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Abstract
1. Fire is a powerful ecological and evolutionary force that regulates organismal 

traits, population sizes, species interactions, community composition, carbon and 
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1  | INTRODUC TION

Fire is an Earth system process that has operated for many millions 
of years. The current context of fire ecology studies (Archibald 
et al., 2018; Bond, Woodward, & Midgley, 2005; Bowman et al., 2009; 
Krawchuk, Moritz, Parisien, Dorn, & Hayhoe, 2009; Pausas, Keeley, 
& Schwilk, 2017; van der Werf et al., 2006) reflects a remarkable 
paradigm shift—from earlier concepts of fire as a destructive and ir-
reversible force to the current concepts of fire as an inherent and 
fundamental process influencing most terrestrial ecosystems on 
Earth (He & Lamont, 2018; Pausas & Bond, 2019). Fire ecologists 
now view fires as dynamic ecological forces that have evolutionary 
consequences and are fundamentally shaped by human actions. The 
goal of fire ecology is to understand the diversity of ways in which 
fire affects organisms and ecosystems on Earth (Figure 1).

Fire ecologists have constructed an increasingly nuanced, so-
phisticated and mechanistic understanding of the variable nature 
of fire as part of the ecological system. Fire is now recognized as 
a recurrent process, resulting in fire regimes that have direct eco-
logical effects and act as selective forces by shaping species traits 
throughout the histories of entire lineages (He, Lamont, & Pausas, 
2019; Simon et al., 2009). Moreover, fire regimes are important at 
multiple levels of biological organization, influencing populations, 
communities and ecosystems.

There is an amazing diversity of fire regimes on Earth. The geo-
graphic distribution of fire has been mapped based on current global 
fire activity (Andela et al., 2019; Krawchuk et al., 2009) and classified 
into geographically distinct fire regimes called pyromes (Archibald, 

Lehmann, Gomez-Dans, & Bradstock, 2013). Further, the concept 
of pyrodiversity—the spatial and temporal heterogeneity of fire 
regimes—has been examined in ecological contexts such as func-
tional biodiversity and food webs (Bowman et al., 2016). However, 
a number of questions remain about the causes and ecological con-
sequences of variation in fire regimes. The resulting magnitude and 
diversity of ongoing fire ecology research is challenging to integrate, 
given the many different lines of inquiry based on the concept of fire 
as a central ecological process.

Two notable features of recent fire activity frame fire ecology re-
search. First, many fires are planned by people (see ‘prescribed fire’ in 
Box 1) due to the importance of both maintaining fire-adapted systems 
and the long history of using fire as a management tool (Ryan, Knapp, 
& Varner, 2013). People also exclude fires from fire-adapted systems, 
with ecological consequences such as the disappearance of tropical and 
temperate savannas (Fill, Platt, Welch, Waldron, & Mousseau, 2015; 
Overbeck et al., 2015). Second, land use and ongoing climate change 
are altering characteristics of individual fires and changing fire regimes, 
in some cases pushing them outside the historical range of variabil-
ity in terms of frequency, size, seasonality or severity (Abatzoglou & 
Williams, 2016; Balch et al., 2018; Kelly et al., 2013; Miller et al., 2019; 
Walker et al., 2018). Many recent fires have had negative consequences 
for natural ecosystems and humans (Balch et al., 2018; Stevens-
Rumann et al., 2018). There is a pressing need to project future fire ac-
tivity under varying scenarios of climate change and land management 
strategies (Bowman, Murphy, Williamson, & Cochrane, 2014).

Our central goal in this paper is to advance knowledge of fire ecol-
ogy. As the magnitude of fire ecology research increases, it becomes 

nutrient cycling and ecosystem function. It also presents a rapidly growing societal 
challenge, due to both increasingly destructive wildfires and fire exclusion in fire-
dependent ecosystems. As an ecological process, fire integrates complex feed-
backs among biological, social and geophysical processes, requiring coordination 
across several fields and scales of study.

2. Here, we describe the diversity of ways in which fire operates as a fundamental 
ecological and evolutionary process on Earth. We explore research priorities in 
six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire 
regimes, (c) fire effects on above-ground ecology, (d) fire effects on below-ground 
ecology, (e) fire behaviour and (f) fire ecology modelling.

3. We identify three emergent themes: the need to study fire across temporal scales, 
to assess the mechanisms underlying a variety of ecological feedbacks involving 
fire and to improve representation of fire in a range of modelling contexts.

4. Synthesis: As fire regimes and our relationships with fire continue to change, prior-
itizing these research areas will facilitate understanding of the ecological causes 
and consequences of future fires and rethinking fire management alternatives.

K E Y W O R D S

climate, Earth System models, fire regime, fuels, plant traits, prescribed fire, vegetation, 
wildfire
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increasingly important to identify priorities in understanding the eco-
logical and evolutionary implications of changing fire activity. Here, 
we attempt to synthesize the major areas of fire ecology research. 
We consider six priority areas, identified through an open online 
survey distributed broadly to the fire ecology research community 
but focused in the US (see Supporting Information). We conducted 
bottom-up coding and qualitative text analysis of responses to the 
question: ‘What are the biggest unmet scientific challenges currently 
in fire research?’ Qualitative analysis grouped common text themes 
from survey responses into six priority categories. Members of the 
Future of Fire Consortium further refined the content of these six 
priority categories during a two-day workshop. We briefly summa-
rize the state of knowledge in each category and propose avenues for 
progress in our understanding of fire as a fundamental ecological pro-
cess. Our overall perspective, reflecting the composition of the con-
sortium members, focuses on biophysical and ecological aspects of 
fire. We also recognize humans as central components of fire regimes, 

as described effectively in recent work (Maezumi et al., 2018; Roos, 
Zedeno, Hollenback, & Erlick, 2018). Ultimately, any review based on 
survey data and expert opinion will produce inevitable gaps in scope 
and emphasis. However, the value of such a process is to find patterns 
not evident from any single viewpoint or discipline.

2  | FIRE REGIME A S AN ECOLOGIC AL 
FAC TOR

Fire regimes are important because they help characterize and clas-
sify the diversity of fire and its ecological impacts into a simplified 
set of categories (Agee, 1993). This variation in fire activity and fire 
effects, over space and time, fundamentally shapes the structure, 
composition and dynamics of biotic communities across most of 
Earth's terrestrial ecosystems. Simplifying the diversity of fire activ-
ity into fire regimes is as fundamental to fire ecology as simplifying 

F I G U R E  1   Selected examples of 
diversity of fire activity on Earth. Note 
that although these represent single 
fire events, the cumulative properties 
of fire events over time characterize a 
fire regime. (a) lightning-ignited wildfire 
in the boreal forest, Alaska, USA, photo 
credit: Philip Higuera (b) prescribed fire in 
tallgrass prairie in the Flint Hills of Kanas, 
USA, photo credit: Kendra McLauchlan 
(c) prescribed fire in temperate oak 
savanna in Minnesota, USA, photo credit: 
Susan Barrott (d) post-fire landscape in 
the Mediterranean biome of Catalonia, 
Spain, photo credit: Enric Batllori (e) 
prescribed fire in tropical forest in 
Brazil, photo credit: Paulo Brando (f) 
post-fire landscape in coniferous forest 
in Montana, USA, photo credit: Kendra 
McLauchlan (g) prescribed fire in mesic 
pine savanna in Florida, USA, photo credit: 
Raelene Crandall (h) lightning-ignited 
wildfire in the tundra, Alaska, USA, photo 
credit: Philip Higuera

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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the diversity of plant assemblages into communities is to plant 
ecology.

2.1 | Characterizing past fire regimes

Fire regimes are described with a number of metrics, including fire 
frequency (point-specific mean return intervals or area-based fire ro-
tation periods), size, seasonality, intensity (the rate of energy release), 
severity (the direct impacts of fire), type (ground, surface, crown, 
mixed) and mode of combustion (flaming or smoldering; Keeley, Bond, 
Bradstock, Pausas, & Rundel, 2012). Past fire activity is interpreted 
from historical sources such as observational records and maps of 
area burned (Morgan, Losey, & Trout, 2014), and from palaeoecologi-
cal proxy archives such as fire scars in tree-rings, tree age structures, 
charcoal particles preserved in sediments and organic compounds 

preserved in ice cores (Conedera et al., 2009; Figure 2). Many data-
sets derived from these sources are publicly available through inter-
national databases such as the Global Charcoal Database and NOAA's 
International Multiproxy Paleofire Database (Gross, Morrill, & Wahl, 
2018; Marlon et al., 2016; Power et al., 2008). A key remaining chal-
lenge to fire ecology is characterizing and interpreting the high spatial 
and temporal variability in the characteristics of fire regimes within 
and among biomes (Figure 1; Table 1).

Few observational datasets or palaeoecological archives of past 
fire are spatially contiguous. In remote and non-forested regions, 
palaeoecological data are particularly sparse. In cold tundra and 
arid grassland ecosystems (with low above-ground productivity), 
little charcoal is produced from fires and few, if any, trees exist. 
Tree-ring fire histories are predominantly from temperate forested 
ecosystems with surface fire regimes. Where high intensity fires 
kill most trees or where trees do not form annual growth rings  

BOX 1 Definitions of selected terms used in the text

Principal sources: National Wildfire Coordinating Group glossary (www.nwcg.gov/gloss ary/a-z), (Agee, 1993; Keeley, 2009; Pausas 
et al., 2017; van Wagtendonk, 2018).
Available fuel: The portion of the total fuel that would actually burn under various environmental conditions. Fuel availability is 
largely influenced by fuel moisture content.
Burn severity: Synonym of fire severity. Burn severity and fire severity refer to the magnitude of effect that fire has on the environ-
ment. This can be measured in many ways, using ground-based metrics or remotely sensed data (see Table S1). ‘Soil burn severity’ 
refers primarily to fire effects on soil properties (e.g. soil structure, soil and soil surface organics, changes in erodibility) and below-
ground plant parts. ‘Vegetation burn severity’ refers to injury to and mortality of above-ground vegetation.
Crown fire: Fire that occurs in the vegetation canopy. The occurrence of crown fire usually depends on heat released from burning 
in surface fuels, but under some combinations of conditions (e.g. extreme wind, high connectivity between surface and canopy fuels, 
high canopy density and/or continuity, extremely dry live fuels) fire can propagate itself through the vegetation canopy indepen-
dently of surface fuels.
Fire behaviour: The manner in which a fire reacts to the influences of fuel, weather and topography; quantified via rate of spread 
(m/s), residence time (s), intensity (kW/m), flame lengths (m) and combustion phase (e.g. smoldering, flaming).
Fire climate: Composite pattern of weather elements over time that affect fire behaviour in a given region. Like climate, fire climate 
is defined over multiple decades and over regional spatial scales.
Fire ecology: The study of the relationship between fire and populations, communities and ecosystems.
Fire intensity: the energy released by a fire per unit time per unit area.
Fire regime: A generalized description of the typical characteristics determined from multiple fires (e.g. intensity, frequency, size, 
extent, type, seasonality) and their ecological impacts (e.g. severity); fire regimes are often defined for a dominant vegetation or 
ecosystem type, and inherently include variability over space and time.
Fire severity: See burn severity.
Fire weather: Weather conditions that influence fire ignition, fuel conditions and fire behaviour, including wind, atmospheric tem-
perature, stability, humidity, and ignition factors like lightning.
Fuel: Any combustible material including live and dead biomass. Petroleum products and buildings can be additional fuels that influ-
ence fire behaviour and effects in the wildland-urban interface.
Fuel load: The amount of fuel present expressed quantitatively in terms of dry weight of fuel per unit area (kg/m2). See also available 
fuel.
Prescribed fire: Any wildland fire intentionally ignited by management actions in accordance with applicable laws, policies and regu-
lations to meet specific objectives.
Wildfire: An unplanned wildland fire including those caused by lightning, unauthorized human causes, escaped prescribed fires and 
all other wildland fires where the management objective is fire containment.
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(i.e. tropical forests and savannas), tree-ring records are very sparse 
or absent (but see Baker & Bunyavejchewin, 2017). In addition to 
the need for increased spatial coverage, key time periods in the 
past, such as the Medieval Climate Anomaly (950–1250 CE), may 
provide important analogues to modern and predicted scenarios of 
changing fire activity (Kelly et al., 2013; Pierce, Meyer, & Jull, 2004). 
Moreover, although fire history records provide valuable data on 
fire occurrence and frequency, new proxies need to be developed 
to reconstruct additional characteristics of fire regimes, such as 
fire severity, fire size and fire temperature (Dunnette et al., 2014; 
Gosling, Cornelissen, & McMichael, 2019; Leys, Commerford, & 
McLauchlan, 2017). The detection and quantification of variation in 
fire regimes is the first step to understanding and predicting their 
sensitivity to environmental change and the associated ecological 
consequences.

2.2 | Characterizing current fire regimes

Advances in the temporal and spatial resolution of imagery from 
Earth observation satellites have led to unprecedented descrip-
tions of recent fire activity at the global scale (Figure 2). These 
methods utilize satellite observations of either fire activity or pre- 
and post-fire imagery, with varying levels of field observations for 
ground verification. Daily fire detection has provided new insights 
into the seasonality of burning (Giglio, Csiszar, & Justice, 2006; 
Roy, Boschetti, Justice, & Ju, 2008), and the influence of fire- 
season length on fire size and total burned area (Andela et al., 
2019). The global extent of satellite-based products enables meas-
urement of fire activity from remote regions where little data were 
previously available, advancing the study of fire ecology at global 
scales.

F I G U R E  2   Methods, advances and 
remaining challenges in characterizing fire 
regimes and fire regime change. Advances 
over the past decade include Earth 
observing satellites and the development 
of palaeoecological records spanning 
continental to global scales. While each 
method has remaining challenges, the 
main limitation for detecting changing 
fire regimes is linking insights gained from 
different methods. (a) Citations: ‘Local 
and Global Charcoal’ (Marlon et al., 2016), 
‘Historical reconstruction (tree rings)’ 
(Heyerdahl, Morgan, & Riser, 2008) 
‘Historical reconstruction (lake  
sediments)’ (McWethy et al., 2010).  
(b) A key challenge for sedimentary 
charcoal records is translating into 
variables used in contemporary fire 
ecology: burned area, fire intensity, fire 
severity and emissions
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Remote sensing of fires has improved ecological understand-
ing of several phenomena. For example, Archibald et al. (2013) 
used MODIS and GFED (van der Werf et al., 2017) products over 
the span of a decade to classify global fire characteristics based 
on five key elements (size, frequency, intensity, season and spa-
tial extent). To link fire characteristics with ecosystem functions, 
Pausas and Ribeiro (2017) used MODIS hotspots to relate global 
fire patterns to productivity and diversity. Like any tool, these 
global products have detection biases and limitations, especially 
in their ability to detect small fires, such as those from agricul-
tural burning, or low-intensity fires (fires with low rates of energy 

release). The satellite records are also limited by their temporal ex-
tent, spanning only the past several decades (i.e. since the 1980s). 
This motivates a critical research need to link the remote-sensing 
data with palaeoecological records to better understand how fire 
regimes have changed over time.

Fire severity has received considerable attention from ecolo-
gists because of the direct links to plant mortality and changes in 
soil properties. Ecologists have a variety of tools for assessing fire 
severity, including both remote-sensing and field-based methods 
(Table S1). The Monitoring Trends in Burn Severity (MTBS) pro-
gram in the United States (Eidenshink et al., 2007) has facilitated 
wide access to data on fire perimeters and fire severity at 30-m 
resolution for all ‘large’ fires (>c. 400 ha in the Western US and 
>c. 200 ha in the Eastern US) that have burned since Landsat 5 
was launched in 1984. MTBS-like approaches can now be applied 
globally (Parks, Holsinger, Voss, Loehman, & Robinson, 2018). 
Severity metrics derived from MODIS data have been compared 
within and among regions to define essential fire regime charac-
teristics (Rogers, Soja, Goulden, & Randerson, 2015; Singleton, 
Thode, Meador, & Iniguez, 2019). Other metrics have been used 
to model fire impacts on key variables such as carbon emissions 
(Rogers et al., 2014; Walker et al., 2018). Together, these data-
sets have revealed much greater heterogeneity in fire effects 
than previously characterized (Cansler & McKenzie, 2012; Collins 
et al., 2017). Accurately applying these methods across regionally 
and globally diverse fire regimes remains a substantial challenge, 
because existing satellite-based products such as MODIS detect 
actively burning areas, and assessment of individual fires or fire 
behaviour is still in development. Overcoming this challenge is a 
key research need, because the underlying heterogeneity in fire 
activity is a critical source of ecological diversity within and across 
landscapes, regions and biomes.

2.3 | Characterizing fire regime changes

Detecting changes in fire regimes remains a pressing challenge for 
ecologists. The ability to characterize fire regimes has been based on 
construction of probabilistic estimates of fire regime characteristics 
(McCarthy, Gill, & Bradstock, 2001). These probabilistic distributions 
are then compared to recent fire events to assess the likelihood of 
a shift to a different fire regime (Bigio, Swetnam, & Baisan, 2016; 
Chipman et al., 2015; Kelly et al., 2013). Changes in fire regimes can 
be detected given a relatively long time period or spatially dense net-
works of samples (Taylor, Trouet, Skinner, & Stephens, 2016), with 
some of the clearest examples of change reflecting shifts in human-
dominated fire regimes (McWethy et al., 2010). Beyond changes in 
fire frequency and area burned, other changing components of fire 
regimes have been identified in recent years, including changing 
spatial patterns of fire severity (Harvey, Donato, & Turner, 2016b; 
Miller, Skinner, Safford, Knapp, & Ramirez, 2012; Steel, Koontz, & 
Safford, 2018) and the lengthening of wildfire seasons (Jolly et al., 
2015). These different aspects of fire regime can have unique 

TA B L E  1   Key challenges in fire ecology within each of the six 
research priority areas

Research 
priority area Key challenge in fire ecology

1. Regimes Characterizing fire regime components beyond 
area burned and fire frequency, in the past and 
present

1. Regimes Increasing the spatial and temporal coverage of fire 
history records

1. Regimes Linking satellite-derived products of actively 
burning areas to the diversity of fire regimes

2. Changing 
regimes

Integrating fire-adapted plant traits into global fire 
models

2. Changing 
regimes

Predicting fire probability in both fuel- and 
climate-limited ecosystems under future climate 
conditions

2. Changing 
regimes

Including the many influences of humans in global 
assessments and projections of fire activity

3. Above-
ground

Understanding post-fire community assembly 
processes and how they interact with fire regime 
characteristics (especially severity)

3. Above-
ground

Documenting the plasticity of fire-related traits at 
the community level

3. Above-
ground

Accounting for fire-induced vegetation change 
feedbacks with the global climate system through 
albedo, ash, carbon cycle and smoke

4. Below-
ground

Separating the direct effects of fire from the 
indirect effects of fire on soil properties and 
microbial composition and function

4. Below-
ground

Quantifying the interactive effects of compound 
disturbances on soil properties

4. Below-
ground

Incorporating variation in soil responses (at surface 
and sub-surface) to fire behaviour and fire 
severity

5. Fire 
behaviour

Linking measurements of fuels to resultant fire 
behaviour and effects across spatial scales

5. Fire 
behaviour

Measuring and characterizing below-ground fuel 
sources and fire behaviour

6. Models Understanding the impact of spatial and temporal 
patterns of human-caused ignitions and 
management

6. Models Studying interactions and feedbacks among 
multiple disturbances (including multiple fire 
events)
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ecological impacts on plant populations and communities, by affect-
ing mortality, establishment, survival and reproduction.

3  | INTER AC TIONS AMONG ECOLOGY-, 
CLIMATE- AND HUMAN-DRIVEN CHANGES 
IN FIRE REGIMES

What causes fire regimes to change over space and time? 
Understanding the multiple ecological interactions in fire regimes is 
a complex challenge. Nonetheless, three fundamental limits to burn-
ing—available fuel, appropriate climate conditions and ignitions—have 
consistently been identified as important controls of fire activity 
across multiple spatial and temporal scales (Krawchuk et al., 2009).

3.1 | Vegetation as a driver of fire regimes:  
Co-evolution of fire and biota

Fire has been a dominant ecological and evolutionary force on 
Earth since plants colonized the land about 400 Mya (Judson, 2017; 
Pausas & Keeley, 2009). In an evolutionary context, the fire regime is 
an important force of natural selection in plants and other organisms 
(Simon et al., 2009). However, strong feedbacks between plants and 
fire also mean that plants directly influence fire regimes (Beckage, 
Platt, & Gross, 2009; Nowacki & Abrams, 2008; Platt, Ellair, 
Huffman, Potts, & Beckage, 2016). While there has been increas-
ing recognition that ‘coevolution’ of plants and fire regimes drives 
many ecological processes (Archibald et al., 2018), it is still unclear 
to what extent such co-evolutionary relationships have influenced 
landscapes and biomes (Pausas & Bond, 2019).

There is enormous potential to understand when and where fire 
acts as a macroevolutionary process by studying fire-related plant traits. 
Fire-adaptive traits (Keeley, Pausas, Rundel, Bond, & Bradstock, 2011) 
include those for post-fire recruitment (serotiny; fire-stimulated ger-
mination), resprouting (Pausas, Lamont, Paula, Appezzato-da-Gloria, 
& Fidelis, 2018) and either fire resistance (thick bark) or fire promotion 
(resin content and branch retention; Keeley et al., 2012). Phylogenetic 
tools can help identify when and how fire-related traits evolved, such 
as the origin of cone serotiny 100 Mya in pines (He, Pausas, Belcher, 
Schwilk, & Lamont, 2012), epicormic resprouting 60 Mya in eucalypts 
(Crisp, Burrows, Cook, Thornhill, & Bowman, 2011) and branch abscis-
sion in Palaeozoic conifers (Looy, 2013).

Plant communities also alter fire regimes, often through a self-re-
inforcing cycle that selects for particular traits and species to survive 
within a given fire regime (Rogers et al., 2015). For example, inva-
sive plant species have the potential to alter fire regimes when they 
modify the flammability of an ecosystem (Balch, Bradley, D'Antonio, 
& Gomez-Dans, 2013; Paritsis et al., 2018). Similarly, changes in the 
spatial distribution of plant traits across a landscape can affect fuel 
continuity and therefore fire probability and spread. Ultimately, 
changes in fire regimes resulting from altered plant assemblages 
have the potential to generate abrupt fire regime shifts and to move 

ecological systems outside their historical evolutionary arena (Fill 
et al., 2015; Kane, Varner, Metz, & Mantgem, 2017). One major 
research challenge is to integrate global databases of fire-adapted 
traits into global fire and vegetation models for projecting future 
changes.

3.2 | The role of climate and climate-fuel 
interactions

Climate affects fire regimes across temporal scales ranging from 
short-term fire weather to millennial-scale climate conditions. In 
many arid and semi-arid ecosystems, climatic conditions during the 
fire season are usually favourable for burning, but low fuel loads or 
a lack of fuel continuity limit fire occurrence and spread. In these 
fuel-limited systems, widespread fire activity requires periods 
of increased antecedent precipitation that increase productivity 
and connectivity of fine fuels (Grau & Veblen, 2000; Swetnam & 
Betancourt, 1998). In contrast, flammability-limited systems, such 
as closed canopy forests, typically have high fuel loads, but require 
an extended period of drought to create conditions favourable to 
burning. Notably, many ecosystems represent some mixture of fuel- 
or flammability-limited fire regimes, termed ‘hybrid’ systems by 
McKenzie and Littell (2017). A fourth category is ‘ignition-limited’ 
systems, where dry fuels are abundant but lacking non-human igni-
tion sources, such as lowland sclerophyllous shrublands in California 
(Steel, Safford, & Viers, 2015) and Mediterranean shrublands in 
Chile (Keeley et al., 2012).

A key research frontier is understanding how changing climate 
variables (temperature, precipitation, changes in sequences of ex-
treme wet and dry conditions and the likelihood of ignition) should 
alter controlling aspects of fire regimes. There is high variability in 
fire-climate relationships within and across ecosystems, and fire-cli-
mate relationships have shifted over time (Kitzberger, Veblen, & 
Villalba, 1997; Sherriff & Veblen, 2008). Some of this variability is due 
to differences in species composition, vegetation structure and cli-
mate within a region (Gartner, Veblen, Sherriff, & Schoennagel, 2012; 
Heyerdahl, Brubaker, & Agee, 2001; Taylor & Skinner, 2003). Over 
time, changes in species composition may shift how the climate limits 
fire activity (Boer et al., 2016). In those systems where fuel is abun-
dant but generally too moist to burn, changes toward a warmer, drier 
climate are expected to decrease fuel moisture content and increase 
fire activity (McKenzie & Littell, 2017).

3.3 | Humans contribute to and are affected by 
changing fire regimes

Humans play fundamental roles in shaping fire regimes world-wide, 
and have done so for millennia (Bowman et al., 2011; Guarinello de 
Oliveira Portes, Safford, & Behling, 2018; Kobziar, Godwin, Taylor, 
& Watts, 2015; McWethy et al., 2013). The mechanisms by which 
humans alter fire regimes include: (a) changing the frequency, timing 
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and spatial distribution of ignition sources, (b) changing fuel struc-
ture, composition and loading through land use and land cover 
change, (c) suppressing fire and (d) contributing greenhouse gases to 
the atmosphere, which drives climate warming. In many regions, hu-
mans account for the majority of ignitions and burned area, replacing 
lightning as the primary ignition source (Achard, Eva, Mollicone, & 
Beuchle, 2008; Lasslop & Kloster, 2017). On continental to global 
scales, humans expand the fire season, facilitating burning during 
cooler and wetter conditions outside the historical wildfire season 
(Balch et al., 2013; Le Page et al., 2017). Land uses fundamentally 
change fuel composition and structure, which can either increase 
or decrease fire occurrence (Brando et al., 2014; Chergui, Fahd, 
Santos, & Pausas, 2018; Pausas & Fernandez-Munoz, 2012). Fire 
suppression prevents fire from spreading, and fire suppression can 
cause accumulation of fuels that increases the likelihood of fire igni-
tion, fire spread and crown fire activity (Parks, Holsinger, Miller, & 
Nelson, 2015). In addition, fire suppression may facilitate invasion 
by species from non-pyrogenic habitats, ultimately threatening fire-
adapted ecosystems (e.g. Fill et al., 2015).

Finally, humans alter fire regimes through anthropogenic climate 
change. Across much of the globe, climate conditions are becom-
ing increasingly conducive for fire. The length of the fire-weather 
season (days with fire danger metrics above their median values) 
has increased by nearly 20% from 1970 to 2013 (Jolly et al., 2015). 
An example is in the western United States, where the fire-season 
length has increased by 34% (from 166 to 222 days), ultimately lead-
ing to increased annual area burned (Westerling, 2016). Globally, 
anthropogenic climate change has emerged as a significant driver 
of increased fire danger, independent of natural climate variability 
(Abatzoglou, Williams, & Barbero, 2019). These factors have rele-
vance to ecological interactions as humans introduce and remove 
fire from landscapes (Moritz et al., 2014). A major research challenge 
is to incorporate all the influences of humans into global assessments 
and projections, given the inherent complexity and differing regional 
socio-economic contexts (Table 1).

4  | EFFEC TS OF FIRE ON ABOVE- GROUND 
ECOLOGIC AL PROCESSES

Studies of above-ground fire effects traditionally emphasized plant 
mortality and regeneration. Yet, fire affects a broader range of above-
ground ecological processes, with consequences at spatial scales rang-
ing from establishment of individual plants to global climate. Additional 
research is needed to understand the feedback mechanisms involved 
in increasing fire activity, as well as the timing and persistence of plant 
population traits and community processes after fires.

4.1 | Fire-vegetation feedbacks

Post-fire vegetation successional trajectories depend on numerous 
factors, including fire size and effects, pre- and post-fire climate, 

recent fire history and plant life-history traits related to survival and 
recolonization (Davis, Higuera, & Sala, 2018; Johnstone et al., 2016). 
Plant traits interact with fire severity to influence post-fire re-
growth, reproduction, dispersal, germination and establishment. 
Fires in grasslands and in many Mediterranean shrublands, for ex-
ample, tend to perpetuate the existing plant community because 
the dominant species resprout from protected basal meristems 
(Keeley & Rundel, 2005). Forest fires, by contrast, can lead to a 
variety of post-fire successional pathways, depending not only on 
fire severity but also on the adaptations (Pausas, 2015) and spatial 
configurations of surviving trees, and canopy and soil seed banks 
(Figure 3). Predicting future post-fire vegetation composition is diffi-
cult because landscape fragmentation, changing climate, non-native 
species, herbivory, variable propagule availability and interacting 
disturbances can alter successional trajectories from those in the 
past (Batllori et al., 2018; Blackhall et al., 2017). Models can be ef-
fective for investigating these dynamics (Crandall & Knight, 2015; 
Scheller & Swanson, 2015) but many of the underlying mechanisms 
remain poorly understood. Thus, caution is needed when consider-
ing modelling results.

The expanding field of fire-vegetation feedbacks emphasizes the 
interactive nature of plants and fire (Batllori, Ackerly, & Moritz, 2015; 
Beckage, Gross, & Platt, 2011; Tepley et al., 2018; Figure 3). Vegetation 
structure, microclimate and plant flammability vary along post-fire 
succession sequences, and these characteristics interact with climate 
and weather to influence fire regimes and the persistence of differ-
ent vegetation types (Pausas et al., 2017; Platt et al., 2016; Varner, 
Kane, Kreye, & Engber, 2015). Positive feedbacks, whereby frequent 
burning maintains flammable plant communities, can perpetuate 
grasslands and savannas in regions climatically suitable for forests 
(Dantas, Batalha, & Pausas, 2013; Harms, Gagnon, Passmore, Myers, 
& Platt, 2017; Hoffmann et al., 2012). Positive feedbacks can also 
maintain non-flammable forests (e.g. tropical forests and Southern 
Hemisphere beech forests), where shading by the dense forest canopy 
that develops over long fire-free intervals maintains a cool, moist mi-
croclimate and disrupts the continuity of flammable surface fuels such 
as grasses. Extremely dry, windy conditions can weaken these feed-
backs, enabling fires to spread into otherwise non-flammable forests. 
Burning then shifts the ecosystem to a more flammable, non-forest 
state (Pausas & Bond, 2020), which is perpetuated through a positive 
feedback with fire (Paritsis, Veblen, & Holz, 2015; Tepley, Veblen, 
Perry, Stewart, & Naficy, 2016).

Some ecosystems demonstrate negative fire-vegetation feed-
backs, whereby fire temporarily reduces fuel loading or flammabil-
ity, which decreases the probability of repeat burning for a period 
of years to several decades (Figure 3). Such feedbacks are evident 
in boreal forests and several types of temperate coniferous forest 
(Heon, Arseneault, & Parisien, 2014; Parks et al., 2015). Differences 
in the direction and strength of fire-vegetation feedbacks, and their 
interactions with the trajectories and rates of post-fire vegetation 
recovery, strongly influence how different landscapes will respond 
to increasing fire activity as the climate warms (Figure 3). Further, in 
many systems, feedbacks can switch from negative to positive due 
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to post-fire changes in vegetation or fuel accumulation over unusu-
ally long fire-free intervals (Harvey, Donato, & Turner, 2016a).

4.2 | Climate-vegetation feedbacks

Interactions between above-ground vegetation and climate at local 
to global scales are key to understanding the ecosystem conse-
quences of changing fire activity (Archibald et al., 2018). At a local 
scale, recent investigations into the interactions between climate 
variables (especially drought) and seedling recruitment have high-
lighted decreases, or failures, in post-fire tree regeneration (Stevens-
Rumann & Morgan, 2019). Local mechanisms, such as reductions 
in tree seedling recruitment, growth and survival under warmer 
conditions may drive fundamental changes in ecosystems (Enright, 
Fontaine, Bowman, Bradstock, & Williams, 2015) but the timing and 
persistence of these transitions are largely unknown.

Understanding of the mechanisms and degree to which fire- 
induced vegetation change can alter regional climate also needs 
to be further advanced (Beringer et al., 2015; Liu, Ballantyne, & 
Cooper, 2019). At the global scale, increasing fire activity can re-
duce ecosystem carbon storage (De Faria et al., 2017). The resulting 
increase in atmospheric carbon dioxide concentrations accelerates 
climate warming, potentially driving further increases in wildfire 
activity. In addition to carbon cycle feedbacks, changes in surface 

energy partitioning, including changes in surface albedo, have 
important influences on regional climate (Rogers, Randerson, & 
Bonan, 2013), and aerosols emitted during fire combustion could 
have large impacts on regional and global climate as well (Chakrabarty 
et al., 2016). A comprehensive understanding of how changing fire 
activity may influence global and regional climate is still lacking.

4.3 | Fire and above-ground biodiversity

Fire is known to affect plant species diversity (He et al., 2019), and 
the effects can be grouped into a few general patterns. First, many 
ecosystems exhibit declining plant species diversity with increasing 
time since fire (Swanson et al., 2011). Second, there may be an op-
timum range of fire regime characteristics that sustains the highest 
diversity. The optimum appears to depend on the fire-evolutionary 
history of the ecosystem and species traits (Kelly & Brotons, 2017). 
Thus, an absence of fire can reduce plant diversity in certain eco-
systems (Abreu et al., 2017; Parr, Lehmann, Bond, Hoffmann, & 
Andersen, 2014). Third, the spatial and temporal heterogeneity of 
fire regimes can either increase or decrease biodiversity, but exist-
ing examples are ecosystem-dependent (Martin & Sapsis, 1992; Parr 
& Andersen, 2006), and the influence of fires on biodiversity may 
depend on trophic levels (Davies, Eggleton, Rensburg, & Parr, 2012; 
Maravalhas & Vasconcelos, 2014). Another important factor for fire 

F I G U R E  3   Feedbacks between fire and vegetation interact with post-fire forest recovery rates to mediate responses to altered fire 
regimes in landscapes that currently support forest cover. High-severity fire alters fuel and microclimate, making sites either more (positive 
feedback) or less (negative feedback) likely to reburn soon after a severe fire. The direction and strength of the feedbacks (f− and f+) interact 
with the time to forest recovery (r) after high-severity fire to determine how the proportion of a landscape that supports forest cover (FC) 
varies as fire activity increases. Negative feedbacks (a) reduce the probability of reburning, limiting the amount of forest lost as the climate 
become more conducive to fire. Positive feedbacks (b) produce a threshold, where small increases in either fire activity or the time to 
forest recovery after severe fire can shift the system from forest to non-forest cover. White dots on the left response surfaces represent 
hypothetical baseline conditions in different forest regions. Climate change and increased wildfire activity alter the shape of the response 
surfaces. At the same time, the x-axis positions of the regions shift (white arrows) as forest recovery slows under a more arid environment 
with larger patches of high-severity fire. Short and long arrows represent regional differences in sensitivity to the slowing of forest recovery 
(after Tepley et al., 2018)
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and biodiversity is the spatial arrangement of fire refugia—locations 
that experience longer fire-free intervals or tend to burn with lower 
severity than the broader landscape in which they are embedded 
(Crandall & Platt, 2012; Landesmann & Morales, 2018; Meddens 
et al., 2018). Refugia may sustain local populations of fire-sensitive 
species within large burned areas, increasing post-fire habitat diver-
sity. Meta-analyses of community diversity, informed by evolution-
ary history and historical fire regimes, are needed to further advance 
insight into the relationships between fire and above-ground 
biodiversity.

Studies about fire and biodiversity have traditionally focused 
on vascular plants. Other organisms, from decomposers to higher 
trophic levels, are only starting to be considered (Geary, Doherty, 
Nimmo, Tulloch, & Ritchie, 2019; Mikita-Barbato, Kelly, & Tate, 2015; 
Ponisio et al., 2016). For example, fire indirectly influences ungulate 
populations and avian communities through its effects on habitat 
quality, including forage and nesting opportunities (Hutto, 2008; 
Rupp et al., 2006; Smucker, Hutto, & Steele, 2005). It is also clear 
that herbivory interacts with fire activity (Blackhall et al., 2017; 
Fuhlendorf, Engle, Kerby, & Hamilton, 2009). However, the effect of 
fire on other plant–animal interactions (pollination, dispersal, seed 
predation) is less known (Lazarina et al., 2017). There is also an in-
creasing recognition that fire may have evolutionary consequences 
in animals (Pausas & Parr, 2018). Future biodiversity studies could 
more explicitly examine the effects of fire across a broader range 
of biotic interactions and trophic levels. Further, there is a need to 
expand the focus from fire frequency and sometimes severity, to ad-
dress how a broader range of fire regime attributes affect biodiver-
sity (Miller et al., 2019).

4.4 | Fire influences plant community assembly

Fire regime characteristics, along with their variability, influence how 
plants are assembled into communities (Harms et al., 2017; Myers 
& Harms, 2011). Fire excludes individuals from communities by se-
lectively filtering traits of individuals from the regional species pool 
(Verdu & Pausas, 2007). When fire-intolerant species are selectively 
filtered, fire homogenizes species composition among sites (Pausas 
& Verdu, 2008) and increases phenotypic (and often phylogenetic) 
clustering in communities (Forrestel, Donoghue, & Smith, 2014). 
However, even where fire regimes have long remained similar across 
sites, other contextual factors such as soil type and landscape pat-
terns can exert considerable influence on beta diversity, nestedness 
and community assemblages (Freeman, Kobziar, Leone, & Williges, 
2019). More locally, biotic interactions within and among plant spe-
cies can further influence changes in deterministic assembly with 
time since fire and produce changes in fire regimes (Landesmann, 
Gowda, & Kitzberger, 2016; Tepley, Thompson, Epstein, & Anderson-
Teixeira, 2017). In contrast, fire may contribute to stochastic com-
munity assembly by influencing random colonization or extinction 
processes that increase ecological drift. For example, when fire de-
creases the total number of individuals in communities (community 

size), it may increase local extinctions due to demographic stochas-
ticity, and increase variation in species composition among sites 
(Myers, Chase, Crandall, & Jimenez, 2015). Post-fire community as-
sembly will also depend on dispersal abilities of species within the 
regional species pool as well as rates of dispersal among local com-
munities. Understanding this balance of deterministic and stochastic 
processes is likely to be as important in fire ecology as it has been in 
other subfields of ecology (Vellend, 2010).

Fire-related plant traits are important both for basic ecological 
and evolutionary understanding of the role of fire in plant com-
munities, and for improving models that use simplified plant func-
tional types (see Section 6). For example, whereas dynamic global 
vegetation models (DGVMs) conventionally used static plant traits 
and emphasized resource competition as the primary driver of spe-
cies composition, these models are now being modified to make 
plant traits an emergent evolutionary process (Scheiter, Langan, & 
Higgins, 2013). Caution must be taken when using plant traits re-
lated to fire for modelling at the global scale, as correlations with 
other dynamic traits are contingent on biogeographic history, and 
thus may be ecosystem-dependent. The plasticity of fire-related 
traits at the community level is virtually unknown, and it is important 
to identify potential limits to adaptation.

5  | FIRE SETS ECOLOGIC AL GROUND 
RULES THROUGH SOIL S

The effect of fire on soils is inherently coupled with changes above-
ground (Wardle, Jonsson, Mayor, & Metcalfe, 2016). However, re-
sponses to fire below-ground may differ than those above-ground 
because soils contain a relatively large pool of carbon, nutrients and 
organisms that are at least partially buffered from combustion and 
mortality during fire events. While plant traits for extensive below-
ground biomass and resprouting are important features of fire-
adapted communities (Maurin et al., 2014), we focus this section on 
soil and soil biota.

5.1 | Fire effects on soil physical, chemical and 
biological properties

Fire alters multiple physical, chemical and biological properties of 
soil, such as texture, aggregation, pH, nutrient content and micro-
bial community composition. The magnitude of fire effects on soils 
depends on above-ground fire behaviour (Massman, 2012), organic 
horizon depth and moisture content (Hartford & Frandsen, 1992) 
and the physical properties of mineral soil (Giovannini, Lucchesi, & 
Giachetti, 1988). Fire directly impacts the upper organic horizons 
via pyrolysis and combustion reactions, including physical loss of 
the organic horizon, and the underlying mineral soil by conductive 
and advective heating during a fire (Araya, Fogel, & Berhe, 2017; 
Certini, 2005; Neary, Ryan, & DeBano, 2008). Fire may also contrib-
ute to soil formation (Certini, 2014).
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Similar to above-ground fire severity characteristics described ear-
lier, fire severity in soils can be characterized based on change to or loss 
of the organic horizon, and change to mineral soil physical characteris-
tics. Fire can thus change soil structure (reducing porosity), carbon and 
nutrient pools and fluxes (reducing concentrations and turnover), soil 
organic matter composition and biochemistry (increasing pyrogenic 
carbon and polyphenols) and the composition (decreasing richness, 
altering community structure) and activity rates (decreasing decom-
position) of soil biota (Adkins, Sanderman, & Miesel, 2019; Gutknecht, 
Henry, & Balser, 2010; Miesel, Hockaday, Kolka, & Townsend, 2015). 
Because combustion results in losses of carbon and nitrogen, but not 
other elements such as phosphorus (Bodi et al., 2014; Butler, Elser, 
Lewis, Mackey, & Chen, 2018), intense or repeated fires can alter nutri-
ent concentrations and stoichiometry when compared with unburned 
sites (Ludwig et al., 2018; Pellegrini et al., 2018). These changes to soils 
have profound impacts on plant growth, community composition and 
ecosystem processes (da Silva & Batalha, 2008).

Fire effects on the soil microbial community (heterotrophs and 
symbionts) increase with fire severity (Whitman et al., 2019) which 
can alter plant recovery and microbially mediated ecosystem pro-
cesses after fire events. Overall, fire decreases bacterial biomass 
and diversity, fungal species richness and mycorrhizal colonization, 
although responses of fungal species can be ephemeral (Dove & 
Hart, 2017). Responses of microbial biomass and diversity can per-
sist for a decade or more, depending on the ecosystem, fire severity 
and organic horizon loss (Dooley & Treseder, 2012; Pressler, Moore, 
& Cotrufo, 2018). Despite these general trends, the limited informa-
tion on key covariates such as soil pH makes it difficult to determine 
the mechanisms regulating the responses of soil microbial commu-
nities after fire (Pingree & Kobziar, 2019) or effects on subsequent 
microbial function.

5.2 | Effects of compound disturbances on 
soil properties

Interactions between fire and other disturbances such as drought, 
wind damage, beetle outbreaks and landslides can have important 
effects on soil structure and chemistry and subsequent ecological 
interactions. For example, in ecosystems underlain with permafrost, 
wildfires can accelerate permafrost thaw and ground subsidence 
(Gibson et al., 2018), resulting in altered soil hydrology and sub-
sequent likelihood of fire. Additionally, high rates of erosion fol-
lowing post-disturbance vegetation mortality can increase losses 
of soil organic matter after a fire (Pierson, Robichaud, Rhoades, & 
Brown, 2019). Thus, interaction effects between fires and other dis-
turbances should be considered as these interactions may amplify 
or dampen changes to soil properties after fire. Given that global 
change projections indicate increased frequency of fire and other 
disturbances, additional work is needed to classify the additive or 
interactive effects of compound disturbance (Bradford et al., 2012). 
The existence of numerous experiments manipulating fire frequency 
(Godwin, Kobziar, & Robertson, 2017; Guinto, Xu, House, & Saffigna, 

2001; Holdo, Mack, & Arnold, 2012) provides the opportunity to 
impose additional disturbances—such as reduced precipitation—to 
study the combined responses of soil properties such as soil aggre-
gation, pH, nutrient pools, respiration rates and microbial commu-
nity composition.

5.3 | Ecological consequences of temporal and 
spatial variation in soil properties influenced by fire

The temporal responses of soil to fire depend on the variable consid-
ered. For example, shifts in microbial biomass and composition occur on 
sub-annual to decadal time-scales (Dooley & Treseder, 2012) whereas 
the effect of charcoal formation on soil carbon storage occurs over cen-
tennial to millennial time-scales (He et al., 2016). Moreover, the effects 
of fire on soil carbon dynamics vary across biomes, with soil carbon 
stocks commonly recovering within a year following fire in temperate 
grasslands, over decades to centuries in boreal forests and potentially 
never recovering in some peatlands (Harden et al., 2000). In tropical 
grasslands, savannas and forests, repeated burning can also deplete 
total soil carbon and nutrients, but usually only at high frequencies and 
over decadal time-scales (Liu, Chen, Wang, Hughes, & Lewis, 2015; 
Pellegrini, Hedin, Staver, & Govender, 2015). These declines may or 
may not have deleterious impacts on ecosystem productivity (Tierney, 
2019).

Fire effects on mineral soils usually emerge over the course 
of decades due to the mechanism of changes in plant biomass in-
puts balanced with the turnover time of soil, in contrast to the im-
mediate and direct effects of a single fire on the organic horizon. 
Consequently, the coupling between above-and below-ground pro-
cesses may be altered under changing fire regimes. Furthermore, in-
teractions among pre-fire soil properties, fire severity and post-fire 
vegetation recovery influence the magnitude of change in soil nutri-
ent pools over time after fire, relative to pre-fire conditions (Godwin 
et al., 2017; Kranabetter et al., 2016). This post-fire variation in soil 
properties can have important consequences for microbial com-
munities and plant–microbe interactions (Kardol, Deyn, Laliberte, 
Mariotte, & Hawkes, 2013).

Soils are heterogeneous across both the soil surface and with 
soil depth. Combined with the inherent heterogeneity of fire, spa-
tial variability in soil properties can be important for determining 
post-fire changes in nutrients at the landscape scale that can alter 
whole ecosystems (Homann, Bormann, & Boyle, 2001). However, 
it is unclear how heterogeneity in fire behaviour determines het-
erogeneity in soil responses over time, in large part because of 
the limited studies that investigate fire severity gradients (Adkins 
et al., 2019; Garcia-Oliva et al., 2018; Hewitt, Hollingsworth, Chapin, 
& Taylor, 2016; Kolka et al., 2017; Whitman et al., 2019). Most of our 
understanding of how fire severity influences soil responses is based 
on the comparison between wildfire and prescribed fire with the as-
sumption that wildfires are more severe than prescribed fires (Nave, 
Vance, Swanston, & Curtis, 2011). Moreover, 90% of studies focus 
only on the upper 30 cm of the soil profile (Richter & Billings, 2015), 
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thus the influences of fire on soil processes throughout the profile 
remain poorly characterized.

6  | FIRE BEHAVIOUR DIREC TS 
ECOLOGIC AL OUTCOMES

Living and dead plant fuels play a prominent role in fire ecology 
because they help determine fire behaviour and fire effects from 
below-ground to the upper atmosphere. Fuels are also the most 
readily manipulated factor influencing fire behaviour, making them 
a focal point of fire management. The type and amount of fuels 
consumed during a fire are key links in feedbacks between fire 
and climate.

6.1 | Characterizing fuels

A leaf-to-globe approach is necessary to characterize fuels (See 
‘fuels’ in Box 1 and Figure 4). Moving from small to large scales, fuel 
characteristics include those of individual plants (e.g. leaf anatomy, 
chemistry and water content), whole-plant morphology, vegetation 
composition and structure and ecosystem productivity. Each of 
these characteristics can be translated into data relevant to relation-
ships between fuels and fire characteristics; these terms include the 
ratio of fuel surface area to volume, fuel particle size and density, 
moisture and chemical content, total and available fuel mass and spa-
tial arrangement. These fuel characteristics are used to parameterize 
fuel models (see below). However, research relating fuel characteris-
tics to determinants of fire behaviour and effects is not as advanced 
as other trait-centred investigations (see previous sections).

At the global scale, developments in remote-sensing methods have 
enabled major advances in fuels measurement. For example, mea-
surement of aerial fuels has been revolutionized with LiDAR methods 
that remotely capture canopy, crown, leaf shape and spatial arrange-
ment, and provide estimates of fuel mass (Andersen, McGaughey, & 
Reutebuch, 2005). Below the canopy, surface fuels can be charac-
terized with precise 3D ground-based terrestrial laser scanning (TLS; 
Loudermilk, Hiers, & O'Brien, 2017). Recent efforts to bridge these 
techniques with dynamic fuel moisture (so-called 4-D fuels) and fire 
behaviour models significantly advance the ability to understand fuel 
combustion processes. Because below-ground fuels are driven by fine-
scale topography, hydrology, tree stand age and species composition, 
they are currently difficult to quantify at large scales.

6.2 | Fire behaviour links fuels with fire effects

Two different modes of combustion—flaming and smoldering— 
occur during a fire but ecological processes are not necessarily re-
lated to combustion mode. Rather, they depend on a combination 
of fire intensity, duration of exposure and the transfer of that en-
ergy to objects in the environment. Estimating fire intensity from 
field-based observations is difficult and requires either infrared se-
quences (Clark, Radke, Coen, & Middleton, 1999) or direct measure-
ments of heat flux (Butler et al., 2016). Fire radiative power can be 
detected from the thermal bands of satellite sensors, but these are 
either limited by temporal frequency (a few detections per day from 
MODIS and VIIRS) or spatial resolution (at coarser satellite scales). 
The relationship between fire behaviour and fire effects has been 
improved by quantification of fire intensity, at least above-ground 
(Hiers, O'Brien, Mitchell, Grego, & Loudermilk, 2009).

F I G U R E  4   The relative role of factors driving fire behaviour and effects varies with spatial scale. Several factors (shown as different 
colours) determine the relationship between fire behaviour and fire's ecological effects. For example, for tree mortality, factors could 
include leaf moisture content, ecosystem productivity and forest structure and composition as Factors 1, 2 and 3 respectively. The relative 
importance of these factors (percent of ring with a given colour) changes across spatial and temporal scales. These scales range from fires 
acting on individual organisms (a), to stands (b), to large landscapes (c). We posit that thresholds of spatial and/or temporal scales exist at 
which the relative influence of these factors shifts substantially (d, e)
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New approaches to measure thermal properties, dubbed fire me-
trology (Kremens, Smith, & Dickinson, 2010), link plant injuries to 
post-fire recovery of ecosystems. For example, at the level of a leaf, 
fire behaviour is affected by the micrometeorological conditions of 
the boundary layer (Dickinson & Johnson, 2001). Heat fluxes can be 
measured at very fine scales using thermography at sub-centimetre  
and sub-second scales (Figure 4; O'Brien et al., 2016), which allows 
detailed knowledge about heat transfer and tree injury (Sparks 
et al., 2017). Measures of heat flux at scales relevant to plant, soil 
and microbial processes enable mechanistic understanding of eco-
logical change (Butler & Dickinson, 2010). Below-ground fire be-
haviour has been advanced by a small number of observational, 
experimental and model-based approaches (Huang & Rein, 2015; 
Massman, 2012). However, the field of below-ground fire behaviour 
is much less developed when compared to the more-readily ob-
served above-ground processes.

6.3 | Fire behaviour integrates climate and fuels

The longer-term ecological outcomes of fire often depend on the 
relationship between above-ground and below-ground fuels. 
Below-ground properties and processes critically influence above-
ground fuel recovery (via vegetation regeneration, seed germi-
nation and soil nutrients and symbionts), physiological status, 
moisture content and decomposition rates. Under climate warming, 
below-ground fuels (thermokarst soils, drought-exposed organic 
horizons and peat soils) are increasingly available for combustion 
during fires. Roots act as one of the many connections between 
above-ground and below-ground fire behaviour and its subsequent 
impacts (Hood, Smith, & Cluck, 2010). Recent work has advanced 
from observations of fire effects on above-ground indicators 
such as tree mortality to quantifying below-ground fire behaviour 
(Varner et al., 2009). Below-ground fire intensity and heating du-
ration affects soil physical, chemical and biological properties and 
processes (see Section 4), yet the conditions that determine thermal 
severity remain poorly understood.

The relationship between fire behaviour and fuels dictates the 
quantity and quality of combustion products. The physical and 
chemical products of fuel consumption —including smoke, aerosols 
and volatilized gases— influence the translocation of carbon, nu-
trients and living organisms, and affect human health (Bowman & 
Johnston, 2014; Kobziar et al., 2018). Several aspects of smoke and 
particulate emissions are understudied from an ecological stand-
point, including smoke transport of living microorganisms (Kobziar 
et al., 2018) and the promotion of germination and plant growth by 
smoke. Smoke alters UV profiles, obscures sunlight, provides sub-
strates for water and ice condensation, and deposits particulates 
on plants and the environment. These processes occur both within 
burn perimeters (Bell, Stephens, & Moritz, 2013) and beyond via 
atmospheric transport. Aerosol radiative forcing is also a major un-
certainty in our understanding of the net effects of fire on Earth's 
climate (Landry, Matthews, & Ramankutty, 2015). The ecological 

effects of smoke over multiple spatial and temporal scales should be 
more fully characterized (Table 1).

7  | MODELLING FIRE AC TIVIT Y

Fire models accomplish several unique goals essential to answering 
ecological questions, including (a) characterizing fire and its effects 
at large spatial extents, (b) testing scenarios and hypotheses regard-
ing the interactions described in previous sections and (c) projecting 
fire behaviour and effects into the future. Numerous fire models are 
currently in use and under development (Table S2).

7.1 | Fire ignition in models

Revolutions in data collection and availability have improved our 
ability to model fire processes. For example, the availability and 
reporting of ignitions (both natural and anthropogenic) have vastly 
improved. Within the US there are detailed data on the location, 
date and ignition source for most fires (Short, 2014). Globally, there 
are data on lightning strikes and human-ignition proxies, such as 
distance to roads, transportation corridors and railroad tracks 
(Andela et al., 2017; Loboda, 2009; Morton, Page, DeFries, Collatz, 
& Hurtt, 2013). Many fire models now explicitly include ignitions and 
their sources (Hantson, Lasslop, Kloster, & Chuvieco, 2015; Lasslop, 
Thonicke, & Kloster, 2014; Li, Levis, & Ward, 2013; Mangeon 
et al., 2016; Scheller, Kretchun, Hawbaker, & Henne, 2019; Yue 
et al., 2014). However, there remain challenges associated with 
capturing impacts of land use (Andela et al., 2017; Schoennagel 
et al., 2017), the expansion of the wildland-urban interface (Radeloff 
et al., 2018) and the natural variability associated with lightning igni-
tions and ignition efficiency (the proportion of lightning strikes that 
generate ignitions; Romps, Seeley, Vollaro, & Molinari, 2014).

7.2 | Fire behaviour models

Modelling fire behaviour began with the work of (Rothermel, 1972) 
and (Van Wagner, 1973) and has improved over time (Table S2), in-
cluding coupling with dynamic vegetation and/or Earth System mod-
els spanning a wide range of spatial and temporal scales. Further, 
coupled weather-fire models now capture the unfolding of com-
plex landscape-scale events over a period of days (Coen, Stavros, 
& Fites-Kaufman, 2018), while global models continue to improve 
their representation of fire frequency, burned area and seasonality 
across years to decades (Forkel et al., 2019; Hantson et al., 2016). 
The representation of dynamic policy and management actions, 
and the evolving wildland-urban interface, requires concerted in-
terdisciplinary efforts with social scientists (Kline et al., 2017). An 
ongoing challenge for global fire modelling is scaling up existing fire 
behaviour models from point scales to grid cells tens to hundreds of 
kilometres in size, without downplaying the importance of spatial 
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heterogeneity and spatially interactive processes occurring within 
those large grid cells.

7.3 | Fire effects models

Fire effects models represent combustion, intensity and sever-
ity via physically based models and vegetation characteristics (e.g. 
bark thickness, resprouting, serotiny). As models improve their rep-
resentation of vegetation such as with the incorporation of plant 
physiology, growth, and size-structure (Fisher et al., 2018) and trait-
based modelling (Fisher et al., 2015), simulation of fire mortality also 
improves.

Dependent on the duration, magnitude and depth of heat trans-
fer, fire can alter soil in ways that influence vegetation recovery 
(Brando, Oliveria-Santos, Rocha, Cury, & Coe, 2016; Johnstone, 
Hollingsworth, Chapin, & Mack, 2010), the structure of invertebrate 
and microbial communities (Hewitt et al., 2016) and availability of 
nutrients (Karam, Weisberg, Scheller, Johnson, & Miller, 2013). The 
representation of interactions between fire and below-ground pro-
cesses must be improved within models to properly project land-
scape and biome changes (Foster et al., 2019; Pausas et al., 2018). 
The forefront of fire effects model development is to include inter-
actions with other disturbances (drought, harvesting, insect out-
breaks, wind-throw; Kane et al., 2017; Scheller et al., 2018), with 
human behaviour (suppression, human ignitions), and more refined 
representation of fire behaviour and effects, including the feed-
backs among fire, vegetation and climate described in Section 3.

8  | EMERGENT THEMES FOR FIRE 
ECOLOGY

Across the six identified research areas in fire ecology from the 
research community—characteristics of fire regimes, changing 
fire regimes, fire effects on above-ground ecology, fire effects on 
below-ground ecology, fire behaviour and fire ecology modelling—
three common themes emerge.

8.1 | Understanding the ecological consequences of 
fire through time

A wide array of time-scales is necessary for understanding fire pro-
cesses, from measures of fire behaviour during seconds to minutes, 
to multi-millennial records of fire history. However, most research 
tends to study fire processes on a single time-scale, exposing a large 
untapped potential to link across time-scales. There is a particular op-
portunity to understand how fire regimes change over multi-decadal 
to centennial and millennial time-scales. Fundamental knowledge 
of ecosystem ecology could then be increased through mechanis-
tic links between fire regimes and fire effects. Our current under-
standing of fire regimes is based on well-developed approaches for 

reconstructing fire history—particularly fire return interval—through 
dendrochronology and palaeoecology. Expanding on these methods 
to produce metrics used to study contemporary fire ecology, includ-
ing area burned, fire severity and seasonality, would further advance 
our understanding of fire regimes. Better integration of fire histo-
ries into models would also lead to insights regarding the ecologi-
cal and evolutionary consequences of changing fire regimes. Finally, 
archaeological and palaeoecological research can provide important 
information about the human dimension of fire regimes over the 
long-term, and this integration is likely to provide key insights for 
living with fire in the future.

8.2 | Characterizing feedbacks and nonlinearities

Despite the long recognition of fire as an important ecological pro-
cess, the mechanisms underlying the interactions and feedbacks 
of fire with other ecological processes are only beginning to be ex-
plored in a systematic way. Determining the generality of such feed-
backs, especially in systems with a long evolutionary relationship 
with fire, would greatly deepen our understanding of fire's role on 
Earth while enabling better projections of future fire effects.

To better project where positive or negative feedbacks between 
vegetation and fire will occur, we suggest four research priorities. 
First, continue to study the individual components of the primary 
drivers of fire activity and the relatively simple pairwise feedbacks 
between components, including human influences. Second, diver-
sify the types of fire regimes studied, especially those where fire 
behaviour is highly variable in space and time (grasslands, savannas, 
Mediterranean systems). Third, expand the study of feedbacks to 
include not only vegetation, but also higher trophic levels and be-
low-ground components of fire-frequented ecosystems, especially 
those that influence fuel composition and dynamics. Fourth, use the 
power of models to explore feedbacks that are difficult to observe 
because they either develop slowly or are difficult to interpret with-
out controlling for other influencing factors in the field.

8.3 | Harnessing the data revolution and using 
models to explore the diversity of fire on Earth

The many data sources described in this manuscript provide unique 
and complementary views of fire on Earth, offering ecologists an in-
credible opportunity to draw new insights about how fire is changing. 
Over a dozen satellites and space-borne sensors are collecting infor-
mation about fire events and their effects in real time (e.g. Landsat, 
MODIS, Sentinel, VIIRS, Planet, DigitalGlobe's Worldview Collection, 
GEDI, ECOSTRESS, and others), climate and Earth System models are 
operating on a variety of spatial scales and databases are providing 
unprecedented detail about fuels and ignitions. Ongoing data efforts 
include further development and better integration of palaeorecords 
and government incident reports addressing spatial heterogeneity, and 
incorporation of new sources of information about fire—from social 
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media to drones. However, there is still a long way to go to develop 
better data infrastructure, to improve curation of data in a standard-
ized format that includes controlled vocabularies that describe what 
was measured (Gross et al., 2018), to increase transparency, reusability 
and interoperability of data products across political and disciplinary 
boundaries and to apply new data analysis techniques such as machine 
learning to discover important large-scale patterns about fire behav-
iour, fire regimes and ecological outcomes.

There is significant intellectual momentum building in the area 
of fire models, with several parallel but largely disconnected efforts 
under way. The diversity of modelling approaches reflects the spa-
tio-temporal issues described earlier, the diversity of fire regimes 
on Earth, and the individual goals of the disparate modelling com-
munities, which range from detailed landscape models to Earth 
System Models. One urgent fire modelling need is to better under-
stand the fuel-fire-atmospheric conditions that generate extreme 
fire behaviours that exceed the predictive ability of our current fire 
models. An additional modelling need is the explicit incorporation of 
human interactions with fire, which will be required to project the 
consequences of future fires. To advance this area, we need a more 
accurate parameterization of how people create and alter fire re-
gimes, from changes in spatial and temporal patterns of ignitions to 
alteration of fuel type and continuity, coupled with past and future 
land use and land cover scenarios, and global data layers that provide 
a mechanistic understanding of human decision-making processes.

9  | CONCLUSIONS
Fire is a fundamental component of most terrestrial ecosystems on 
Earth. In many cases fire is key to understanding population, commu-
nity and ecosystem ecology. Theories of how fire interacts with evolu-
tionary processes are just beginning to develop and, although currently 
focused largely on plants, these theories are poised to advance rapidly 
in the animal and microbial realms. The fire ecology research commu-
nity has made immense progress in recent years to understand the 
many aspects of fire and fire regimes, including the number, timing, 
changes and ultimate effect of fires on the Earth system. Here, we 
offer guidance to continue the important mission of understanding the 
fundamental role of fire in a diverse array of ecological systems.
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