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• Climate-related low flow declines may
also be influenced by forest manage-
ment.

• Few studies describe multi-decade ef-
fects of forest management on
streamflow.

• We assembled catchment studies of
long-term effects of harvest (N10 years).

• We define 3 periods of expected low
flow responses to forest regrowth after
harvest.

• Decreased low flow was observed years
after harvest in 16 of 25 catchments.
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Seasonal changes in themagnitude and duration of streamflow can have important implications for aquatic spe-
cies, drinking water supplies, and water quality. In many regions, including the Pacific Northwest (U.S. and
Canada), seasonal low flow is declining, primarily due to a changing climate, but is also influenced by urbaniza-
tion, agriculture, and forestry. We review the responses of seasonal low flow, catchment storage, and tree-water
relations to forest harvest over long timescales and discuss the potential implications of these responses for cur-
rent forest practices and aquatic biota. We identify three distinct periods of expected low flow responses as re-
growth occurs following forest harvest: in the first period an initial increase in low flow can occur as replanted
stands regenerate, in the second period low flow is characterized by mixed and variable responses as forests be-
come established, and in the third period, which follows canopy closure, low flow declines may occur over long
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timescales. Of 25 small catchments with ≥10 years post-harvest data, nine catchments had no change or variable
low flow and 16 catchments experienced reduced low flow years after harvest. The retention of riparian buffers,
limited size of harvest units, and adherence to reforestation requirements have altered the contemporary forest
landscape relative to historical forest practices, but data documenting multi-decadal hydrological responses to
current harvest practices is limited. Our review suggests that the magnitude of low flow responses attenuates
downstream as a broader mosaic of stand ages occurs and multiple hydrological periods are represented. De-
clines were not observed in the seven large catchments reviewed. The consequences of low flow declines for
aquatic biota are not well understood, but where data do exist aquatic biota have not been adversely affected.
We identify priorities for future research that will aid in improving predictions of low flow responses to harvest
as forests regenerate.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the growing concern of the consequences of declining low
seasonal streamflows, there is a need to better understand the role of
managed forest landscapes and the degree to which past and contem-
porary management practices may affect streamflow. The magnitude
andduration of low seasonal streamflow can have direct and indirect ef-
fects on aquatic species, drinking water supplies, recreation and water
quality (Power et al., 2008; Clifton et al., 2018). Climate change is ex-
pected to further reduce seasonal low flows in 1/3 of global rivers
(vanVliet et al., 2013). Low flows in the Pacific Northwest have declined
over recent decades primarily associatedwith changes in climate via de-
clines in both summer precipitation and snowpack, acceleration of
snowmelt, and increased irrigation and drinking water extraction
(Luce and Holden, 2009; Kormos et al., 2016; Holden et al., 2018;
Mote et al., 2018). While climate is considered the dominant control
on the volume and timing of summer discharge (Burt et al., 2015; Li
et al., 2018; Ficklin et al., 2018), land management from urbanization
(Cuo et al., 2009), dam regulation (Asarian and Walker, 2016), agricul-
ture (van Kirk and Naman, 2008) and forestry (Johnson, 1998; Perry
and Jones, 2017; Gronsdahl et al., 2019) are also influential.

Much of our understanding of forest hydrology has been defined by
paired catchment experiments (Bosch and Hewlett, 1982, n N 166) spe-
cifically designed to isolate the effects of forest cover change on hydrol-
ogy by accounting for year to year variation in climate. This robust
approach is feasible only for small catchment scales; paired catchment
studies have ranged from 0.009 to 1272 km2 (mean = 9.8 km2,
median = 0.4 km2; Bosch and Hewlett, 1982; Brown et al., 2005). The
smallest catchment scale is characterized by highly variable hydrologi-
cal, chemical, and biological factors, is more coupled to hillslope and
groundwater processes, and supports greater biodiversity than down-
stream systems (Gomi et al., 2002; Meyer et al., 2007; Rolls et al.,
2019; Coble et al., 2019). However, a disconnect remains between the
scale of small catchment experimental studies and the implications for
downstream responses (i.e., Gomi et al., 2002; Blöschl et al., 2007). Hy-
drological responses are most sensitive at small spatial and temporal
scales and cannot simply be scaled up (Gomi et al., 2002). Within
large catchments (mean= 177,716 km2, median= 8940 km2, range=
1033 to 3,702,481 km2; Li et al., 2017; Zhang et al., 2017), the initial di-
rection of hydrological responses was consistent with that observed in
smaller catchments (i.e., increased runoff after overstory removal), but
the magnitude of the responses attenuated with increasing catchment
size (Li et al., 2017; Zhang et al., 2017). Similarly, climate related
changes in hydrology attenuate as water flows downstream to larger
river networks (Chezik et al., 2017). This recent emphasis on larger
catchments has greatly improved our understanding of scaling in the
near-term after forest harvest (Li et al., 2017; Zhang et al., 2017), but
how scaling and the distribution of successional stands at various forest
ages influences longer-term hydrologic responses to the overstory re-
moval and revegetation remains unclear.

The immediate flow responses (b5–10 years) have been well docu-
mented (Fig. 1) following harvest and typically demonstrate an increase
in low flows(Harr and Krygier, 1972; Keppeler and Ziemer, 1990;
Surfleet and Skaugset, 2013). Typical harvest rotations range from ~40



Fig. 1. Distinct low flow (Jul - Sep) hydrological periods as defined in Table 1 shown using
theoretical responses based on previously published data (Jones and Post, 2004; Perry and
Jones, 2017). The red line depicts a theoretical low flow hydrological response that
remains in hydrological period 2 for the duration of the record. The blue line depicts a
theoretical low flow hydrological response that experiences all three hydrological
periods with gray vertical lines showing the transition among periods. Black vertical
lines indicate approximate rotation age when harvest is expected on private and federal
land. Horizontal dashed line represents no change with responses above indicating
increases and responses below representing decreases.
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to 60 y on private industrial forests and ~ 80 y on federal forests in the
Pacific Northwest.Much less is known about the hydrological responses
as forests regrow (Troendle et al., 2010). Where studies continue
N10–20 years after harvest, variable low flow responses have been ob-
served including: increases (Hicks et al., 1991; Jones and Post, 2004),
no change or return to baseline (Troendle and King, 1985; Jones and
Post, 2004; Zhang and Wei, 2014), and declines (Reid, 2012; Perry and
Jones, 2017; Gronsdahl et al., 2019). Streamflow changes during forest
regeneration have been attributed to reduced evapotranspiration (ET)
rates immediately after harvest or greater transpiration rates of young,
second growth trees relative to old-growth trees as forests regrow
(Moore et al., 2004; Brown et al., 2005). Low seasonal streamflow re-
sponses may also be affected by shifts in tree species composition that
affects ET rates (Hicks et al., 1991; Moore et al., 2004) or shifts in the
timing of snowmelt (Gronsdahl et al., 2019).

Here, we describe low flow responses to past forest practices over
long timescales by reviewing the long-term (N10 years) low flow re-
sponses across 25 catchments from the U.S. and Canada and presenting
detailed results from three case studies (Section 2). In addition to
streamflow, we review several hydrological relationships in the forest
water budget to better understand the potential mechanisms that affect
these low flow responses, and how they may vary with forest stand
characteristics (Section 3). Specifically, within this section we review
subsurface catchment storage (Section 3.1) and evapotranspiration at
ecosystem scales (Section 3.2) as well as tree and stand levels
(Section 3.3). We discuss consistencies and inconsistencies of prior
Table 1
Three distinct hydrological periods for each forest stage during the seasonal low flow period (e
transpiration (ET)) of each period are based on successional metrics for annual responses as de
the growing season corresponds with the seasonal low flow period.

Period Managed forest stage Hydrological response

1 Regeneration of stand (green up period
and establishment)

Substantial low flow enhancement tha

2 Rapid canopy development Small, mixed, variable low flow effects
transitional period but may not stabili

3 Continued growth of overstory canopy Low flow declines

Harvest Harvest of overstory canopy in uplands Substantial low flow enhancement
treatments in low flow studies with current forest practices to better
understand their potential effects (Section 4.1). Additionally, given the
importance of the summer flow regime on biota, we discuss potential
effects of low flow on in-stream biota (Section 4.2). We conclude by
identifying next steps and remaining questions (Section 5).

2. Low flow hydrological responses over successional time

2.1. Defining periods of hydrological response

Low flow is often used interchangeably with the term baseflow.
However, baseflow conditions are defined as streamflow primarily
sourced from deep and shallow subsurface storage (Ward and
Robinson, 1990) and can occur in between precipitation events at any
time of the year. In the Pacific Northwest, low flow is defined as an an-
nual phenomenon that occurs during the prolonged dry period, charac-
teristic of the Mediterranean climate experienced in the region (WMO,
1974; Smakhtin, 2001). Elsewhere, the timing of the low flow season
varies with local climatic conditions, and can occur inwinter or summer
(e.g., Cheng, 1989).

We define three distinct time periods following forest harvest to de-
pict the expected low-flow hydrological responses as forest regrowth
occurs (Table 1; Fig. 1; Brown et al., 2005; Du et al., 2016). Hydrological
period 1 refers to the immediate response to forest harvest and is often a
period of substantial baseflow enhancement as canopy leaf area index
(LAI), ET, and canopy interception are all reduced following the removal
of overstory vegetation. On intensively managed forests, tree planting
and herbicide application occurs during this hydrological period to pro-
mote forest regrowth. These practices have replaced large broadcast
burns and seeding that typically occurred decades ago in the Pacific
Northwest. As planted trees, seeds, or naturally regenerating trees
grow, and LAI increases, transpiration, canopy interception, and losses
by evaporation and sublimation increase. These changes contribute to
hydrological period 2, which can include small, mixed, and variable
low flow responses as regenerating stands undergo rapid canopy devel-
opment (Table 1). Continued growth creates dense overstory vegeta-
tion as canopy LAI reaches a maximum and ET is elevated, which can
coincide with hydrological period 3. This period is defined by declines
in low flow (Table 1). Pre-commercial thinning removes small trees,
not yet of commercial size, to reduce stand density and improve growth
of remaining trees, and may occur during hydrological period 2 or 3.
Eventually subsequent harvest commonly occurs in stands approxi-
mately 40 to 60 years old on private industrial forests and up to
80 years old on federal land (Fig. 1). Harvest may include clearcuts on
intensively managed forests or commercial thinning of large merchant-
able timber on federal land.

2.2. Literature review methods

To understand the occurrence of these three hydrological periodswe
performed a literature review of long-term hydrological responses to
forest harvest. Long-term hydrological responses were not evaluated
in earlier low flow reviews due to the limited duration of data at the
.g., Jul-Sep) as depicted in Fig. 1. Canopy characteristics (leaf area index (LAI) and evapo-
scribed by Brown et al. (2005) and Du et al. (2016) and may be particularly relevant when

Canopy characteristics

t declines as the period progresses canopy LAI minimal, low ET, reduced
canopy interception

, initial return to baseline occurs within this
ze

canopy LAI increases, increasing ET

canopy LAI reaches a maximum, high
ET
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time (≤8 years post-harvest; Austin, 1999). To extend their findings, we
searched for updates on low flow responses for the catchments where
low flow responses were previously described (Austin, 1999; Pike and
Scherer, 2003) as well as searching for keywords “forest harvest” and
“low flow” in literature using search engines Google Scholar and Web
of Science. Studies with aminimum of 10 years of post-harvest seasonal
low flow responses for the U.S. and Canada were retained (Table 2).

Calculations of seasonal low flow response to harvest use changes in
the reference catchment to control for year to year climatic fluctuations.
Therefore, any synthesis will be limited by themathematical reality that
relative changes among catchments cannot be calculated as flow in the
reference catchment approaches zero (the denominator). When calcu-
lations are possible, large relative changes may represent a small abso-
lute change (Austin, 1999; Pike and Scherer, 2003; Jones and Post,
2004). To address this challenge, multiple metrics have been developed
to quantify low flow including: the number of low flow days each year
(the number of days that daily dischargewas less than a defined thresh-
old) (Harr, 1980; Bultot et al., 1990; Keppeler and Ziemer, 1990;
Stednick, 2008; Perry and Jones, 2017; Gronsdahl et al., 2019), water
yield during a single, typically dry month or multiple dry months
(Hicks et al., 1991), relative and/or absolute differences in daily mini-
mum or mean values in relation to a reference or pre-treatment condi-
tions (Harris, 1977; Jones and Post, 2004; Perry and Jones, 2017), and
metrics derived from flow duration curves (e.g. Q95 or baseflow index
(baseflow/annual flow); Smakhtin, 2001). Without consistent metrics
or enough information in the original studies to calculate a similar met-
ric, we cannot summarize low flow responses across studies. Rather, we
focus on categorizing the type of hydrological response and its duration.

In addition to evaluating studies of small catchments, we also
reviewed studies from larger catchments that rely on the use of ad-
vanced statistical methods in combination with graphical methods
(flow duration curves) to evaluate the role of forest harvest, along
with other disturbances (Zhang and Wei, 2012; Buttle and Metcalfe,
2000; Zhang et al., 2017).We extracted a list of large catchments within
a recent review of annual hydrological response (Zhang et al., 2017) and
then searched for catchments where long-term low flow responses to
harvest were reported.
2.3. Results: long-term low flow hydrological responses

We identified 25 small harvested catchments ranging in size from
0.10 to 33.9 km2, with 17 to 100% of overstory vegetation removed
(Table 2). Stand age of reference catchments was older than 80 years
in fourteen catchments, younger than 80 years in nine catchments,
and was not reported in two catchments (Table 2). Riparian buffers
were retained in only five catchments. Hydrological period 1 resulted
in one or more years of increased low flow in 21 of the 25 small catch-
ments reviewed. The duration of increased low flow ranged from 0 to
40 years, with amean andmedian of 8.8 years and 8 years, respectively.

The duration of hydrological period 2, ranged from zero (H.J. An-
drews; Perry and Jones, 2017) to 42 years (Harder et al., 2015). In 6 of
25 catchments evaluated, no detectable change occurred through the
end of the record, with the longest record extending to 42 years post-
harvest (Harder et al., 2015). Three of 25 catchments had variable re-
sponses through the end of the reporting period extending up to
35 years post-harvest (Keppeler, 1998; Jones and Post, 2004). Collec-
tively, these 9 studies represent a range in catchment size from 0.16 to
33.9 km2 with harvest area comprising 17 to 100% of the catchment
(Table 2).

Low flowdeclines relative to the control catchment definehydrolog-
ical period 3. These declines were observed in 16 harvested catchments
of 25 evaluated (64%) and represent a relatively short duration (3 year
duration occurring 43 to 46 y post-harvest, Coyote Creek; Perry and
Jones, 2017) to a much longer duration (20 years occurring 27 to
47 years post-harvest, H.J. Andrews, Hicks et al., 1991; Perry and
Jones, 2017). This response was observed in 0.10 to 4.5 km2 catchments
with 25 to 100% of the catchment harvested (Table 2).

We also identified and evaluated seven large-scale catchment stud-
ies from the U.S. and Canada that specifically evaluated the role of forest
harvest on low flows. These catchments ranged in size from 401 to
3500 km2 with 4.9 to 62.2% of the area affected by forest disturbance
(Supplemental Table 1). In addition to harvest, the forest disturbances
included harvesting, fire, andmountain pine beetle outbreaks, with dis-
turbance areas often equated to equivalent cumulative clearcut area. Pe-
riods of record extended from six (Buttle and Metcalfe, 2000) to
N50 years (Zhang and Wei, 2012; Zhang and Wei, 2014; Li et al.,
2018). Three of these seven catchments reported an increase in low
flow responses over time (6 y to 59 y records) while the other four re-
ported no change in low flows (6 y to 50 y records). However, declines
in seasonal low flow, which are characteristic of hydrological period 3,
were not observed in any of these.

2.4. Case studies

2.4.1. Case study I: Caspar Creek, California, USA
Two Caspar Creek second-cycle harvest experiments enhanced sum-

mer low flows beginning the first year after the onset of logging
(~80 year old stands), but themagnitude and duration of flow increases
differed due to silvicultural methods. Low flow declines were observed
15 to 30 years after harvest in the South Fork catchment, while in the
North Fork catchment increases remained 12 years after harvest. The
Caspar Creek Experimental Watersheds are located along California's
north coast (39.35o N, 123.73oW; Fig. 2) approximately 7 km from the
ocean and occupy the headwaters of this coastal catchment. Elevations
range from 40 to 322 m. The terrain is characterized by moderately
steep hillslopes and steep inner gorges underlain by sandstones and
shales of the Coastal belt of the Franciscan Complex. Mean annual pre-
cipitation (1962–2017) is 1200 mm, primarily received as rainfall,
with approximately half becoming runoff. Mean minimum flows, from
July through September, are 2.2 mm per month.

Rainfall and runoff gauging was initiated in 1962, six decades after
the original coast redwood and Douglas-fir forest had been clear cut
and burned. The 4.73 km2 North Fork initially served as a reference
catchment while second-cycle selection harvest occurred on the
4.24 km2 South Fork from 1967 to 1973. Partial clearcutting occurred
on sub-catchments in the North Fork from 1985 to 1992. Sub-
catchments were either retained as controls or clearcut with 15 to
46 m wide riparian buffers retained along streams with aquatic organ-
isms (Reid, 2012). Subsequent broadcast burning and pre-commercial
thinning in the clearcut units as recently as 2001, reduced basal area
by ~75% and enhanced low flow (Keppeler et al., 2009).

On the South Fork where selection harvest and tractor logging oc-
curred, increased low flows persisted 5 years after harvest was com-
pleted (hydrological period 1) and were largest during and after
drought years (Keppeler and Ziemer, 1990). During this period, days
with flows b0.115 mm day−1 occurred 40% less frequently. The maxi-
mum proportional increase in summer flow volumes (55%,
0.079 mm day−1) was observed 5 years post-harvest after the severe
drought of 1976 to 1977. For the next decade (hydrological period 2),
effects were mixed. Reid (2012) used an antecedent precipitation
model to assess long-term low flow trends and found that August and
September daily flows became consistently lower than expected 15 to
30 years after harvest with the largest decrease (48% of expected flow,
0.016 mm day−1) occurring 21 years after harvest. Late-summer flows
then returned to pre-treatment levels through post-harvest year 36
(Reid, 2012).

Partial clearcutting on the North Fork resulted in larger, more
persistent low flow enhancements despite similar wet-season re-
sponses (Keppeler, 1998). Analysis of minimum mean daily flows
demonstrated an increase in minimum flow after only 12% of the
catchment was clearcut. The maximum increase in the North Fork



Table 2
Approximate duration of response (years post-harvest) for each low flow hydrological period. Catchments with at least 10 years of post-harvest data from the U.S. and Canada were in-
cluded. Catchment responses are grouped by their long-term response: 1) variable response in hydrologic period 2, 2) no change in hydrological period 2, or 3) decrease in hydrologic
period 3. Note different low flow metrics, different statistical analyses, and grouping of post-harvest years affect the duration of response for each study. The magnitude of response is
not provided here because many different low flow metrics were used across the studies. *indicates additional harvesting occurred within the reported post-harvest record.

Catchment
ID

Size
(km2)

Forest
cover
removed
(%)

Riparian buffer
(Y/N)

Stand age (y) at
time of treatment

Hydrologic Period 1
Years of increase

Hydrologic
Period 2
Years of no change or
variable response

Hydrologic
Period 3
Years of decrease

Citation

Trt. Ref.

Variable hydrologic period 2
NC COW7 0.59 100 N (not described) 50 75 1 to 5 6 to 20 (variable) Jones and

Post
(2004)

NH HBR2 0.16 100 N 27 64 1 to 10 11 to 35 (variable) Jones and
Post
(2004)

CA Caspar*
NF

4.73 12
(1985–6)
38
(1989–92)

Y; 15 to 46 m 50%
retention (N10 ha)

80 – 1 to 12 TBD TBD Keppeler
(1998)

No change in hydrologic period 2
NC
COW37

0.44 100 N (not described) 35 75 1 to 5 6 to 35 (no change) Jones and
Post
(2004)

OR COY2 0.68 30 N (not described) 150–350 150–350 1 to 9 - unable to determine
from information available
(large data gaps)

30 to 43 Perry and
Jones
(2017)

BC Camp
Creek

33.9 27 not described mature
(N60)

40–60 1 to 6

1 to 18 (no change)

Cheng
(1989)

Moore and
Scott,
2005

NH HBR4 100 Y; 10 m 32 64 1 to 15 16 to 35 (no change) Jones and
Post
(2004)

AB Cabin
Creek

2.12 21 n/a; cut blocks away from
stream

not
described

1 to 8

1 to 33 year record
(no sig. change
points or trends)

Swanson
et al.,
1986
Harder
et al.,
2015

AB Twin
Creek

2.80 17 n/a honeycomb
treatment

not
described

1 to 42 (no sig.
change points or
trends)

Harder
et al.,
2015

Decrease in hydrologic period 3
OR AND1 0.96 100 N 450 500 1 to 8

1 to 5

9 to 26

6 to 30

27 to 47

31 to 35

Perry and
Jones
(2017)
Jones and
Post
(2004)

1 to 3 4 to 5 6 to 22 Hicks
et al.
(1991)

OR AND6 0.13 100 N 125 150 1 to 20

1 to 25 26 to 30 years

21 to 38

Not observed

Perry and
Jones
(2017)
Jones and
Post
(2004)

OR AND7* 0.15 60 (1974);
40 (1984)

N 125 150 1 to 5 6 to 17 (2nd harvest
in year 9)

18 to 38 (thinning in
year 26) since initial
treatment)

Perry and
Jones
(2017)

OR AND10 0.10 100 N 125 500 1 to 12

1 to 10

5 to 21 22 to 38 Perry and
Jones
(2017)
Jones and
Post
(2004)

OR AND3 1.01 33 N (not described):
unclear - whether patch
cut stream-adjacent

450 500 1 to 14 15 to 33 34 to 50 Perry and
Jones
(2017)

1 to 15 16 to 25 Not observed Hicks

(continued on next page)
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Table 2 (continued)

Catchment
ID

Size
(km2)

Forest
cover
removed
(%)

Riparian buffer
(Y/N)

Stand age (y) at
time of treatment

Hydrologic Period 1
Years of increase

Hydrologic
Period 2
Years of no change or
variable response

Hydrologic
Period 3
Years of decrease

Citation

Trt. Ref.

et al.
(1991)

OR COY1 0.69 50 Not described 150–350 150–350 1 to 9 30 to 43
[no record from 10 to
29]

Perry and
Jones
(2017)

OR COY3 0.49 100 N 120 145 1 to 9

1 to 10

[no record from 10 to
29]

30 to 42 Perry and
Jones
(2017)

Jones and
Post
(2004)

OR Needle
Branch

0.71 100 N 110 110 [not evaluated] 41 to 44 Segura
et al.,
2020

1 to 5 Harr and
Krygier,
1972

OR Deer
Creek

3.04 25 Y; 15 to 30 m 110 110 [not evaluated] 41 to 52 Segura
et al.,
2020

2, 5 Harr and
Krygier,
1972

CA Caspar
SF

4.24 5 (1967);
67
(1971–73)

N ~85 ~65 1 to 7 8 to 14 15 to 30 Reid
(2012)
Ziemer
(1981)

NC
COW13

0.16 100 N 12 75 – 1 to 20 21 to 25 Jones and
Post
(2004)

WV FER1 0.30 100 N 50 95 1 to 40 Not observed 41 to 45 Jones and
Post
(2004)

WV FER7 0.29 100 N 56 95 1 to 5 6 to 25 26 to 30 Jones and
Post
(2004)

NH HBR5 0.22 100 N 45 64 1 to 10 11 to 15 16 to 20 Jones and
Post
(2004)

BC Dennis 3.73 52 Y; 5 to 10 m on streams
N1.5 m bankfull width

153 130 1 to 8 (no change) 9 to 17 Gronsdahl
et al.
(2019)

BC 241Cr 4.50 47 Y; 5 to 10 m on streams
N1.5 m bankfull width

145 130 1 to 10 (ongoing
logging for 15y prior)

Gronsdahl
et al.
(2019)
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(287%, 0.04 mm day−1) occurred 7 years after the onset of logging,
which was also the year logging was completed. Comparatively, the
7-year mean increase for the South Fork was 28% (0.02 mm day−1),
which was much lower than the 148% (0.04 mm day−1) increase
for the North Fork during the initial 12-year period of stand
regeneration.

In both harvest experiments, initial low flow increases after logging
were attributed to reduced transpiration rates, while wet-season dis-
charge increases were attributed primarily to reduced interception.
We hypothesize that residual trees in the selectively-logged South
Fork stands used local surplus soil moisture more readily than on
North Fork sub-catchments where trees in uncut patches were not
able to access elevated soil moisture in the clearcut areas, thusmagnify-
ing and prolonging the streamflow enhancements on the North Fork. A
recent comparison of precipitation and streamflow anomalies suggests
that timber harvest may have initially ameliorated drought effects in
1976–1977, but later regeneration intensified the magnitude of
streamflow decreases during the 2014 drought (Keppeler and
Wagenbrenner, 2018). Concurrently with this most recent drought,
both North Fork and South Fork exhibited summer flow decreases
relative to rainfall. Analyses are ongoing to determinehow this apparent
trend may be affected by forest conditions and climatic trends.

2.4.2. Case study II: H.J. Andrews and South Umpqua Experimental Forests,
Oregon, USA

Long-term streamflow records extending 38 to 50 years post-
harvest from paired catchment experiments in the Cascade Range of Or-
egon demonstrate persistent summer lowflowdecreases resulting from
the replacement of native mature and old-growth forest (reference
catchments) with regenerating Douglas-fir plantations (treated catch-
ments) (Perry and Jones, 2017). Relative differences in low streamflow
were calculated for eight pairs of treated and reference catchments. Five
paired treatments were located in theH.J. Andrews Experimental Forest
(122.25°W, 44.2°N; Fig. 2) in the Willamette National Forest; these
catchment pairs ranged from 0.10 to 0.96 km2 in size, from 460 to
1190 m in elevation, and prior to treatments, all catchments contained
130 to 500 year old post-fire Douglas-fir forests. An additional three
treatments were located in the South Umpqua Experimental Forest
(Coyote Creek), (122.70°W, 43.22°N) in the Umpqua National Forest;
these catchment pairs ranged from 0.49 to 0.69 km2 in size, from 730



Fig. 2. Study site maps for the three case study catchments: A. Caspar Creek, California; B.
H.J. Andrews and South Umpqua Experimental Forests, Oregon; C. Mica Creek
Experimental Watershed, Idaho. Gray shading indicates locations of harvest. Year of
harvest is identified in panel A. In panel B Coyote Creek 1 was a treated watershed (50%
thinning). Shading in panel C represents modeled harvest units for a 40 year rotation for
a privately managed working forest. Streams are shown in blue.
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to 1065 m in elevation, and prior to treatments, all catchments
contained 200- to 300 year old post-fire mixed conifer forests. Roads
were also installed for six of the eight treatments. Four treated catch-
ments were entirely (100%) clearcut in a single entry with two of
these subsequently broadcast burned. Two treated catchments included
patch cuts that totaled 25 to 30% of the catchment area, with one also
broadcast burned. A single treated catchment received 50% overstory
selective cut in a single entry. One treated catchment included multiple
entries with the entire catchment clearcut during the second entry,
10 years after the first entry. Broadcast burning followed the first
entry, and 12% of the basal area was more recently thinned. No other
catchments received additional management activities in the post-
harvest period (i.e., pre-commercial thinning). No riparian buffers
were retained in clearcut treatments, and following harvest all treated
catchments were planted with Douglas-fir seed. As of the most recent
measurement period (2007 to 2010), the forests in the reference catch-
ments had basal area of 66 to 89 m2 ha−1, and the regenerating post-
harvest Douglas-fir stands were 34 to 40 years old with basal areas of
27 to 35m2 ha−1. Mean annual precipitation is 2300 mm at the H.J. An-
drews and 1020mmat the SouthUmpquaNational Forest,with thema-
jority (N75%) of precipitation received from November to April. The H.J.
Andrews EF catchments have a seasonal snowpack above an elevation
of 800 m, occurring in six of its eight catchments, but snow is rare in
the South Umpqua catchments.

In the first 10 years after 150 to 500 year old forests were clearcut
with no riparian buffers, large streamflow increases were recorded in
the summer low flow period for the first 10 years after harvest (hydro-
logical period 1). Summer streamflow decreases (hydrological period
3) appeared when plantation forests reached 15 years of age, and by
25 years of age, mean daily flow in summer (June through September)
in catchments with plantation forests had declined by up to 50%
(~0.06 mm d−1 Coyote Creek; ~0.32 mm d−1 HJ Andrews) relative to
the reference catchments with 150- to 500-year-old forests. Only one
catchment, whichwas 30% patch-cut, did not have long-term decreases
in post-harvest years 30 to 43 (COY2, Table 2). The duration of summer
streamflow decreases (defined as the difference in the number of days
below the first percentile in catchments with plantations vs. reference
catchments) was greater during dry compared to wet summers, at
low compared to high elevation, and at the more southerly, drier
South Umpqua compared to the H.J. Andrews (Perry and Jones, 2017).
The 50% thinning treatment implemented in Coyote Creek WS1 de-
creased by 25% (~0.028 mm d−1). Pre-commercial thinning (12% basal
area removal) of the 15 to 25 year old plantation in Andrews WS7 did
not affect summer streamflow declines.

2.4.3. Case study III. Mica Creek Experimental Watersheds, Idaho, USA
Eighty years of simulated low flow changes for an interior Pacific

Northwest catchment indicate that the long-term trends and low-flow
declines observed at the small catchment scale and in catchments
with limited successive disturbances may not manifest at larger scales
and instead may exhibit low flow increases over the long term. These
responses would occur in landscapes comprised of a mosaic of stand
ages, and actual changes in low flows would be primarily a function of
the proportion of a given catchment in different age classes for fixed cli-
mate conditions. Simulated low flow changes reveal persistent low flow
declines when the entire second-growth catchment is harvested at
once. Conversely, physically-based simulations suggest persistent low
flow increases for 40- and 80-year rotation harvests following second-
growth harvest (Fig. 3). Low flow variability was greatest at smaller
scales and attenuated at larger scales with a greater diversity of stand
ages. Relative low flow differences were calculated for four nested
catchments at the Mica Creek Experimental Watershed (MCEW) in
northern Idaho (116.25°W, 47.17°N; Fig. 2). Catchments range from
1.39 to 26.82 km2 in size, from 1008 to 1612 m in elevation (Hubbart
et al., 2007), and prior to simulated treatments all catchments were as-
sumed to contain ~70 year old second growth mixed conifer forests



Fig. 3.DHSVM results for fourMica Creek catchments andmodeled hydrological recovery for four catchment scales from a privatelymanagedworking forest including: 1 (small, 1.4 km2),
4 (medium, 6 km2), 7 (large, 12 km2), and virtual 8 (WS6+WS7, largest, 64 km2), based on a 40 year rotation, and an 80 year rotation (for virtual 8). The y axis represents the change in
August to September discharge (Q).
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composed primarily of grand fir, Douglas-fir, western red cedar, and
western larch (Du et al., 2014). The catchments are underlain by meta-
morphic bedrock with silt loam soils. Mean annual precipitation is ap-
proximately 1400 mm with roughly 2/3 occurring as snow between
October andMarch. Mean pre-harvest runoff is ~550 mmwith seasonal
low flows of ~0.2 mm day −1 typically occurring from August to
September.

We used the Distributed Hydrology Soil Vegetation Model (DHSVM,
Wigmosta et al., 1994) and Physiological Principles for Predicting
Growth (3-PG, Landsberg and Waring, 1997; Wei et al., 2014) forest
growth model to simulate changes in the low flow regime. The model
was parameterized with extensivemeasurements collected throughout
the catchment including streamflowat sevenpaired and nested gauging
stations, snowpack dynamics, throughfall, soil water content, and sap
flux (Du et al., 2014). The model was subsequently refined for this
work using a quasi-Monte Carlo, stepwise optimization procedure to
maximize water balance, model efficiency, and low flow simulations
under a variety of both climate and landcover (pre- and post-harvest)
conditions. To assess the potential effects of harvest and subsequent re-
generation across forest age classes that commonly occur in industrial
forestlands, one harvest unit was converted from mature forest to
clearcut conditions each year. Fish-bearing streams lower in the net-
work had simulated ~22.9 m riparian buffers, but non fish-bearing
reaches higher in the catchment were unbuffered, reflecting state regu-
lations and typicalmanagement practices in the region. The characteris-
tics of regrowing vegetation were estimated based on previous 3-PG
simulations (Du et al., 2016). The size of each harvest unit was similar
to current regional harvest rates, representing approximately 50% of
the 1.39 km2 and 2.5% of the 26.82 km2 catchment (Fig. 2). This results
in two 40-year harvest rotations over the 80-year simulation, following
initial harvest of second growth (80 year-old) timber. For comparison,
100% harvest (without re-entry) and an 80-year rotationwere also sim-
ulated for the entire catchment.

When the entire catchment was harvested at once, low flows (Au-
gust–September) increased by 0.244 mm day−1 immediately after har-
vest, returned to baseline after ~20 years, declined by 0.025 mm day−1

after ~35 years, and gradually returned to the baseline by ~75 years
(Fig. 3). This low flow response was similar to trends observed in re-
gional studies (e.g. Hicks et al., 1991; Perry and Jones, 2017;
Gronsdahl et al., 2019; Fig. 1) and for annual hydrological yield and ET
trends (Naranjo et al., 2011). Following repeated entries and harvest
of smaller units (~0.7 km 2), the smallest catchment (C1) had the largest
and most variable low flow changes ranging from (b0.01 to
0.10 mm day−1), with discrete increases approximately every
20 years resulting from harvests in the two main units that comprise
the catchment. As the catchment size increased from 1.4 km2 (C1) to
26.8 km2 (C8) low flow increases became progressively smaller and
more stable. Changes ranged from 0.01 to 0.04 mm day−1 at C8,
where less of the catchmentwas recently harvested and a greater diver-
sity of canopy ages occurred. An 80-year rotation, with smaller harvest
units, exhibited the smallest low flow increase because less of the catch-
ment was in recently harvested conditions.

3. Forest-water relationships

3.1. Accessible subsurface water storage for trees

In the Mediterranean climate of the Pacific Northwest, the growing
season corresponds with the seasonally dry low flow period, when
evaporative demand and solar irradiance are elevated. Elevated transpi-
ration rates typically occur during this season, although these may not
be sustained for its entire duration due to insufficient water supply
(Irvine et al., 2004; Wharton et al., 2009). As a result, shallow and
deep subsurface storage ultimately supplies water for both transpira-
tion and streamflow during this low flow period (Rempe and Dietrich,
2018). Understanding how vegetation interacts with subsurface water
sources, including allocation from deep vs. shallow subsurface storage
(Brooks et al., 2010) and whether trees in proximity to the stream de-
termines access to surface or subsurface water remains poorly under-
stood (Bond et al., 2002; Barnard et al., 2010; Wondzell et al., 2007,
2010).

The influences of geology and topography on the movement of
water in the subsurface have been studied extensively (Freeze and
Witherspoon, 1967; Winter, 2001; Gleeson and Manning, 2008;
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Rempe and Dietrich, 2014), but how tree water uptake affects surface
flow paths and subsurface water storage remain open questions
(Brooks et al., 2015; Brantley et al., 2017). Forest ecological and hydro-
logical research over the last two decades has demonstrated that terrain
and topographic complexity significantly influence plant-available
water, groundwater recharge, and streamflow generation, with both
communities calling for research focused on the importance of spatially
and temporally variable water stores (Brooks et al., 2015; Fan, 2015).
Complex topography drives the hydrologic andmicroclimatic dynamics
of catchments and consequently, the spatial and temporal variation of
forest ET and growth. Because surface topography is not always repre-
sentative of subsurface conditions, it has been difficult to identifymech-
anisms that determine the spatial distribution of forest ET and its
temporal feedbacks with groundwater storage and fluxes. The National
Research Council identified understanding the interconnections be-
tween ET and groundwater fluxes to be one of the most important
and emerging challenges in the past decade (NRC, 2012).

Tree physiology and ecohydrology observations suggest that forest
ET and growth at the hillslope scale aremore strongly related to subsur-
face storage than to local precipitation supply (McDonnell, 2003;
Tromp-van Meerveld and McDonnell, 2006; Thompson et al., 2011;
Pelletier et al., 2013). Dominant controls on subsurface moisture pat-
terns often show substantial variability (Western and Blöschl, 1999;
Penna et al., 2009) with spatial patterns of soil moisture controlled by
lateral subsurface flow patterns that follow subsurface geologic features
(Kampf et al., 2015). Recentwork has highlighted the importance of ter-
rain and deeper subsurface geophysical structure in controlling plant
water availability (Swetnam et al., 2017; Hu et al., 2010). A growing
number of studies have shown that land-atmosphere feedbacks depend
on regional groundwater storage (Anyah et al., 2008; Kollet and
Maxwell, 2008; Ferguson and Maxwell, 2010). For example, Maxwell
and Kollet (2008) found that the depth of groundwater determines
the relative sensitivity of areas to changes in temperature and precipita-
tion. Similarly, another study (Tromp-van Meerveld and McDonnell,
2006) indicates that hillslope-scale transpiration and tree basal area
are more strongly related to subsurface storage than surface water sup-
ply. Consequently, it is expected that subsurface storage dictated by ter-
rain and subsurface complexity will contribute to forest resilience.

3.2. Evapotranspiration and interception by stand age in the Pacific
Northwest

ET is the sumof evaporation fromcanopy, litter, and soil surfaces and
transpiration from vegetation. Canopy interception of precipitation can
be an important evaporative loss in the forest hydrological cycle, ac-
counting for 10–50% of seasonal or annual precipitation (Carlyle-
Moses and Gash, 2011; Link et al., 2004; Pypker et al., 2005; Roth
et al., 2007). While precipitation events are limited during the low
flow season, canopy interception of rain and snow from other times of
the year can have important implications for catchment water storage,
which sustains low flows. Across studies in the Pacific Northwest can-
opy interception loss ranged from 11 to 21% in young-, and 22 to 36%
in old-growth Douglas-fir and 120 year-old coast redwood stands, re-
spectively (Supplemental Table 2). Canopy interception in ponderosa
pine stands was ~10% of annual precipitation (Rowe and Hendrix,
1951; Williams et al., 2001). Differences in canopy structure
(i.e., epiphytes) and species composition can enhancewater storage ca-
pacity in old-growth stands. However, despite this greater storage ca-
pacity, canopy interception loss between old-growth (450 years) and
young (25 years) stands can also be similar because aerodynamic
roughness can mitigate evaporative losses from canopy surfaces
(Pypker et al., 2005).

Comparison of low flow responses across studies must also consider
how ET varies with stand age because 1) transpiration rates of young
versus old trees have been linked with low flow declines (Perry and
Jones, 2017), 2) calculations of low flow responses have relied on
reference catchments with different stand ages (i.e., old-growth or ma-
ture forest; Table 2), and 3) amosaic of stand age occurs at larger catch-
ment scales (Fig. 4). Within young to mature stands (b 60 years)
ecosystem-scale ET rates measured using eddy covariance methods,
typically increase with stand age in the Pacific Northwest (Jassal et al.,
2009; Kwon et al., 2018; Table 3). Annual ET rates of Douglas-fir were
similar between mature (58 years) and intermediate (19 years) aged
stands but were lower in the youngest stand (7 years) in British Colum-
bia (Jassal et al., 2009). Although stomatal dynamics limited transpira-
tion in all three stands, the younger stands showed higher interannual
variability in ET and sensitivity to soil water deficits as compared to
the intermediate-age stand. In Oregon, ponderosa pine ET increased
from 350 to 550 mm y−1 with stand age increasing from ~20 to
~60 years (Kwon et al., 2018). The effect of drought stress on ET was
more pronounced in young pine than in mature pine due to a lower
baseline soil water content and a shallower rooting depth.

Growing season and annual ecosystem-scale ET rates have yielded
mixed results across young to old-growth stands revealing increases
(Wharton et al., 2009), decreases (Chen et al., 2002, 2004), and no
change (Irvine et al., 2002) with age (Table 3). Irvine et al. (2004) re-
ported similar magnitude and pattern of ET between young
(~25 years) and old (~250 years) ponderosa pine stands in Oregon.
However, substantial differences were observed in tree transpiration
(per leaf area), showing, at maximum, five times higher transpiration
rates in the young ponderosa pine during a wetter season and three
times lower during a drier season. These high rates of water use by
the young stand can risk potential hydraulic dysfunction through cavi-
tation and embolism formation in the xylem (Tyree and Sperry, 1988).
A decline of Douglas-fir ET rates from young (0–15 years) to old-
growth (450–500 years)was observed inWashington during the grow-
ing season (May to October; Wharton et al., 2009). Higher ET in the
young stand was attributed to an inability to induce stomatal closure
and conserve water under enhanced atmospheric evaporative demand
until later in the dry season, while early stomatal closure to avoid cavi-
tation led to lower ET in the old-growth stand.

Age-related ecosystem structure (root system and stem capaci-
tance) can have important implications for seasonal drought responses,
such that ET declines in early seral conifer stands as the summer pro-
gresses while mature or old-growth conifer stands maintain ET
throughout the summer (Irvine et al., 2002; Wharton et al., 2009;
Kwon et al., 2018). Young stands are likely to be more vulnerable to in-
creased water stress thanmature conifer stands if the Pacific Northwest
experiences longer or more severe droughts, due to differences in age-
related ecosystem structure. The timing ofmaximumET of regenerating
stands in relation to low flow declines may aid in determining the po-
tential role of stand age in explaining low flow declines where they
occur. For example, in British Columbia, declines observed in early sum-
mer in one catchment did not correspond with high rates of transpira-
tion and instead were attributed to earlier snowmelt in the harvested
catchment. Declines observed in late summer in the other treated catch-
ment were, partly, attributed to recovery of transpiration and intercep-
tion as forests regenerated (Gronsdahl et al., 2019). Expanding
measurements of ET, and its individual components transpiration and
evaporation, to encompass the spectrum of stand age classes present
on the landscapewill aid in understanding how forest hydrological pro-
cesses contribute to low flow responses.

3.3. Tree and stand water use

Tree growth is closely related to transpiration rates.More productive
trees transpire more water, and this appears to hold within and among
species (Lesch and Scott, 1997; Moore et al., 2011). Despite differences
in species' water usage (Chan et al., 2003; Moore et al., 2004), the rela-
tionship between productivity and transpiration rates did not differ in
monoculture and various mixtures of young red alder and Douglas-fir
in western Oregon (Moore et al., 2011). The variability in transpiration



Fig. 4. Example of an actively managed private industrial catchment located in the western Cascades in Oregon USA. Individual harvest units of different ages and retention of riparian
buffers contribute to a mosaic of stand age.
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was influenced by biomass productivity, which was determined by site
conditions (e.g., soil moisture and nutrient; Moore et al., 2011). The in-
fluence of growth rate on transpiration is also reflected in tree responses
to drought. A review of thinning studies in North America and Europe
found significant reductions in tree growth of thinned and unthinned
stands during drought, indicating a decline in tree transpiration (Sohn
et al., 2016). However, tree growth rates in thinned stands rapidly re-
covered within 1 year of the drought due to their increased foliage
and fine-root biomass.

Stand water use is a function of the species, densities, and sizes of
trees and other vegetation. Lowering tree density by thinning has
been suggested repeatedly as an option to improve individual tree
vigor by providing each tree with more resources, especially water
(Chmura et al., 2011; Puettmann, 2011; Grant et al., 2013). Similarly,
overstory thinning has been hypothesized to enhance water avail-
ability to streams and potentially alleviate low flow declines when
they occur (i.e., Sun et al., 2018). The literature shows several hydro-
logical response patterns, including no responses in catchments with
low intensity thinning operations (e.g., ≤ 25% of stems or basal area
removed; Lesch and Scott, 1997; Perry and Jones, 2017) and in-
creased annual water yield and low flows in catchments with higher
thinning intensities (e.g., greater than one-third and up to three-
quarters of the overstory removed; Lesch and Scott, 1997; Hubbart
et al., 2007; Keppeler et al., 2009; Dung et al., 2012; Webb and
Kathuria, 2012; Hawthorne et al., 2013; Sohn et al., 2016). The abso-
lute amount of rainfall was also influential with less evident re-
sponses in years with high precipitation (Lesch and Scott, 1997).
Several mechanisms may be responsible for these trends following
thinning. First, removal of overstory vegetation by thinning or gap
creation immediately leads to reduced water interception (Vanclay,
2009; Nanko et al., 2016). Second, for heavier thinnings lower
stand-level transpiration due to reduced leaf area (Hawthorne
et al., 2013) appear to be overriding increased transpiration de-
mands of the remaining trees due to their more exposed crowns
(Bladon et al., 2007). Opening of overstory vegetation can increase
understory ET (Lechuga et al., 2017), which is typically considered
to be minor (b 10% of total transpiration; Price et al., 1986) but can
be significant (up to 70% of total transpiration; Tan et al., 1978).



Table 3
Evapotranspiration (ET) rates across stand age-gradients measured across the Pacific Northwest (U.S. and Canada) measured with an eddy co-variance methodology.

Location Site name Dominant
Species

Maximum stand
age

ET
(mm/d)

P/ET Duration of record Citation

Vancouver Island, BC DF49 PSME 58 1.11 3.73 annual; 7 year mean (2002 to
2007)

Jassal et al., 2009
HDF88 PSME 19 1.12 3.93
DF00 PSME 7 0.73 5.29

Coast Range, OR DF = Douglas-fir PSME 45 1.23 3.03 annual; 4 year mean (2007 to
2010)

Kwon et al., 2018

Cascade Range near Sisters, OR MP = mature
pine

PIPO 60 1.52 0.86 annual; 10 year mean (2003 to
2012)

YP = young pine PIPO 20 1.00 1.02 annual; 4 year mean (2005 to
2008)

eastern Cascade Range near
Sisters, OR

O = Old PIPO 250 1.69 0.85 summer; 4 month mean (May to
Aug)

Irvine et al., 2002

Y = Young PIPO 14 1.78 0.85
Wind River, WA Year 2

(1999)
20YR PSME 20 1.35 5.01 summer; 3 month mean

(Jul to Sep)
Chen et al., 2004

Year 2
(1999)

450YR PSME 450 2.27 2.98

Year 1
(1998)

40YR PSME 40 1.07 6.30

Year 1
(1998)

450YR PSME 450 1.29 5.23

Wind River, WA Year 1 ESN 2006 PSME 10 2.11 0.60 summer; 4 month mean
(May to Aug)

Wharton et al.,
2009Year 2 ESS 2007 PSME 14 2.35 0.35

Year 1 OG 2006 PSME 450 1.65 0.66
Year 2 OG 2007 PSME 450 1.87 0.43

PSME: Pseudotsuga menziessii (Douglas-fir), PIPO Pinus ponderosa (Ponderosa Pine).
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Despite initial increases in water availability for tree growth, soil
moisture, or annual yield, these responses can be temporary, even in
heavy thinning treatments (Gray et al., 2002; D'Amato et al., 2013;
Hawthorne et al., 2013; Sohn et al., 2016). Furthermore, in a spatial con-
text, it appears that thinning increases in tree water use are driven by
local competitive conditions (e.g., tree removal within 10 m of individ-
ual trees), as these increaseswere evident in the uphill thinned area, but
not in the riparian buffers (Ruzicka et al., 2017). In the same context, ob-
servations fromDunget al. (2012) suggest that regular spaced thinnings
(remaining trees spread throughout the stand) had less impact on the
hydrological cycle than more concentrated thinnings.

4. Discussion and conclusions

4.1. Low flow responses: implications for current forest practices

The 25 catchment studies we reviewed documented low flow re-
sponses to treatments that represented forest practices at the time stud-
ies were initiated. Many of these treatments reflect historic practices
when harvest included large clearcuts of old-growth trees without the
retention of riparian buffers. Site preparation in the Pacific Northwest
in the 1950s -1970s included broadcast burning of remaining logs and
slash, often with high intensity fires. Regeneration by reseeding was
common, and often required several efforts for seedlings to establish
(e.g., Moore et al., 1974). Currently, a wide range of forest practices
exist across the landscape because regulations are defined by each
state or province, differ by ownership (private, state/province, federal),
and are periodically refined. Forest management objectives further con-
tribute to the variety of practices implemented (i.e., typical harvest age,
regeneration techniques, thinning).

Despite this variability, common elements across Pacific Northwest
states and provinces include smaller sizes of contiguous harvest units,
retention of riparian buffers along fish-bearing and some non-
fishbearing reaches, burning of slash in piles, replanting by seedlings,
competition release herbicide spraying, guidelines for road construc-
tion, and limited silvicultural activities near streams. Collectively these
practices create a finer-scale mix of forest stand conditions and ages in
all catchments (Fig. 4), reduce spatial extent of soil heating and hydro-
phobic soils, and promote more rapid forest regeneration than in the
past (i.e., four seeding efforts occurred at HJ Andrews WS1; Lutz and
Halpern, 2006). These changes likely affect the hydrologic budget, and
alter low flow hydrological responses for periods 1, 2, and 3, through
multiple pathways by reducing changes in ecosystem scale evapotrans-
piration, increasing soil infiltration and storage, and reducing runoff
(Table 4).We generally lack long-termdata on the suite of current forest
practices that are common on the landscape, as well as future practices,
including riparian buffers of varying widths, riparian buffers with vary-
ing levels of management activities, pre-commercial and commercial
thinning, uneven stand management, monoculture or diverse tree spe-
cies. Some prior treatments are relevant, and aid in our understanding
of long-term low flow responses to current practices.

4.1.1. Riparian buffers
Few studies in our review included riparian buffers in their treat-

ments, but these observations suggest that a range of low flow re-
sponses can occur with the retention of riparian buffers. First,
hydrological period 2 responses were observed in two catchments and
hydrological period 3 responses were observed in three of the five
catchments with buffers (Table 2; Gronsdahl et al., 2019; Segura et al.,
2020). Second, following recent forest practices with buffers (initiated
in 1990s to 2009), the immediate response to harvest included low
flow increases (2 catchments; Reid, 2012; Surfleet and Skaugset,
2013), no change (2 catchments; Gronsdahl et al., 2019), or decreases
(1 catchment; Segura et al., 2020). No change and decreases in low
flow were observed relative to reference catchments with stand ages
N100 y. The occurrence of low flow increases in hydrological period 1
was 40% among these buffer studies relative to 84% among all catch-
ments reviewed (Table 2).

Retention of riparian buffers, along with other current harvest prac-
tices,may limit lowflow increases (hydrological period 1) but one study
suggests buffers may not relieve low flow declines (hydrological period
3) that are already occurring following earlier harvest (Segura et al.,
2020). In the Alsea watershed of Oregon, low flow responses to original
harvesting of 110 year old stands resulted in lowflowdeclines up to 50%
lower in 40 to 53 year old regenerating Douglas-fir stands than refer-
ence (N110 y) stands. Recent harvesting of the regenerating 40 to
53 year old Douglas-fir stands, where a ~ 15 m riparian buffer was
retained on fish-bearing reaches, did not alleviate low flow declines.



Table 4
Anticipated effects of contemporary practices on forest hydrology.

Examples of contemporary
practices

Anticipated effect on forest
hydrology
(relative to historic
practices)

Hydrological period
affected

Minimize compacted area
and impacted area-stream
connectivity: fewer roads,
reduced landing size,
placement of new roads
away from stream,
decommissioning of
legacy roads, restrict
tractor logging and
implement equipment
exclusion zones, less soil
compaction during
harvest/yarding
operations, limit skid
trails, limit broadcast
burning reduces water
repellent soils

Increase infiltration,
potentially increase
groundwater recharge,
reduce runoff

I, II, III

Appropriately sized culverts
or bridges that prevent
blockage and allow for
passage of water,
sediment, wood, and biota

Improved streamflow
through culvert, reduced
road erosion at crossings

I, II, III

Reduced size of harvest
units, reduced clearcut
(cutblock size), adjacency
limitations

Reforestation requirements
within a limited time frame
(e.g. 4 years); planting of
seedlings rather than
seeding, use of herbicides to
control competing
vegetation, and
genetically-selected
seedlings lead to more rapid
recovery of overstory
vegetation and increased ET
Riparian buffers on
fish-bearing streams
(buffers on non-fish bearing
streams vary regionally and
by ownership): passive
restoration of buffers over
time will eventually allow
mature buffers to develop as
old-growth
As a result of these practices
(limited size, ‘green-up’, and
buffer retention multiple
stand ages present in the
catchment, particularly at
larger scales, which may
have important implications
for ecosystem-scale ET that
may vary with successional
forest stage

Ecosystem-scale ET
(reduced duration of low
rates; onset and duration of
high rates)

I (most pronounced),
II or III if
groundwater
recharge is affected

Reduced size of harvest
units: less reduction in
canopy interception at
catchment scale

Reforestation requirements,
planting of seedlings rather
than seeding, use of
herbicides to control
competing vegetation, and
genetically-selected
seedlings lead to more rapid
recovery of overstory
vegetation and reduced

Reduced loss of canopy
interception

I (most pronounced),
II or III if
groundwater
recharge is affected

Table 4 (continued)

Examples of contemporary
practices

Anticipated effect on forest
hydrology
(relative to historic
practices)

Hydrological period
affected

duration with less canopy
interception

12 A.A. Coble et al. / Science of the Total Environment 730 (2020) 138926
When compared with reference stands aged 40 to 53 y, low flow in-
creased. These results suggest stand age of the reference catchment
may influence the directionality of low flow responses. Low flow de-
clines (relative to N110 y stands) returned two years after harvesting,
indicating similarly high evapotranspiration in the catchment among
pre-harvest (40 to 53 y Douglas-fir) and post harvest (≤ 8 y planted
Douglas-fir and 40 to 53 year old Douglas-fir and red alder in the ripar-
ian buffer) stands. The relative contributions of the riparian buffer ver-
sus young planted trees are not well understood (Segura et al., 2020).
In an earlier experiment within this watershed, removal of only trees
in the riparian buffer (5 m wide) while retaining all other trees in the
catchment suggested trees closer to the stream did not control diel var-
iation in streamflow (Hale, 2011), in contrast to the proposed near-
stream zone of influence hypothesis (Bond et al., 2002).

As riparian buffers continue to age, eventually reaching late-seral
then old-growth conditions, those stands may contribute to age-
related reductions in ET rates during the low flow season. Therefore, if
dense, young stands within riparian buffers are currently contributing
to reductions in low flow via elevated ET rates (i.e., Segura et al.,
2020), on longer timescales these responses may not persist. With
such limited information on low flow responses in buffered catchments,
it is difficult to understand or make clear predictions of future re-
sponses. Riparian buffers serve many important aquatic functions by
providing shade, limiting alterations in stream temperature, and reduc-
ing erosion and solute delivery to streams (Cristan et al., 2016). Forest
managementmust balance thesemultiple objectives, while also consid-
ering their immediate and long-term effects on annual and seasonal
scales.

4.1.2. Downstream low flow responses and a mosaic of stand age
With increasing catchment size, a diverse mix of forest stand ages

can occur (Fig. 4), and the relative proportion of newly harvested
areas is reduced. Hydrological modeling at Mica Creek, Idaho, suggested
that extending the rotation age, and thereby reducing the proportion of
harvest units in discrete age classes, avoided hydrological period 3 de-
clines altogether and dampened the magnitude of low flow increases
(Case study 3). Furthermore, by measuring low flow responses to cur-
rent practices at 7 nested gaging stations, the Mica Creek dataset that
calibrated the model simulations was uniquely suited to evaluate the
downstream persistence of low flow responses in successively larger
catchments. The results indicate the magnitude of low flow responses
attenuated at downstream points as catchment size increased (Case
study 3; Fig. 3). Similarly, our reviewof large-scale catchments found in-
creases in low flows occurred when a greater percentage of the catch-
ment was disturbed, and low flow declines were not observed at
these scales (Supplemental Table 1). Across large scale catchments,
the three catchments with an increase in low flows generally had
greater percentages of forest disturbance of 25, 37, and 62% compared
with 5, 19, 25, and 29% disturbance in the catchments with no change
in low flow. These findings are in line with prior conclusions that forest
disturbance must exceed 25% of the catchment before a low flow re-
sponse will be observed (Johnson, 1998). Several studies have reported
on the potential for forestry and climate change to off-set effects given
that they often exhibit opposite trends at large catchment scales
(Jones et al., 2012; Zhang and Wei, 2012). In the Upper Similkameen
River Watershed in BC, climate variability decreased seasonal low
flows by 17.9mm(−70.8%) from1986 to2013,while forestry increased
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low flows by 7.4 mm (29.2%) (Li et al., 2018). Zhang and Wei (2012)
suggested that with increased forest disturbance in a catchment, the
contribution of forest disturbance to flow variability can increase rela-
tive to the contribution of climate.

Natural disturbance can elicit similar hydrological responses to har-
vest of overstory vegetation, and at larger catchment scales hydrological
responses to forest harvest are often confounded with natural distur-
bance. For example, low flow and annual runoff increased following a
mountain pine beetle epidemic (Potts, 1984) and following forest fires
(Niemeyer et al., 2019). Seasonal and annual responses can also differ
following disturbance. Following a wildfire that affected 45% of the
Boise River catchment in Idaho, water yield increased annually and in
most months, but declines were observed in June and July (Luce et al.,
2012). Annual runoff, but not low flows, increased with proportion of
Swiss needle cast in the catchment in the Oregon Coast Range (Bladon
et al., 2019). Low flows on the eastern slope of theWashington Cascades
were elevated for the first 7 years following wildfire across all three
catchments examined, but post-fire only the two catchments that
were salvage logged and seeded with barley had returned to baseline
35 to 41 years post-fire (Niemeyer et al., 2019). Low flow in the burned
reference, which was unmanaged post-fire, remained elevated 35 to
41 years post-fire, presumably due to delayed vegetation recovery
(Niemeyer et al., 2019).

4.2. Aquatic biota responses to seasonal low flow and low flow declines

Native aquatic taxa in the Pacific Northwest are adapted to seasonal
low flow conditions when resources become concentrated for weeks to
months. Generally, seasonal low flow presents stressors for biota. Dur-
ing seasonal low flow, aquatic invertebrates emerge from dry stream-
beds (Banks et al., 2007), invertebrate drift declines (Danehy et al.,
2016), amphibian larvae metamorphose, and basal food resources can
control food webs (Power et al., 2008). When low water levels reduce
the availability of cover, fish survival is low (Berger and Gresswell,
2009), vulnerability to predators is especially high (Harvey and
Nakamoto, 2013; Penaluna et al., 2016) and the consumption of prey
is reduced (Li et al., 2016). Reduced consumption likely occurs because
suitable locations to feed are reduced (Fausch, 1984; Hayes et al., 2007)
leading fish to have minimal growth or weight loss (Penaluna et al.,
2016; Jensen, 2017). Consecutive years of extremely low seasonal
flows associated with drought have been shown to have long-lasting
consequences for aquatic food webs (Power et al., 2008; Matthews
and Marsh-Matthews, 2017).

Isolating the response of biota to harvest-related changes in flow rel-
ative to other parameters can be difficult because harvest also affects
other key parameters (i.e., temperature, light availability, and sediment;
Gregory et al., 1987, Leach et al., 2012; Reiter et al., 2019; Bywater-Reyes
et al., 2017) that can contribute to changes in basal food resources, prey
availability, and aquatic biota in higher trophic levels. A wide variety of
biotic responses to forest harvest have been reported, and these are
both idiosyncratic and context-dependent (Murphy and Hall, 1981;
Bisson et al., 2008; Banks et al., 2007; Penaluna et al., 2015). Some fish
populations can increase in density and/or biomass immediately follow-
ing current harvest practices, potentially due to increased low flows in
hydrological period 1 (Mellina and Hinch, 2009; Bateman et al., 2016;
Bateman et al., 2018) which can benefit fish by creating more available
habitat (Penaluna et al., 2015; Harvey and White, 2017).

Forest harvest may also have delayed effects on aquatic biota. In the
only study that has simultaneously documented long-term fish re-
sponses and low flowdeclines, salmonid fish biomass recovered to orig-
inal pre-harvest levels despite 50% reductions in summer low flow
(Bateman et al., 2018; Segura et al., 2020). With similar 50% reduction
in late summer flow in hydrological period 3 at the Andrews Forest,
the previously harvested headwater streams had similar macroinverte-
brate densities and diversity as old-growth reference streams (Frady
et al., 2007). In Carnation Creek, B.C., growth and survival of Coho
salmon Oncorhynchus kisutch initially increased by 65% for three de-
cades followed by declines in production and survival below pre-
harvest levels; these declines were likely due to delayed habitat degra-
dation from landslides decades earlier (Tschaplinski and Pike, 2017),
and it is unclearwhether low flow responsesmay have also contributed
to these fish responses (Hetherington, 1987). In Upper Penticton, B.C.,
where low flow declines were observed after harvest in two catch-
ments, declines in modeled fish habitat were found in one of the two
catchments (Gronsdahl et al., 2019). Overall, the relationship between
long-term forestry-related changes in low flow and biotic populations
is not well understood; the available but limited data suggests that re-
ductions in low flow associated with hydrological period 3 did not neg-
atively impact stream macroinvertebrates (Frady et al., 2007) or
salmonid biomass (Bateman et al., 2018; Segura et al., 2020).

Experimental manipulations of seasonal low flow regimes suggest
only extreme flow reductions affected invertebrate and fish popula-
tions, and these experiments can aid in understanding how forestry-
related low flow declines (hydrological period 3) may affect biota by
isolating the manipulation of flow from other physical variables.
When experimental reductions of low flow in small streams were lim-
ited to 50 to 75% little or no changes were observed for invertebrates
and fish, but abundance and production declined when reductions
exceeded 75% (Kraft, 1972; Rimmer, 1985; Nuhfer and Baker, 2004;
Harvey et al., 2006; Wills et al., 2006; Dewson et al., 2007; Walters
and Post, 2008). For example, when low flow was reduced by 75 to
80% in northern California invertebrate prey drift and growth of rain-
bow trout declined, but fish survival was not affected (Harvey et al.,
2006). Similarly, reductions of low flow by 40 to 80% led to reduced
fish length in a Connecticut stream (Walters and Post, 2008). More ob-
servational and experimental research in locations where forestry-
related low flow declines have been observed is warranted to under-
stand species interactions to the effects of seasonal low flow, contempo-
rary forest harvest, and climate change.

5. Summary and next steps, remaining questions

Ultimately, any forest management that seeks to limit low flow in-
creases (hydrological period 1) or mitigate long-term declines (hydro-
logical period 3) must be informed by a mechanistic understanding of
the underlying processes. Yet, basic mechanistic questions such as
how water uptake by trees affects subsurface water storage and
streamflow or how distribution of trees in the catchment (riparian ver-
sus upland) affect water use remain active topics of research. Stand age
and associated ET rates have been identified as important mechanisms
to explain seasonal low flow declines (Perry and Jones, 2017), but addi-
tional information is needed to identify how ecosystem level ET rates
differ across the mosaic of stand ages, densities, and species composi-
tions that occur on the contemporary forest landscape. In snow-
dominated catchments alterations to the accumulation and timing of
snowmelt following harvest may contribute to low flow declines
(Gronsdahl et al., 2019), hence an improved understanding of how dif-
ferent forest structures and climate conditions affect snow dynamics
across the region is needed. Hydrological modeling efforts can aid in
generating hypotheses to assess these predictions, but ultimately
these models must be informed by extensive spatial and temporal
data that incorporate the entire water budget and reflect current man-
agement practices. Specifically, hydrologic data is needed that docu-
ments effects of current and potential future practices including:
riparian buffer retention, commercial thinning, and uneven stand man-
agement across private and public land.Management efforts should also
consider hydrological effects across longer timescales, and not focus
solely on the immediate response.

Compiling simultaneous evaluations of flow and biotic changes
(i.e., macroinvertebrate, amphibian, or fish) in locations where low
flow declines have been observed is essential to understanding the po-
tential implications of changes in flow for stream ecosystems.
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Specifically, studies should consider evaluating low flow responses dur-
ing hydrological period 3 in fish-bearing, and more specifically
salmonid-rearing, streams to understand low flow responses and how
downstreameffects on biota and species interactions accumulate across
large catchments. Future studies will entail scaling up to larger catch-
ments and multi-phased harvesting of units that comprise smaller rela-
tive proportions of the landscape over extended periods of successive
harvesting (e.g., Keppeler, 1998; Gronsdahl et al., 2019; Case study 3).
At large scales, different statistical approaches will be necessary to sep-
arate low flow responses to forest disturbance from climate impacts;
these could include quasi-paired catchment studies, hydrological
modeling, time series modeling, and graphical methods (flow duration
curves; Zhang et al., 2017). To facilitate comparisons of responses across
small paired catchment studies and larger catchment-scale studies
usingmultiple methods, future low flow publications should report suf-
ficiently detailed information on low flow responses, such as absolute
change by month and year.
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