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Abstract
Theory predicts that species requiring multiple habitat types simultaneously
should have heightened sensitivity to anthropogenic pressures, yet tests of this
prediction are especially rare. We tested whether breeding site occupancy of the
threatened marbled murrelet (Brachyramphus marmoratus) was driven by the
synergistic effects of nesting habitat loss in forests, and changing ocean condi-
tions. We paired 70,700 murrelet surveys at 19,837 sites across 20 years from the
Oregon Coast Range with annual data on the extent of old forest and biophysical
ocean conditions. Dynamic occupancy models indicated that local murrelet col-
onization rates were strongly reduced during warm ocean conditions with low
prey availability. Landscapes that contained more old forest and were closer to
the ocean showed reduced rates of local extinction. Given predictions of accel-
erated ocean warming and increased global timber demand, our results suggest
murreletsmay continue to be imperiled by deterioration of the two habitats upon
which they depend.
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1 INTRODUCTION

Species that require two or more habitats during dis-
tinct life history stages are considered to have evolved a
“habitat-split” strategy. This strategy is found in many ver-
tebrates, such as terrestrial amphibians, which often live in
upland habitats most of the year but require wetlands for
breeding in spring (Becker et al., 2007; Scheele et al., 2019),
and migratory birds that reside in wintering areas that are
thousands of kilometers from summer breeding grounds
(Webster, Marra, Haig, Bensch, & Holmes, 2002). Species
that have evolved a habitat-split strategy are thought to
be more sensitive to anthropogenic pressures than those
that require a single habitat (Becker et al., 2007). Never-
theless, evaluating whether degradation of multiple habi-
tats leads to synergistic negative effects on populations has
been challenging because long-term population data can
rarely be coupled with information about changes in habi-
tat quality across multiple habitats.
In relation to species that require multiple habitats

at distinct points in the annual cycle, far fewer species
exhibit a habitat-split strategy wherein they require two
distinct habitats simultaneously during the breeding sea-
son. Seabirds exemplify the latter group because they for-
age in marine habitats that are typically far from breed-
ing colonies where they rear young (Gaston & Jones, 1998).
Among seabirds, several species require mainland forests
as breeding habitat (e.g. Alcidae, Procellaridae, Laridae)
and this is expected to result in heightened sensitivity to
anthropogenic change. For example, two Brachyramphus
murrelets that nest in forests are listed by the IUCN as
Near Threatened, with one further classified as Endan-
gered (Bird Life International 2018). The latter species—
the marbled murrelet (Brachyramphus marmoratus, here-

after murrelet)—is an iconic seabird that typically nests
in old-growth and late-successional forest of northwest-
ern North America and forages in nearshore waters of
the Pacific Ocean (Nelson, 1997). Because of its associ-
ation with old forests, which have historically been tar-
geted for timber harvest, this species has been at the cen-
ter of controversies surrounding management of coastal
forests for decades (Thomas, Franklin, Gordon, & John-
son, 2006). In addition to the availability of nesting habi-
tat,murrelet population trends are also thought to be influ-
enced by ocean conditions, particularly the food resources
required for successful nesting (i.e., forage fish). In turn,
much debate has focused on the relative contributions of
terrestrial habitat loss and changing ocean conditions to
driving long-term murrelet population declines (Raphael,
Shirk, Falxa, & Pearson, 2015).
Murrelets can nest>100 km frommarine foraging areas

(Lorenz, Raphael, Bloxton, & Cunningham, 2017) and
the energetic costs of inland commuting flights are high
(Hull et al., 2001), so nesting habitat that is distant from
the coastal foraging sites may result in low nest success,
particularly during periods of poor ocean conditions.
Thus, determining the extent to which changes in forest
nesting habitat and ocean conditions drive murrelet
population trends has considerable conservation and
management implications in the Pacific Northwest. This
is particularly true given management activities that
promote the creation of early seral ecosystems on federal
landownerships via the harvest of old forest (Phalan
et al., 2019), and ongoing concerns about the influence
of climate change on fish populations (Free et al., 2019).
Importantly, the availability of forest nesting habitat and
marine foraging areas may result in additive or synergistic
effects on murrelet populations, but this idea has yet to be
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F IGURE 1 (a) Location of 70,707
marbled murrelet occupancy survey
locations (red dots) and old forest (i.e., old
and late-successional forest) in western
Oregon, USA. (b) Marbled murrelet
incubating on its nest located on the branch
of a mature Douglas fir tree. Occupancy of
murrelets is strongly associated with old
forest at landscape scales and cool,
productive ocean conditions. Photo of
murrelet courtesy of Brett Lovelace/OSU

evaluated. Here, we provide the first test of the hypothesis
that terrestrial and ocean conditions together interact to
drive occupancy dynamics of the murrelet using long-
term datasets that represent (a) biophysical indicators of
ocean conditions, (b) extent of old forest, and (c) breeding
habitat occupancy of murrelets across >19,800 locations
in the Pacific Northwestern, USA. We predicted that set-
tlement of previously unoccupied sites would be lowest,
and annual local extinction (i.e., vacancy) highest in
warm ocean years, and that this effect would intensify in
landscapes which have lost a large proportions of nesting
habitat.

2 METHODS

2.1 Marbled murrelet occupancy
surveys

We compiled breeding season audiovisual surveys for
murrelets conducted 15 May to 5 August annually as part
of research and monitoring efforts and at proposed timber
sale sites from a variety of sources in Oregon from 1999 to
2018, including Oregon State University, US Forest Service,
Bureau of Land Management, and Oregon Department
of Forestry. Our sample totaled 70,700 surveys conducted
at 19,837 sites and although it was not drawn at random,
it is spatially comprehensive and represents all stand
types with the potential to be murrelet habitat (Figure 1).
Trained, certified surveyors quantified the number of

audio and visual detections of murrelets during 2-hour
surveys following the Pacific Seabird Group (PSG) survey
protocol (EvansMack et al., 2003)which is used to evaluate
breeding activity at survey sites. Detections were classified
as either murrelets being present (flying over the forest or
calling) or exhibiting behavior indicative of nesting (flying
below the canopy, landing, and/or circling); otherwise
the site was classified as undetected. Areas surveyed were
suitable murrelet habitat, primarily mature (>80 years)
and old-growth (>200 years) forests that contained at
least one potential nest tree that was ≥10 m in height that
possessed potential nesting platforms >10 cm in diameter.
Multiple surveys were conducted at each site, with an
average of one survey per 8–10 ha, unless occupancy was
determined before the required number of surveys were
undertaken (i.e., minimum of nine surveys required over
2 years; Evans Mack et al., 2003). We reclassified all
surveys conducted according to the PSG survey protocol to
create a detection/nondetection dataset, with an occupied
detection defined as amurrelet exhibiting subcanopy flight
behavior, stationary calling, and/or landing in a tree, all of
which are considered indicative of nesting (Evans Mack
et al., 2003). Since the survey protocol for marbled mur-
relet occupancy data was not initially designed to support
the dynamic occupancy models we implement here, we
used data simulations to test whether the temporal struc-
ture of surveys could have potentially biased our results in
the direction we observed; we found no evidence for such
biases (see Appendix, Supporting Simulation Methods
and Results).
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2.2 Remote sensing

We obtained Gradient Nearest Neighbor (GNN)map prod-
uctswith annualmodeled estimates of vegetation structure
from 1998 to 2012 from https://lemma.forestry.oregonstate.
edu/data/structure-maps, updated with Global Forest
Change data from 2013 to 2018 (Hansen et al., 2013). The
GNNmethod combines vegetation data fromForest Inven-
tory Analysis plots across the region with Landsat The-
matic Mapper imagery and other environmental data to
predict forest structure and composition at a 30-m pixel
resolution (Ohmann & Gregory, 2002). We defined “old
forest” using the Old Growth Structure Index (OGSI), fol-
lowing Spies et al. (2007), which is based on the abun-
dance of large live trees, snags, and downed wood, as well
as the diversity of tree sizes. We used the broadest defini-
tion of old forests available (i.e., OGSI 80; Ohmann & Gre-
gory, 2002) to identify stands >80 years with the structural
attributes of old growth (Davis et al., 2015). We summa-
rized the amount of old forest at two spatial scales, one
reflecting fine-scale site use in forest habitat surround-
ing the nest tree (100-m radius, centered on each survey
site), and the other quantifying use of broader landscapes
(2000-m radius). This broader scale is likely relevant to
habitat selection, social attraction (i.e., aggregations of
individuals), and potentially dispersal in forest birds of this
body size (Betts, Forbes, & Diamond, 2007). We also cal-
culated the density of conifers and canopy cover within a
100-m radius to use as a predictor of detection probability,
with the expectation that greater canopy cover and density
of conifers reduces murrelet detections.

2.3 Ocean conditions

There is a paucity of information regarding the distribu-
tion and abundance of murrelet prey items, including for-
age fish thatmurrelets need for successful reproduction, so
we used a long-term dataset on ocean conditions, and the
associated marine food web, as a proxy for murrelet prey
availability. Although juvenile salmonids (Oncorhynchus
spp.) are unlikely to be a common prey item for murrelets,
they are distributed within the same marine habitat zone
over the continental shelf (Bi, Ruppel, Peterson, & Casil-
las, 2008) and require similar bottom-up trophic processes
asmurrelets. Juvenile salmonids tend to be positively asso-
ciated with cooler ocean conditions, and higher copepod
availability and biomass (Table S3, Figure S3). A strong
link has been found between biological and physical ocean
conditions, the survival of juvenile marine salmonids,
and the abundance of adult salmonid returns (Pearcy,
1992; Peterson et al., 2014; Burke, Liermann, Teel, &

Anderson, 2013). Therefore, we used a previously derived
suite of 16 marine indicators that encompass physical and
biological processes and have been shown to have a strong
impact on juvenile salmon survival (Peterson et al., 2014)
to serve as a proxy for murrelet prey availability (Table
S3). We collapsed these indicators into a single explana-
tory variable using Principal Component Analysis (Table
S3). Low values of the first principal component represent
ocean conditions associatedwithwarmyears, and lowprey
availability.

2.4 Statistical analysis

Murrelet occupancy surveys represent a time series of spa-
tially referenced detections and nondetections at sites both
within and across years, and such data are ideal for fit-
ting dynamic occupancy models (MacKenzie et al., 2018)
and allow for assessing the probability of occurrence by
breeding murrelets. Dynamic occupancy models account
for imperfect detection by capitalizing on multiple visits
to the same sites within primary occasions (in this case,
years). In addition, they allow for assessing the influence
of environmental covariates on the probability of occu-
pancy in the first year of a study (i.e., 1999 in this study,
hereafter referred to as “initial occupancy”), the probabil-
ity of an unoccupied site becoming occupied in the fol-
lowing year (hereafter referred to as “colonization”), and
the probability of an occupied site becoming unoccupied
in the following year (hereafter referred to as “vacancy,”
but synonymous with “extinction” in the statistical litera-
ture).Wemodeled the probability of detection as a function
of canopy cover and conifer density, as well as land own-
ership to allow for the possibility that landowner-specific
management may have influenced detection probability;
we also allowed detection to vary as a quadratic function
of the day of the year.
We tested the influence of three factors on murrelet

occupancy dynamics: extent of nesting habitat (i.e., old for-
est), ocean conditions, and distance to the coast. Addition-
ally, we assessed whether the influence of old forest and
ocean conditions exhibited time-lag effects on occupancy
dynamics. Given that recruitment to the breeding popula-
tion, and the decision to breed by returning adults in time
t is likely driven by food availability in previous years, we
modeled colonization and vacancy as either a function of
ocean conditions in t – 1, or the combination of t and t – 1.
Similarly, terrestrial habitat availability in previous years
could influence recruitment so we modeled the effects of
old forest at the two scales we examined (100, 2,000 m)
using forest amount in time t or t – 1. We also assessed the
effect of distance to coast to test the hypothesis that forest

https://lemma.forestry.oregonstate.edu/data/structure-maps
https://lemma.forestry.oregonstate.edu/data/structure-maps
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TABLE 1 Coefficient estimates (𝛽), standard errors (SE), and lower and upper confidence limits (LCL and UCL, respectively) from
dynamic occupancy models predicting initial occupancy, vacancy, colonization, and detection probability for marbled murrelets. Bold and
underlined predictor variables have confidence intervals that do not overlap with zero. Time t or t – 1 indicates that the variable was measured
in either the year that occupancy was estimated or the year prior, respectively. t + 1 or t – 1 refers to the year modeled. The model presented is
the model with the highest AIC weight

Predictor variables 𝜷 SE LCL UCL
Initial occupancy
Intercept −2.69 0.16 −3.00 −2.39
Distance tocoast −1.34 0.17 −1.67 −1.00
Mature forest 2 km −0.09 0.11 −0.30 0.11

Vacancy
Intercept −1.45 0.23 −1.90 −1.00
Mature forest 2 km ( t –1) −0.82 0.17 −1.16 −0.49
Ocean conditions ( t & t –1) −0.49 0.18 −0.85 −0.13
Distance to coast 0.46 0.21 0.04 0.87
Mature forest 2 km (t– 1) × ocean (t& t– 1) −0.11 0.11 −0.34 0.11

Settlement
Intercept −4.12 0.18 −4.46 −3.77
Mature forest 2 km ( t –1) 0.21 0.11 0.00 0.42
Ocean conditions ( t & t –1) 0.20 0.20 0.18 0.59
Distance to coast −0.62 0.16 −0.93 −0.31
Mature forest 2 km ( t –1)×ocean ( t & t –1) −0.53 0.11 −0.74 −0.31

Detection
Intercept (Oregon Department of Forestry) land −2.19 0.10 −2.38 −2.00
Day of year −0.16 0.12 −0.39 0.08
Day of year2 0.19 0.08 0.02 0.35
US Forest Service land 1.41 0.12 1.18 1.65
Bureau of LandManagement land 1.76 0.11 1.54 1.98
Canopy cover −0.14 0.05 −0.24 −0.04
Conifer density −0.29 0.06 −0.41 −0.17

further inland requires greater energetic costs to access and
would therefore be less likely to be occupied. We tested
for an interaction between distance to coast and ocean
conditions to test the hypothesis that murrelets would be
less likely to fly further inland during periods of low prey
availability. Finally, we tested for the statistical interaction
between ocean conditions and old forest amount (model
set shown in Table S1, S2, and S4) to evaluate the hypoth-
esis that the effects of poor ocean conditions could be par-
ticularly strong and result in low occupancy in landscapes
with low amounts of old forest. We fit all models using
the statistical program MARK (White & Burnham, 1999)
in the R statistical software (R Core Team, 2013) using the
“RMark” package (Laake, Johnson, & Conn, 2013). We fit
all models by first running three model runs with stan-
dard likelihoodmaximization, all initialized with different
values, followed by simulated annealing, initialized with
the values estimated through the standard maximization
approach. This procedure was used to ensure convergence.

We compared candidatemodels using AICc, and standard-
ized all continuous covariates by subtracting themean and
dividing by the standard deviation to allow for direct com-
parison of model coefficients.

3 RESULTS

Murrelet occupancy was low across all surveyed sites with
<10% predicted occupancy in all years. We did not find
a strong influence of mature forest on initial occupancy,
but occupancy tended to decrease with increasing distance
from the coast (Table 1).
We found that loss of old forest interacted with ocean

conditions to influence occupancy dynamics; models
containing interaction terms between old forest and ocean
conditions were well supported (cumulative AICc weight
= 0.68), but that was not the case for models lacking
an interaction term (cumulative AICc weight = 0.32,
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F IGURE 2 (a) Mean estimated marbled murrelet occurrence (solid black line), as derived from a dynamic occupancy model that takes
into account imperfect detection, in relation to ocean conditions (blue dashed line). High values of ocean conditions reflect cool, productive
conditions and low values warm years with reduced prey availability. (b) Estimated probability of murrelet colonization as a function of ocean
conditions, with ocean conditionsmeasured by PC1 in year t – 1 from amultivariate analysis that includes physical and biological indicators (see
Section 2); high values of PC1 indicate cooler conditions with more prey. (c) Probability that an occupied site becomes unoccupied (“vacancy”)
in relation to the proportion of old forest at the landscape-scale (2-km radius around survey site). (d) Probability of murrelet vacancy as a
function of the distance of survey site from the Pacific coast. Dotted black lines represent 95% confidence intervals in (a)–(c)

Table S1). Even in models without an interaction, these
two variables strongly influenced either colonization
or vacancy rates over the 18-year period (Figure 2b, c,
Table 1, Table S2). Murrelet colonization rates were
influenced by an interaction between ocean conditions
and mature forest (Table 1). During years of warm ocean
conditions with low prey availability, colonization was
effectively zero in areas containing low amounts of old
forest (Table 1). In contrast, during good ocean conditions,
areas with reduced amounts of old forest had higher rates
of colonization (Table 1).
We did not find strong support for a statistical inter-

action between mature forest and ocean conditions on
vacancy, but landscape-scale mature forest alone had a
strong buffering effect on vacancy rates (Figure 2c); for
example, a 1 SD increase in old forest reduced local vacancy

by >2 times (95% CI: 1.5, 2.95; Table 1). Models including
old forest at broad scales (2000m) had greater support than
those with old forest at fine scales (100 m; ∆AIC > 40).
Warm ocean conditions substantially increased murrelet
vacancy rates in the following year; vacancy rates follow-
ing the poorest ocean conditions (mean = 0.38 [95% CI:
0.32, 0.45]) were 4 times higher than the period with the
best ocean conditions (mean = 0.09 [95% CI: 0.04, 0.23]).
Models with time-lagged effects of ocean condition (i.e.,
t – 1)were better supported than those also including ocean
conditions in the year of breeding (AICc weight 0.68–0.85;
Table S1).
Among all models, murrelets exhibited increased rates

of vacancy and decreased rates of colonization as the dis-
tance between survey site and ocean increased, a pattern
presumably related to the energetic cost of commuting



BETTS et al. 7 of 9

flights. For example, sites ∼100 km from the coast were
five times more likely to become locally vacant than sites
within 500 m of the ocean, with the latter sites being 20
times more likely to be colonized (Figure 2d). Murrelet
detectability was highest in surveys conducted on federal
land (Bureau of Land Management) and lowest on state
land (Oregon Department of Forestry, Table 1). Detectabil-
ity decreased at sites with high canopy cover and dense
conifers, although it was not strongly influenced by day of
year.

4 DISCUSSION

Quantifying the cumulative importance of distinct habi-
tats has hindered the development of comprehensive
conservation approaches for declining species that exhibit
habitat-split strategies. Here we provide the first evidence
that ocean conditions combinedwith broad-scale old forest
nesting habitat influence long-term occupancy dynamics
of an endangered seabird. In particular, we found that
ocean conditions appear to be a key driver of occupancy
dynamics. This finding is particularly relevant to current
policy, which classifies a site on state land in Oregon
without murrelet detections in two successive years as
unoccupied (Evans Mack et al., 2003) thereby by allowing
it to be harvested for timber. Our data indicate that poorer
than average ocean conditions may persist for >2 suc-
cessive years (Figure 2a), which could lead to a scenario
where sites used for breeding in good ocean years might
go unoccupied for multiple years and thereby be available
for harvest. If ocean conditions continue to deteriorate
over the long term, breeding habitat could be “ratcheted”
down, and due to habitat loss, prevent site recolonization
even following good ocean years. These results suggest
that to maximize confidence that a site is not suitable mur-
relet nesting habitat, prospective timber harvest locations
should be surveyed only in years following good ocean
conditions, or for periods that exceed themaximum length
of poor ocean conditions (i.e., potentially >2 consecutive
years).
We found that the amount of old forest habitat had a

strong positive influence on vacancy rates. The negative
effect of old forest loss appeared to be stronger at broad
(2000-m radius) than fine spatial scales (100 m). Given
that murrelets need only a single large nesting tree in
any given year, this result might seem counter-intuitive,
but we hypothesize that murrelets may favor nesting near
conspecifics as is the case for other seabirds, including
auks (Rolland, Danchin, & de Fraipont, 1997). Thus, larger
stands of contiguous forest habitat may be especially valu-
able nesting habitat, particularly if murrelets rely on con-
specific attraction when selecting nest sites (Danchin,
Giraldeau, Valone, & Wagner, 2004).

Taken together, our results indicate that sites are most
likely to be occupied by murrelets if they occur in land-
scapes with larger amounts of old forest that are closer to
the coast, and when foraging conditions are of high quality
(i.e., cool ocean temperatures). Therefore, continued con-
servation of contiguous old forest closer to the ocean, in
addition to maintaining all occupied sites, will likely pro-
vide the greatest benefit toward recovering murrelet pop-
ulations. For instance, efforts to create early seral forest
within the geographic scope of the Northwest Forest Plan
should focus on cutting younger plantations farther inland
rather than old forest near the coast (Phalan et al., 2019) if
conservation ofmurrelet populations is the goal. Including
inland habitat and adjacent optimal foraging habitat in a
reserve design (to reduce habitat split) could also be of high
value to murrelet conservation (Hazlett, Martin, Sampson,
& Arcese, 2010). Given continued increases in global tim-
ber demand (FAO, 2016) and accelerated warming (Cox,
Huntingford, &Williamson, 2018), we speculate that mur-
relet populationsmay come under increased pressure from
a reduction in the quality and extent of the two habitats
uponwhich they depend. Unfortunately, murrelets are not
alone in being impacted by a degradation of multiple habi-
tats; a sizable proportion of vertebrates depend on multi-
ple habitats throughout the annual cycle (fish: Price et al.,
2019; birds: Ferraz et al., 2007; amphibians: Becker et al.,
2007; dragonflies: Nagy et al., 2019), many of which are
currently due to anthropogenic activities. Nevertheless,
obtaining data that allow for the assessment of the rela-
tive contribution of different habitats is a challenging, but
necessary step toward a comprehensive conservation plan-
ning. We suggest that “habitat split” be considered a risk
factor that affects species’ sensitivity to global change and,
as studies similar to ours accumulate, the generality of this
hypothesis will be formally tested across taxa. We suspect
that for many species, as in the case of murrelets, concur-
rent conservation measures will need to be taken in multi-
ple habitats to ensure populations persist into the future.
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