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The importance of large-diameter trees to
the creation of snag and deadwood
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Abstract

Background: Baseline levels of tree mortality can, over time, contribute to high snag densities and high levels of
deadwood (down woody debris) if fire is infrequent and decomposition is slow. Deadwood can be important for
tree recruitment, and it plays a major role in terrestrial carbon cycling, but deadwood is rarely examined in a
spatially explicit context.

Methods: Between 2011 and 2019, we annually tracked all trees and snags ≥1 cm in diameter and mapped all
pieces of deadwood ≥10 cm diameter and ≥1 m in length in 25.6 ha of Tsuga heterophylla / Pseudotsuga menziesii
forest. We analyzed the amount, biomass, and spatial distribution of deadwood, and we assessed how various
causes of mortality that contributed uniquely to deadwood creation.

Results: Compared to aboveground woody live biomass of 481 Mg ha−1 (from trees ≥10 cm diameter), snag
biomass was 74 Mg ha−1 and deadwood biomass was 109 Mg ha−1 (from boles ≥10 cm diameter). Biomass from
large-diameter trees (≥60 cm) accounted for 85%, 88%, and 58%, of trees, snags, and deadwood, respectively. Total
aboveground woody live and dead biomass was 668 Mg ha−1. The annual production of downed wood (≥10 cm
diameter) from tree boles averaged 4 Mg ha−1 yr−1. Woody debris was spatially heterogeneous, varying more than
two orders of magnitude from 4 to 587 Mg ha−1 at the scale of 20 m × 20 m quadrats. Almost all causes of
deadwood creation varied in importance between large-diameter trees and small-diameter trees. Biomass of
standing stems and deadwood had weak inverse distributions, reflecting the long period of time required for trees
to reach large diameters following antecedent tree mortalities and the centennial scale time required for
deadwood decomposition.

Conclusion: Old-growth forests contain large stores of biomass in living trees, as well as in snag and deadwood
biomass pools that are stable long after tree death. Ignoring biomass (or carbon) in deadwood pools can lead to
substantial underestimations of sequestration and stability.

Keywords: Carbon sequestration, Old-growth forest, Pseudotsuga menziesii, Tree mortality, Tsuga heterophylla, Wind
River Forest Dynamics Plot
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Introduction
Large-diameter trees and logs (diameter ≥60 cm diam-
eter at breast height; DBH) are a defining feature of old-
growth forests (Lutz et al. 2018), and they contribute
disproportionately to ecosystem function (Lutz et al.
2012, 2013, 2014; Thorn et al. 2020). It is axiomatic that
downed wood (hereafter; deadwood) of large diameters
must originate from snags or trees of equal or greater
diameter—to wit, there can be no large logs without
there having been large trees first (Spies et al. 1988).
These large logs contribute directly to biodiversity by
changing the microenvironment (Chen et al. 1995; Vrška
et al. 2015; Chu et al. 2019), serving as substrate for
seedlings (Harmon and Franklin 1989) and bryophytes
(Taborska et al. 2015), and contributing to complex and
prolonged patterns of carbon cycling (Harmon et al.
1986; Privetivy et al. 2018; Stenzel et al. 2019). In
addition to the large pieces of deadwood that come from
the main stem of large-diameter trees, large trees con-
tribute smaller pieces of wood as well. Chronic wind dis-
turbance in Pacific Northwest forests is a defining
ecological process (Lutz and Halpern 2006; Larson and
Franklin 2010), and the tops of older, taller trees are fre-
quently broken. Wood that originates from the tops of
larger trees may persist longer on the forest floor com-
pared to a full tree of the same diameter by virtue of be-
ing generally older and having tighter rings and more
heartwood. When large-diameter trees fall, their tops
also sometimes shatter into smaller diameter pieces. The
causes of mortality also differ between small- and
large-diameter trees (Larson et al. 2015; Das et al.
2016), potentially leading to different snag fall rates
and decomposition trajectories (Harmon et al. 1986).
The windthrow from the tops of large-diameter trees
and subsequent epicormic growth contributes to the
vertical heterogeneity of Pacific Northwest forests
(Kane et al. 2010; Kane et al. 2011; Sillett et al.
2018), and those logs continue to drive horizontal
heterogeneity through crushing smaller stems, open-
ing canopy gaps, and providing substrate for regener-
ation (Chen et al. 2004; North et al. 2004; Larson and
Franklin 2010; Lutz et al. 2014).
Deadwood is abundant in Pacific Northwest forests

that have been without fire and timber harvest long
enough for trees to grow, die, and fall (Spies et al. 1988;
Harmon et al. 2004; Larson et al. 2008; Freund et al.
2014). This deadwood not only fulfills important eco-
logical roles within these forests (Franklin et al. 1981),
but it also comprises a considerable amount of forest
carbon (Smithwick et al. 2002). Although this carbon is
often classified as transitory because deadwood eventu-
ally decays, the size distribution and species composition
of deadwood regulate the rate of carbon flux from live
biomass into soil, microbial, and atmospheric carbon

pools (Harmon et al. 2013). Decay of deadwood in wet,
temperate forests, can be extremely slow, with large logs
persisting for centuries (Harmon et al. 2020). It is often
assumed that carbon is quickly released following the
death of a tree (e.g., Berner et al. 2017), but the long
residence time of large deadwood renders their carbon
effectively sequestered for many decades or centuries
(e.g., Erb et al. 2016; Körner 2017; Stenzel et al. 2019).
As the largest 1% of living trees can comprise roughly
50% of aboveground biomass (Lutz et al. 2018), we ex-
pect that large deadwood may also represent a consider-
able proportion of dead, but relatively stable, forest
carbon. Accurately quantifying the size and spatial struc-
ture of deadwood will improve our understanding of for-
est carbon dynamics, providing a stronger empirical
basis for models of global carbon stocks (Pan et al. 2011)
and turnover (Carvalhais et al. 2014). We wanted to
examine what losses there might be to carbon pools if
there were no large-diameter trees. Specifically, if trees
were limited to smaller diameters, how much of the
woody carbon pools would be absent?
In this study, we tracked the amount, spatial distribu-

tion, and fluxes of biomass from trees to deadwood, and
we examined the unique contribution of large-diameter
trees to the deadwood pool and to the biomass dynamics
of an old-growth forest. Using a spatially explicit data
set of trees, snags, and down woody debris, our aim was
to determine:

1) The abundances, relative proportions, and spatial
patterns of aboveground woody biomass in live tree,
snag, and deadwood pools.

2) The proportion of biomass accounted for by large-
diameter trees.

3) How different causes of mortality influence the
creation of deadwood pools.

Materials and methods
Description of study site
The Wind River Forest Dynamics Plot (WFDP; Lutz et al.
2013) is a 27.2 ha (of which, 25.6 ha analyzed here) plot
located at a mean elevation of 362 m in Tsuga–Pseudot-
suga forest in southwestern Washington (Fig. 1). The
WFDP experienced a stand-initiating fire circa 525 years
ago and has since developed a complex structure charac-
terized by both horizontal and vertical diversification
(Franklin et al. 2002; Parker et al. 2004). The dominant
species by biomass is Tsuga heterophylla, the shade-
tolerant late seral species in this ecosystem, followed by
Pseudotsuga menziesii, the early seral, long-lived pioneer
species. The abundance of stems is driven by the subca-
nopy tree (or tall shrub) Acer circinatum and Tsuga
heterophylla (see Lutz et al. 2013 for complete abun-
dances). Despite the relative dominance of these species
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and the low woody species richness (26 species ≥1 cm
DBH), the WFDP is phylogenetically diverse because of
the presence of both basal gymnosperms and a variety of
Rosaceae and Ericaceae (Erickson et al. 2014; Wills et al.
2021). Botanical nomenclature follows Flora of North
America (1993+).

Data collection
Within the WFDP, every woody stem ≥1 cm DBH has
been identified, measured, mapped, and tagged accord-
ing to the protocols of the Smithsonian Forest Global
Earth Observatory network (ForestGEO; Anderson-
Teixeira et al. 2015; Lutz 2015; Davies et al. 2021). In
addition, all down woody debris originating from the
main stems of trees ≥10 cm diameter was mapped ac-
cording to the Smithsonian ForestGEO deadwood proto-
col (Janík et al. 2018), including the rooting location of
the originating tree for those trees that fell prior to the
plot establishment (when it could be determined; other-
wise, it was assumed to be at the larger end of the log).
Since the origination of the plot in 2010–2011, new
deadwood production from trees and snags was tracked
annually (2012 to 2019). From 2017, we also identified
top pieces from trees and snags ≥10 cm DBH that had
broken and mapped them, either recording or estimating
the year each top broke (the precise year could not al-
ways be ascertained but was between 2012 and 2019).

Volume and biomass calculations
The biomass of live trees was calculated using biomass
equations selected from Chojnacky et al. (2014) and

other sources (Lutz et al. 2017a; Means et al. 1994; Van
Pelt et al. 2016; see Table S1 for listing of equations). All
abundant species were covered by the equations of Choj-
nacky et al. (2014), but we used more specific equations
for some shrub taxa to match site morphology. The
Chojnacky et al. (2014) equations that we used have a
minimum applicable diameter of 3 cm DBH, leading to
very low (or even negative) biomass estimates for trees 1
cm ≤ DBH < 3 cm. We accordingly set minimum bio-
mass values for small-diameter stems of the most
common genera as follows: Vaccinium, Menziesia,
Gaultheria, Lonicera, Rhamnus, and Rosa—100 g;
Acer—250 g; and Abies, Tsuga, Pseudotsuga, Pinus,
Taxus, and Thuja—300 g (Table S1, Fig. S1).
For snags that died soon after plot establishment

(decay class 1 or 2) and were still intact (first-order
branches present, bark intact, and top diameter ≤10 cm),
biomass was estimated with species-specific allometric
equations (Table S1) and corrected with the species- and
decay-class-specific relative density factors of Harmon
et al. (2008). For snags that were either in a more ad-
vanced state of decay or were not intact, their biomass
was estimated by modeling their volume as a conic frus-
tum and using the species and decay-class-specific abso-
lute density values provided by Harmon et al. (2008).
For individual pieces of wood on the ground, we calcu-

lated volume from their physical dimensions, assuming
their shape was a conic frustum. Biomass was calculated
for the entire originating tree using species-specific allo-
metric equations (Table S1) and attributed to specific
pieces that fell from that tree by weighting a piece

Fig. 1 The Wind River Forest Dynamics Plot (WFDP) is located in the Tsuga–Pseudotsuga vegetation zone in the Pacific Northwest of North
America (a) on the western slopes of the Cascade Range (b). The WFDP has relatively gentle topography (32 m of vertical relief within 25.6 ha),
and the plot features a surveyed 20-m grid (c). a Digital elevation model shading from the Shuttle Radar Topography Mission (2000). c
Topographic lines are a 1-m digital elevation model derived from LiDAR (2012). Background in b is a composite of Landsat 8 scenes
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according to its volume as a proportion of the total vol-
ume of the tree, including any remaining standing vol-
ume. Biomass was then corrected for decay class using
the relative density factors of Harmon et al. (2008). For
detailed definitions of decay classes, see Janík et al.
(2018) as implemented by Lutz et al. (2020, 2021). For
pieces that could not be identified to species, we used an
average value for the genus calculated by proportionally
weighting the identified pieces from the data set and
their characteristics. For pieces that could only be identi-
fied to the family or not at all, we used a proportional
average for all the members of that family in our site or
of all wood, respectively (0.386 g cm−3 for decay class 1;
0.324 g cm−3 for decay class 2; 0.213 g cm−3 for decay
class 3; 0.146 g cm−3 for decay class 4; and 0.128 g cm−3

for decay class 5). We calculated mean values of total
tree, snag, and deadwood biomass for the entire plot and
variability at the spatial grain of 20 m × 20 m. We also
calculated the directionality of deadwood pieces using a
null model of uniform distribution.

Partitioning of biomass and causes of mortality
In addition to our primary partitioning of biomass into
live trees, snags, and deadwood, we differentiated woody
structures depending on whether they originated from
trees that were large considering both regional (≥90 cm
DBH) and global (≥60 cm DBH) contexts. We calculated
the large-diameter threshold (that tree diameter that di-
vides biomass into two equal portions sensu Lutz et al.
2018). We also assessed biomass fluxes as a function of
the primary cause of mortality for each tree (including
unknown cause, for live trees) following the methods of
the Western Forest Initiative (Furniss et al. 2020). Path-
ology exams were conducted for each newly dead tree in
the year of death. Pathogenic fungi were distinguished
from saprophytic fungi, where pathogens attacked live
portions of the tree (cambium and phloem, e.g., Armil-
laria ostoyae) and saprophytes attacked primarily dead
portions of the tree (sapwood and heartwood, e.g., Phel-
linus weirii). Trees exhibiting mechanical failure due to
saprophytic fungi or animals (e.g., elk trampling) were
considered to have been killed by these underlying
agents rather than the mechanical failure itself. Wind-
throw was defined as trees falling or breaking as a result
of wind, snow, or fluvial activity. Crushing was defined
as trees fallen, buried, or broken by other falling trees or
debris. Insects were primarily bark beetles (family Scoly-
tidae, genera Dendroctonus and Scolytus). Animal activ-
ity was primarily herbivory and scraping damage by elk
(Cervus canadensis), which are locally abundant. Mistle-
toe was primarily Arceuthobium campylopodum subsp.
tsugense, which affects Tsuga heterophylla. Suppression
was determined when trees exhibited irregular growth
indicative of strong light competition (e.g., flat crowns).

We conducted an analysis of variance using linear
models with post hoc Tukey tests to compare biomass
accumulation among mortality factors between large-
diameter (DBH ≥60 cm) and smaller (1 cm ≤ DBH < 60
cm) trees. For this, the response variable was total wood
biomass produced by each tree (kg), and the predictor
was multinomially categorized tree mortality agent (in-
cluding “none” for live trees). Significance was assessed
at the family-wise controlled error rate of α = 0.05. To
verify these results, we also ran variable importance tests
using Random Forests with the same model formulation.
For both tests, all trees alive at plot establishment were
analyzed (n = 33,739; mortality n = 4,548).
All calculations were performed in R version 3.6.2 (R

Core Team 2020) using packages randomForest (Liaw
and Wiener 2002), rgdal version 1.4-8 (Bivand et al.
2019), rgeos version 0.5-2 (Bivand and Rundel 2019), sp
version 1.3-2 (Pebesma and Bivand 2005), and sf version
0.8-1 (Pebesma 2018).

Results
Aboveground live biomass from trees ≥10 cm diameter
in 2019 was 481 Mg ha−1. Snag biomass was 74 Mg ha−1

and deadwood biomass from stems ≥10 cm diameter of
109 Mg ha−1. There was a total of 6104 portions of main
stems ≥10 cm diameter in 25.6 ha (Fig. 2, Table 1). The
large-diameter threshold (i.e., the DBH above which
trees comprise 50% of aboveground live biomass) for the
WFDP was 91.7 cm. Trees ≥60 cm DBH accounted for
85%, 88%, and 58% of tree, snag, and deadwood biomass,
respectively. Trees ≥90 cm diameter accounted for 53%
of tree biomass, 55% of snag biomass, and 27% of dead-
wood biomass (Fig. S13). The largest 1% of downed trees
accounted for 17% of deadwood biomass. When consid-
ered by count, smaller-diameter trees contributed the
majority of deadwood (91% of trees and 85% of pieces;
Table 1). However, when considered by metrics of vol-
ume or biomass, large-diameter trees dominated, repre-
senting 56% of volume and 58% of total biomass
(Table 1).
Deadwood biomass varied by over two orders of mag-

nitude (Fig. 3; 4 Mg ha−1 to 587 Mg ha−1, mean 109 Mg
ha−1). This variation was sustained across various met-
rics of deadwood abundance (Fig. 3). Annual variation in
deadwood accumulation was high (Figs. S2–S12), but no
trend could be detected with this first decade of data.
Spatial heterogeneity of all biomass pools was high at
the scale of 20 m × 20 m quadrats, but the majority of
20 m × 20 m quadrats had biomass dominated by large
pieces of wood (Fig. 4, Figs. S13, S14).
Large-diameter trees and all trees ≥10 cm diameter

showed weak eastern directionality, suggesting that pre-
vailing storm tracks may have partially determined the
final orientation of pieces of wood (Fig. 5). For all trees

Lutz et al. Ecological Processes           (2021) 10:28 Page 4 of 14



≥10 cm DBH, directionality was easterly and southerly
(χ2 test, P < 0.001); 30% fell in an easterly direction, 19%
in a westerly direction, 25% northerly, and 26% south-
erly. For the trees ≥60 cm DBH (1225 trees), directional-
ity was also easterly and southerly (χ2 test, P < 0.001);
31% easterly, 17% westerly, 22% northerly, and 29%
southerly. The mean diameter of old deadwood (i.e.,
pre-establishment) accumulation was 40 cm (Fig. 6). De-
position of large-diameter deadwood was less frequent,

but long-term persistence of these pieces meant that
their proportion of total deadwood biomass was rela-
tively high (Figs. 4 and 6, dotted line).
The mean diameter of old deadwood (i.e., pre-

establishment) accumulation was 40 cm (Fig. 6). Depos-
ition of large-diameter deadwood was less frequent, but
long-term persistence of these pieces meant that their
proportion of total deadwood biomass was relatively
high (Fig. 6, dotted line).

Fig. 2 Downed woody debris ≥10 cm diameter in 25.6 ha (800 m × 320 m) of the Wind River Forest Dynamics Plot. Pre-establishment indicates
wood on the ground at plot establishment in 2011. For annual progression of deadwood accumulation, see Figs. S2–S12

Table 1 Total snagfall, pieces of wood (from the main stem), wood volume, and wood biomass in the Wind River Forest Dynamics
Plot. Trees 1 ≤ DBH < 10 cm were not mapped and were assumed to have fallen as a single piece. Pieces with unknown dates
reflect top pieces of still-living trees that were comprehensively sampled beginning in 2017. “Pre Estab.” indicates deadwood on the
ground at plot establishment in 2010–2011

Diameter class Year Total

Pre Estab. 2012 2013 2014 2015 2016 2017 2018 2019 Unkn. Date

Newly fallen trees and snagsa 1 cm ≤ DBH < 10 cm 17 4 51 39 59 120 283 602 377 0 1552

10 cm ≤ DBH < 60 cm 3211 27 57 25 35 79 137 114 77 0 3762

≥60 cm DBH 483 3 9 7 4 14 12 8 6 0 546

New pieces of deadwoodb 1 cm ≤ DBH < 10 cm 27 4 51 39 59 121 283 602 384 11 1581

10 cm ≤ DBH < 60 cm 3887 39 66 40 53 132 168 131 98 509 5123

≥60 cm DBH 594 6 21 14 5 79 15 14 10 420 1178

Volume (m3) 1 cm ≤ DBH < 10 cm 0.80 0.02 0.14 0.12 0.19 0.45 0.65 1.54 1.19 2.44 7.54

10 cm ≤ DBH < 60 cm 2111.23 10.07 23.57 11.98 27.84 48.15 77.92 37.31 20.19 185.11 2553.37

≥60 cm DBH 1955.00 44.73 62.70 89.89 13.50 217.91 117.22 74.05 73.60 676.94 3325.54

Biomass (Mg) 1 cm ≤ DBH < 10 cm 0.35 0.01 0.06 0.04 0.06 0.19 0.28 0.75 0.65 0.01 2.40

10 cm ≤ DBH < 60 cm 1010.05 4.53 10.09 6.56 6.73 20.40 34.81 17.45 13.57 60.54 1184.73

≥60 cm DBH 959.14 15.70 29.60 43.91 6.16 140.63 53.76 34.54 34.61 299.17 1617.22
aTrees and snags that fell with the remaining stump <1.37 m tall (including 44 subsequently measured <10 cm diameter)
bExplicitly mapped pieces of wood ≥10 cm diameter and ≥1 m long and non-mapped pieces of wood from trees 1 ≤ DBH < 10 cm, with those smaller trees
assumed to have fallen as one piece (see the “Materials and methods” section). These reflect the number of pieces into which trees and snags fell, as well as
fallen pieces of standing trees
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The annual production of downed wood (≥10 cm
diameter) from tree boles averaged 4 Mg ha−1 yr−1. By
2019, 3% of the tree biomass that was alive at establish-
ment had become deadwood. Of wood that fell from
trees that were alive at establishment, the majority of
deadwood biomass (80%) was produced by trees or snags

≥ 60 cm DBH, primarily Pseudotsuga menziesii and
Tsuga heterophylla. Random Forests and Tukey tests
agreed that saprophytic fungi (often leading to mechan-
ical failure) and non-rot associated windthrow contrib-
uted the most to accumulation of deadwood (7.2 Mg
ha−1 and 3.4 Mg ha−1, respectively). The third largest

Fig. 3 Spatial heterogeneity in the biomass of large woody debris on the ground in the Wind River Forest Dynamics Plot in 2019. The number of
trees that fell (a) is 70% of pieces on the ground (b) showing that most trees fell intact, although some shattered. Maximum local volume of
deadwood was over seven times the mean (c), and the maximum total biomass was over five times the mean (e). The maximum local biomass
contributed by large-diameter trees was nine times the mean (d). Each dot represents one of the 640, 20 m × 20 m quadrats in 25.6 ha of the
Wind River Forest Dynamics Plot

Fig. 4 Percent of total deadwood biomass originating from trees ≥60 cm DBH calculated at the scale of 20 m × 20 m quadrats within 25.6 ha of
the Wind River Forest Dynamics Plot. This total included pieces ≥60 cm diameter and those pieces that fell as broken tops of trees ≥60 cm DBH
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contributors to deadwood accumulation were pieces that
fell from still-living trees (3.1 Mg ha−1). Of the dead-
wood biomass that fell from live trees, 87% came from
trees ≥60 cm DBH. Together, these three categories pro-
duced 88.8% of deadwood originating from trees that
were alive at plot establishment. Causes of mortality and
snagfall were different between large-diameter and
smaller-diameter trees (Fig. 7). Mortality causes had
significantly different effects on deadwood creation

depending on tree diameter. When compared with
small-diameter trees, large-diameter trees as a group
produced 57.8 Mg more when alive, 4.4 Mg less from
crushing, 40.8 Mg more from windthrow, 6.1 Mg less
from pathogens, 144.3 Mg more from saprophytes, 2.4
Mg more from insects, 1.7 Mg more from mistletoe, and
0.3 Mg less from suppression (there was no deadwood
produced by suppressed large trees in the study period).
Tukey tests showed that most causes of mortality were

Fig. 5 Directional diagrams of the position of deadwood ≥10 cm diameter (a) and of deadwood ≥60 cm diameter (b) in the Wind River Forest
Dynamics Plot in 2019. Each concentric gridline of the rose diagram represents 2% of the total pieces. The directions of treefall were different
than would be expected from a uniform distribution

Fig. 6 Diameter distribution of deadwood ≥10 cm diameter from 2012 to 2019 in the Wind River Forest Dynamics Plot, as well as the diameter
distribution of deadwood that existed at plot establishment in 2011. Colors correspond to those in Fig. 2. Curves are based on the raw diameters
smoothed with a Gaussian density kernel. The square-root transformation of the y-axis shows the low frequency but cumulative effects of
large-diameter inputs
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significantly distinct in the biomass of snags and dead-
wood created. After controlling the family-wise error
rate at α=0.05, there were no significant differences in
the biomass contribution of causes classified as “animal”
or “other” to mortality. Differences in wood fluxes from
living tree to deadwood were also apparent (Fig. 7).
Large-diameter trees constituted 11,142.2 Mg in 2011.
Those trees were responsible for 316.2 Mg of deadwood,
with 68.2 Mg of that transitioning directly from the live
biomass pool to deadwood (Fig. 7, top line). In contrast,
small-diameter trees represented 2108.9 Mg in 2011,
with 79.6 Mg joining the deadwood pool by 2019, and
10.4 Mg transitioning directly from the live biomass pool
to deadwood (Fig. 7, bottom line).

Discussion
Large-diameter structures, whether trees, snags, or dead-
wood, accounted for a large majority of biomass. In this
Tsuga–Pseudotsuga forest, fully 81% of live and dead
aboveground woody biomass is contained in individuals
≥60 cm DBH or in pieces of deadwood originating from
those large-diameter trees. Naturally, large-diameter
trees are prerequisite to the presence of large-diameter
snags and deadwood. Despite the importance of small-
diameter trees to species biodiversity (i.e., Memiaghe
et al. 2016; Das et al. 2018; Ellison et al. 2019) and
demographic rates (Table S2, Lutz and Halpern 2006;

Halpern and Lutz 2013), these smaller stems do not con-
tribute much to woody biomass flux or deadwood pools
(Table 1). Hence, the prevalence of large-diameter
trees—with their substantial and enduring contribution
to both live and dead biomass—reinforces the ecological
significance of large-diameter trees even beyond their
death (Fig. 4; Erb et al. 2016; Lutz et al. 2018).
The amount of deadwood produced depended signifi-

cantly upon mortality agent (Fig. 7; Larson and Franklin
2010; Larson et al. 2015). Notably, the distribution of
deadwood fluxes among large-diameter trees and small-
diameter trees differed (Fig. 7). The majority of biomass
was killed by saprophytes, pathogens, and windthrow.
Biomass transitioned quickly to deadwood when sapro-
phytes or windthrow were the cause of mortality, while
the remaining biomass killed by other mortality agents
largely remained in the snag pool. Though bark beetles
attack large-diameter trees, for example, this carbon is
primarily transferred to snag biomass rather than dead-
wood. Similar patterns of agent-related deadwood accu-
mulation have been described in dry temperate forests
following fire (Lutz et al. 2020), highlighting that sapro-
phytic fungal activity can dominate carbon fluxes across
a range of temperate forest types. Changes to the relative
frequency of different mortality processes will therefore
have reverberating effects on subsequent deadwood ac-
cumulation and carbon storage across temperate forests.

Fig. 7 Snag and deadwood biomass produced by mortality agents as a proportion of all wood originating from trees alive at plot establishment
that would eventually fall or die delineated by large-diameter trees (≥60 cm DBH) and small-diameter trees (1 cm ≤ DBH < 60 cm). Of the 13,251
Mg of total tree biomass present in 2011 in 25.6 ha, 851 Mg died, 396 Mg fell to the ground, and 12,400 Mg remained alive by 2019. The
horizontal brown bars at the top and bottom of the figure represent the tops of trees that broke off and fell to the ground leaving the
(somewhat shortened) tree alive. The height of each bar represents the proportion of biomass that transitioned from trees directly to deadwood,
or from trees to snags and then to deadwood, grouped by primary mortality agent
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Specifically, the growing preponderance of unprece-
dented bark beetle epidemics (e.g., Weed et al. 2013) is
likely to favor much slower rates of large deadwood ac-
cumulation (Hicke et al. 2012) and, consequently, re-
duced sequestration in soil carbon pools (Lal 2005;
Averill et al. 2014). This carbon persists in standing
form, however, as beetle-killed trees can have a long
residence time as snags. The decay dynamics of snags
differs from that of deadwood (e.g., snags will dry out
more quickly, and bark may fall while standing), and
they may therefore differ in how their carbon is eventu-
ally cycled into soil carbon pools. Feedbacks between
forest carbon sequestration ability, biotic disturbances,
and climate change have not been well described and
will require comprehensive assessment of variations in
tree, snag, and deadwood pools and fluxes.
The overall diameter distribution of deadwood—repre-

senting an integration of wood remaining after more
than 525 years of creation and decomposition—has a
peak at about 40 cm diameter and quickly declines
below diameters of about 25 cm (Fig. 5). This is despite
the fact that inputs of deadwood were much more abun-
dant at smaller diameter classes (Table 1). Most annual
deposition (by number of pieces) was <40 cm diameter,
but higher decomposition rates of smaller stems led to a
smaller proportion of total deadwood biomass. That
smaller diameter wood decays faster in closed-canopy
forests is universally known (Harmon et al. 2020), but
these data show the contrasting ecosystem function of
large-diameter wood. Although large-diameter dead-
wood is not created as frequently, it remains in the eco-
system for long periods of time (Fig. 4), necessitating
long periods of observation to detect changing dynamics
(Birch et al. 2019a; Harmon et al. 2020; Davies et al.
2021). There was little directionality in the annual cre-
ation of deadwood (Fig. 2, Figs. S3–S12), although there
was a higher amount of deadwood with an easterly
orientation (Fig. 5). The absence of strong and consist-
ent deadwood directionality may be due to the relatively
flat site (Fig. 1). Alternatively, patterns in deadwood
might only be created by significant storms that only
occur so infrequently as to require long periods of ob-
servation. These long periods of observation are also
useful in detecting past episodic mortality (i.e., Lutz
et al. 2020; Lutz et al. 2021) or slightly higher rates of
mortality on decadal scales (Birch et al. 2019b; Germain
and Lutz 2020).
Large-diameter trees contributed 80% of the new

deadwood flux (i.e., from trees alive at plot establish-
ment to deadwood; Fig. 7), but only 58% of the static,
long-term deadwood pool. The difference between these
values likely indicates the proportion of deadwood ori-
ginating from older, more decayed large-diameter snags
that died long before establishment. With the exception

of trees killed by saprophytes and windthrow, the transi-
tion process from snag to deadwood is lengthy. For ex-
ample, no deadwood was produced in the 1 to 7 years
following recorded tree mortality from suppression of
large trees (Fig. 7), compared with vast amounts of dead-
wood produced by long-dead snags. This disparity may
also be a function of antecedent tree fall from earlier
phases of forest succession. Due to slow decomposition,
deadwood pools reflect a prior forest structure (i.e.,
when the forest was younger and trees were smaller),
and the largest trees may still be standing (indeed, many
are). The relative contribution of large-diameter wood to
deadwood may increase as more of the pioneering 525-
year-old Pseudotsuga menziesii trees and snags begin to
fall (Franklin et al. 2002).
Old-growth Tsuga–Pseudotsuga forests have perhaps

the greatest amount of surface woody biomass (347 to
523 m3 ha−1 including snags and logs (Freund et al.
2015), approximately 91 to 141 Mg ha−1), generally
equaled or exceeded only by Sequoia sempervirens for-
ests (302 to 328 Mg ha−1, Sillett et al. 2019) and by
Picea–Tsuga forests of the western coast of North
America (Kramer et al. 2020). Our analysis of biomass
pools in this 525-year-old Tsuga–Pseudotsuga forest re-
flects this, and they reveal the profound contribution of
high-biomass temperate forests as globally important
carbon stores. Even though snags and deadwood repre-
sented a minority of aboveground biomass in this forest
(183 Mg ha−1), this deadwood comprises more carbon
than exists in the live aboveground carbon pools of other
ecosystems, including other forest types (Lutz et al.
2018; their Table 1). This deadwood carbon may be
eventually transitory, but large pieces can persist for de-
cades in many temperate forests, and much of their car-
bon will slowly cycle into more labile soil carbon pools.
This renders the carbon stored in large-diameter dead-
wood stable on multi-decadal, and even centennial time
scales (Fig. 6).
Total biomass stores at the plot level were high (664

Mg ha−1) and trees, snags, and deadwood comprised 481
Mg ha−1, 74 Mg ha−1, and 109 Mg ha−1, respectively
(Table 1). This compares to Harmon et al. (2004) who
found 790 Mg ha−1 in live trees, 58 Mg ha−1 in snags,
and 84 Mg ha−1 in deadwood within the same study area
using line-intercept methods for deadwood and a ≥10
cm diameter threshold (assuming a 50% ratio of carbon
to biomass from their results). Similarly, Grier and Lo-
gan (1977) found an average of 717 Mg ha−1 total above-
ground biomass in live trees and large shrubs, 25 Mg
ha−1 in snags, and 190 Mg ha−1 in deadwood (using a
diameter threshold of ≥15 cm for non-shrubs). This is
also consistent with Smithwick et al. (2002), who found
an average live tree biomass of 760 Mg ha−1, snag bio-
mass of 25 Mg ha−1, and deadwood biomass of 148 Mg
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ha−1 in the Washington Cascades province (including
some sampling done in this study site and assuming a
50% ratio of carbon to biomass from their results). The
amount of live woody biomass in our study was well
within the regional range (294–1200 Mg ha−1, mean 910
Mg ha−1) encompassing a wide range of other Pacific-
Northwest forest types (Smithwick et al. 2002).
A considerable portion of the variation in aboveground

live biomass between studies most likely represents dif-
ferences in choice of allometric equations (i.e., Lutz et al.
2017b; Lutz et al. 2021). In this work, we have relied on
the national-level (for the United States) equations of
Chojnacky et al. (2014) for generalizability across the
range of Pseudotsuga and Tsuga forests. However, old
forests like the WFDP are characterized by complex
crowns (Van Pelt et al. 2016; Van Pelt and Sillett 2008),
and these crowns accumulate considerable biomass that
is often only revealed through detailed tree measure-
ments (i.e., in addition to DBH; Sillett et al. 2018). Bio-
mass calculations for snags and deadwood should be
much less variable among studies as most studies use
the values of Harmon et al. (2008) and calculations
based on piece geometry.
Structural heterogeneity has been a long-recognized

feature of old-growth forests (i.e., Lutz et al. 2013;
Michel et al. 2014; Furniss et al. 2017; Engone-Obiang
et al. 2019), and that heterogeneity creates complex
vertical habitat for a variety of arboreal taxa (i.e.,
Blomdahl et al. 2019). It is likely that the extreme het-
erogeneity in deadwood also creates a variety of terres-
trial habitat niches. Using spatially explicit estimates,
deadwood biomass varied by more than two orders of
magnitude at the scale of 20 m. Previously, Harmon
et al. (2004) reported a coefficient of variation of
~0.81 in deadwood biomass estimates along line tran-
sects (as inferred from their methods), compared to
0.69 in this study. Grier and Logan (1977) observed a
range of 55 Mg ha−1 to 581 Mg ha−1 among the differ-
ent communities using similar methods. This under-
scores the generally high level of biomass variation in
these old forests, the differences that can arise due to
different sampling methods, and the need for
modernization (or at least standardization). Actual
heterogeneity in deadwood biomass becomes unex-
plained variance when using transect sampling
methods, and this variance is ignored when multiple
transects are averaged to generate stand-level esti-
mates (Cansler et al. 2019). Spatially explicit mapping
methods such as these lead to more precise attribution
of sources of variation, allowing more targeted efforts
to improve aboveground carbon tracing (Janík et al.
2018; Lutz et al. 2020; Lutz et al. 2021).
Without taking the long-term nature of the broader

lifecycle of woody biomass into account, variability in

temperate old-growth forest carbon may seem unex-
plained and unpredictable. Relatively large amounts of
biomass may suddenly transition from one pool to the
next (e.g., as a result of wind events creating a pulse of
mortality and snagfall) resulting in large variation in live
biomass. However, given their slowly decomposing na-
ture, biomass is potentially conserved for long periods of
time thereafter in the form of snags and deadwood. The
residence time in all three biomass pools, as well as the
amount of biomass that transitions between pools, scales
exponentially with tree size. We observed a weak inverse
relationship between live biomass and dead biomass
(Fig. S14) which, while potentially difficult to demon-
strate conclusively, has long been held to be the case
(Grier and Logan 1977). The spatially autocorrelated
spread of saprophytic fungi (Holah et al. 1997; Hansen
and Goheen 2000), fungal symbionts (e.g., Feng et al.
2021; Zhong et al. 2021), and soil processes (e.g.,
Tamjidi and Lutz 2020) likely influenced this spatial re-
lationship and subsequent patterns of deadwood accu-
mulation. Although one might expect to be able to use
live biomass as a proxy for deadwood biomass, our ob-
servations suggest that this assumption may not hold
true. In order to understand the underlying dynamics of
this ecosystem, it is necessary to fully take into account
all the trees: living, dead, standing, and fallen.
Recent declines in large-diameter trees (Lindenmayer

et al. 2014; Lutz et al. 2009) cast the structural and micro-
climatic differences between young and old forests in
sharp relief (Chen et al. 1999). If forests are managed for
young, individually productive trees, their carbon is vola-
tile. A disturbance event that causes considerable mortal-
ity (e.g., repeated harvesting) will cause that carbon to
cycle quickly (Thornton et al. 2002). Conversely, if large
trees are preserved, the carbon they contain is more stable
even if the trees are killed (see also Körner 2017). Because
there is so much deadwood originating from these large-
diameter trees, it is important to preserve it for its undeni-
able contribution to carbon sequestration and ecological
function (Janisch and Harmon 2002). Although a forest of
small trees might have higher relative net primary prod-
uctivity than an old-growth forest (Franklin et al. 1981),
these forests sequester little carbon in trees and almost
none in deadwood. Small-diameter trees constitute an un-
stable form of carbon sequestration that has potential for
more rapid release. As mortality increases in forests fol-
lowing canopy closure, it is often assumed that decompos-
ition begins to offset carbon sequestration, eventually
reducing net primary production to negligible levels. Our
results demonstrate, however, that once trees are large
enough, their carbon is effectively sequestered for decades
or centuries. Deadwood carbon persists on timescales that
can match, or even exceed, the residence time of carbon
stored in forest products. In the face of uncertainty, large-
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diameter trees are an invaluable carbon reservoir, whether
they are alive or not.

Conclusion
Old-growth forests contain large stores of biomass in liv-
ing trees, as well as in snag and deadwood biomass pools
that are stable long after tree death. Ignoring biomass
(or carbon) in deadwood pools can lead to substantial
underestimations of sequestration and stability.
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