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Abstract A lengthening of the fire season, coupled with higher temperatures, increases the
probability of fires throughout much of western North America. Although regional variation in
the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial
resolution <10 km2 have generally been unsuccessful. We hypothesized that predictions of
fires might be improved if depletion of soil water reserves were coupled more directly to
maximum leaf area index (LAImax) and stomatal behavior. In an earlier publication, we used
LAImax and a process-based forest growth model to derive and map the maximum available
soil water storage capacity (ASWmax) of forested lands in western North America at l km
resolution. To map large fires, we used data products acquired from NASA’s Moderate
Resolution Imaging Spectroradiometers (MODIS) over the period 2000–2009. To establish
general relationships that incorporate the major biophysical processes that control evaporation
and transpiration as well as the flammability of live and dead trees, we constructed a decision
tree model (DT). We analyzed seasonal variation in the relative availability of soil water
(fASW) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high
rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km
occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of
69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT
identified four seasonal combinations, most of which included exhaustion of ASW during the
summer as critical; two combinations involving antecedent conditions the previous spring or
fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help
identify forested areas where management efforts to reduce fire hazards might prove most
beneficial.
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1 Introduction

Throughout the western United States and western Canada the area burnt by wildfires
has varied annually over the last three decades by nearly 10-fold (Skinner et al. 1999;
Littell et al. 2009). Although regions with Mediterranean climates, characterized by
dry summers and warm winters, are more prone to wildfires than those receiving
summer precipitation, the patterns are not easily predicted across 34 ecoregions that
contain forests (Waring et al. 2011). There seems little disagreement, however, that
since the 1980s, climatic warming has extended the areas prone to fires (Westerling
et al. 2006) as mountain snow packs melt earlier and the growing season is extended
to higher elevation forests (Hamlet et al. 2006).

Although fire histories differ significantly among regions in western North America, recent
trends in area burned are generally upward, sometimes approaching or exceeding estimates of
areas burnt since Europeans settled the continent (Swetnam and Betancourt 1998; Schoennagel
et al. 2004; Balshi et al. 2007; Weisberg and Swanson 2003; Fry and Stephens 2006; Riley
et al. 2013; Dennison et al. 2014). Higuera et al. (2015) showed Bthat models developed using
fire-climate relationships from recent decades over predict areas burned when applied to earlier
periods.^ They suggests that accumulation of fuels following a long periods of unusually low
fire activity, combined with more effort to control wildfires, may have contributed to altered
fire-climate relationships, a view supported by others (e.g., Marlon et al. 2012, North et al.
(2015).

Littell et al. (2009) analyzed climatic controls on the area burnt since 1916, showing that
different ecoregions in the western U.S. varied in their sensitivity to antecedent conditions.
Westerling et al. (2002) developed a statistical method, using the Palmer Drought Severity
Index (PDSI) to forecast the area burned in different forest provinces. They inferred a strong
negative association with the availability of soil moisture immediately prior to the fire season
in most heavily forested federal lands, while in more arid regions, the relationship was
reversed, and applied up to a year earlier. A strong positive correlation between antecedent
soil moisture and wildfires should be expected where the forest canopy is sparse and moist
soils allow for the development of a lush understory. Such an understory, if composed of
shallow-rooted grasses, forbs and shrubs, quickly dries during a dry summer and become flash
fuel (Dimitrakopoulos and Bemmerzouk 2003). These high correlations between extreme
weather conditions conducive to wildfires and area burned suggest that current management
practices, when limited to small,isolated areas, will have little effect on the extent of wildfires
as climatic conditions continue to warm (Hessburg et al. 2015). On the other hand, knowing
more accurately where large fires are most likely to occur should provide policy makers and
managers a rational for action to reduce the likelihood of ignition (Syphard and Keeley 2015)
and damage to natural and human resources (San-Miguel-Ayanz et al. 2013).

Clearly, not all forests are equally prone to wildfire. The marine West Coast forest zone of
Oregon, Washington, and northern California, which support the highest leaf area and produce
the greatest accumulation of live and dead biomass (Sun et al. 2004). rarely burns (Long et al.
1998; Riley et al. 2013). The reason for the infrequency of fire in this zone is because trees
normally have access to sufficient water through fog-drip, dew and moist soils so as not to
become flammable (Hessburg et al. 2015) except when essentially all available water is
depleted from the rooting zone (Breda et al. 2006). There is some difficulty referencing
flammability to foliar moisture content (% dry mass) because non-structural carbohydrates
and fats accumulate in foliage during the growing season (Jolly et al. 2012). Severe drought,
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associated with depletion of all available water in the rooting zone, combined with high
evaporative demand, can cause foliage moisture contents to drop below 100 %-120 %, which
is considered an approximate threshold below which a crown fire can be sustained (Agee et al.
2002). With further drying, the water conducting pathway of stems, roots, and branches may
cavitate (Breda et al. 2006). When this happens, all tree components, as well as understory
vegetation, litter and coarse woody debris, become highly flamable (Chuvieco et al. 2004).

The extent that a regional-scale extreme drought affects trees depends on their rooting depth
and their density of leaves. Peterman et al. (2013) demonstrated drought-associated outbreaks
of bark beetle on pinyon pine were largely concentrated on shallow soils. Unfortunately, most
large-scale soil maps are inprecise (Peterman et al. 2014). Coops et al. (2012) attempted to
remedy this situation by inverting a process-based growth model, constrained by satellite-
derived estimates of maximum leaf area index (LAImax), to derive estimates of the available
soil water storage capacity (ASWmax) as well as soil fertility (Sf) at a spatial resolution of 1 km
across most of western North America. The estimates of ASWmax are more accurate than those
of Sf because drought-adapted forests generally have LAImax values <3.0, whereas more
fertile, less drought-prone forests often have LAImax > 6.0.

To estimate the state of plant dessication accurately requires refinements that are rarely
included in even sophisticated hydrologic models (e.g., Elsner et al. 2010). For example,
transpiration needs to be recognized as a non-linear function of LAImax, which can vary
interannually by >50 % (Breda et al. 2006). Below an LAImax of ~5.0 m2 m−2 maximum
transpiration rates are reduced linearly; whereas above that threshold, the rates plateau as
progressively more leaf- shading restricts stomatal opening (Granier et al. 2000). Similarly, the
depletion of available water in the rooting zone exerts non-linear constraints on stomatal
conductance, and thus alters the time required to dissicate living vegetation (Sucoff 1972; Sun
et al. 1995).

We hypothesize that models that include LAImax and assess the implications of seasonal
variation in soil water balances should improve predictions of fire occurrences over those that
lack these features. In this paper, we evaluate the extent that large forest fires since the turn of
the 21st Century can be predicted at a spatial resolution of 1 km based on simulated patterns of
available soil moisture affected by changing climatic conditions. To accomplish this, we use
the same process-based growth model, climatic data, and derived estimates of ASWmax

previously employed by Coops et al. (2012) for the period 2000–2009. MODIS Active fire
Bhotspot^ (MCD14DL) data with a spatial resolution of 1 km served as our reference to the
location and size of wildfires; this dataset compares well with 30 m Landsat fire mapping
(Hantson et al. 2013) with methods available to improve resolution at daily time steps (Parks
2014).

2 Methods

In this section, we define the baseline against which modeled predictions of fire were
compared, introduce the model used to make predictions of monthly depletions in available
soil water and constraints on transpiration, and describe the construction of maps and statistical
comparisons made to evaluate the relations between predicted and observed wildfires. Our
analysis encompasses forested sites in 34 ecoregions distributed from 32.5oS to 60oN Latitude
and from 110oW to 126oW Longitude. It excludes most of the Yukon Territory where peat and
permafrost are more prevalent than in the rest of the study area, and thus corresponds with our
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previous analyses of species distribution and forest disturbance in response to recent climatic
variation (Coops et al. 2011).

2.1 Selection and processing of MODIS hotspot data

We acquired MODIS-derived (MCD14DL) active fire Bhotspot^ 1 km maps from 2000
through 2009 from the United States Forest Service (USFS) at 1 km resolution from across
western North America (http://activefiremaps. fs.fed.us/gisdata.php). The fire-detection algo-
rithm relies on temperatures detected at two thermal infrared wavelength that can discriminate
active fires as small as 100 m2 at ~1000°K when viewed from nadir, and has a 50 % chance of
identifying large (1–2 km2) smoldering fires at ~600°K (Giglio et al. 2003). MODIS imagery,
which includes other spectral bands, is used to screen for false thermal signals and to mask for
clouds at a spatial resolution of 250 m (Justice et al. 2002).

We selected fire event recorded for three years (2001, 2004, 2007) because these years
represent, respectively, low, moderate, and high rankings in area burned during the decade
2000–2009. To minimize registration errors, all isolated (hotspot) fires of <100 ha within a
3 × 3 km area were excluded from the analysis. We further defined a set of random points
within the study area for analysis that included only those masked as forests and not registered
as burnt in the three selected reference years. In total, over the 3 years, 50,080 pixels were
detected as active fires within forested pixels throughout the region. A commensurate number
of randomly selected fire-free pixels were also selected over the three fire seasons.

2.2 Climatic data

Mean monthly climate spatial surfaces were generated using ClimateWNA (Wang
et al. 2012). The program extracts and downscales PRISM (Daly et al. 2008) and
ANUSPLIN (Hutchinson 2004 generated monthly data (2.5 × 2.5 arcmin) to 1 km and
calculates seasonal and annual climate variables for specific locations based on
latitude, longitude and elevation. Elevation adjustments are achieved through a dy-
namic local regression function developed individually for each monthly climate
variable in the baseline dataset. To provide the required elevation data for
ClimateWNA at 1 km, a 90 m Digital Elevation Model (DEM) was resampled from
the Shuttle Radar Topography Mission (SRTM). Spatial layers and point -based
climate estimation are available online at: http://cfcg.forestry. ubc.ca/projects/climate-
data/climatebcwna/. Mean monthly daytime vapor pressure deficits (VPDs) were
estimated by assuming that the water vapor concentrations present on the day would
be equivalent to those held at the mean minimum temperature (Kimball et al. 1997).
The maximum mean VPD was calculated each month as the difference between the
saturated vapor pressure at the mean maximum and minimum temperatures. Mean
daytime VPD was calculated at two thirds of the maximum value. The number of
days per month with subfreezing temperatures (≤2 °C) was estimated from empirical
equations with mean minimum temperature. Subfreezing temperatures are important
because they cause stomata to close, and to remain close for at least a day (Hadley
2000).

Monthly estimates of total incoming short-wave radiation were obtained by com-
bining the synoptic and zonal variation captured by the North American Regional Re-
Analysis (NARR). NARR is an improved version of the National Center for
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Environmental Prediction/National Center for Atmospheric Research (NCEP NCAR)
Global reanalysis data may be downloaded from the www.cdc.noaa.gov. Briefly, the
surface radiation balance (e.g., incoming and outgoing shortwave and longwave) is
estimated using a precipitation assimilation procedure (Zhao et al. 1997) that adjusts
ambient conditions to closely match precipitation measurements from a variety of
sources. Down-scaling was accomplished making topographic adjustments based on an
approached developed by Fu and Rich (2002) to produce 1 km radiation surfaces
from the broader scale NARR layers.

2.3 Process-based model to predict transpiration, evaporation, and soil water
depletion

There are a wide variety of physiologically-based process models, but only a few
have been designed to scale projections of photosynthesis, structural growth and
mortality across landscapes (see the review by Mäkelä et al. 2000). Among the most
widely used is the 3-PG model (Landsberg and Waring 1997). The 3-PG model differs
from others primarily in a number of simplifying assumptions: (1) that monthly mean
climatic data are adequate to capture major trends in drought; (2) that autotrophic
respiration (Ra) and net primary production (NPP) are approximately equal fractions
of gross photosynthesis (GPP); and (3) that the proportion of NPP allocated to roots
increases from 25 % to 60 % as nutrients (particularly nitrogen) become progressively
less available.

The model (edition 3PGpjs2.7) calculates gross photosynthesis, canopy evaporation
and transpiration, growth allocation and litter production at monthly intervals (Δt). It
reduces potential photosynthesis and transpiration by imposing restrictions on stomatal
conductance through modifiers, taking values between 0 = complete restriction and
1.0 = no restriction, that account for the effects of frost, high vapor pressure deficits
and limitations in available soil water content. The soil water modifier (fASW) is
determined as a non-linear function from the ratio of the amount of water available in
the root zone of the trees (ASW) to the maximum value (ASWmax). ASWmax is the
available water holding capacity of the soil, which is the difference between the water
content in the root zone at field capacity and at the wilting point. For any given
month, ASW is calculated from:

ASW t þΔtð Þ ¼ ASW tð Þ þ P−E−Tð Þ ð1Þ
where ASW(t) is the value at the beginning of the month and P, E and T denote the monthly
values of precipitation, evaporation and transpiration, respectively. The model includes a term
to account for rainfall interception by the forest canopy; this water is assumed to be lost by
evaporation, giving E. Transpiration is calculated from the Penman–Monteith equation, which
incorporates a canopy conductance term derived from stomatal conductance and LAI. If the
value of ASW on the left-hand-side of Equation (1) exceeds ASWmax, i.e., the whole root zone
is at field capacity, the excess is assumed to be lost as runoff or drainage.

At monthly time steps, the model is unable to compute a snow water balance
accurately, although one may assume that precipitation in months with average
temperatures well below freezing is largely in the form of snow, but changes in
albedo, incident radiation and other factors determine the accumulation and melting
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dates of snow (Coughlan and Running 1997; Elsner et al. 2010). At annual time
steps, the model sums monthly changes in tree number, mean diameter, stand basal
area, above-ground volume and biomass and updates the changes in LAI.

To account for seasonal adjustments in temperature optima (Hember et al. 2010)
and to incorporate the large genetic variation among populations of Douglas-fir, we
broadened the range for which photosynthesis could remain above 50 % of maximum
to lie between 0 °C and 35 °C by setting minimum, optimum and maximum
temperatures at −7 °C, 18 °C and 40 °C, respectively. The photosynthetic response
at temperatures below −2 °C is truncated to zero because stomata are closed below
this temperature threshold (Hadley 2000).

The fertility-dependent growth modifier in the 3-PG model is a function of the soil
fertility rating, Sf, which ranges between zero, for the poorest soils, to unity for most
fertile soils (Landsberg and Waring 1997). As previously mentioned, we generated
estimates of Sf and ASWmax at 1-km resolution for all forested sites by inverting the
3-PG model to achieve close agreement between modeled LAImax and MODIS-derived
observations over the range from 0.5 to 6.0 m2m−2 (Coops et al. 2012). The model
was parameterized for Douglas-fir with the same values used to derive estimates of
soil properties (Waring and McDowell 2002; Coops et al. 2012).

2.4 Comparison of model predictions with MODIS hotspot data

The 3-PG model predictions of fASW were generated for each month for the years
2000 through 2009. The monthly values were averaged for the four seasons (winter:
December-February; spring: March-May; summer: June-August, autumn: September-
November). We chose to apply a decision tree analysis to develop relationships
between the seasonal fASW and the presence and absence of fire in 2001, 2004, and
2007. Decision tree models are increasingly selected for model development in
ecological research because of their ability to deal with collinear datasets, to exclude
insignificant variables, and to allow for asymmetrical distribution of samples (De’ath
2002, Schwalm et al. 2006; Melendez et al. 2006). They, like non-linear panel
modelling and other recent statistical innovations, allow for links to be developed
between environmental data and fire occurrence even with incomplete information and
variable correlations (An et al. 2015).

The Decision Tree approach separates the dependent variables (seasonal fASW) into
a series of binary (yes/no) choices that identifies, by the topography in the decision
tree, if pixels have been detected as a hot spot in the MCD14DL layer. Decision Tree
Regression (DTREG) software (Sherrod 2010) was used to create a decision tree using
10-fold cross validation technique where the data are separated randomly into 10
equally sized subsets and models developed on nine of the groups, and then tested
against the remaining 10 %. This process of k-fold partitioning is then repeated with
results merged to produce a final classification tree (Breiman et al. 1984). To assess
accuracy once the model was created, a ‘confusion matrix’ was developed, which
provides an indication of the positive and negative predictive power of the model as
well as a number of other statistics (Fielding and Bell 1997, but see caveats in Lobo
et al. 2008). Our analysis included an evaluation of the amount of variance accounted
for in the model by each of the seasonal indices of f(ASW). Once developed, the model
was run with the derived seasonal indices of soil water depletion to predict annual fire
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occurrence layers for each year over the decade (starting with data from 1999). A total
of 99,930 pixels were evaluated, half of which had recorded fires and half without.

3 Results

The decision tree model created four rules based on current and previous year’s seasonal
patterns in fASW to predict the location of active fire hotspots in the three years analyzed.
Three of the rules, depicted in Fig. 1, accounted for 99 % of the predicted fires. All recognize
the importance of summer drought in the year of the fire as of paramount importance. The
model defined a summer threshold of f(ASW) at 0.12 of optimum, below which fires would
have high probability.

In the first decision rule, the indicator of summer drought is coupled with moderate
drought conditions in the spring of the previous year, and drought the current fall.
The second rule, unlike the 1st, predicts that sites with moderate rather than severe
summer drought in the current year would still be fire prone if fall and winter
conditions the year before were droughty. The third rule mirrors the first with summer
drought in the current year and drought conditions in the previous fall, but recognizes
that a favorable water balance the previous winter could stimulate the production of
flash fuel. The last rule describes a similar pattern to the first and third with drought
in the current summer, but with favorable spring growing conditions the previous year
more important. Overall, the decision tree model (applying all 4 rules) accounted

Fig. 1 Schematic diagram showing four separate decision tree rules that specify different seasonal combinations
of the function available soil water content (fASW) where clear =completely depleted, all black = full capacity,
others = black proportional to remaining capacity. The four rules were derived with seasonally averaged climatic
data acquired across the study area in 2001, 2004 and 2007 and each of the respective previous years. The rules
predict the occurrence of at least two, 1 km size fires within 3 × 3 km sampled areas. The percentages that each of
the 4 rules was utilized in predicting the presence or absence of wildfires across the study area are listed on the
left side of the figure
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for 69 % of the variance in fires recorded during the three selected calibration years,
(70 % with fire absent, 68 % when present).

The proportion of sites classified by each of the 4 rules varied from 1 % to 56 %
with rules 1 and 2 contributing a total of 86 % (Fig. 1). We note that unlike a linear
regression model, a variable in a decision tree model can be important even if it never
appears as a primary splitter at a node. The importance of a variable is assessed
whether it serves in a primary and surrogate role based on the amount it improves,
relative to the best identified variable, the overall model predictions.

Although a number of seasonal fASW of the current and previous year were used in
the decision tree analysis, their relative importance differed; Fig. 2 provides a sum-
mary of how often seasonal fASW modifiers were utilized in our decision-tree model.
The results confirm that the fASW modifier in summer of the analysis year was the
most consistent and critical soil variable for predicting the occurrence of fire in that
year. The next most important modifier was soil water status in the previous year’s
spring, explaining 30 % of the variance comparable with fASW in the following
summer. Similar in predictive power was fASW in the current fall. Lastly, the previous
winter and the previous fall conditions contributed some explanatory power to the
model.

Figure 3 provides a graphic display of the area predicted by the model (in orange)
to be susceptible to fire along with actual locations in 2004 (black dots). The active
fires in the forested areas of the study area were closely correlated spatially to high,
dry plateaus in British Columbia, Idaho and Montana as well as to more coastal areas
in northern California and throughout most of central California. In contrast, the
coastal areas of British Columbia, and northern Washington and Oregon had very
few active fires recorded in 2004. In addition, fires occurred frequently in the
northern locations of the study area, in the southern Boreal Forest Region, in
Alberta and Saskatchewan. In general, the predicted areas correspond fairly well to
the active fire points. Areas where fires were observed in 2004, but the model

Fig. 2 The relative importance (x-axis) of different seasonal functions of available soil water (fASW) (y-axis)
varied in their contributions to the four rules used to predict MODIS Active hotspot occurrence of wildfires in
2001, 2004, and 2007

332 Climatic Change (2016) 135:325–339



predicted none, include central and eastern Montana, some places in Nevada and in
the eastern foothills of the Rocky Mountains in Alberta.

Figure 4 provides a decadal summation of the model predictions, showing the
likelihood of fire occurrence over the decade from 2000 to 2009. The decadal map
confirms the prevalence of fire in the forests of northern California, central

Fig. 3 Model predictions of wildfires for 2004 (orange) in forested portions of western North America and the
locations of MODIS active fire hotspots (black dots) for the same period
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Washington and Oregon, as well as the high plateau regions of British Columbia and
the southern Boreal Region. The patterns differ somewhat from those indicated for a
single year (Fig. 3) because outside of California, the location of the majority of
predicted fires shifts considerably from year to year (maps not shown but are

Fig. 4 Accumulated predicted fire occurrence for the decade 2000–2009 in forested 1 km pixels based on the
decision tree models
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available online as 10 separate layers: http://databasin.org/datasets/78805401ae
8e467b942f05e985742a14

Lastly, the area predicted as most susceptible to fire across the study area from 2000 to 2009
is shown in Fig. 5 and highlights fire-prone years (2002, 2004 and 2007); 2007 was modeled at
almost 30 % above average and corresponded with one of the worst fire seasons on record in
California. Conversely, some years were less prone to burn (2001, 2005 and 2009); 2001 was
predicted to have 50 % less area burnt than the average for the decade. The model predicted
2000, 2006 and 2009 as representing average fire conditions for the period.

4 Discussion

4.1 Physiological insights

Even at a spatial resolution of 1 km, considerable variation occurs in topography,
soils, and vegetation throughout the study area. Analyzing the occurrence of fire at
1 km subsumes much of this variation, increasing the probability that changes in
weather conditions will account for much of the variation in predicting wildfires. It
has been long recognized that LAImax normally reflects a balance with the availability
of soil water during seasons with potential deficits (Grier and Running 1977). A
disequilibrium is established when the hydrologic conditions are significantly altered.
Even in very open pinyon pine and juniper woodland, an exceptional drought is
required to weaken the pine to the extent that they are susceptible to bark beetle
attack (Breshears et al. 2009). Process-based forest growth models, like 3-PG, estab-
lish upper limits of transpiration as a function of whole canopy stomatal conductance
and evaporative demand. Once LAImax drops below ~5.0, the maximum rates of
average daily transpiration fall from ~3.0 to <0.5 mm day−1 (Granier et al. 2000).
It is important to recognize that dense forests exposed to high evaporative demand

Fig. 5 Area of fires predicted between 2000 and 2009 based on the decision tree model
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extract water much faster from the soil than more open stands; these differences
compensates at times for variation in the AWSmax. But good estimates of ASWmax

are important. If all sites were assumed to have 200 mm at AWSmax, those with
LAImax of 2.0 would require >3 months to draw down the supply to the extent that
drought had any direct effect on stomata whereas those with an LAImax of 6.0 would
reach the same point in about a month (Running and Coughlan 1988). By focusing on
seasonal anomalies in f(ASW) we were able to identify those conditions conducive to
abnormally high production of ground fuel as well as those with highly flammable
overstory vegetation.

4.2 Improvements in modeling and data acquisition

Using every year of hot spot data from 2000 to 2009 could result in issues with
temporal autocorrelation if the possibility was high that large areas could burn more
than once in the decade. By selecting 2001, 2004, and 2007 we tried to minimize this
issue by allowing at least 3 years for fuels to accumulate at a site.

It would be possible to extend the analysis back to the early 70s using Landsat
imagery and to improve assessments of changes in forest structure henceforth by
measuring the vertical distribution of LAI using airborne light detection and ranging
(lidar) sensors (Lefsky et al. 2001; Bolton et al. 2015). More accurate estimates of
LAImax would permit derivation of more precise estimates of biomass in dense forest
than is now possible. To cover larger areas, radar and hyperspectral data can be
combined to obtain estimates of standing biomass, which would provide a basis for
assessing changes in the amount and vertical distribution of potential fuels (Treuhaft
et al. 2003).

At a spatial resolution of 1 km, model predictions of large wildfires begin to have
policy implications (Kennedy and Johnson 2014; North et al. 2015). The possibility of
prescribing fuel treatments in places where decision tree models or other types predict
high probability of fire in the future would be a valuable application, one that would
justify incorporating more detailed information on ASWmax and LAImax in fire-
prediction models.

4.3 Implications for fire ecology and management

The approach introduced in this paper can identify areas where large fires may occur
that could coalesce into mega fires (San-Miguel-Ayanz et al. 2013), and does so
without recognizing regional or political boundaries. Almeida and Sands (2015)
provide a new version of the 3-PG model with daily time-steps and other refinements
that warrant testing during the active fire season. As presented, the approach reflects
known fire histories quit well (69 % accuracy at 1 km resolution) and our under-
standing of how recurrent fires create a mosaic that define the distribution of forest
types and their fuel characteristics. Understanding this pattern can inform forest
restoration efforts so that they will be consistent with projected wildland fires.

Wildland fires can be expected to establish new landscape patterns over time, while
correcting the Bfire deficit^ created following a century of fire exclusion (Marlon
et al. 2012; North et al. 2015). The patterns are not expected to attain stability,
however, because projected temperature increases, derived from 11 climate models,
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are expected to result in an increase in total cloud-to-ground lightning flashes of
12 % ± 5 % per degree Celsius of global warming, equivalent to a 50 % increase
over the rest of this century for the contiguous United States (Romps et al. 2014). In
some regions, such as southern California, most fires are human caused, either
directly, or indirectly (Syphard and Keeley 2015). Regardless of the cause, fire is a
catalyst for change in species distribution, migration, and extinction and ultimately may
determine whether American forests remain a carbon sink in this century (Flannigan et al. 2000).
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