The fire
occurrence process was then modeled as an inhomogeneous
Poisson process. That is, we assumed there were no inter-
actions with neighboring fire occurrences (i.e., having a fire
in one location did not affect the chance of fire occurrence
in the neighboring area), and spatial patterns of fire occur-
rence resulted solely from the effects of environmental
heterogeneity in the landscape. We considered a wide range
of inhomogeneous Poisson models that include different
sets of spatial covariates (with transformation) and used
residual analysis and AIC methods to select a best model to
fit the data. A maximum pseudolikelihood method was used
to estimate coefficients of each candidate model. Finally,
the assumption of an inhomogeneous Poisson process was
tested by calculating the generalized K function for the
best-fit model.

Guiding Hypotheses

Because most fires in this area are human-caused and
spatial distribution of roadways determines the human ac-
cess to forests, we hypothesized that locations close to roads
should have a higher probability of human-caused fires. We
obtained the digital roadway coverage published by the
Missouri Department of Transportation (MoDOT) in 2004.
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The data layer contains all US highways, state highways
(Missouri numbered routes and Missouri lettered routes),
county roads, and city streets. The spatial accuracy is �3 m.
We calculated the proximity to roads as a measure of human
accessibility. This was done by calculating the Euclidean
distance from each cell (30-m resolution) to the nearest road
(Figure 1), a function provided in the ArcGIS Spatial An-
alyst tool.

The area consists of three different ownership groups: (1)
the land outside the MTNF (Mark Twain National Forest)
purchase unit boundary (14%), (2) private land within the
MTNF purchase unit (25%), and (3) public land within the

MTNF purchase unit (61%). We believed that ownership
would affect firefighting and arson behaviors and influence
the spatial pattern of fire locations. The polygon coverage of
ownership data for this region published by MSDIS (Mis-
souri Spatial Data Information Service) was converted into
a grid (60-m resolution) and used as a categorical spatial
covariate.

Our study area is one of the most rural places in
Missouri. The mean human population density calculated
from 2000 census block-level data is about 4.0/km2, the
median is only about 1.5/km2, and the 95th percentile is
still less than 15/km2. Although the population density in

Figure 1. Study area with reported fire locations, roadway coverage, and proximity to roads. Major roads include US
highways 60 and 160, numbered state highways 19 and 99, and lettered county highways (e.g., route K). The three towns
(Alton, Birch Tree, and Winona) are located in the boundary of the study area. The Irish wilderness is located in the
southeast of the study area.
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most of our study area is relatively low and exhibits little
spatial variation, we still included it as a potentially
important factor expressing the ubiquitous effects of hu-
man population.

We also believed that the three towns located in our
study area affected the spatial pattern of human-caused
fires by providing potential arsonists to the nearby forest.
We used proximity to the nearest towns (population is
about 700, 600, and 1,300 for the three nearby towns
Alton, Birch Tree, and Winona, respectively) as one
human factor in the analysis. The proximity of a town
could also influence fire detection and fire suppression
efficiency.

Land cover was also hypothesized to be an important
determinant of fire occurrence because different forest types
can be related to different fuel types. We used a 30-m
resolution grid of the land cover of the state of Missouri
published by the Missouri Resources Assessment Partner-
ship (MoRAP) in 1999. This data set is an amalgam of
classified Landsat Thematic Mapper (Landsat TM) satellite
image data ranging from 1991 to 1993. There are 12 classes
of land cover in our study area, and we aggregated them into
four classes (Table 1) because some land cover classes (e.g.,
open water, urban impervious) were rare in the study area.
The land cover within the study area was assumed to be
constant between 1970 and 2002.

We hypothesized that topography helps to determine the
likelihood of fire occurrence because it can influence fuel
loading and moisture and limit human accessibility. We
used a 60-m resolution grid of digital elevation model
(DEM) data published by MSDIS in 1999. The slope and
aspect were calculated from the DEM data using the surface
analysis provided in the ArcGIS Spatial Analyst tool. Later
in our model selection process, the calculated aspect azi-
muth was further transformed into three aspect categories:

mesic for low potential solar insolation (NE, NW, N, and
E), xeric for high potential solar insolation (SW, SE, S, and
W), and flat.

Characterizing Spatial Point Patterns

We began by computing nonparametric statistics K func-
tion and the kernel smoothed intensity function to charac-
terize the spatial structure of the fire occurrence point data.
A spatial point pattern is a data set x � {x1, . . . , xn}, with
n points observed in a bounded region D of the plane R2.
The pattern is often the result of a mixture of both first-or-
der and second-order effects. First-order effects are related
to variation in the mean value of the spatial process, which
is a global spatial trend. Second-order (local) effects result
from the spatial correlation structure or the spatial depen-
dence in the process (Bailey and Gatrell 1995). The first-
order properties in spatial point pattern data are described
by the intensity function �(u), which is the mean number of
events per unit area at the point u. For a general location s
and the given data x in the region, the kernel-smoothed
intensity at s is estimated by

�̂b�s� �
1

Cb�s�
�
i�1

n

Kib �s � xi�.

where Kb( ) is a kernel with band b � 0, and Cb( ) is an edge
correction factor (Diggle 2003).

The second-order properties of a spatial point pattern can
be characterized by Ripley’s K function. It is defined as

k�h� �

[mean number of events
within the lag distance h

of an arbitrary event]
��.

The K function is widely used to describe the small-scale

Figure 2. The annual temporal variation of fire counts.
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Table 1. Land cover classes from the Missouri Resources Assessment Partnership data and the aggregated
classes used in the analysis

Land cover class Percentage Aggregated class

Urban impervious 0.09 Urban
Urban vegetated 0.10
Barren or sparsely vegetated 0.03
Grown crops 0.01
Glade complex 0.10
Open water 0.04
Cool-season grassland 15.42 Grassland
Eastern redcedar-deciduous forest/woodland 2.02 Deciduous
Deciduous woodland 3.32
Upland deciduous forest 51.91
Shortleaf pine-oak forest/woodland 16.77 Pine-oak
Shortleaf pine forest/woodland 10.19
Sum 100

Figure 3. The flow chart of the overall modeling approach. Each rectangle stands for a specific procedure, and each
rounded rectangle stands for the method used in the corresponding procedure.
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spatial correlation structure of a point pattern. The estimate
of K is usually compared to the true value of K for the null
model of complete spatial randomness (CSR), which is
K(h) � �h2. Deviations between the empirical and theoret-
ical K curves may suggest spatial clustering or spatial reg-
ularity: for a regular pattern K(h) � �h2, whereas under
clustering K(h) � �h2 (Bailey and Gatrell 1995). Edge
effects (i.e., a circle centered at the point too close to the
boundary to be evaluated without a bias) can be mitigated
by edge-correction methods (Diggle 2003). We also used
the clustering index (CI) proposed by Genton et al. (2006)
to measure the overall amount of clustering across various
lag distances. The CI is defined as

CI�h� � �
0

h ��K�h�/� � h� dh.

A larger CI indicates a higher degree of clustering.

Spatial Point Process Modeling

A spatial point process (e.g., Poisson, Cox, and
Strauss process) is any stochastic mechanism that gener-
ates the spatial point pattern x. The point process models
fitted to the data are often formulated in terms of their
Papangelou conditional intensity ��(u; x), which may be
loosely interpreted as the conditional probability of hav-
ing an event at point u given that the rest of the point
process coincides with x (Baddeley and Turner 2000).
For the Poisson process, the conditional intensity func-
tion is the same as the intensity function �(u; x) � �(u)
because of the independence properties of the Poisson
process. In practice, the conditional intensity is often
specified through a log-linear regression model with two
components:

log ���u; x� � �1B�u� � �2C�u, x), (1)

where � � (�1, �2) are parameters that can be estimated
using the maximum pseudolikelihood method (Baddeley
and Turner 2000).

The trend term B(u) depends only on the spatial location
u, so it represents spatial trend or spatial covariate effects.
The interaction term C(u, x) depends on not only the point
u, but also the configuration of x, hence it represents sto-
chastic interactions between the points. The term C(u, x) is
reduced to zero for the Poisson process.

Residual Analysis

Residual analysis for spatial point processes, recently
formulated by Baddeley et al. (2005), is considered a
milestone in the development of point pattern statistics in
that it provides an excellent technique for determining
the need for model refinement or for diagnosing the
quality of the model-fitting for spatial point processes in
a statistically rigorous way. The method provides various
innovation measures and residual measures, which are
analogous to the errors and residuals in nonspatial linear
models. For example, the Pearson residual measure for

any subregion B, defined as

R�B, �̂� � �
xi�x�B

1

��̂�xi; x�
� �

B

��̂�u; x� du,

is analogous to the usual Pearson residuals for linear
models in that the variance is standardized, ignoring
effects of parameter estimation. We used a technique
called the lurking variable plot to investigate the presence
of spatial trends in point processes. The technique is to
plot the residual against a spatial covariate (or one of the
Cartesian coordinates). For a spatial covariate Z(u),
which must be spatially continuous in the study region D,
we may evaluate the residual measure on each subregion
defined by

B�z� � �u � D : Z�u� � z�,

yielding a cumulative residual function

A�z� � R�B�z�, �̂�.

The function A(z) should be approximately zero if the
fitted model is correct, and any systematic pattern in the
lurking variable plot suggests an appropriate modifica-
tion of the model to better account for that spatial
covariate.

Model Selection

The compiled fire occurrence data and GIS-processed
spatial covariates were analyzed and modeled using a spa-
tial point pattern analysis package (spatstat) of R (Baddeley
and Turner 2005). The major task at this step was to identify
a best choice of model that would balance fit to the data,
model size (parameters within the model), and model com-
plexity. The goal was to (1) determine the interaction term
C(u, x) specified in Equation 1, and (2) select predictor
variables (Cartesian coordinates, spatial covariates, and
their transformations) for the trend term B(u). Three major
tools were used in this stage: residual analysis, the gener-
alized K function Ki, and the Akaike information criterion
(AIC). The AIC (Akaike 1974) is widely used as a measure
for selecting the best among competing models for a fixed
data set. It is defined as

AIC � 	2 max(log-likelihood)

� 2 (number of parameters).

The model with the smaller AIC is considered to be a
better fit to the data. It has been emphasized that AIC can be
used for comparisons among non-nested models (Ogata
1988).

The data were first fitted to the null model (a homo-
geneous Poisson model), and we used residual analysis
(especially lurking variable plots) to find out whether the
point pattern depended on tested spatial covariates. We
then assumed the fire occurrence process was an inho-
mogeneous process (hence C(u, x) was zero) and in-
cluded the spatial covariates that were revealed to affect
the fire occurrence patterns into the trend term B(u) of the
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log-linear regression model. The included spatial covariates
could be transformed, and we used a polynomial function (up
to a power of three provided that convergence in maximum
likelihood estimation is attained) to transform spatial continu-
ous covariates or Cartesian coordinates. Unlike stepwise meth-
ods that use a restricted search and use a dubious hypothesis
testing method for choosing among models, AIC methods
typically involve a wider search and compare models in a
preferable manner (Faraway 2002). We fitted all alternative
models and chose the best one according to AIC and model
diagnostics. Finally, we computed the generalized K function
Ki, which can be used to evaluate the second-order pattern after
taking into account first-order effects (Baddeley et al. 2000) for
the fit model to check the Poisson process assumption. If there
were still any second-order patterns after we weighted the
trend fitted from the model, then the Poisson process assump-
tion was considered to be unsound, and other point processes
(e.g., Strauss process) might be assumed.

Results
Characteristics of Fire Occurrence Patterns

The kernel-smoothed intensity (Figure 4) estimated
from the fires reported between 1970 and 2002 showed a
“hot bed” (where fire occurrence density is high) in the
north center of the study area (near the town of Winona)

and a “cold bed” (where fire occurrence density is low) in
the southwest (near the town of Alton), indicating that the
fire occurrence process is not completely random. The
estimated K function (Figure 5) is larger than that of
theoretical CSR, indicating a spatial clustering pattern.
However, it doesn’t necessarily suggest that there is a
strong dependence among fire ignition points, since the
clustering of environmental factors (e.g., camping sites,
vegetation distribution) may also explain this clustered
pattern. Our model-fitting exercises in which fire occur-
rence is modeled as an inhomogeneous Poisson process
further showed that the spatial clustering pattern could
indeed be explained by the environmental heterogeneity.
The amount of clustering varied by ignition source: CI
(h � 5 km) � 4.57 km2 for arson; 3.40 for accident; and
2.94 for lightning.

Model-Fitting and Diagnostics

The null model (homogeneous Poisson) fitted to the
data has a constant intensity, valued 1.01e	06 m	2 over
the entire region. This constant intensity can be inter-
preted as an average of 1.01 fire occurrences every 1 km2

in our study area over 33 years (1970 –2002). We plotted
the cumulative Pearson residuals against the five contin-
uous spatial covariates (distance to nearest road, slope,

Figure 4. Kernel smoothed intensity (expected number of fires per meter) estimated from the fire occurrence data
reported in 1970–2002.
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elevation, population density, and distance to nearest
town) and the two Cartesian coordinates (x and y) for the
null model (some are shown in Figure 6). The cumulative
residual function defined by Equation 2 should approxi-
mate zero if the null model adequately addresses effects
of the spatial covariate. In Figure 6a, the cumulative
Pearson residuals are larger than the 
2� limit when the
distance to the nearest road �1,500 m. This suggests the
null model underestimates fire occurrence at this scale. In
other words, there are more fires occurring at spatial
locations that are close to roads than the null model
predicts. The steepest increases in the curve are observed
at �150 meters from roads, implying that many human-
caused fires occurred very close to roads (refer to Figure
1). The peak in Figure 6b occurs for slopes of about 25
degrees and the steepest increase occurs within the range
of slopes of 10 –20 degrees, suggesting that more fires
occur on gentle slopes than steeper slopes. There are
obvious systematic patterns related to elevation (Figure
6c). The nadir of the curve is much less than the 	2�
limit of error bounds, and there is a steep increase of
cumulative residuals after the nadir point (270 –330 m).
These patterns suggest that the null model overestimates
intensity of fire occurrence for spatial locations at �270 m of
elevation, and more fires are ignited at higher elevations.

Figure 6d shows that there is more than the average number of
fires at the scale of 6 km to 17 km distance from the nearest
towns. The decrease of cumulative residuals when the distance
is �4 km or �14 km suggests that fewer fires occur either
close to or far away from the towns.

It is worth noting that fires caused by different sources
may respond to the spatial covariates differently. This
can be verified from lurking variable plots. Take eleva-
tion as an example. The cumulative residuals are below
the error bounds at elevations �300 m for arson (Figure
7a), but are within the error bounds for accident fires
(Figure 7b) and above error bounds at elevations �220 m
for lightning fires (Figure 7c). This finding motivated us
to model the fire occurrence process not only for the
aggregation of all kinds of fires, but also for arson,
accident, and lightning fires separately. We considered a
wide range of alternative models that included all possi-
ble combinations of the potential spatial covariates. Table
2 gives AIC values and formulas of the best models
identified in the model selection stage for different fire
types. The identified set of predictor variables and their
transformations are different for different causes. When
we did not include Cartesian coordinates as predictor
variables in the log-linear regression models, the best
model fit to the aggregated fire data, denoted as H1,

Figure 5. Estimated K function for the observed fires in 1970–2002.
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identified the predictor variables as the distance to the
road, slope, aspect, distance to nearest town, ownership,
and land cover. Elevation and population density were
dropped. Nevertheless, there was still glaring violation of
error bounds in the lurking variable plots against Carte-
sian coordinates for the model H1, which implied the
presence of a residual spatial trend not captured in the
model. We then added Cartesian coordinates into the
model. The selected model H2, having 24 parameters,
(Table 2) was more complicated than H1, but also showed
greater improvement in terms of model diagnostics. In-
cluding Cartesian coordinates also decreased AIC for the
arson and accident fires, but not for the lightning-caused
fires.

We calculated the generalized K function for an inho-
mogeneous Poisson point process for the final full model
H2. The calculated Ki function was within the envelopes
of 99 simulations of an inhomogeneous Poisson point
process with the same spatial distribution of intensity as
the one observed for model H2 (Figure 8), indicating that
our assumption of an inhomogeneous Poisson process
was valid.

Distribution of Fire Occurrence Probability in
Space

The spatial intensity calculated from our point process
model can be loosely interpreted as fire occurrence den-
sity, which can be used in calculating fire occurrence proba-
bility. We used the model H2 as our final full model to derive
fire occurrence probability in space. The study area was rep-
resented as a grid of 1 ha (100 � 100 m) cells. The normalized
fire occurrence density (�, number of fires per m2 per decade)
was then estimated using the model H2. The fire occurrence
probability is defined as the probability of having at least one
fire occurrence within the cell over a decade. It is calculated
from the Poisson probability density function as

P�x 	 1� � 1 � P�x � 0� � 1 � e	��1000,

where x denotes number of fire occurrences within the cell.
The calculated fire occurrence probability for each cell is
shown in Figure 9.

Figure 6. Lurking variable plots against (a) distance to nearest road, (b) slope, (c) elevation, and (d) distance to nearest
town for the null model of cause-aggregated fire data. The solid lines are empirical curves of cumulative Pearson
residuals. The dotted lines denote two-standard-deviation error bounds.
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Effects of Biotic, Abiotic, and Human Factors

The lurking variable plots against spatial continuous
covariates for the null model have already provided some
rough ideas on how these factors affect fire occurrence.
The coefficients of the chosen models estimated from the
fire occurrence data provided further quantitative infor-
mation on how each spatial covariate (both continuous
and categorical) affects fire occurrence density, and con-
sequently fire occurrence probability. Table 3 gives es-
timated parameters of the spatial covariates for the model
H2. The model is a log-linear regression of intensity as
shown in Equation 1, where the conditional intensity is
equivalent to the intensity for Poisson point processes.
The intensity is a product of several multiplicative com-
ponents, and each component represents the contribution
of a predictor variable. Variables with positive coeffi-
cients have positive contributions to fire occurrence den-

sity and hence fire occurrence probability, while the ones
with negative coefficients have negative contributions.
The effects of most continuous variables were curvilinear
(quadratic or cubic). For example, log-intensity is mod-
eled as a quadratic function with respect to slope for the
aggregated fires. Using the estimated corresponding pa-
rameters and basic calculus, one can derive that the
log-intensity contributed from the slope factor increases
from zero to the maximum 0.16 as slope increases from
zero to 15.59 degrees; then it decreases as slope increases
further. It becomes a negative value when slope is
�31.17 degrees. This approximates the curve shown in
the corresponding lurking plot (Figure 6b). The ranking
of levels of a categorical variable can be easily sorted by
the order of their corresponding coefficients. The ranking
of land cover class in terms of fire occurrence probability
is urban � grassland � deciduous forest � pine-oak
mixed forest. The ranking is non-MTNF � private
land � public land for ownership, and mesic � xeric �
flat for aspect (Table 3).

Discussion

Studies of dendrochronological fire histories from the
Missouri Ozarks have suggested that cultural effects such
as roads and agricultural development are replacing fuel
and topography as determinants of the spread, frequency,
and size of fires during the modern era (Guyette et al.
2002). Our results further showed that fire occurrences
are spatially clustered, and human factors such as own-
ership, municipalities, human accessibility, and popula-
tion density are important determinants of spatial loca-
tions of human-caused fires. Proximity to roads is one
aspect of human accessibility, and the places close to
roads (�500 m) are generally associated with higher fire
occurrence probabilities. The roads are located either on
the ridge tops or in the valley bottoms in this region, but
most fires are set along the roads on ridge tops (elevation
�270 m asl), as shown in Figure 6c. This pattern can be
partly explained by the fact that moisture is greater in
lower elevations in the landscape. This decreases flam-
mability of fuels, increases the rate of fuel decomposi-
tion, and shifts the species composition from pine-oak
mixed forests, which tend to accumulate surface fuels, to
more mesic white oak forests (Batek et al. 1999). Slope
angle is also a limiting factor. Fires go upslope faster
with higher intensity, but steep slopes imply greater
topographic roughness (Guyette et al. 2002) and are more
difficult for humans to gain access. The differential ef-
fects of various land cover classes (substitute for fuel
types) on human-caused fire occurrence probability can
also be explained by the characteristics of human behav-
iors. If an arsonist intends to set a fire, he or she is more
likely to experience success in flammable fuel types such
as shortleaf pine and oak forests in this region. Therefore,
fuel type and topography, which are often modeled in
lightning-caused fire occurrence processes (e.g., Wotton
and Martell, 2005), may still be prominent ingredients in
human-caused fire occurrence processes, although the
explanations of such effects are different. This finding

Figure 7. Lurking variable plots against elevation for the null models
of (a) arson, (b) accident, and (c) lightning fire data.
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suggests that in an anthropogenic fire regime, vegetation dy-
namics can still be an important determinant of fire occurrence.

The map of fire occurrence probability estimated from
the model can be directly used in fire risk analysis by forest
managers. For example, it can feed directly into forest
planning and spatially explicit assessment of fire risk (Mark
Twain National Forest 2005). The map helps us not only to
pinpoint “hot spots” (high fire occurrence probability), but
also to identify areas that should be considered for greater

attention with respect to fire risk. For example, The Irish
Wilderness, a 66 km2 wilderness area established in 1984
and a part of the Mark Twain National Forest, is located in
the southeast of our study area. The area is primarily cov-
ered by shortleaf pine and oak forests/woodlands, and de-
ciduous forests. There are no drivable roads in the wilder-
ness area and motorized or mechanical equipment, includ-
ing bicycles, are prohibited. Hence the fire occurrence prob-
ability in this area is very low. However, the fire occurrence

Table 3. Coefficients of the predictor variables of the final models

Variables

Fire causes

Aggregated Arson Accident Lightning

Intercept 4.13e 
 06 (4.40e 
 06) 5.44e 
 05 (5.37e 
 06) 1.27e 
 07 (9.65e 
 06) 	1.7e 
 01*** (3.01e 
 00)
D1 	1.61e 	 03*** (2.12e 	 04) 	9.98e 	 04*** (1.31e 	 04) 	1.96e 	 03*** (3.73e 	 04)
D1

2 3.17e 	 07*** (1.09e 	 07) 5.43e 	 07*** (1.69e 	 07)
D2 1.04e	02*** (2.51e	03) 	1.0e 	 02 (9.84e 	 03)
D3 2.07e 	 02 (1.33e 	 02) 	5.00e 	 03 (5.84e 	 03) 5.17e 	 02** 2.50e 	 02
D3

2 	6.64e 	 04** (3.08e 	 04) 	1.03e 	 03 (5.57e 	 04) 	3.71e 	 03 3.18e 	 03
D4: mesic 0 (N/A) 0 (N/A)
D4: xeric 1.43e 	 01* (7.47e 	 02) 2.39e 	 01 (8.96e 	 02)
D4: flat 4.51e 	 01 (5.11e 	 01) 5.11e 	 01 (6.22e 	 01)
D5 	0.63e 	 05 (6.97e 	 05) 6.93e 	 05 (8.63e 	 05)
D5

2 	9.83e 	 09** (4.88e 	 09) 	2.21e 	 08*** (6.08e 	 09)
D5

3 3.19e 	 13*** (1.14e 	 13) 5.74e 	 13*** (1.42e 	 13)
D6 	1.74e 	 02 (2.75e 	 02)
D6

2 7.50e 	 04 (6.50e 	 04)
D6

3 	2.75e 	 06 2.75e 	 06
D7: non-

MTNF
0 (N/A) 0 (N/A) 0 (N/A)

D7: private 2.57e 
 00*** (4.25e 	 01) 2.22e 
 00*** (4.78e 	 01) 5.52e 
 00* (3.18e 
 00)
D7: public 3.23e 
 00*** (4.33e 	 01) 2.98e 
 00*** (4.88e 	 01) 5.76e 
 00* (3.17e 
 00)
D8: urban 0 (N/A) 0 (N/A)
D8: grassland 6.14e 	 01 (1.34e 
 00) 1.05e 
 01 (2.51e 
 02)
D8:

deciduous
8.85e 	 01 (1.34e 
 00) 1.07e 
 01 (2.51e 
 02)

D8: mixed 8.92e 	 01 (1.34e 
 00) 1.06e 
 01 (2.51e 
 02)
Observations 7,703 5,874 1,917 645

D1, D2, . . . , D8 denote the spatial covariates: distance to nearest road, elevation, slope, aspect, distance to nearby town, population density, ownership, and
land cover, respectively.
*** Indicates the t-test is rejected at 1% significance, ** at 5%, and * at 10%.

Table 2. Comparison of Poisson point process models fitted to the fire occurrence data

Model AIC
Number of
parameters Formula

Null model (homogeneous Poisson with a constant intensity over entire area)
H0 38,469 1 1
H0.a 29,293 1 1
H0.b 10,161 1 1
H0.c 617 1 1

Models with minimum AIC that only include spatial covariates
H1 37,486 15 P(D1, 2) 
 P(D3, 2) 
 F(D4) 
 P(D5, 3) 
 F(D7) 
 F(D8)
H1.a 28,465 14 P(D1, 1) 
 P(D2, 1) 
 P(D3, 1) 
 F(D4) 
 P(D5, 3) 
 F(D7) 
 F(D8)
H1.b 9,972 13 P(D1, 2) 
 P(D3, 2) 
 P(D5, 3) 
 P(D6, 3) 
 F(D7)
H1.c 615 3 P(D2, 1) 
 P(D3, 2)

Models with minimum AIC that also include Cartesian coordinates
H2 37,401 24 P(D1, 2) 
 P(D3, 2) 
 F(D4) 
 P(D5, 3) 
 F(D7) 
 F(D8) 
 P(x, y, 3)
H2.a 28,324 23 P(D1, 1) 
 P(D2, 1) 
 P(D3, 1) 
 F(D4) 
 P(D5, 3) 
 F(D7) 
 F(D8) 
 P(x, y, 3)
H2.b 9,959 22 P(D1, 2) 
 P(D3, 2) 
 P(D5, 3) 
 P(D6, 3) 
 F(D7) 
 P(x, y, 3)
H2.c 615 3 P(D2, 1) 
 P(D3, 2)

Model H0 denotes the null model for aggregation of all kinds of fire data; H0.a denotes the null model for arson, H0.b for accidental fires, and H0.c for
lightning fires. Similarly, H1 denotes the best model fit to aggregated data when Cartesian coordinates were not included, . . . , H2.c denotes the best model
fit to the lightning fires when Cartesian coordinates were included.
D1, D2, . . . , D8 denote the spatial covariates: distance to nearest road, elevation, slope, aspect, distance to nearest town, population density, ownership,
and land cover, respectively; P(cov, n) denotes a polynomial function up to the order n of a continuous covariate cov; and F(cov) denotes the covariate cov
is categorical (i.e., a factor).
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probability surrounding this area (especially to the east and
west) is high (Figure 9). This makes the chance for the
wilderness area to be burned by the propagation of fire
ignited from surroundings relatively high, and access for
fire suppression is problematic. Our historical fire database
showed that there were only 14 fires ignited in this area
during 1970–2002, but three of them were as big as 100 ha
in fire size.

Another important application of our results is in
forest landscape modeling of succession and fire distur-
bance. Simulation models of forest landscape change are
increasingly used in long-term forest planning (He and
Mladenoff 1999, Keane et al. 2004, Shifley et al. 2006).
Fire occurrence simulation is an important component in
fire simulation for long-term, large-scale planning. Fire
occurrence is usually modeled as two consecutive stages:
fire ignition and fire initiation (e.g., Antonovski et al.
1992, Davis and Burrows 1994, Li 2000, Yang et al.
2004). For these forest landscape models, the number of
ignitions is often simulated from a Poisson distribution
whose parameter intensity (i.e., fire ignition density) is
provided by users as a model input. The most common

parameterization of the fire ignition density is based on
fire frequency estimates that are uniform over large areas.
It therefore fails to incorporate the effects of roads and
topography on the fire occurrence process. We can derive
a fire ignition density map from our modeling results and
use it to refine the input data for these models of land-
scape change in response to fire and other disturbances.
That will greatly improve simulation realism in terms of
spatial patterns of fire occurrence.

We used a spatial point process modeling approach to
analyze spatial patterns of human-caused fires in this
landscape. We were able to quantify the effects of biotic
(land cover), abiotic (topography), and human factors
(ownership, proximity to roads and towns, and popula-
tion density) on fire occurrence by using an inhomoge-
neous Poisson model. The inclusion of Cartesian coordi-
nates in the final models suggests that there are still some
important explanatory factors omitted from our model.
Because the extent of our study area is relatively small,
the spatial variations of many other potential factors such
as law enforcement, weather, and climate patterns are

Figure 8. Generalized K function, Ki for the final full inhomogeneous Poisson point process model H2. The solid line
represents the observed Ki, the dotted line is the theoretical Ki function, and the two dashed lines are the upper and lower
bounds calculated from 99 simulations.
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difficult to measure and incorporate. We intend to in-
clude more variables at larger spatial scales in future
studies. Cartesian coordinates are often used to substitute
for unobservable factors. This practice is useful and com-
mon in applications of point process modeling (e.g., Ogata
1988). The residual analysis proved to be a very powerful
tool in selecting predictor variables and characterizing the
effects of spatial covariates. The approach used here is
statistically rigorous and can be applied elsewhere in the
modeling of human-caused or natural-caused fire occur-
rence process and other point processes in forestry. The
approach allows use of spatial grid data with different
resolutions (e.g., the resolution of DEM data is 60 m, while
the resolution of land cover data is 30 m), but it requires all
the spatial covariates to be either spatially continuous (e.g.,
distance to nearest road) or lattice data (e.g., land cover). It
is possible in future studies that a newly added explanatory
variable is observed only in the locations of fire occurrence.
In this case, one could use geostatistical methods to inter-
polate from the observed values to the entire region (Rath-
bun 1996).
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