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Abstract

Supporting sustainable lotic ecosystems and thermal habitats requires estimates of stream

temperature that are high in scope and resolution across space and time. We combined and

enhanced elements of existing stream temperature models to produce a new statistical

model to address this need. Contrasting with previous models that estimated coarser met-

rics such as monthly or seasonal stream temperature or focused on individual watersheds,

we modeled daily stream temperature across the entire calendar year for a broad geo-

graphic region. This model reflects mechanistic processes using publicly available climate

and landscape covariates in a Generalized Additive Model framework. We allowed covari-

ates to interact while accounting for nonlinear relationships between temporal and spatial

covariates to better capture seasonal patterns. To represent variation in sensitivity to cli-

mate, we used a moving average of antecedent air temperatures over a variable duration

linked to area-standardized streamflow. The moving average window size was longer for

reaches having snow-dominated hydrology, especially at higher flows, whereas window

size was relatively constant and low for reaches having rain-dominated hydrology. Our mod-

el’s ability to capture the temporally-variable impact of snowmelt improved its capacity to

predict stream temperature across diverse geography for multiple years. We fit the model to

stream temperatures from 1993–2013 and predicted daily stream temperatures for

~261,200 free-flowing stream reaches across the Pacific Northwest USA from 1990–2021.

Our daily model fit well (RMSE = 1.76; MAE = 1.32˚C). Cross-validation suggested that the

model produced useful predictions at unsampled locations across diverse landscapes and

climate conditions. These stream temperature predictions will be useful to natural resource
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practitioners for effective conservation planning in lotic ecosystems and for managing spe-

cies such as Pacific salmon. Our approach is straightforward and can be adapted to new

spatial regions, time periods, or scenarios such as the anticipated decline in snowmelt with

climate change.

Introduction

The critical role water temperature plays in governing aquatic biological processes and reflect-

ing fluvial system health and function drives our desire to understand riverine thermal regimes

and has motivated the development of stream temperature models for decades [1]. In recent

years the rate of model development has increased substantially [2]. While water temperatures

are increasing and expected to continue to increase across the globe with climate change,

empirical observations remain relatively sparse, making stream temperature modeling a press-

ing need for the water resources community [3, 4]. However, riverine thermal regimes will

change at different rates in different places, as governed by local climate and landscape charac-

teristics [5]. Having accurate predictions of water temperature over space and time under

diverse climate conditions will be important to inform conservation practitioners’ work, espe-

cially for cold-water aquatic species such as salmonids. Because many cold-water species are

already living near their maximum thermal tolerances, they are likely to be particularly chal-

lenged by changing thermal regimes and thus reflect pressing land and riverscape management

needs [6–10].

Climate interacts with landscape spatial heterogeneity, stream flow rates, and stream net-

work connectivity to produce complex spatiotemporal patterns in stream temperature. This

makes stream temperature prediction a multi-faceted, dynamic, space-time problem [11, 12].

Different modeling approaches have been developed to address this need, ranging from practi-

cal models that are not overly complex (e.g., regression models) to complex models that are

more difficult to apply yet better represent complex physical processes (e.g., process-based

models or models that merge process-based and statistical methods). Complex process-based

stream temperature models often track thermal energy budgets through a riverscape over time

and aim to reflect mechanistic links between environmental variables and water temperature

[13, 14]. However, they tend to be data-hungry, time-consuming to develop and run, and are

typically applied over limited spatial extents such as the Sacramento River [15].

In contrast, regressions and other statistical models typically rely on fewer data, simpler

relationships, and require less expertise to develop and run [16–18]. These models can, how-

ever, suffer from spatial autocorrelation problems that occur when trying to predict stream

temperature across a directed-flow connected network, stemming from the underlying pro-

cesses of water and energy flow [11, 19]. Spatial statistical network (SSN) models were devel-

oped to address this concern. They use autocovariance functions that are assumed to be

stationary across the spatial domain over which models are fit [12, 20]. To date, SSN models

applications have generally limited predictions to coarse temporal resolution like seasonal or

monthly means [5, 21] or to small spatial extents [12, 22]. More recently, several spatio-tempo-

ral statistical stream temperature models have been developed that account for both spatial

and temporal autocorrelation [12, 23, 24]. However, because SSN and spatio-temporal stream

temperature models depend on substantial data to inform their spatial autocovariance func-

tions or temporal autoregressions, they can require high computational power and they are

limited in their ability to predict outside the spatial or temporal bounds of the data used to fit

the model. Therefore, these models may not predict well in scenarios where the correlation

structures are poorly informed or likely to shift, e.g., with landscape alteration or climate
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change. There is, therefore, a strong, immediate need to enhance statistical models to better

predict stream temperature under dynamic climate conditions.

Statistical models can better capture dynamic and changing conditions if parameterized

covariate relationships are able to adequately represent seasonally shifting and interacting pro-

cesses that influence stream temperature [25]. Numerous studies have compared the perfor-

mance of model types against each other, offering varying conclusions regarding the best

modeling approach [13,26–29]. However, model performance has as much to do with the abil-

ity of covariates to capture variation in drivers as it does with the model type and statistical

methods. While autocorrelation in stream temperature is often discussed as a separate and

abstract entity, it is largely a result of the high heat capacity of water causing resilience in the

propensity of water temperature to change as it moves through stream networks. This resil-

ience is likely to vary temporally with variation in flow and the influence of snowpack and spa-

tially as a consequence of channel characteristics. We argue that there is substantial room for

improvement in statistical models for stream temperature by carefully choosing and parame-

terizing covariates to better reflect these underlying processes. Modeling efforts are likely to

benefit from pursuing the maximization of the ability of covariates before depending on more

rigid autocorrelation functions.

Previous statistical stream temperature models have generally assumed non-interacting cli-

mate (e.g., air temperature, precipitation) and landscape covariates (e.g., elevation, drainage

area, slope) [11, 21, 30, 31]. In a recent advancement, Siegel and Volk [25] allowed time-vary-

ing climate covariates (e.g., air temperature) and spatially-explicit landscape covariates (e.g.,

elevation) to interact, thereby producing a model that predicted stream temperatures based on

putative mechanistic principles (defined a priori), rather than allowing a covariance function

to absorb error that was otherwise unexplained. They argued that these interactions were nec-

essary for models to fit across seasonal and interannual climate variability as the influence of

many variables is not unidirectional. Instead, most spatial variables either mitigate or amplify

seasonal extremes in stream temperatures, and thus the directional influence of variables

changes between cold and warm seasons. For example, groundwater influence can mitigate

temperature extremes, cooling river water in the summer but warming it in the winter. Spatio-

temporal thermal variability across the entire calendar year was well approximated by these

simple interaction terms between spatial landscape covariates and temporal climatic covariates

[24, 25, 32].

Many statistical models use air temperature as a proxy to represent physical energy

exchanges driven by solar radiation and thermal conduction (e.g., [33]). However, as with the

example of groundwater above, the relationship between air temperature and stream tempera-

ture can change across seasons and years as it is mediated by snowmelt and river discharge

[26, 34, 35]. For example, snow-influenced streams may be less sensitive to air temperatures

due to the direct cooling influence of snowpack melt and associated higher flows creating

increased thermal inertia [36]. Stream temperature becomes more correlated with air tempera-

ture in low snowpack years and later in the season as the snowpack diminishes and associated

flows decline.

Siegel et al. [37] represented temporal variation in the sensitivity of stream temperature to

air temperature by developing a covariate of antecedent air temperature averaged over a vari-

able duration that was determined by flow conditions. They used this covariate (and others) to

estimate stream temperatures at ~400 free-flowing sites (i.e., uninfluenced by impoundment)

throughout the Pacific Northwest (PNW), USA. They found evidence that snowpack buffered

stream temperature long after snow had melted, presumably due to its movement into ground-

water that later flowed into streams. Thus, sites with higher snowpack had longer thermal lags

than sites uninfluenced by snow, making the snow-influenced sites less responsive to short-
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term changes in air temperature. Asarian et al. [38] used a similar approach that included

time-varying and nonlinear effects of flow to predict stream temperature for a snowmelt-

driven watershed in California. They also found that stream temperatures remained lower well

into summer in high flow years. Both studies fit models to single sites, thus their approach did

not capture interactions between climatic and landscape influences on stream temperature.

Here, we model and predict daily stream temperature across the entire calendar year for a

broad geographic region, contrasting with previous models that estimated coarser metrics

such as monthly or seasonal stream temperature [5, 21, 38] or focused on individual water-

sheds [25].Specifically, we improve on previous approaches by incorporating the antecedent

air temperature covariate introduced by Siegel et al. [37] (referred therein as “flow-dependent

flexible-lag air temperature”) into the spatiotemporal modeling approach of Siegel and Volk

[25] using publicly available spatially and temporally continuous climate covariates in con-

junction with spatially continuous landscape covariates. We present a daily stream tempera-

ture model applicable across the entire calendar year for the geographically diverse PNW, a

region critical for cold-water salmonid production. We fit the model to stream temperature

data from 1993–2013 and used the model to predict daily stream temperatures for all regional

stream reaches from 1990–2021. Our results illustrate spatial and temporal variation in stream

temperature that can be used directly in management applications now and that may also gen-

erate insights about how stream temperatures will be affected by climate change.

Methods

Study region and spatial network

For our spatial framework we used the National Hydrography Dataset 1:100k (NHDPlus ver-

sion 2) network of stream reaches created by the US Geological Survey [39]. The PNW portion

of the dataset (Region 17) is primarily composed of Columbia River Basin streams in the USA,

but also includes coastal areas of Oregon and Washington and Puget Sound drainages. It

includes 270,941 stream reaches of 1.98 km in length on average (SD = 1.74 km),>96% of

which were defined as “free-flowing”. As in Siegel et al. [37], we classified free-flowing streams

as those upstream of the influence of major dams, i.e., those with capacity >0.1 km3 from the

Global Reservoir and Dam Database (GRanD v1.3; [40]) and those with height >15.24 m (50

ft) from the National Inventory of Dams (https://nid.usace.army.mil). In contrast to Siegel

et al. [37], we also included streams with minimal dam influence in our definition of free-flow-

ing reaches. To calculate dam influence, we calculated the percentage of the upstream drainage

area (PDA) for each reach that lies upstream of a major dam. For fitting models, we imple-

mented a conservative cutoff, only including reaches where PDA < 5%. We used the resulting

model to predict stream temperatures for reaches with a PDA < 25%. When more than 25% of

the flow in a reach comes through a large dam, the temperature in that reach is frequently

uncoupled from the physical processes we modeled (e.g., when water is released from below

the thermocline in deep reservoirs, or when warm surface water is spilled over dams at unnatu-

ral times). The free-flowing streams in our dataset comprised small to large streams (stream

order mean 1.8, max 9), represented a large range of elevations (mean 1200 m, range 0–3362

m), and included headwater streams with minimal drainage areas to large rivers with drainage

areas up to 20,000 km2.

Stream temperature

We used ~20 years of daily stream temperatures from 1993 through 2011–2013 (with the end

year varying by region) that were contributed by various organizations to the NorWeST proj-

ect; raw data were curated, quality controlled, summarized, and made publicly available by the
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USDA Forest Service [5]. We downloaded “All Days Daily Summary” files within the PNW

study region, which included individual stream temperature measurements typically taken at

15–30 min intervals that had been summarized into daily metrics (https://www.fs.fed.us/rm/

boise/AWAE/projects/NorWeST/StreamTemperatureDataSummaries.shtml). We used ~5.16

million daily stream temperature estimates for free-flowing reaches (87% of ~5.91 million

available, after excluding data from reaches heavily influenced by dams) (Fig 1).

Antecedent air temperature covariate

To reflect variation in the sensitivity of stream temperature to changes in air temperature, we

used a covariate of air temperature averaged over an antecedent period, the length of which

varied in conjunction with flow conditions. The rationale for including this covariate was to

account for temporal variation in thermal inertia caused by dynamic processes that alter the

rate at which streams warm (e.g., precipitation stored as snow and subsequent snowmelt-

Fig 1. Locations of daily stream temperature data from NorWeST that we used to fit our model, filtered to omit any locations influenced by large dams.

Basemap source: a combination of public domain data customized by DH in ArcMap (Esri). Bathymetry data are from NOAA’s National Geophysical Data

Center and the British Columbia Marine Conservation Analysis Project Team. Political boundaries and shoreline are from the United States Geological

Survey. Hydrography is from the National Hydrography dataset.

https://doi.org/10.1371/journal.pwat.0000119.g001
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driven increases in flow) and processes that add direct inputs of cooler water that suppress

stream temperatures in comparison to air temperatures (e.g., groundwater and snowmelt).

Our antecedent air temperature covariate (Tl) was adapted from the approach described in

Siegel et al. [37], as outlined below.

Siegel et al. [37] found that water temperature in snowpack-influenced streams demon-

strated slower responses to changes in air temperature than rain-dominated streams, even

after the snowpack had melted. Specifically, they described that the average window size over

which antecedent air temperature was most highly correlated with stream temperature tended

to be larger in snowpack-fed streams. Based on their results, we categorized each stream reach

by the average snow accumulated within its drainage area (Sws) for each calendar year and

defined each reach and year combination as having “rain-dominated” (<20 mm), “transi-

tional” (20–100 mm), or “snow-dominated” (>100 mm) hydrology. Although technically

these represent low, moderate, and high snow classes, we retain the terminology defined above

to be consistent with previous related research. The average annual snow-water equivalent

(SWE) was calculated by averaging all daily values across the year, including days with no

snowpack, and thus the metric reflects the duration of snowpack as well as the magnitude of

accumulation. In contrast to Siegel et al. [37], we used annual SWE accumulation rather than

the multi-year average, which allowed each reach to transition between classes among years to

better capture interannual variability. These classifications were used only to develop the ante-

cedent air temperature covariate Tl; data were not subset by these classes when fitting the

stream temperature model.

Next, we developed a metric representing the best moving average window size for each

reach and day. To do this, we calculated daily log-scale area-standardized flows (Qr) by sub-

tracting estimated average annual flows based on a reach’s watershed area (A) from estimated

daily mean log-scale flows from the National Water Model (see below) using the relationship

developed by Siegel et al. [37]: Qr = -4.10 + 0.93*A. We then split each of the snow-dominated,

transitional, and rain-dominated data subsets into 200 groups separated by 0.5% quantiles of

Qr. We correlated stream temperature in each Qr quantile with local air temperature averaged

over antecedent moving windows of different sizes (1, 3, 6, 9, 12, 15, 20, 25, 30, 40, 50, and 60

days including the day of prediction). To identify the optimal window size (number of days)

over which air temperature would be averaged for each hydrographic classification, we fit Gen-

eralized Additive Model (GAMS, [41]) smoothers with<6 knots using the R package mgcv

[42] for rain, transitional, and snow data independently, where the response variable was the

window size with the highest correlation from the previous step, and the explanatory variable

was mean Qr in each quantile. Finally, we used these models to predict the optimal window

size for each daily value of Qr for all reaches (rounded to the nearest tested window size). The

antecedent air temperature covariate (Tl) covariate was then created by selecting the air tem-

perature associated with the predicted window size.

Other covariates

We selected commonly used model covariates that represent well-known drivers of stream

temperature; see [43] for a summary of energy flux processes. Most of these covariates have

previously been shown to be useful in other stream temperature modeling efforts and aligned

with our pre-hypothesized effects. We performed iterative backwards stepwise variable selec-

tion and retained only variables that aligned with hypothesized effects and that significantly

contributed to model performance (p< 0.05). We used the R package visreg [44] to visualize

conditional effect relationships for each potential variable. As found by Siegel and Volk [25],

we found that information criteria such as AIC or BIC were not adequate for model selection
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due to the large size of our datasets because they tended to support inclusion of covariates that

did not align with hypothesized effects.

Our sources for climate data were: daily mean air temperatures from the PRISM Climate

Group at Oregon State University ([45], http://prism.oregonstate.edu); daily modeled snow-

pack data represented as snow water equivalent (SWE) provided by the National Snow and Ice

Data Center [46]; and daily flow predicted by the National Water Model Version 2 [47]. Siegel

et al. [37] performed comparisons between the National Water Model predictions and corre-

sponding measured flow data from free-flowing streams in the region. They found that the

model generally captured hydrologic patterns and flow magnitudes, but that its ability to cap-

ture the magnitude and timing of peak flows was less consistent.

The air temperature data and SWE data are available as continuous 4-km (16-km2) grid

cells whereas the NWM flow predictions are available for each reach in the NHDPlus version 2

stream network. To produce distinct local- and watershed-scale air temperature and snowpack

covariates, we averaged gridded data over the local catchment area draining directly into a

NHDPlus version 2 stream reach and over the entire upstream watershed area draining to a

reach. For our local air temperature covariate, we used the antecedent air temperature covari-

ate (Tl) described above. A daily watershed-area averaged air temperature metric (Tws) was

also included to better capture the impact of air temperatures upstream on snowpack melt

compared to the local values. In addition to daily SWE values, we used an annual metric of

April 1st SWE interacting with day of year in an attempt to capture the delayed cooling impact

of snowpack following melting. We also used daylight hours (DL) which vary across the year,

and reach latitude which defines solar angle irrespective of day length.

We included a set of spatial covariates that were temporally static to account for landscape

characteristics that may affect stream temperature. Data sources included EPA StreamCat [48]

and NHD V2.1 network attributes [39]. In addition, we summarized percent canopy cover

along reach streamlines from the National Land Cover Dataset (NLCD). See Table 1 for a full

list and description of covariates.

We evaluated the correlation between standardized covariates across seasons using a Pear-

son’s correlation test (S1 Fig). Other than D and DL, which were correlated in all seasons

except winter as expected, there were only three pairs of highly correlated covariates (> 0.8):

Tws and Tl during fall (0.9), winter and spring (both 0.8), R and P during summer (-0.8), and

SA1 and Sws during winter (0.9). SA1 and Sws were not significantly correlated during the

other seasons, so we included both covariates. Although correlated, Tws and Tl were both

included in the model due to distinct hypothesized impacts on stream temperature. An inter-

action term to help the model distinguish the individual impacts was included and found to be

important in informing the model. However, because there is seasonal collinearity between

some of the variables and non-linear concurvity [49] between some of the estimated smoothed

parameters, the modeled relationships for these variables predicted by the model should be

interpreted cautiously. Still, predictive power was improved by including all variables, and

thus some remaining collinearity was considered acceptable as the primary goal of the effort

was to produce accurate predictions across time and space.

Modeling methods

We parameterized the effects of climate covariates using a combination of GAM tensor prod-

uct smoothers and interactions fit with the “ti” function in the R package mgcv [42]. Although

the default ti fitting function using thin-plate regression splines has a penalty term to prevent

overfitting, our examination of fitted relationships and cross-validated predictions found it to

be too permissive for our purposes. To avoid overfitting, we restricted the number of knots
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within the climate variable smoothers to limit the complexity of fitted relationships while

allowing enough flexibility to capture nonlinear relationships based on theory [25, 31]. We

used the default fitting function (fREML) to fit models.

Our modeling approach centered around our primary air temperature covariate (anteced-

ent air temperature Tl), which we allowed to have 6 knots to capture the logistic-shaped rela-

tionship with stream temperature [33]. Most of the other variables were allowed to interact

with Tl to parameterize their theoretical impact of either mitigating or exacerbating climate

impacts on stream temperature. However, daily watershed averaged air temperature (Tws),
which was allowed 3 knots, helped account for the large influence of air temperature on a

given day. Tws was considered a better choice than Tl to interact with snowpack (Sws) as it bet-

ter represented air temperatures encountered by mountain snowpack. For other temporally

continuous climate covariates (i.e., snowpack Sws, area-standardized flows Qr, and daylight

hours DL), we allowed 4–6 knots and included interactions with antecedent air temperature

(Tl).
Spatial landscape covariates that had no temporal component were modeled with linear

effects, as they were expected to have simpler relationships with stream temperature, either

amplifying or muting the impact of climate across space. Limiting the number of smoothers

simplified the model and lowered the risk of overfitting. We allowed each of these variables to

interact with antecedent air temperature (Tl) to help account for seasonal variation in their

directional influence on stream temperature. For example, covariates that cool stream temper-

ature in the summer when air temperatures are warm, such as groundwater influence (as rep-

resented by baseflow index, BFI) or riparian forest cover (F), tend to warm stream temperature

during the winter when air temperatures are cold. We considered only two other interactions

between linear covariates: annual April 1st snowpack depth (SA1) and day of year (D) to help

Table 1. Covariates used in the stream temperature model.

Symbol Description Dimensions Unit Source

Tl Antecedent air temperature (summarized by the local reach-contributing drainage area) daily*reach ˚C This study

Tws Mean daily air temperature in upstream watershed daily*reach ˚C PRISM

Sws Mean daily snowpack snow-water-equivalent (SWE) in upstream watershed daily*reach mm National Snow and Ice Data Center

DL Day length daily*reach hours DayMet

D Day of calendar year daily Julian

Qr Mean area-standardized flow daily*reach log(m3/s) NWM, this study

SA1 April 1st watershed snow-water-equivalent annual/reach mm National Snow and Ice Data Center

Lat Reach latitude reach Latitude NHDv2 attributes

E Mean reach elevation reach m NHDv2 attributes

Ed Difference between the reach elevation and the mean watershed elevation reach m NHDv2 attributes

A Watershed area reach log(km2) NHDv2 attributes

BFI Percentage of mean flow that comes from base flow reach % NHDv2 attributes

S Slope (gradient) reach proportion NHDv2 attributes

O Percent of watershed in open water reach % StreamCat

W Percent of watershed covered in wetlands reach % StreamCat

I Percent of watershed covered in ice reach % StreamCat

F Percent of 100-m riparian buffer of local catchment that is forested reach % StreamCat

C Percent canopy cover over reach streamline reach % NLCD

U Percent of watershed covered in urban land use reach % StreamCat

V Percent of watershed covered by extrusive volcanic rock reach % StreamCat

P Mean annual reach-contributing-area precipitation reach mm StreamCat

R Mean annual reach-contributing-area air temperature range reach ˚C StreamCat

https://doi.org/10.1371/journal.pwat.0000119.t001
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account for the delayed effect of snow melt through groundwater connectivity; and stream

reach elevation (E) and watershed area (A) to help distinguish high- from low-elevation head-

water streams. The final model formula was:

Tw ¼ tiðTlÞ þ tiðTwsÞ þ tiðDLÞ þ tiðQrÞ þ tiðSwsÞ þ tiðTws; TlÞ þ tiðDL; TlÞ þ tiðQr; TlÞ
þ tiðSws; TwsÞ þ Tl∗ðLat þ Eþ Aþ BFI þ Ed þ Sþ OþW þ I þ F þ C þ U þ V
þ P þ RÞ þ SA1∗Dþ E∗A:

Validation

To assess the ability of our methods to produce accurate predictions at high spatiotemporal

resolutions, we compared the accuracy and precision of predictions from a single model (i.e., a

model fit to all available data) and models fit to seasonal and spatial subsets of the data. Prior

investigations demonstrated that prediction accuracy improved if models were fit to the warm-

ing and cooling seasons separately [25, 30]. We therefore split the dataset by the day of year

that represented the average peak in stream temperatures in our study (Julian day 210, ~July

29th). For regional models we split the dataset into 10 large sub-regional watersheds within the

PNW based on the “processing units” designated in the NorWeST dataset [5]. We then exam-

ined the effect of season/region specific models (20 separate fits).

We validated models using root mean squared error (RMSE) and mean absolute error

(MAE) statistics. In addition to providing fit statistics, we performed a leave-one-year-out

cross-validation and a leave-one-region-out cross-validation, hereafter referred to as the tem-

poral and spatial cross-validations, respectively. Although cross-validation methods often

leave out a random proportion of the dataset, our temporal and spatial cross-validation tests

evaluated the model’s ability to predict entirely distinct years and regions left out when fitting

the model. For the temporal cross-validation, a single year was withheld from the model fitting

dataset and used as a validation dataset, whereas for the spatial cross-validation, a region was

withheld. The validation processes were repeated until each year/region had been withheld

and predicted. For cross-validations, we report root mean squared prediction error (RMSPE)

and mean absolute prediction error (MAPE). In addition, we examined how model perfor-

mance varied across space and time by fitting the relationship between the absolute value of

residuals and all covariates using GAM smoothers (knots limited to 5). We evaluated statistics

for the daily model predictions and daily predictions summarized as monthly predictions.

Finally, we evaluated if characteristics of data used to fit models (i.e., reaches and days with

empirical data) were spatially and temporally representative of those across the entire PNW

where we made predictions. Because of the large number of covariates used in our model, for

this dataset evaluation we compressed the multidimensional covariate space of both fitting and

prediction data using principal components analysis [50] and evaluated spatial and temporal

covariates separately. All covariates were standardized by relative rank. We compared the spa-

tial covariate space for all reaches in the fitting dataset (n = 10,032) to that of the entire PNW

region we predicted (n = 261,207). For the immense temporal dataset (i.e., daily data at each

reach), we analyzed a random 10% subset of reaches and aggregated data by month, resulting

in ~350,000 unique observations of reach/month combinations. Multiple random subsets

were tested and gave similar results to those presented here.

Results

Reach hydrology classifications

Winter air temperature (Fig 2A) and annual precipitation (Fig 2B) both influence average

snowpack accumulation (Fig 2C). Each reach in the PNW was classified as rain-dominated

PLOS WATER Daily stream temperature predictions for the PNW

PLOS Water | https://doi.org/10.1371/journal.pwat.0000119 August 30, 2023 9 / 27

https://doi.org/10.1371/journal.pwat.0000119


(hereafter, “rain reaches”), snow-dominated (hereafter, “snow reaches”), or intermediate

(hereafter, “transitional reaches”) based on the mean annual SWE (Fig 2D). Note that Fig 2

illustrates the average values across all years in our study period, but for our analyses, we incor-

porated annual values from each individual year. We used these hydrology classifications to

develop our antecedent air temperature metric Tl from an average of 508 rain reaches (mean

across years; maximum 1182), 612 snow reaches (maximum 1094), and 566 transitional

reaches (maximum 1148). Note that this subset of reaches used to inform Tl were those for

which we had empirical stream temperature data (i.e., 10,032 of>261,200 free-flowing stream

reaches). Rain reaches occurred at lower elevations and had warmer air temperatures and

lower flows but higher precipitation on average compared to snow reaches (Fig 3). Mean

annual watershed snow depths were usually < 500 mm for snow reaches (median = 218 mm,

but>2000 mm for some reaches). Environmental characteristics of transitional reaches were

Fig 2. Maps of the PNW illustrating (A) winter average air temperature and (B) mean annual precipitation from the PRISM dataset, (C) mean

accumulated snow water equivalent (SWE) in upstream watersheds from the National Snow Water and Ice Dataset, and (D) regions classified in

this paper as having rain-dominated, transitional, and snow-dominated hydrology. The mean accumulated snow water equivalent (SWE) was used

to classify the hydrograph classes shown in (D). Here, we show the average snowpack accumulation and most common hydrograph classification

across the entire dataset. In contrast, for the analyses, annual values were incorporated (see text). Basemap source: a combination of public domain

data customized by DH in ArcMap (Esri). Bathymetry data are from NOAA’s National Geophysical Data Center and the British Columbia Marine

Conservation Analysis Project Team. Political boundaries and shoreline are from the United States Geological Survey. Hydrography is from the

National Hydrography dataset.

https://doi.org/10.1371/journal.pwat.0000119.g002
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generally intermediate to snow and rain reaches, but were more like snow reaches for air tem-

peratures (Tws), elevation (E), and base flow (BFI). However, transitional reaches were drier

on average (median annual precipitation of 656 mm, compared to 950 mm and 1103 mm for

snow and rain reaches, respectively), suggesting that precipitation represented the primary rea-

son for lower snowpack accumulations in comparison to snow reaches on average.

Antecedent air temperature

Across hydrology classes (snow, rain, and transitional), the moving average window size used

to calculate the antecedent air temperature covariate Tl reflected seasonal flow patterns, with

the lowest flows occurring during summer and late fall (Fig 4A). Snow reaches demonstrated a

strong distinct flow peak during spring snowmelt, whereas rain reaches had elevated flows

throughout the late fall and winter that more closely mirrored regional precipitation patterns.

The transitional class demonstrated annual flow patterns similar to the snow class, but with an

earlier and more modest spring-melt peak.

Moving average window sizes increased with positive Qr for snow and transitional data

(Fig 4B), but snow data had larger window sizes of around 9 to 12 days at intermediate condi-

tions Qr (-1.5 to 0). In contrast, rain data demonstrated relatively smaller window sizes of

around 3 to 6 days at all flows. The highest maximum correlations between stream tempera-

ture and antecedent air temperature occurred for snow data at mid to low Qr (Fig 4C). Maxi-

mum correlations were generally lowest for rain data and intermediate for transitional data.

Stream temperature model performance

We predicted daily stream temperature over 30 years for all stream reaches throughout the

PNW in a single model with reasonable accuracy and precision (MAE = 1.32, RMSE = 1.76,

Table 2, total effective degrees of freedom = 98.5). The combined predictions from models fit

Fig 3. Environmental characteristics of data designated as having “rain”, “transitional”, or “snow” dominated hydrographs. Boxplots show medians,

interquartile ranges, and ranges across reach/year combinations. Abbreviations: BFI = baseflow index; CMS = cubic meters per second; SWE = snow water

equivalent.

https://doi.org/10.1371/journal.pwat.0000119.g003
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to seasonal, regional, and seasonal/regional subsets of the data demonstrated slightly lower

error than the single model (RMSE = 1.70 (-0.03%), 1.63 (-0.07%), and 1.57 (-0.10%)

respectively).

Prediction error in the temporal cross-validation procedure (MAPE = 1.33 (<+0.01%),

RMSPE = 1.76) was nearly identical to the single model, demonstrating the ability of the

model to expand outside of the temporal parameter space used to fit the model. Prediction

error increased slightly more in the spatial cross-validation test (MAPE = 1.44 (+0.09%),

RMSPE = 1.88 (+0.07%)), suggesting that model has comparatively more difficulty extrapolat-

ing into new watersheds, but that spatial extrapolations may still be useful in many cases. Sum-

marizing daily predictions to monthly values improved prediction error by 10–14% across all

metrics.

Fig 4. Smoothed patterns for rain, transitional, and snow reaches illustrating (A) area-standardized flow residual (Qr) over the calendar year, (B) antecedent

air temperature window size with the highest correlation with stream temperature versus average Qr, and (C) maximum correlation between stream

temperature and antecedent air temperature versusQr.

https://doi.org/10.1371/journal.pwat.0000119.g004

Table 2. Statistics of model fit (˚C) and temporal (tXV) and spatial (sXV) cross-validation predictions for a single model fit to the entire dataset and for models fit

to regional, seasonal, or seasonal/regional subsets of the data (n = number of models). Statistics are shown for daily predictions and for monthly averages (note: not all

month/site combinations had data for the entire month and in these cases the available data were averaged for the month). RMSE = root mean squared error;

MAE = mean absolute error; RMSPE = root mean squared prediction error; MAPE = mean absolute prediction error.

Single Seasonal (n = 2) Regional (n = 10) Seasonal/regional (n = 20)

RMSE 1.76 1.70 1.63 1.57

MAE 1.32 1.27 1.21 1.16

RMSE_Month 1.56 1.52 1.44 1.38

MAE_Month 1.16 1.12 1.05 1.00

RMSPE_ tXV 1.76 1.71 1.65 1.61

MAPE_ tXV 1.33 1.28 1.23 1.19

RMSPE_Month_ tXV 1.57 1.53 1.46 1.43

MAPE_Month_ tXV 1.17 1.13 1.07 1.03

RMSPE_ sXV 1.88 1.84 NA NA

MAPE_ sXV 1.44 1.40 NA NA

RMSPE_Month_ sXV 1.69 1.66 NA NA

MAPE_Month_ sXV 1.28 1.25 NA NA

https://doi.org/10.1371/journal.pwat.0000119.t002
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Modeled relationships between residuals and covariate values are shown in Fig 5 for a set of

covariates discussed here; others are shown in S2 Fig. This analysis demonstrates that predic-

tion error tended to be higher at warmer air temperatures during the summer and during low

flow and snowpack conditions. In addition, prediction error was higher in reaches with the

highest BFI values (over 75), low local canopy cover, average annual precipitation values below

1000 mm, and that exhibited higher air temperature ranges across the year.

The available stream temperature data used to fit models were broadly representative of the

physical characteristics (Fig 6A) and of the temporal variation of climate covariates during the

study period (Fig 6B) across the Pacific Northwest region where we made predictions of

stream temperature. For the spatial PCA, three axes were significant and explained 64.0% of

the total variation in the data. The spatial covariates with the highest loadings were canopy

cover (C), precipitation (P), forested riparian buffer percentage (F), and annual temperature

range (R) (S1 Table). PC1 (26.3% of variance) predominantly explained variation associated

with forest cover and regional climate characteristics; PC2 (23.1%) was associated with geo-

morphology, and PC3 (14.5%) included elevation and similar elements as the first two axes.

For the temporal PCA, three axes were significant and explained 85.2% of the total variance.

The temporal covariates with the highest loadings were watershed temperature (Tws), anteced-

ent air temperature (Tl), and day length (DI) (S1 Table). PC1 43.8%) predominantly explained

variation associated with air temperature, PC2 (25.0%) was associated with streamflow, and

PC3 (16.4%) centered on the snowpack.

Covariate effects on stream temperature

As intended when designing our model, much of the variation in stream temperature predic-

tions was associated with air temperature metrics: the antecedent air temperature at a local

reach (Tl) and the mean daily air temperature in the upstream watershed (Tws). Both Tl and

Tws had roughly equal impacts on stream temperature as shown through their interaction

with each other (Fig 7A). In addition, interactions between air temperature covariates and

other covariates allowed a shift in directional impact in accordance with theory (e.g., BFI and

Fig 5. Smoothed relationship between the absolute value of residuals and selected covariate values assessed with a subset of 10,000 randomly selected

data points.

https://doi.org/10.1371/journal.pwat.0000119.g005
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Ed and A). Daylength (DL) was important at higher values, consistent with the expectation

that air temperature is more related to stream temperature drivers when days are longer (Fig

7B). Area-standardized flows (Qr) were also important at higher values, which likely reflects

effects of snowmelt that was not fully captured in Tl or Sws (Fig 7C). Higher values of daily

snowpack in the upstream watershed (Sws) led to lower stream temperature predictions when

air temperatures in the upstream watershed (Tws) were above 0˚C, reflecting the direct cooling

influence of snowmelt (Fig 7D). In addition to the daily snowpack metric (Sws), annual April

1st snowpack (SA1) had a slightly negative relationship with stream temperature (~ 1˚C per

1m), which was stronger in the late summer and fall after the snowpack had generally melted

(Fig 7K).

We note that the influence of Sws is also captured indirectly by the variables Qr and Tl.
Consequently, the modeled influence of Sws is more muted than might be expected from

snowpack melt. In addition, the two air temperature variables (Tl and Tws) and Dl also have

some overlap in their impacts. As a result, estimated concurvity is high amongst the temporal

variable smoothers in the model (estimates 0.66 to 0.97). The modeled relationships presented

in Fig 7 should be interpreted cautiously with this in mind.

Some of the more influential spatial covariates lacking a temporal component included

reach elevation (E), the difference between the reach elevation and the average watershed ele-

vation (Ed), watershed area (A), a representation of base flow (BFI), and the percent riparian

forest cover in the 100-m buffer (R). The relationship between Tl and E suggests that streams

at higher elevations are generally cooler irrespective of air temperature, which is accounted for

separately in the model (Fig 7E), whereas Ed suggests that at high air temperatures, streams

that drain steeper and higher elevation basins are generally cooler (Fig 7F). The relationship

between Tl and A suggests that headwater streams are less sensitive to air temperature, which

may reflect greater relative groundwater or snow influence (Fig 7G). Similarly, streams with

Fig 6. PCA of (A) spatial and (B) temporal covariates used in the stream temperature model, indicating that reaches and days with empirical data that were

used when fitting models (magenta) are broadly representative of the parameter space for predicting into locations throughout the full region (gray). The

spatial dataset used all data; the temporal dataset used a random 10% of reach-days, aggregated by month.

https://doi.org/10.1371/journal.pwat.0000119.g006
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Fig 7. Conditional effect plots for climate and landscape covariates. All interactions we included in the model are shown. Contours represent

1˚C variation in predicted stream temperature. White dots represent empirical data. See Table 1 for covariate definitions.

https://doi.org/10.1371/journal.pwat.0000119.g007
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high BFI (the covariate best representing potential influence of and connection to subsurface

flow pathways) are also less sensitive to air temperatures (Fig 7H). Finally, streams with higher

riparian forest cover (F) tended to be cooler at higher air temperatures, representing shading

from solar radiation during growing seasons when trees have foliage (Fig 7I). Additional con-

ditional effects plots for covariates not discussed here are provided in S3 Fig.

Discussion

In this work, we present a novel stream temperature modeling framework that extends previ-

ous efforts [5, 21, 25, 37, 38]. We applied our model to predict stream temperature at fine tem-

poral (i.e., daily) and spatial (i.e., reach) resolutions across the broad spatial extent of the PNW

(Fig 8). Using publicly available data and a straightforward statistical GAM framework, we

provide daily predictions for>261,200 free-flowing stream reaches from 1990 through 2021.

Our model performed well outside the spatial and temporal extent of the data used to inform

the model, suggesting that our model captured many of the complex and interacting drivers

that determine stream temperature. These results should be immediately useful in conserva-

tion planning for lotic systems of the PNW that support cold-water species such as salmonids.

Our approach is straightforward and can be easily adapted to new spatial regions or time

periods.

Model utility

The performance of our model compared favorably to other statistical stream temperature

models recently applied in the western USA [5, 21, 25] that produced prediction errors of

around 0.5 to 2˚C (S4 Fig). However, our objectives were more ambitious than most other

models in that we predicted daily rather than coarser metrics such as mean monthly stream

temperature [5, 21], across a broad geographic region rather than within individual watersheds

[23], and across the entire calendar year in contrast to seasonally [51]. Although our results

demonstrated that predictions were improved by fitting models to smaller spatial or temporal

extents, average prediction errors were only 0.1 to 0.2˚C better than the single model, an

improvement that is small enough to be within the error range of most measuring devices.

The flexibility of our statistical model structure was essential to its ability to accurately pre-

dict across a geographically diverse region characterized by substantial seasonal and interan-

nual climate variability. Most previous models did not explicitly account for hydrograph class

(snow, rain, or transitional) despite that previous research has clearly demonstrated that the

amount of winter precipitation falling as snow can strongly influence stream temperature and

its relationship with air temperature across multiple seasons [26, 34, 37, 52]. Also, previous sta-

tistical models typically used linear, non-interacting effects of air temperature on stream tem-

perature, which does not reflect the nonlinear and spatiotemporally variable nature of this

relationship [53, 54 but see 38]. Our model overcame these limitations by including (1) an

antecedent air temperature metric that was dependent on snowpack and flow, (2) nonlinear

relationships, and (3) covariate interactions primarily with air temperature that allowed the

influence of covariates to shift seasonally as theoretically expected. For example, streams with

high base flow (BFI, which represents groundwater influence) should be (and were) less sensi-

tive to air temperature, and therefore should be (and were) warmer in the winter and cooler in

the summer on average compared to streams with low base flow. These adaptations allowed us

to better capture the dynamism of the air-stream temperature relationship and overcome a

known drawback of linear statistical models [13, 14].

A common concern in using GAMs is that relationships can be over-fit, capturing small

patterns in the data that are not caused by covariate influences [41]. Following previous
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research, we limited model complexity by reducing the number of smoother knots [25, 31].

Automated parameter penalties within the fitting functions of the modeling package alone led

to overfit relationships. The success of our model in the cross-validation tests suggests that our

model is not over-fit, and other research has supported GAMs as appropriate statistical models

Fig 8. Stream temperature predictions averaged by season (top panel: summer; bottom panels: spring, fall, winter) to illustrate the spatial extent

over which predictions were made and temporal variability. Values were mapped to individual reach-contributing areas to improve visualization,

but daily data are linked to each stream reach identifier in the National Hydrography Dataset version 2. Gray indicates reaches where we did not

make predictions such as in reservoirs or because reaches were heavily influenced by dams (PDA> 0.25). Basemap source: a combination of public

domain data customized by DH in ArcMap (Esri). Bathymetry data are from NOAA’s National Geophysical Data Center and the British Columbia

Marine Conservation Analysis Project Team. Political boundaries and shoreline are from the United States Geological Survey. Hydrography is

from the National Hydrography dataset.

https://doi.org/10.1371/journal.pwat.0000119.g008
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for stream temperature [27, 28, 31]. In addition, the relationships parameterized in our statisti-

cal model align with theoretical expectations, as demonstrated in conditional effects plots (Fig

7 and S3 Fig). These results support our decisions to limit model complexity by constraining

the number of knots in climate variable smoothers and to fit linear relationships to temporally

constant variables. Visually examining concordance between expected and observed condi-

tional effects is an important model quality control step when considering covariates to

include in a model [13, 25].

Our statistical model was less expensive in data requirements, expertise, execution time,

and computing power than a more complex process-based model. The diversity of spatial and

temporal scales and physical forcing pathways that drive stream temperature over broad spatial

and temporal extents is so vast as to make purely mechanistic physical models impractical [13,

14, 16–18]. The variables we used in this model are publicly available throughout the contigu-

ous United States, although retrospective expansion is limited by the historical availability of

the climate metrics. Our results suggest that statistical methods that can generally and robustly

model patterns that emerge from physical processes are an appropriate compromise between

physical process representation and data and computational requirements.

Our model successfully predicted stream temperatures outside of the spatiotemporal bounds

of the data used to fit the model, suggesting that our model’s statistical relationships represented

mechanistic controls and can therefore be useful in predicting stream temperatures under un-

monitored conditions. Some statistical models have shown poor prediction accuracy when

extrapolating to novel time periods or regions (e.g., [53, 55]). This likely stems from a combina-

tion of extrapolating predictions to streams with dissimilar hydrological classes and not includ-

ing variables that represent distinct thermal regimes. The ability of our model to extrapolate

predictions was improved by fitting the model across a large, geographically diverse region and

over multiple decades representing substantial interannual climate variability. Accordingly,

data in temporal expansions (e.g., filling gaps or extending time-series) or spatial expansions

(e.g. predicting in adjacent basins) are more likely to be represented in the wide-ranging covari-

ate space used to inform the model and thus more accurately predicted.

While successful across a broad geographic area and variable climate conditions, model

performance was not consistent across space and climate. To better understand how model

performance varied, we examined the relationship between the absolute value of residuals and

model covariates. This analysis showed that the absolute value of residuals is higher during

warm and dry summer conditions. However, as also described in Siegel and Volk [25], there is

much more variation in stream temperature across the landscape during the warm summer

months. Thus, while absolute prediction error is higher, the model actually captures a higher

proportion of the variation in stream temperature during the warm season in comparison to

the cooler winter season. In addition, the model performed more poorly at reaches that receive

little precipitation and have comparatively low riparian canopy cover. These stream reaches

are more likely to consistently exhibit lower flows, be more influenced by variation in solar

radiation due to a lack of shading, and be more sensitive to local forcing factors that can be dif-

ficult to accurately capture in model covariates (e.g. localized groundwater springs or agricul-

tural runoff/diversions). Finally, the model also performed more poorly in the reaches with the

highest level of groundwater influence as measured by BFI. Reaches with substantial ground-

water influence are more likely to be decoupled from air temperature.

Potential applications

Our model’s ability to predict temperature across a large range of spatiotemporal scales makes

it a powerful tool for informing and supporting species and habitat management. Predictions
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can be used for evaluating different management and restoration scenarios [56, 57]. For exam-

ple, consulting maps of predicted stream temperature during times of potential ecological

stress may indicate where increased riparian shade, floodplain reconnection, or other tempera-

ture-moderating actions might be necessary to improve ecosystem function. If our modeling

framework were to be applied in other regions, a cross-region comparison could provide infor-

mation useful for considering whether management approaches that have worked well in one

region may be applicable in another.

For protected cold-water species like salmonids, a potential application of our results could

be to evaluate thermal habitat across life history stages to guide management strategies. Our

stream temperature predictions can help determine if management actions should resist change

(e.g., conserve functional thermal habitat), accept change (e.g., recognize that some habitats are

unlikely to become as functional as they may have been in the past), or direct change (e.g.,

actively alter stream temperatures or move sensitive species) [10]. For example, our predictions

can identify streams that are more stable throughout the year, such as snowpack-influenced or

groundwater-fed streams. Streams with stable thermal regimes can be more productive than

regulated reaches, and may be more resistant to climate change, making them better targets for

species reintroductions [26, 58–61]. As another example, our model could help practitioners

envision potential stream temperatures as if a dam did not exist (since we did not model dam

effects), which may be useful for assessing dam management and/or removal strategies.

Another powerful application of our model would be to predict the effects of climate change

on stream temperature. The model successfully predicted stream temperature outside of the

spatiotemporal bounds of the data used to fit the model, so it is likely to perform well in

unsampled time periods. Our methods provide improvements for parameterizing the seasonal

and annual impacts of snowpack and associated flows, which are expected to be strongly influ-

enced by climate change. In addition, fitting the model across such a large and diverse region

across numerous climatically distinct years will likely be beneficial in predicting climate

impacts. Even in years with annual climate values outside the range of those used to fit the

model, few of the daily covariate combinations are likely to fall outside combinations already

seen by the model. For example, warmer air temperatures are expected to result in decreased

snowpack throughout most of the Northern Hemisphere, shifting many regions from snow-

dominated to rain-dominated hydrology [62], but our model already accounts for the pre-

dicted range of future snowpack conditions and the influence of different hydrology types on

stream temperature. If future air temperatures are warmer and snow melts earlier, spring con-

ditions will likely resemble past summer conditions, and higher elevations and latitudes may

mimic historical conditions at lower elevations and latitudes. Therefore, only the most extreme

future conditions (e.g., the warmest sites during the warmest time of year) would be outside of

our modeled parameter space. The production of accurate predictions of future air tempera-

tures, stream flows, and snowpack accumulations to inform climate covariates may be a larger

source of error than the stream temperature model.

Model limitations and future directions

While we believe that our results are useful for examining patterns in thermal regimes across

landscapes and in conservation planning, our stream temperature predictions should be inter-

preted within the limitations of the modeling approach and prediction accuracy. Prediction

error was low on average, however local model residuals should be consulted before using pre-

dictions for finer scale applications. If local error is considered large, our dataset and method-

ology could be used to fit a more tailored model if enough local stream temperature data exists

to inform it.
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Our methods produced predictions representing well-mixed mainstem temperatures of

stream reaches that were generally ~1–2 km in length. Accordingly, the model does not reflect

finer scale thermal heterogeneity from features such as localized groundwater inputs, backwa-

ter areas, deep pools, or localized riparian shading. Such heterogeneity can have important

impacts on biota. Similarly, as with other statistical models, the model is not designed to pre-

dict temperatures in stagnant or thermally stratified waters such as slow-moving pools, lakes,

or reservoirs [5, 21].

The model does not account for flow regulation and dam operations; we therefore did not

predict stream temperature for reaches likely to be heavily influenced by dams. Because regu-

lated watersheds often produce unnatural flow conditions and thermal regimes [61], statistical

models have difficulty accurately predicting below dams (e.g., [26, 37, 55] without additional

dam-specific covariates [5]. Larger dams often release water from below the thermocline in the

reservoir, which can lead to large differences in stream temperature (e.g., reductions in the

summer and increases in the winter) that can persist many kilometers downstream of the dam

[63]. The strength of these effects depends on the size of the dam and how it is managed, dis-

charge volume, water release temperature, and environmental conditions like flow and air

temperature [53, 63]. These factors make accounting for dam impacts in a spatially expansive

model like ours particularly difficult. An analysis comparing empirical measurements of

stream temperature to predictions from our existing model (that did not account for dams)

would provide insights into dam-specific spatiotemporal impacts on stream temperature and

potentially could inform the development of covariates to account for the impact of dams

across a regional scale.

Local geology is one of the main factors controlling groundwater influence on stream tem-

peratures [64–67]. For example, Tague et al. [68] found that water temperature in western Ore-

gon streams underlaid by volcanic rock>7 million years old (Western Cascades) was more

synchronous with air temperature compared to streams underlaid by volcanic rock<2 million

years old (High Cascades), inferring that groundwater played a larger role in the geologically

younger, High Cascades streams. Here, we included the percent of the watershed covered by

extrusive volcanic rock (V), but it is unclear how broadly this applies to other regions. Simi-

larly, Dralle et al. [69] found that underlying geology in the Eel River basin, California, influ-

enced water storage capacity, flow dynamics, vegetation type and canopy cover, all of which

subsequently impacted water temperature. The depth of groundwater aquifers can also be

important in determining groundwater influence on surface stream temperature [70].

Although we represented potential surface-subsurface interactions with an index of base

flow (BFI), it is difficult to empirically assess groundwater inputs and losses at a large spatial

scale. The model demonstrated increased prediction error at the highest BFI levels, suggesting

that the model could be improved with further exploration into the ways to parameterize the

impact of groundwater interactions. A recently developed base flow model produced by Lom-

bard et al. [71] seems a promising way to improve representation of the interaction of subsur-

face and surface water on stream temperature. In addition, planform and longitudinal channel

morphology influences rates of surface and hyporheic aquifer exchange, and thus stream tem-

perature, in a complex and not well characterized manner [72]. This is strongly influenced by

the degree of riverscape impairment, particularly floodplain disconnection [73]. Thus, more

detailed riverscape context could be incorporated as new covariates or used to define more

stream types beyond snow-dominated, rain-dominated, and transitional [74].

Vegetation covariates (i.e., canopy cover and riparian shading) in this and other statistical

stream temperature models are temporally constant [5, 21, this study], but vegetation cover

changes seasonally and spatially [75] and will likely be impacted by climate change. Future

improvements should attempt to incorporate vegetation as a temporal covariate. Similarly, the
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effect of wildfires should be incorporated because wildfires can dramatically decrease riparian

vegetation and alter flow paths, impacting stream temperatures, with the strength and direc-

tion of the effect varying by season and the severity and location of the wildfire [76, 77]. Fur-

thermore, it is likely that the impacts of wildfires on stream temperature will increase as

wildfire severity and frequency intensify with climate change [78–80].

As discussed by Siegel et al. [37], the parameterization of the predicted averaged antecedent

air temperature window size could potentially be improved with more predictive information.

While we included a third “transitional” category in addition to the two “snow” and “rain”

dominated categories previously used, further explorations could examine the impact of fur-

ther dividing snowpack or other factors to create additional categories. Such factors could

include watershed/channel and size, riparian shading, geology, channel morphology, and the

characteristics of the watershed’s groundwater hydrology. For instance, antecedent air temper-

ature window size in rain-dominated catchments may be influenced by watershed area.

A relatively high level of nonlinear dependency among predictor variables, or concurvity

[49], was estimated amongst the smoothed terms of the model. This result is not surprising

given that air temperature, snowpack, flow, and day length are related factors. Nevertheless,

we found that each of these variables also had a unique impact which was necessary for fitting

our model across a broad geographic area and for capturing climate variability. Included inter-

actions were necessary for the model to distinguish the impacts amongst these related vari-

ables. However, due to this interdependence estimated variable relationships should be

interpreted with this conflation in mind. Further exploring how to better isolate the indepen-

dent impacts of climate variables to lower concurvity [49] would make parameterized relation-

ships easier to interpret, would likely lower computing time, and could potentially improve

predictions.

Finally, we recognize that the application of autocorrelation functions in conjunction with

the modeling techniques we present in this study may further improve prediction accuracy in

some cases. One of our objectives in this study was to explore the replacement of rigid autocor-

relation functions that aim to account for processes that limit the temporal and spatial rate of

change of stream temperature with covariate relationships that can vary over space and time.

In addition, we aimed to produce a model that could be easily used to predict unmonitored

time periods and watersheds which may lack the real world stream temperature data to accu-

rately inform autocorrelation functions. Accordingly, we did not include autocorrelation func-

tions in our model to best test the ability of our covariates to account for these processes. The

ability of our model to produce accurate cross-validated predictions across space and time sug-

gests that our covariates were largely successful in this effort. However, we recognize that a

level of autocorrelation remains in our model residuals and are in support of future modeling

efforts exploring combining autocorrelation functions with our methodology. In general, we

believe that stream temperature modeling remains a dynamic field with further gains to be

made by continuing to examine covariate parameterization and statistical techniques.

Conclusions

Our stream temperature model produced accurate daily predictions for more than 30 years

across a large and geographically diverse region and shows promise for application to novel

locations and periods. The rich dataset of predicted stream temperature we provide has

numerous potential real-world applications for aquatic species and habitat management. Our

results can be used to enhance the general understanding of thermal processes in rivers and

can help practitioners examine how patterns in thermal regimes vary across the landscape and

over time [81]. This approach is simple and flexible enough to be applied in other regions or
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for different time periods if stream temperature and covariate data are available in those areas

and times. The covariate data we used are publicly available throughout the contiguous United

States, which enables easy application of our model in other regions. New covariates can easily

be incorporated into our approach should better spatial or climate data become available. In

addition to predictions, we provide code and covariates for the PNW. Our model grew from a

strong foundation of past research, and we hope that future research will continue to improve

its utility and support continued advancement in stream temperature modeling.
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S1 Table. Loadings for the principal component analyses. See Table 1 for covariate defini-
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S1 Fig. Seasonal correlation plots. See Table 1 for covariate definitions.

(TIF)

S2 Fig. Smoothed relationship between the absolute value of residuals and modeled covari-

ate values assessed with a subset of 10,000 randomly selected data points for covariates not

shown in Fig 5.

(TIF)

S3 Fig. Conditional effects between Tl and covariates not shown in Fig 7. Contours repre-

sent 1˚C variation in predicted stream temperature; white dots are empirical data. See Table 1

for covariate definitions.

(TIF)

S4 Fig. Comparison of stream temperature statistical validation metrics from this study to

FitzGerald et al. (2021), by month and region. Top panel: MAPE (mean absolute prediction

error). Bottom panel: RMSPE (root mean squared prediction error). Gray triangles show met-

rics from regions that did not overlap between the two studies. “CV” is cross-validation. Note

that the two studies used similar calibration data but employed different fitting groupings as

well as different validation techniques. For example, in this study, we fit models to the entire

PNW (holding back one region at a time for the spatial cross-validation) and compared pre-
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