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Abstract
Extreme wildfires are increasing in frequency globally, prompting new efforts to mitigate risk. The
ecological appropriateness of risk mitigation strategies, however, depends on what factors are
driving these increases. While regional syntheses attribute increases in fire activity to both climate
change and fuel accumulation through fire exclusion, they have not disaggregated causal drivers at
scales where land management is implemented. Recent advances in fire regime modeling can help
us understand which drivers dominate at management-relevant scales. We conducted fire regime
simulations using historical climate and fire exclusion scenarios across two watersheds in the
Inland Northwestern U.S., which occur at different positions along an aridity continuum. In one
watershed, climate change was the key driver increasing burn probability and the frequency of large
fires; in the other, fire exclusion dominated in some locations. We also demonstrate that some areas
become more fuel-limited as fire-season aridity increases due to climate change. Thus, even within
watersheds, fuel management must be spatially and temporally explicit to optimize effectiveness.
To guide management, we show that spatial estimates of soil aridity (or temporally averaged soil
moisture) can provide a relatively simple, first-order indicator of where in a watershed fire regime
is climate vs. fuel-limited and where fire regimes are most vulnerable to change.

1. Introduction

In recent years, ecosystems around the globe have
endured increasingly destructive wildfires, accelerat-
ing economic and ecological damage and leading to
catastrophic loss of property and lives (Calkin et al
2014). Increased occurrence of such fires culmin-
ates from several, often interacting factors, includ-
ing anthropogenic climate change (ACC), prob-
lematic land management, and suburban expan-
sion into the wildlands (Keyser and Westerling
2017). However, there is still considerable debate
over how these factors have contributed to observed
changes in fire activity across different regions and

ecosystems (Gill et al 2013). Despite this ongoing
discussion, fuel reduction efforts, including unsup-
pressed wildfire for resource objectives, controlled
burns, and thinning have been proposed to mit-
igate fire risk. The ecological appropriateness of
these efforts depends on how climate and fuels
interact, and which driver dominates at actionable
scales (i.e. local scales within watersheds where man-
agement decisions are implemented). Achieving a
finer-scale understanding of climate-fuel interactions
will enable us to identify when, where, and under
what circumstances fuel management can enhance
resilience to environmental change (Stephens
et al 2013).
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Fire regimes—characterized by the frequency,
intensity, size, season, and severity of fire over time—
exist along an aridity continuum that ranges from
being limited by flammability (i.e. climate) to being
limited by fuel (Krawchuk and Moritz 2011, Pausas
and Paula 2012). In climate-limited systems, there is
typically enough fuel for fire to spread, but moisture
is too high; these systems are characterized by infre-
quent, severe fires, which occur during unusually arid
conditions. In fuel-limited systems, the climate is rel-
atively arid and conducive to fire, so fire activity is
mostly driven by the amount of live and dead plant
material present; these systems typically experience
frequent, low-severity surface fires.

The sensitivity of fire regimes to drivers such as
ACC and fire exclusion is also hypothesized to vary
along the climate to fuel-limitation continuum. At
large scales, such as across the western U.S., ACC has
been shown to directly facilitate changes in the fire
environment by increasing fuel aridity and length-
ening fire seasons (Abatzoglou and Williams 2016,
Westerling 2016, Abatzoglou et al 2019). By con-
trast, local to regional-scale increases in fire size, fre-
quency, and burned area have been associated with
changing ignition patterns (Balch et al 2017), invas-
ive species (Fusco et al 2019), and fire management
policies (Allen et al 2002). Of these, the legacy of
20th century fire suppression—which led to near-
complete exclusion of wildfire—has changed land-
cover and fire regimes, most notably in fuel-limited
ecosystems adapted to relatively frequent fires (Parks
et al 2015). In these systems, decades of fire exclu-
sion have led to fuel accumulation and more homo-
geneous fuel beds (Stephens et al 2013, Steel et al
2015), while also promoting drought stress through
increases in water competition (Gleason et al 2017,
Voelker et al 2019).

Because top-down climate drivers interact with
changing fuel loads and continuity across complex
terrain, it is difficult to disaggregate their relative
influence on wildfire regimes using observations.
This is particularly true at actionable/management-
relevant scales, where those observations are con-
founded by interannual climate variability (Abatzo-
glou et al 2018) and covarying factors such as ignition
sources (Fusco et al 2016), wind patterns (Abatzo-
glou and Kolden 2011), and forest health (Hicke
et al 2012). Further, climate change can sometimes
shift fire regimes from climate-limited to fuel-limited
(Westerling et al 2011, Littell et al 2018), which may
interact with fuel management in complex ways.

Models of fire regimes, andmore generally ecosys-
tem process models, have emerged as a tool for estim-
ating the effects of climate change and landuse change
(Keane et al 2004). Useful models, however, must be
able to resolve the local controls that drive the arid-
ity continuum including hydrologic dynamics, such
as lateral moisture redistribution, and spatial patterns
of plant biomass and growth, including overstory and

understory canopy layers. Both simple empirical and
highly complex physical models are prone to over or
underestimate fire activity over time because they do
not simulate non-stationarity in climate drivers or
important positive and negative feedbacks that influ-
ence fire regimes, including the effects of vegetation
productivity on local aridity and fuel self-limitation
(Littell et al 2018, Hurteau et al 2019, Tague et al
2019). Recent advances in watershed-scale ecohydro-
logical models can help bridge this gap by integrating
the mechanisms through which changes in climate
and forest structure influence fuel moisture and loads
through time.

The Regional Hydro-Ecological Simulation Sys-
tem has recently been coupled with a fire spread
model (RHESSys–WMFire), providing an interme-
diate scale and complexity framework that is well-
suited for simulating fire regimes in heterogeneous
landscapes (Tague and Band 2004, Kennedy et al
2017, Bart et al 2020). This framework simulates feed-
backs among climate, hydrology, vegetation, fuels,
fire spread, and fire effects over decades. As a result,
it is designed to project emergent fire regime char-
acteristics as they arise from top-down and bottom-
up drivers of watershed ecohydrology (Kennedy et al
2017, Bart et al 2020). The system predicts plaus-
ible distributions of outcomes from different scen-
arios rather than individual events.

Using this modeling framework, we examined
how climate change and fire exclusion influence
fire regimes at the scale of actionable manage-
ment. We conducted a factorial modeling experi-
ment using historical and counterfactual scenarios
(i.e. hypothetical or control scenarios, where ACC
and fire suppression were removed) using RHESSys–
WMFire in two watersheds in the Inland North-
western U.S. (i.e. Johnson Creek and Trail Creek;
supplemental figure 1 which is available online
at stacks.iop.org/ERL/16/024051/mmedia). These
watersheds are within regions that are strongly and
moderately climate-limited with respect to fire (Lit-
tell et al 2018). Both are primarily federally managed
and have been governed by the U.S. fire suppression
policies of the last century (Stephens and Ruth 2005).
Our goals were to understand the relative contribu-
tions of decades of fire suppression (represented as
complete fire exclusion) and historical ACC on pre-
dicted fire regime characteristics, and whether their
contributions differ given the underlying vegetation
and historical fire regime context. We hypothesized
that the relative roles of climate change and fire exclu-
sion vary even at fine scales within watersheds.

2. Methods

2.1. Study sites
We conducted our modeling experiment in two
mixed-conifer watersheds in Idaho—a region
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Figure 1. Distribution of fire regime characteristics. Box plots showing median, 25th percentile and 75th percentile values for fire
regime characteristics for each scenario in (a) Johnson Creek and (b) Trail Creek during the assessment period. Red line is the
median value for the counterfactual scenario (i.e. no climate change, no suppression). Mean and 95th percentile fire sizes are
expressed in number of patches burned.

that experienced some of the most intense early
suppression efforts following the Great Fire of 1910
(Pyne 2001; supplemental figure 1). The first water-
shed, Johnson Creek, is representative of watersheds
in the Northern Rockies and Idaho Batholith. It is a
565 km2 sub-catchment of the South Fork Salmon
River in central Idaho (44◦580 N, −115◦30) and
includes portions of the Payette and Boise National
Forests. The region experiences hot, dry summers
and cold winters with heavy snowfall, which con-
stitutes approximately 65% of annual precipitation
(Megahan et al 1992). Mean annual precipitation
is approximately 1175 mm, however precipitation
varies between wetter montane forests and semi-
arid interior valleys. Johnson Creek is character-
ized by steep granitic slopes that produce shallow
coarse-textured soils (Hyndman 1983). Elevations
range from 1429 to 2779 m. Vegetation is dominated
by ponderosa pine (Pinus ponderosa) and Douglas-
fir (Pseudotsuga menziesii) at lower elevations, and
lodgepole pine (Pinus contorta var. latifolia), grand
fir (Abies grandis), Engelmann spruce (Picea engel-
mannii), and subalpine fir (Abies lasiocarpa) at
higher elevations (Arkle and Pilliod 2010). Riparian,
shrub, and herbaceous species are also present in
the watershed (Homer et al 2015). Most contem-
porary fires in the region are either mixed severity
or stand-replacing. Fire regime characteristics for

Johnson Creek are described in supplemental text
(section 1.1).

The second watershed, Trail Creek is a 167 km2

sub-catchment of the Big Wood River basin in the
Sawtooth National Forest (43.44◦ N, −114.19◦ W).
This watershed is in the middle Rockies and is
representative of transitional watersheds with strong
elevation gradients. Such watersheds may be partic-
ularly vulnerable to altered fire regimes under cli-
mate change because lower elevation species can eas-
ily migrate upslope (Romme et al 2003). Therefore,
increases in fire size and severity may lead to per-
manent type conversion and further changes in fire
activity. Trail Creek has cold, wet winters and warm,
dry summers. Mean annual precipitation is approx-
imately 978 mm and 60% of the precipitation falls
during thewinter season as snow. The soils of the Trail
Creek valley are mostly coarse, permeable alluvium
(Smith 1960). Elevations range from 1760 to 3478 m.
Vegetation can be classified into two main categories
based on elevation: lower to middle elevation areas
are covered by sagebrush, riparian species, and grass-
lands, while mid-to-high elevations are dominated
by Douglas fir (P. menziesii), lodgepole pine (P. con-
torta var. latifolia), subalpine fir (A. lasiocarpa), and
mixed shrub and herbaceous species (Homer et al
2015). Fire regime characteristics for Trail Creek are
described in supplemental text (section 1.2)
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2.2. Coupled biophysical-fire spread modeling
framework
Fire regime models must be both spatially resolved
and robust enough to represent fuel conditions and
how fuels are distributed in watersheds, while also
being simple enough that they can be parameterized
over large watersheds. Existing fire models range
in complexity from simple statistical models that
identify how climate and fuels drive wildfire regimes
at large scales (Littell et al 2009) to fully physical
models that can predict the paths of specific fires
(Mell et al 2007, Coen et al 2013, Andrews 2014).
Along this complexity continuum, there are tradeoffs
between a model’s predictive power and its associ-
ated uncertainty. With increased model complexity
comes requirements for more detailed and precise
data inputs, which are highly uncertain when trying
to understand future fuels and wildfire (Keane et al
2013, Benali et al 2017, Prichard et al 2019). Thus,
we need simulation tools that operate at actionable,
intermediate scales (Littell et al 2018). This requires
models that are designed to simulate fuel conditions
and feedbacks with long-term fire regimes (Keane
et al 2011, Kennedy et al 2017) rather thanmore com-
plex models that predict spread and intensity of indi-
vidual fire events.

We ran a factorial modeling experiment using the
RHESSys–WMFire framework to understand the rel-
ative roles of fire suppression vs. climate change on
wildfire activity. The framework couples the water-
shed scale, ecohydrologic model RHESSys (Regional
Hydro-Ecologic Simulation System; Tague and Band
2004) to a stochastic fire spread model (WMFire;
Kennedy et al 2017), and a model for fire effects
(Bart et al 2020). In the coupled framework, RHESSys
provides spatially explicit, aggregate summaries of
fuel structure and loading across a watershed and
WMFire is designed to accommodate this represent-
ation. WMFire produces fire spread maps over ran-
domized ignitions and stochastic spread, providing
probability distributions of fire activity over time.
The fire-effects model then accounts for vertical fire
spread and consumption through different fuel layers
as well as vegetation mortality—this links fire spread
to fire severity. Fire effects ultimately feed back into
RHESSys by updating postfire stand structure that in
turn influences watershed carbon cycling and hydro-
logic processes, including post-fire recovery of fuels
and future fire behavior.

RHESSys has demonstrated skill in simulating
processes that control fuel loading and fuel mois-
ture, including plant productivity, evapotranspira-
tion, and streamflow (examples in the Pacific and
Inland Northwest include: Garcia and Tague 2014,
Garcia et al 2013, Hanan et al 2018, Tague et al 2013).
It has also been used to examine how these dynam-
ics respond to climate change and wildfire (Chen
et al 2020, Hanan et al 2017). RHESSys–WMFire
has demonstrated further skill in replicating spatial

patterns of fire spread (Kennedy and McKenzie
2017), fire regime characteristics (Kennedy et al
2017) and fire effects for low andmixed-high-severity
fire regimes across multiple landcover types (Bart
et al 2020). These include shrublands, open-canopy
forests, and closed canopy forests. The framework
also includes methods for using remote sensing
products such as leaf area index and forest structure
metrics to initialize fire histories (Hanan et al 2018).
RHESSys–WMFire provides a significant advance-
ment in fire modeling because fire regime character-
istics emerge from feedbacks among climate, hydro-
logy, vegetation, fuels, fire spread, and fire effects.
Thus, it is robust to non-stationarity in climate con-
ditions and to positive and negative feedbacks that
drive wildfire activity (Kennedy et al 2017). Details
of the model system (including an exposition of how
we represent fuels and a description of the relevant
scope and model domain) can be found in supple-
mental text (section 2, and also in Kennedy et al 2017,
Kennedy and McKenzie 2017, Bart et al 2020).

2.3. Datasets andmodel inputs
Data layers and inputs for initializing, parameteriz-
ing, calibrating, validating, and running RHESSys–
WMFire are outlined in supplemental table 2. These
include daily, high-resolution (1/24th degree or ~4-
km) gridded meteorological data (from gridMET),
including maximum and minimum temperatures,
relative humidity, radiation, and wind speed, for
the water years 1980 to 2017. Meteorological inputs
for historical scenarios were developed by extend-
ing gridMET records back in time (1900–1978) using
ERA-20C daily reanalysis data (1900–2010; Poli et al
2016) interpolated to gridMET’s horizontal resolu-
tion. Daily data were bias-corrected to the gridMET
fields using quantile matching separately for each
month spanning the period of data overlap (water
years 1980–2010). This ensured compatibility in dis-
tributions between the two records. We further bias-
corrected resultant monthly meteorological records
using data derived from PRISM (Daly et al 1994)
while preserving the intramonthly variability from
ERA-20C.

We developed counterfactual (i.e. control) scen-
arios that exclude the first-order modeled influ-
ence of ACC from the observational record. Fol-
lowing Abatzoglou et al (2020), we approxim-
ated the anthropogenic contribution to local and
monthly climate variables using a pattern scal-
ing approach that accounts for local changes in
individual climate variables per degree change in
global mean temperature. Local scaling functions
were derived from the ensemble median change of
monthly fields from 23 GCMs from the Coupled
Model Inter-comparison Project 5 (CMIP5; Taylor
et al 2012) between two 30 year periods (1850–
1879 and 2070–2099), the latter using the relative
concentration pathway 8.5. We defined the ACC

4
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Figure 2. Cumulative fire severity: (left) cumulative mortality in Johnson Creek with respect to carbon lost from (a) overstory fuel
layers and (b) understory fuel layers; (c) net changes in fine fuel (i.e. litter) carbon following fine fuel consumption and the
deposition of residual dead carbon from understory and overstory layers. (Right) cumulative mortality in Trail Creek with respect
to carbon lost from (d) overstory fuel layers and (e) understory fuel layers; (f) net changes in fine fuel (i.e. litter) carbon following
fine fuel consumption and the deposition of residual dead carbon from understory and overstory layers. We used a bootstrapping
approach to calculate 95% confidence windows for each scenario.

signal for monthly variables by multiplying the
monthly varying pattern scaling function by an
11 year moving average of model-simulated changes
in the global mean temperature anomaly (1850–
1879 baseline climate). Counterfactual meteorolo-
gical data from 1895 to 2017 was derived by remov-
ing the monthly ACC signal from daily observations
(e.g. Williams et al 2015, Abatzoglou and Willi-
ams 2016). We note that this counterfactual scen-
ario does not account for changes in dynamics such
as longer dry spells that are projected to arise in
response to anthropogenic forcing (Polade et al 2014).
RHESSys–WMFire model calibration and valida-
tion approaches are described in supplemental text
(section 3).

2.4. Modeling scenarios
To disentangle the relative and combined influence
climate change and fire suppression (modeled as
complete exclusion) on fire regimes, we implement
historical and counterfactual modeling scenarios in
a factorial design. We examined the extent to which
seven decades of fire exclusion (water years 1911–
1979) and historical anthropogenic climate change
have interacted to influence potential fire regime
characteristics over the last four decades (water years

1980–2017; supplemental figure 2). The goal was not
to replicate the past 40 years of fire activity in the
watersheds, as this has resulted from other exogen-
ous factors such as fire suppression and ignitions.
Rather, we examined the individual and combined
effects of these drivers to estimate the relative poten-
tial fire activity in this time frame. Previous climate-
fire studies have largely focused on area burned (e.g.
Littell et al 2009, Dennison et al 2014, Abatzoglou and
Williams 2016, McKenzie and Littell 2017, Hurteau
et al 2019), which we do here in conjunction with
the probability of fire activity in a given area (to scale
down to unique subsystems within the larger water-
sheds). We also show how climate change and fire
exclusion influence other fire regime characteristics in
the two watersheds, including the mean distribution
of fire sizes, fire frequency, and fire severity.

WMFire is stochastic; Kennedy (2019) recom-
mended at least 157 replicates to distinguish fire
regime characteristics. Using that guideline as a lower
limit, we ran 200 iterations of the coupled model
for each of the four scenarios in a 2 × 2 factorial
design: (a) a counterfactual scenario, (b) a scenario
with ACC, no exclusion, (c) a scenario with exclu-
sion, no ACC, and (d) a scenario with both ACC and
exclusion. Ourmodeling study included three phases:
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2.4.1. Preliminary spin-up
We initialized vegetation and fuel loads using a his-
toric spin-up period of 300 years. For this period, we
looped our reconstructed climate record after remov-
ing the ACC signal; this was a period of pre-human
interference.

2.4.2. Scenario initialization
Following the preliminary spin-up, we ran the model
for 68 years (water years 1911–1979) to initialize each
scenario (with andwithout historical ACC and/or fire
exclusion; supplemental figure 2). For the two fire
exclusion scenarios, we ran simulations without fire
spread from 1911 to 1979. RHESSys without wildfire
is deterministic, so this required a single model run
for the two fire exclusion scenarios. For the scenarios
without exclusion, we included fire spread and effects
and ran the model stochastically (i.e. 200 iterations
for each of the 2 scenarios). This enabled us to capture
potential fire regime variability during the 1911–1979
period and how it influenced fuel loads. The initial
conditions established at the end of the 1979 hydro-
logic year were then used to initialize the four cor-
responding scenarios in our factorial design (supple-
mental figure 2).

2.4.3. Assessment period
Simulations for the assessment period were conduc-
ted using climate fromwater years 1980 through 2017
with fire spread and effects turned on for all scenarios.
In our experimental design we assumed either com-
plete fire exclusion or no exclusion for the initializa-
tion climate period prior to 1980, then no fire exclu-
sion during our 1980-2017 assessment period. As a
result, the effects of prior fire exclusion are isolated in
the simulations. For scenarios with prior fire exclu-
sion, we simulated the assessment period both with
and without ACC using 200 independent simulation
replicates. For scenarios without prior fire exclusion,
we continued the 200 initialization replicates to com-
prise our 200 assessment replicates both with and

without ACC. All scenarios were run with the same
200 individual random seeds to ensure consistency in
the ignition sequences.

2.5. Analysis
Following the three phases of simulation, we estim-
ated fire regime characteristics, including mean fire
size, 95th percentile fire size, the number of fire-starts
(i.e. fires that burned more than 30 patches, where a
patch represents the smallest spatial unit in a water-
shed), and the number of large fires (i.e. fires that
burned > 1000 patches) over space and time in two
study watersheds. For mean fire size, we first calcu-
lated the mean for each replicate and then evaluated
the distribution of means across replicate simulations
for each scenario. For all other fire characteristics, we
identified the values first within each replicate for a
given scenario and then compared the distribution of
those characteristics among scenarios. Our goal was
not to predict actual values for these metrics, but to
compare their relative patterns among scenarios.

To examine fine-scale spatial variation, we also
calculated burn probability (i.e. how likely a fire is to
occur at a specific location in a given simulation year)
for each pixel across the twowatersheds.We estimated
the likelihood of fire (Pburn) as:

Pburn =

n∑
i=1

N∑
j=1

Fij

n×N
(1)

where n is the number of years in the simulation, N
is the number of simulation replicates, and Fij is the
number of times the patch burned in a given year in
a given replicate. This represents the proportion of
times a given patch burned across all simulations.

To summarize the effects of ACC and fire exclu-
sion (EX) over the 38 year assessment period, we cal-
culated cumulative area burned (CAB) across all 200
simulations for each scenario and then calculated the
percent change in burned area due to each driver as:

Percent∆ACC =
(CABACC,EX+CABACC,noEX)− (CABnoACC,EX+CABnoACC,noEX)

(CABnoACC,EX+CABnoACC,noEX)
× 100 (2)

Percent∆EX =
(CABACC,EX+CABnoACC,EX)− (CABACC,noEX+CABnoACC,noEX)

(CABACC,noEX+CABnoACC,noEX)
× 100. (3)

We also examined how the role of climate change
and fire exclusion varied with aridity. We selected soil
moisture (SM) as a proxy for local aridity because it
responds to both top-down and bottom-up drivers
(such as climate and topography, respectively), while

also influencing multiple fire regime drivers, includ-
ing fuel moisture and fuel loads. We calculated mean
fire season (June–September) soil moisture (SMfs)
over the entire 38 year assessment period by selecting
a single simulation (with the same random seed to
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avoid any differences due to stochasticity) for each
scenario (SMfs did not vary significantly among rep-
licate simulations):

SMfs=

Σ
(
SMJune+ SMJuly+ SMAugust+ SMSeptember

)
4× 38

.

(4)

This enabled us to compare spatial differences in
site aridity to burn probability over the 38 year assess-
ment period for each scenario. We also calculated
mean fire season litter C and mean fire season fuel
aridity using the same formula.

3. Results

3.1. Effects of climate change and fire exclusion
on fire regimes
Results from the scenario initialization period are
presented in supplemental text (section 4) and res-
ults from the assessment period are presented below.
In Johnson Creek, ACC increased predicted mean
fire size, 95th percentile fire size, number of fires,
and number of large fires across the watershed
(figure 1(a)). Fire severity was also higher in climate
change scenarios for all fuel layers (figures 2(a), (c),
and (e)). However, fire severity appeared to be self-
limiting—cumulative overstory mortality increased
rapidly with climate change over the first two decades
of simulation and then remained steady for multiple
decades while fuels recovered (figure 2(a)). When
summedover the 38 year assessment period, therewas
a 40% increase in burned area compared to scenarios
that did not include climate change. Fire exclusion
on the other hand increased initial fuel loading (sup-
plemental figure 2(b)), which promoted larger fires
during the first five years of the assessment period
(table 1). However, over the course of the full assess-
ment period, scenarios with prior exclusion experi-
enced a cumulative 15%decrease in burned area com-
pared to the scenarios without exclusion.

In Trail Creek, basin-scale wildfire regimes
responded differently. At the watershed scale, mean
fire size, 95th percentile fire size, and the num-
ber of large fires all decreased in scenarios that
included climate change, while the number of fires
was not affected (figure 1(b)). Fire severity was also
lower in climate change scenarios for all fuel layers
(figures 2(b), (d), and (f)). This occurred because cli-
mate change increased plant competition for water,
which reduced net primary productivity and fine fuel
loads in both the prior exclusion and no prior exclu-
sion scenarios (supplemental figure 2(d)). Reduced
fuel loads resulted in a cumulative 19% decrease in
predicted burned area compared to scenarios without
climate change. Scenarios with prior fire exclusion
experienced smaller fires during the first 5 years
of the assessment period (table 1), corresponding

to lower fine fuel loading (supplemental figure 2),
though at the watershed scale, fire exclusion increased
burned area by 2% over the full assessment period.
We note that the distribution of fire sizes (figure 1)
does not account for area burned outside the water-
shed boundaries. Thus, fire size distributions that
are not truncated to individual watersheds could be
significantly larger.

3.2. Effects of aridity on the climate-fuel
continuum
Soil moisture influences multiple fire-relevant vari-
ables, including both fuel aridity and fuel loads
(figures 3(c)–(f)). We found that these interacted to
predict the probability of wildfire in complex ways
between the two watersheds (figures 4 and 5). For
example, climate change generally increased fuel arid-
ity and therefore burn probability in locations where
mean fire season soil moisture (SMfs) was above 35%.
In locations where SMfs was below 25% on the other
hand, climate change decreased burn probability by
reducing fuel loads (figure 3). At intermediate SMfs

(i.e. between 25% and 35%) burn probability and the
effects of climate change varied in response to local
trade-offs between aridity and productivity, which
yield a compromise between flammability and fuel
load (figures 4 and 5).

In Johnson Creek, when fuel loads were suffi-
ciently high (i.e. above 0.5 g C m−2), burn probab-
ility responded mostly to fuel aridity (figure 4). For
example, in locations where SMfs was above 35%, cli-
mate change increased burn probability regardless of
whether or not exclusion had occurred (figure 3(a))
and the largest increases in burn probability occurred
in locations where fuel load was high and fuel
aridity was low (figures 4(c) and (f)). At a given
SMfs in these wetter areas, climate change increased
fuel aridity (calculated as 1-AET/PET of the under-
story vegetation) by increasing PET relative to AET
(figure 3(c)). Although climate change also reduced
fine fuel loads (figure 3(b)), burn probability still
increased in many locations because the watershed
was not generally fuel-limited and respondedmore to
drying.

Fuel loads played a more prominent role in Trail
Creek, where SMfs and fuel moisture were both gen-
erally lower (figures 3(b), (d), and (f)). Burn prob-
ability increased with fuel load as would be expec-
ted in a fuel-limited system. However, when fuel
load was greater than 0.6 g C m−2, fuel limitation
was somewhat alleviated and burn probability was
more sensitive to fuel aridity (figures 5(a), (b), (d),
and (e)). These effects were most pronounced in
scenarios that did not include historical ACC how-
ever (figures 5(b) and (e)), suggesting that climate
change is increasing fuel-limitation. In arid locations,
where SMfs was below 35%, climate change decreased
net primary productivity, thus reducing fuel loads
(figure 3(d)) and burn probability (figure 3(b)).
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Table 1. Fire size characteristics during the first 5 years of the assessment period for scenarios with and without anthropogenic climate
change (ACC) and with and without historical fire exclusion. In Johnson Creek, historical exclusion scenarios (in italicized bold type)
had larger fires early in the assessment period compared to no exclusion scenarios. Trail Creek had the opposite response, with larger
fires in no-exclusion scenarios.

Watershed Scenario
Mean fire size
(# patches) Fire starts

95th percent-
ile fire size

Johnson Creek No ACC, no exclusion
(counterfactual)

92.7 99 194.3

No ACC, exclusion 118.9 82 351.1
ACC, no exclusion 76.0 105 184.2
ACC, exclusion 100.5 97 221.2

Trail Creek No ACC, no exclusion
(counterfactual)

275.1 48 1110.6

No ACC, exclusion 203.7 40 781.9
ACC, no exclusion 261.8 55 1109.5
ACC, exclusion 226.6 43 663.9

0.000

0.005

0.010

0 25 50 75 100

B
ur

n 
pr

ob
ab

ili
ty

Johnson CreekA.

0.000

0.005

0.010

0 25 50 75 100

B
ur

n 
pr

ob
ab

ili
ty

Trail CreekB.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Fi
ne

 fu
el

 lo
ad

 ( 
kg

 C
m
2 )C.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Fi
ne

 fu
el

 lo
ad

 ( 
kg

 C
m
2 )D.

0.0

0.2

0.4

0.6

0 25 50 75 100

Mean fire season soil moisture (%) 

Fu
el

 a
rid

ity

E.

0.0

0.2

0.4

0.6

0 25 50 75 100

Mean fire season soil moisture (%) 

Fu
el

 a
rid

ity

F.

no anthropogenic climate change, no exclusion no anthropogenic climate change, exclusion
anthropogenic climate change,no exclusion anthropogenic climate change, exclusion

Figure 3. SMfs effects on burn probability, fuel load, and fuel aridity. Top: relationship between SMfs and annual burn probability
(Pburn) calculated over the 1980–2017 assessment period in (a) Johnson Creek (JC) and (b) Trail Creek (TC). Middle:
relationship between SMfs and litter C (i.e. surface fuel loads) in (c) JC and (d) TC. Bottom: relationship between SMfs and fuel
aridity in (e) JC and (f) TC. In TC, more than 99% of patches had SMfs below 50%. Therefore, we masked patches with >50%
SMfs from the analysis. Data were aggregated and smoothed using moving windows of 0.03 and 0.05 for JC and TC, respectively.

Climate change reduced burn probability to the
greatest extent in locationswhere fuel aridity was high
(figures 5(c) and (f)).

The effects of aridity on wildfire drivers are also
confounded with vegetation cover. In themore-mesic
Johnson Creek watershed, the climate change effect
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Figure 4. Effects of fuel aridity and fine fuel load on burn probability for each scenario in Johnson Creek. Scenarios include: (a)
climate change, exclusion, (b) no climate change, exclusion, (d) climate change, no exclusion, and (e) no climate change, no
exclusion. Right: percent changes (±) in burn probability due climate change for (c) no exclusion and (f) exclusion scenarios.
Bottom: percent changes (±) in burn probability due exclusion for (g) no climate change and (h) climate change scenarios. No
data and very small sample sizes (i.e. <600 pixels for JC) are masked in grey.

was most pronounced for pine trees, while trees,
shrubs, and grasses all responded similarly to fire
exclusion (supplemental figures 3(a) and (b)). In the
more arid Trail Creek, burn probability decreased
with climate change to the largest extent for shrubs
and trees (supplemental figures 3(c) and (d)).

4. Discussion

The effects of climate change and prior suppression
varied within and between the two Inland Northw-
est watersheds. Although fuel loads in both water-
sheds were primed for less extreme fires in climate
change scenarios (supplemental figures 2(b) and (d)),
this did not play out in Johnson Creek, which was
climate rather than fuel limited. In Johnson Creek,

scenarios with ACC and no prior exclusion resulted in
the highest mean fire size, the largest 95th percentile
fire size, more fire starts, andmore large fires, whereas
scenarios with no climate change and prior exclusion
resulted in the lowest overall values (figure 1(a)). For
a given exclusion scenario, climate change resulted in
both larger and more frequent fires, and for a given
climate change scenario, exclusion resulted in smaller
and less frequent fires. Fire severity was also higher in
climate change scenarios for all fuel layers.

Historical suppression increased initial fuel load-
ing in Johnson Creek (supplemental figure 2(b)),
leading to larger fires early in the assessment period
(table 1). Yet, over the course of the entire assessment
period, prior exclusion decreased mean wildfire
size, frequency, and burned area (figure 1(a)). This
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Figure 5. Effects of fuel aridity and fine fuel load on burn probability for each scenario in Trail Creek. Scenarios include: (a)
climate change, exclusion, (b) no climate change, exclusion, (d) climate change, no exclusion, and (e) no climate change, no
exclusion. Right: percent changes (±) in burn probability due climate change for (c) no exclusion and (f) exclusion scenarios.
Bottom: percent changes (±) in burn probability due exclusion for (g) no climate change and (h) climate change scenarios. No
data and very small sample sizes (i.e. <50 pixels for TC) are masked in grey.

occurred for a few reasons. In many areas, initial
increases in fire size and severity due to exclusion
contributed to subsequent decreases in fuel loading
and continuity. In other areas, exclusion increased
overstory canopy density, which provided shading
and reduced ET in sub-canopy layers. Similarly, field
observations have shown that solar radiation and
wind are less able to penetrate closed canopies, lead-
ing to lower sub-canopy temperatures and greater
humidity (Agee et al 2000, Meyer et al 2001, White-
head et al 2006). These sub-canopy effects can reduce
surface fuel accumulation (SwetnamandBaisan 1994,
Schoennagel et al 2004) and promote greater mois-
ture retention (Harrington 1982, Estes et al 2012).
Overall, we found that climate change was the

dominant force influencing fire activity in Johnson
Creek and the role of exclusion was relatively minor
(figures 3(a) and 4).

In Trail Creek, findings were more similar to fuel-
limited fire regimes in the southwestern U.S. where
warmer temperatures and drought have been shown
to reduce forest productivity (McDowell et al 2016).
We found that climate change decreased fire size and
severity by increasing aridity and therefore decreas-
ing, productivity and fine fuel loading (figures 1(b),
2(b), and 5). However, the projected effects of climate
change varied spatially. In the northern, more mesic
portion of the watershed, climate change increased
burn probability in a few locations where local arid-
ity was relatively low (figure 3(b)). In the southern,
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more arid portion of the watershed, which contained
a mosaic of mixed pine and sagebrush patches, fire
regime was strongly fuel-limited and climate change
reduced burn probability by increasing fuel limita-
tion.

In many fuel-limited forested systems, extensive
fire suppression has increased forest density, allow-
ing ladder fuels to develop and dead materials to
accumulate, which can in turn increase fire severity
and its spread into the canopy (Hurteau and Brooks
2011). While exclusion increased fire size and fre-
quency in some locations in Trail Creek, it had no
effect in others. For fire exclusion to increase fuel
accumulation and burn probability, there must be
sufficient moisture to enhance growth (Taylor and
Skinner 2003), which was not the case in the more
arid parts of the watershed. Thus, at the whole-
watershed scale, fire suppression only increased
burned area by 2% during the 1980–2017 assess-
ment period. Similarly, in Central Oregonmixed pine
forests, Merschel et al (2014) found that fire exclu-
sion enabled ladder fuels to accumulate to the greatest
extent in relatively moist locations while arid loca-
tionswere relatively resistant to changes in understory
structure.

Our findings illustrate how fire regimes can vary
within and among watersheds in regions that are
thought to be at least moderately climate-limited
(Littell et al 2018). However, it is not enough to
simply identify that relative climate and fuel-limited
conditions can vary at fine scales. Instead, we need to
discern simple, first-order metrics that can indicate
when and where fire regimes may shift from climate
to fuel limited. While previous studies show that cli-
matological dryness can influence the drivers of fire
regimes at large scales (Higuera et al 2015), at smal-
ler scales, vegetation and fuels do not always respond
linearly to these indices. Thus, soil moisture has been
used as a proxy for aridity metrics—particularly live-
fuel moisture—in an increasing number of studies
(Qi et al 2012). In the current study, we found that
temporally averaged soil moisture (SMfs) was a use-
ful proxy for local aridity more generally, because it
integrates top-down and bottom-up drivers such as
climate and topography, respectively.

In Johnson Creek, low aridity (i.e. wetter soils)
promoted a strongly climate-limited fire regime,
similar to other systems in the Northern Rockies
(Schoennagel et al 2004). This climate limitation can
wane with warming, which increases vapor pressure
deficit and often corresponds with lower fire-season
precipitation (Calder et al 2015). We found that cli-
mate change decreased fuel load but increased fuel
aridity in Johnson Creek (figures 3(a) and (e)), which
increased burn probability. These results agree with
recent studies showing a correlation between fuel
aridity and the number of large fires occurring in
forests across the western U.S. (Abatzoglou and Wil-
liams 2016, Westerling 2016).

As with other fire regime characteristics, Trail
Creek responded inversely. Climate change decreased
burn probability (figure 3(b)) by decreasing fuel
loading (figure 3(d))—this response was most pro-
nounced in arid locations where SMfs was low. Find-
ings in Trail Creek demonstrate that the watershed
is highly fuel limited and similar to transitional
(aka hybrid forest-desert) ecoregions, where climate
change is expected to further increase fuel-limitation
and decrease burn probability (McKenzie and Littell
2017).

A unique strength of the RHESSys–WMFire
framework is its ability to capture non-stationarity
in fire regimes, which are an emergent property of
the system. When isolating the effects of each scen-
ario for the most recent decades (i.e. 1999–2017), we
found that the most arid locations in Johnson Creek
shifted to become more fuel-limited. In these loca-
tions, climate change scenarios began to reduce burn
probability while prior exclusion scenarios began to
increase it (supplemental figure S4). This is cor-
roborated by projections for lodgepole pine forests
in the Greater Yellowstone ecosystem, where future
warming is projected to increase aridity and shift fire
regimes from climate-limited to fuel-limited (Wester-
ling et al 2011).

5. Implications for management

Fire regimes vary over space and time across the
globe, and while climate change is a major factor
increasing the frequency of large wildfires (Mouil-
lot et al 2002, Abatzoglou and Williams 2016), there
are still many regions where suppression has played
a dominant role (Calkin et al 2014). Forest dens-
ity reduction is often used in historically fuel-limited
forests where decades of fire exclusion have substan-
tially increased fuel loads (Allen et al 2002, Stephens
et al 2012). However, density reductions can some-
times have unintended consequences, particularly
when vegetation growth is enhanced by treatment,
leading to greater ET and ultimately drier conditions
(Tague et al 2019).We observed this type of drying for
non-excluded (i.e. naturally fire-thinned) scenarios
in Johnson Creek and in some parts of northern Trail
Creek, suggesting that feedbacks among local envir-
onmental conditions, wildfire behavior, and water-
shed recovery should be factored into management
decisions.

In Johnson Creek, we found convincing evidence
that there has already been a clear climate signal above
and beyond the effects of fuels (figure 1(a)), sug-
gesting that with future climate change, the risk of
large wildfires will likely continue to increase. How-
ever, even though climate change is currently the
strongest driver of wildfire size, frequency, and occur-
rence in Johnson Creek, the strength of the climate-
fire relationship varies with position in the watershed
(figure 4) and local aridity (figure 3(a)) and appears
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to be changing as the climate continues to warm
(supplemental figure S4). This is congruent with past
studies showing that topo-edaphic gradients, which
influence aridity and productivity (Abella et al 2015),
can give rise to unique fire regimes at sub-regional
and/or subwatershed scales (Heyerdahl et al 2001,
Bigio et al 2016, Merschel et al 2018). Thus, local-
scale adaptive management is critical as we move into
a warmer, drier future (Schoennagel et al 2017).

To inform management, we found that spatial
estimates of soil aridity (or SMfs) can help identify
where in a watershed fire regime is climate-limited
(e.g. SMfs greater than 35% in the current study) vs.
fuel-limited (e.g. SMfs less than 25%) and where spa-
tial patterns are most vulnerable to change (e.g. inter-
mediate SMfs between 25% and 35%). These results
can inform future research that examines how spe-
cific management practices affect fire regimes in loca-
tions where fuel treatments aremost likely tomitigate
extreme wildfire risk.

6. Conclusions

Understanding the connection between climate, fire
exclusion, and wildfire behavior is critical for man-
aging risk and guiding climate change adaptation.
It also has key implications for public percep-
tion, policy, and decision-making. Although we are
beginning to understand the role of climate at
large (e.g. sub-continental) scales, disentangling and
attributing the role of climate and fuels at finer-
scales has been much more challenging. This chal-
lenge arises because extreme wildfires are rare at
regional and sub-regional scales, resulting in low stat-
istical power and small climate change signals are
often outstripped by larger interannual variability
(Stott et al 2010). Because fuel management often
occurs at local or landscape scales (Jain et al 2012),
spatially explicit fire regime models that can account
for climate effects on hydrology, vegetation, and fuels
are needed to project how different management
units within a watershed are likely to respond to fire
exclusion or fuel treatments under a new climate
paradigm.

We found that local responses to climate change
and fire exclusion vary with aridity at fine scales.
Thus, even in mixed pine regions that have been
defined as climate-limited, fire exclusion and fuel
accumulation can still have local effects. Similarly,
in regions that are defined as fuel-limited, climate
change-driven increases in local aridity may limit fuel
accumulation and its effects on the probability of fire.
These findings highlight the importance of consid-
ering both spatial heterogeneity and non-stationary
climate in policy and management planning. They
also reveal a need to test and reevaluate management
goals in the context of the dominant role that climate
change is playing inmanymanaged landscapes across
the western U.S. and globally.
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Benali A, Sá A C L, Ervilha A R, Trigo R M, Fernandes P M and
Pereira J M C 2017 Fire spread predictions: sweeping
uncertainty under the rug Sci. Total Environ. 592 187–96

Bigio E R, Swetnam TW and Baisan C H 2016 Local-scale and
regional climate controls on historical fire regimes in the San
Juan Mountains, Colorado For. Ecol. Manage. 360 311–22

Calder W J, Parker D, Stopka C J, Jiménez-Moreno G and Shuman
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