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 29 

Abstract 30 

Wildfires in the southwestern United States are increasingly frequent and severe, but whether 31 

these trends are beyond historical norms remains contested. We combine dendroecological 32 

records, satellite-derived burn severity, and field measures of tree mortality to compare historical 33 

(1700-1880) and contemporary (1985-2020) fire regimes at 406 tree-ring fire-scar sites in Arizona 34 

and New Mexico. Contemporary fire frequency is over 80% lower than historical levels. Before 35 

1880, fires averaged 0.87 fires/decade (every 11.4 years), followed by over a century without fire 36 

at most sites. Since 1985, the same sites averaged only 0.17 fires/decade (every 58.8 years). 37 
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Fire severity, however, has increased. At 42% of our sites, centuries-old fire-scarred trees 38 

recently experienced anonymously lethal fire severity. Suppressed wildfires tended to burn more 39 

severely than prescribed burns and managed “fire use” wildfires. These findings support the 40 

expanded use of low-severity prescribed and managed fire to restore ecosystem function and 41 

resilience to southwestern dry-conifer forests. 42 

 43 

Main Text 44 

 45 

Introduction 46 

 47 

Changing fire regimes pose mounting challenges to both natural and human systems. Intensifying 48 

wildfire activity associated with climate change is exerting increasing pressure on a wide range of 49 

forest ecosystems globally1,2,3. Where fire activity exceeds the range of conditions for which 50 

species are adapted, fires can drive local population extirpations and trigger ecosystem shifts4. 51 

Increasing fire frequency can significantly alter population vital rates, in particular when the time 52 

between successive fires is not sufficient for recovering tree species to achieve reproductive 53 

maturity5,6. Increasing fire severity can drive anomalous tree mortality, even for the most fire-54 

tolerant species and individuals (e.g., giant sequoia [Sequoiadendron giganteum])7, reducing 55 

propagule availability in extensive and homogenous high-severity patches and impeding 56 

recovery8,9. However, reduction or elimination of fire activity—often imparted by human fire 57 

exclusion—can also result in major ecological changes. For example, the loss of fire due to 58 

elimination of cultural burning practices, land use changes such as grazing that limit fire spread, 59 

and fire suppression has increased woody plants, altered species composition, and homogenized 60 

forest communities across North America and elsewhere10,11,12. Accordingly, understanding the 61 

extent and direction of contemporary fire regime departures from historical norms can provide 62 

critical insight into patterns of ecosystem changes and vulnerabilities, and inform conservation 63 

and management interventions. 64 

 65 

Dry conifer forests in the American Southwest dominated by ponderosa pine (Pinus ponderosa) 66 

and Douglas-fir (Pseudotsuga menziesii) are particularly vulnerable to the combined effects of 67 

altered fire regimes and climate change. A large body of evidence demonstrates that some 68 

proportion of these forests was historically characterized by frequent, low- to moderate-severity 69 

fires associated with prolonged dry seasons, profuse grassy fuels, and abundant ignitions from 70 

lightning and Indigenous land stewardship13,14,15,16. These fire regimes were disrupted by Euro-71 

American colonization in the late 19th C, producing an enduring fire deficit17 and initiating fuel 72 

build ups18. However, recent decades have been marked by a rapid return of fire to many dry 73 

southwestern forest landscapes. Increased fuel availability and continuity, combined with 74 

increasingly long fire seasons and dry fuels19,20 and abundant human ignitions21, have 75 

dramatically escalated wildfire activity including area of high-severity fire22,23,24. Compounded by 76 

warming and drying post-fire conditions, extensive high-severity burns are constraining 77 

regeneration by wind-dispersed conifers8,25,26,27,28,29 and in some areas catalyzing persistent 78 

conversion to various non-forest vegetation types30,31.  79 

 80 

Although these processes are generally well understood, the extent to which contemporary fire 81 

regimes differ from historical norms in dry southwestern forests remains the subject of continued 82 

debate, leading to divergent interpretations with important implications for forest 83 

management32,33,34,35. One viewpoint has relied on data from General Land Office (GLO) surveys 84 

to reconstruct late 19th century stand structure based upon tree age-size relationships and forest 85 

density extrapolations, which were then interpreted to reconstruct fire severity36. These authors 86 

suggest that high-severity fire may have in fact been common in these systems long before the 87 

prominent ecological changes of the last century, and thus modern severe wildfires fall within 88 

historical norms35. If severe contemporary wildfires in fact represent historically normal events, 89 
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then management efforts intended to restore dry forest ecosystem function, including thinning of 90 

small-diameter trees, fuels reduction treatments, and low-severity prescribed burn, would appear 91 

to be misguided. The other viewpoint holds that modern, high-severity wildfires drastically exceed 92 

historical fire regime norms33. This view is based upon large increases in tree density coincident 93 

with fire exclusion over the last century, documented through comparisons between historical 94 

reconstructions and modern measurements of forest structure37,10,38, a paucity of documentary 95 

and scientific evidence of high-severity fire occurring in dry conifer forests in the 18th and 19th 96 

centuries39,33, and abundant evidence of frequent, low-severity fires in the historical tree-ring fire-97 

scar record40. Under this view, management efforts to reduce tree densities and fire severity are 98 

in fact essential to sustaining dry forest systems, particularly as climate warming increases 99 

exposure to severe fire-induced loss. Accordingly, an improved quantification of the differences 100 

between historical and contemporary fire frequency and severity would be useful in assessing 101 

forest vulnerabilities and setting management priorities41, particularly as severe fire-driven 102 

vegetation conversions appear to be increasing over recent decades.  103 

 104 

Two distinct lines of evidence—dendroecology and remote sensing—are widely used to 105 

characterize patterns of historical and contemporary fire activity, respectively. Tree-ring analyses 106 

of fire-scarred trees have been used as a primary means of characterizing low-severity historical 107 

fire regimes42,43. Where low-severity fires injure but do not kill trees, they leave behind scars 108 

preserved in growth rings that can be dated to the year and often the season of fire occurrence. 109 

While such records cannot be developed from areas where severe fires kill trees and consume 110 

the preceding record, comparisons between fire-scar records and documentary evidence 111 

demonstrate that fire scars provide direct evidence of low-severity fire regimes at sites and across 112 

landscapes44,45. In dry conifer forests of the southwestern US, hundreds of sites, incorporating 113 

thousands of fire-scarred trees, recorded frequent, low- to moderate-severity fire continuously for 114 

centuries prior to European settlement16,40. In contrast, contemporary fire regimes are measured 115 

primarily via satellite observations (particularly over the Landsat period of record, 1985-present) 116 

and on-the-ground field data collection46,47. Field-verified, satellite-derived metrics covering the 117 

full range of burn severity have facilitated analyses of recent burning trends in the modern 118 

era48,49,24. However, these two types of data—tree-ring fire-scar records and satellite 119 

observations—have not yet been brought together to compare attributes of historical and 120 

contemporary fire regimes. While fire-scar sites provide only a limited perspective on the area of 121 

historical high-severity fire, they stand as witness to centuries of recurrent low-severity fires, and 122 

where they have recently burned, provide a direct opportunity to assess changes in frequency 123 

and severity during the contemporary period.  124 

 125 

The purpose of our study is to bring together tree-ring records, satellite imagery, and field 126 

measures to ask: at sites where tree-ring records demonstrate that trees historically 127 

survived frequent low-severity fire for centuries, are contemporary fires burning 128 

differently? Specifically, we (1) quantify and contrast historical (1700-1880) and contemporary 129 

(1985-2020) fire frequency at 406 tree-ring fire-scar fire history sites (Fig. 1) to assess whether 130 

recent fires are occurring at frequencies that approach historical levels. Next, we (2) quantify and 131 

contrast historical and contemporary fire severity using satellite-measured burn severity and field 132 

data on tree mortality to derive a binary metric of severity: unlikely vs. likely mature tree mortality. 133 

Because historical fires left many surviving fire-scarred trees over decades and centuries prior to 134 

1880, with some trees surviving and recording as many as 41 fires over 180 years, it follows that 135 

those fires were characterized by predominantly low probability of tree mortality. We compare 136 

observed and satellite-measured fire-related tree mortality at these sites to inferred historical 137 

norms. Finally, given the strong rationale for reducing fire severity to sustain southwestern forests 138 

under climate warming25, we were also interested in assessing the extent to which varying 139 

contemporary fire management strategies (prescribed burn, managed wildfire, and full 140 

suppression) might be associated with different fire outcomes. Taken together, our findings are 141 
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intended to bear directly on the appropriateness, or lack thereof, of prescribed burning and 142 

managed wildfire to promote low-severity burning of southwestern dry forest ecosystems. 143 

 144 

Results 145 

 146 

Historical and contemporary fire frequency 147 

 148 

Trends in multidecadal fire activity across the full period of record (1700-2020) show a pronounced 149 

decline from historically frequent to near-zero fire for much of the 20th century, with recent 150 

increases yet to equal historical fire occurrence at regional and landscape scales (Fig. 2). Based 151 

on averages of fires per decade for all fire history sites, the mean site fire frequency was 0.87 fires 152 

per decade from 1700 to 1880. This rate dropped to <0.1 fires per decade between 1880-1985 153 

(equivalent to >100-year fire interval) and rose to an average of 0.17 fires per decade since 2000, 154 

though with considerable regional variation (Fig. 2). A comparison of mean fires per decade 155 

between the historical and contemporary periods indicates that 14.2% of sites have returned to or 156 

exceeded historical frequency since 1985, and 85.8% of sites are burning less frequently than 157 

historically. 158 

 159 

During the historical period, across all sites, 5150 individual trees recorded an average of 6.6 fires 160 

per tree (maximum 41; Fig. S3), with 1521 trees recording at least nine fires. Sites averaged 14.2 161 

fires (maximum 78; Fig. S3), with 102 sites recording at least 17 historical fires. During the 36-year 162 

contemporary period (1985-2020), 206 sites (50.7%) burned at least one time; 99 sites (24.2%) 163 

burned twice or more within that time frame, including 17 sites burning three or more times. One 164 

site in the Gila Mountains in New Mexico burned in five fires since 1985 and one site in the Rincon 165 

Mountains burned seven times. Contemporary fire occurrence varied by geographic area of fire 166 

history sites – generally higher in our field-sampled mountain ranges than elsewhere in the study 167 

area – with 55% of sites in the Jemez Mountains and 100% of sites burned in both the Kaibab 168 

Plateau and Chiricahua Mountains (Table 1). We were able to classify the type of fire and thus its 169 

management strategy for 89 (of 102) contemporary fires. Of those, 56 (62.9%) were suppressed 170 

wildfires (burning 243 fire history sites, including reburns), whereas 24 (27.0%) were wildland fire 171 

use fires (burning 51 sites) and 9 (10.1%) were prescribed burns (burning 15 sites).  172 

 173 

Historical and contemporary fire severity  174 

 175 

We conducted field surveys at 74 distinct fire history sites burned in contemporary fires, in which 176 

we were able to locate at least one fire-scar sampled tree, stump, or log at 25 sites (33.8%); we 177 

located multiple sampled trees at four sites, all in the Rincon Mountains (see Fig. S1 for images of 178 

fire-scarred stumps and trees). We found a range of fire effects at the field plots. Those with high 179 

burn severity as measured by CBI generally showed high tree mortality (Fig. 3). Overall, 14.9% of 180 

plots were devoid of live trees of any size, and 31.1% had no live overstory trees. These areas 181 

were often characterized by high dead and down fuel loads, especially in larger size classes, from 182 

the fire-killed forest. We observed that modern fires at many of sites had in fact completely 183 

consumed fire scarred material sampled by earlier researchers. At the low end of the severity 184 

gradient, plots contained intact tree canopies of mixed size- and age-classes, often displaying 185 

relatively light fuel loads, particularly on the Kaibab Plateau and in the Rincon Mountains, where 186 

the use of prescribed burn has been most abundant. 187 

 188 

To compare contemporary fire severity with the historical, low-severity fires that scarred but did not 189 

kill fire-recording trees, we developed a logistic regression model predicting tree mortality from 190 

contemporary satellite-measured CBI. Our model (Fig. S2) identified the 0.5 probability of overstory 191 

tree mortality (mortality more likely than not) at a modeled CBI threshold of 1.61. This value aligns 192 

closely with the 1.73 CBI threshold of 0.5 probability of ponderosa pine tree mortality in the Forest 193 

Inventory and Analysis data (FIA)50 from Arizona and New Mexico identified by Woolman et al.51. 194 
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Applying our 1.61 CBI threshold, 42.4% of the 206 sites that burned in the contemporary period 195 

had first-entry fires in which overstory tree mortality was more likely than not.  196 

 197 

We assessed associations between fire management strategy and contemporary burn severity, 198 

finding that 14.8% of sites in wildland fire use, 15.4% in prescribed burns, and 53.4% of sites in 199 

suppressed wildfires burned at severity levels exceeding 1.61 CBI (Fig. 4). Fire history sites burned 200 

in wildland fire use and prescribed burns burned significantly less severely than sites burned in 201 

suppressed wildfires (-0.9 and -0.8 units of AIC, respectively, linear mixed-effects model p<0.001, 202 

N = 302). Proportion of sites burning above the threshold for likely tree mortality varied by 203 

geographic area, from 0% on the Kaibab Plateau to 73.1% in the Santa Catalina Mountains (Table 204 

1). In contrast with the first contemporary fire, 35.7% of sites burned by second-entry fires and 0% 205 

of sites burned by third-entry fires exceeded the likely mortality threshold (these sites included 206 

areas that sustained live trees but also treeless areas where canopy trees had been entirely killed 207 

by the first contemporary fire). 208 

 209 

Discussion  210 

 211 

In this study, we brought together two large-scale, long-term datasets to quantify fire regime 212 

changes over the last three centuries in dry conifer forests of the southwestern US. At hundreds 213 

of tree-ring fire history sites, fire regimes were historically dominated by frequent and low-severity 214 

fires that effectively ended in the late 1800s. While the collapse of this fire regime and resulting 215 

changes to forests is well documented13,14,16, the extent to which recent increases in fire activity 216 

might fall within historical norms has not been rigorously analyzed. Here, we show that 217 

contemporary patterns of burning in dry conifer forests bear little resemblance to historical fire 218 

regimes in two important ways. First, despite rapid increases in fire activity observed over the last 219 

several decades52,20, fires are still burning far less frequently now than they were historically. 220 

Second, where stands of individual trees historically survived many fires over centuries, recent 221 

fires are anomalously lethal to trees.  222 

 223 

Although recent climate-driven increases in fire activity19 are evident across our study area, our 224 

findings highlight that fire is still very infrequent relative to historical norms. Based on ten-year 225 

moving averages of fires per decade, fire since 1985 is over 80% less common as it was 226 

historically, with fires burning at a rate of 0.17 per decade in the 21st century vs. 0.87 per decade 227 

over most of the 18th and 19th centuries. Many studies have demonstrated major decreases in 228 

modern fire frequency relative to historical ranges of variability in fire-adapted forests of the 229 

western US53,54. The causes of the decline in fire, including the removal of fine fuels following the 230 

onset of livestock grazing, cessation of Indigenous burning, and later direct fire suppression, are 231 

well understood55,56. Historical fire regimes across our study sites effectively ended in the late 19th 232 

century. Contemporary fire occurrence is approaching historical norms in some areas, with 15% 233 

of sites burning as frequently or more frequently than historically (though burn severity at these 234 

sites may be more severe, as described below). Notably, the return of fire occurred relatively 235 

early in the Rincon Mountains in southern Arizona, where progressive fire management was 236 

initiated in the 1970s57. Still, most sites are burning far less often than historically: as of 2020, half 237 

of our fire history sites had yet to burn in the contemporary period, attesting to a still growing fire 238 

deficit17,58.  239 

 240 

At fire history sites where fire has returned, contemporary burn severity is substantially higher 241 

than that recorded in the tree ring record. Of tree-ring fire-scar sites that burned, nearly half (42%) 242 

experienced fire effects that are more likely than not to be lethal to mature trees. While such 243 

events may have occurred occasionally at our sites over the historical period, they cannot have 244 

been as common as they are now. Fire history sites averaged 14.2 fires historically and individual 245 

trees recorded on average 6.6 fires. If these fires burned at moderate to high severities (CBI > 246 

1.61), trees would have a 50% probability of mortality in each fire, and the chance that a tree at 247 

such a site survives more than six fires is less than 1% (0.56.6 = 0.01). And yet regionally, more 248 
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than 5000 sampled trees survived to record the historical fires. Our empirical assessment that 249 

contemporary severity is much higher than historical norms is consistent with the interpretations 250 

of many previous studies33,34, and adds to a growing body of evidence that contemporary fires in 251 

southwestern forests have recently become more severe, not just in recent decades, but also in 252 

sharp contrast to events over recent centuries or longer59,60,61,23,62.  253 

 254 

Sites burned in suppressed wildfires exhibited higher severity than those burned in other fire 255 

types, likely related to the conditions under which those different fire types were burning, with 256 

prescribed and managed fires occurring under less extreme fire weather. Both prescribed burn 257 

and wildfires managed for resource benefit have been shown to moderate the severity of 258 

subsequent wildfires and sustain dry forest ecosystem function63,64,65,66,67. Second-entry fires also 259 

burned less severely than the first contemporary wildfire in our study, in accord with the findings 260 

of prior research68,65. 261 

 262 

Conclusions and management implications 263 

 264 

Our findings add to a growing body of evidence that contemporary fire regimes in southwestern 265 

dry conifer forests are anomalously infrequent and severe, supporting management interventions 266 

that restore the historical role of fire. These findings are in direct contrast to the assertion that 267 

burning patterns today are within the range of variability that occurred prior to Euro-American 268 

colonization35,36, an assertion that has been largely invalidated due to methodological 269 

inaccuracies and unsupported logical inferences44,45,69,33,70,34,61,71. By design, our study is not 270 

intended to assess the historical prevalence of high-severity fire in these systems, but our results 271 

clearly demonstrate that hundreds of fire history sites that burned frequently at low severity are 272 

now burning far less often, and far more severely, than they have for centuries. 273 

 274 

The clear management implications of our findings are the need to 1) promote low-severity fire, 275 

and 2) avert high-severity fire in settings where fire regimes have shifted. In ecosystems with 276 

markedly altered structure, function, and disturbance regimes, intentional and informed 277 

management strategies are essential41. Our findings support the increased use of prescribed burn 278 

and managed wildfire, burning under moderate climatic and weather conditions, to restore the 279 

historical role of fire. Where the risks of severe fire are particularly high (e.g., in the wildland 280 

urban interface or watersheds that provide critical surface water supplies), antecedent thinning 281 

and fuels reduction treatments may be essential prior to the restoration of low-severity fire18,72. 282 

Abundant previous research has demonstrated how prescribed burn and managed wildfire can 283 

achieve stated objectives73, emulate historical forest structure74, and increase forest resilience to 284 

future fire68. Unfortunately, prescribed fire in our study area and timeframe was even less 285 

prevalent than managed wildfire, and apart from the southeastern US, the application of 286 

prescribed burning has been decreasing in the past two decades75. Restoration of Indigenous fire 287 

stewardship and integration of diverse stakeholder collaboration offer two promising paths 288 

forward to expanding the ecological and social benefits of fire in sustaining ecosystem 289 

values76,41,72,77. However, regardless of management intensity, in the presence of warmer, drier, 290 

and more flammable future conditions, current approaches may be inadequate to maintain 291 

structure and function of dry forest ecosystems in the southwestern US78, highlighting the need to 292 

develop, test, and apply novel management strategies and tactics. 293 

 294 

Materials and Methods 295 

 296 

Study area 297 

 298 

Our southwestern US study area comprises the states of Arizona and New Mexico (Fig. 1). We 299 

focused on these states because of the recent increase in high-severity fire in this region24,22 and 300 

the availability of extensive tree-ring fire-scar records available through the North American tree-301 
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ring fire-scar network v1.1 (NAFSN)40. The climate of the study area is semi-arid, with bimodal 302 

precipitation peaking in winter (December to February) and during the summer monsoons (July to 303 

September), when portions of the region can receive > 50% of their annual precipitation79. Fire 304 

history sites used in this study range from 1552 to 3105 m elevation.  Dry forests are dominated 305 

by ponderosa pine and Douglas-fir and may also contain Arizona pine (Pinus arizonica), 306 

Southwestern white pine (Pinus strobiformis), white fir (Abies concolor), quaking aspen (Populus 307 

tremuloides), and rarely, Engelmann spruce (Picea engelmannii), piñon pine (Pinus edulis and P. 308 

monophylla), juniper (Juniperus deppeana, J. osteosperma, and J. scopulorum), and oak 309 

(Quercus spp., especially Q. gambelii). 310 

 311 

Historical fire records 312 

 313 

At the time of our analysis (2021), the NAFSN contained 2,562 fire-scar sites, including 600 in 314 

Arizona and New Mexico (https://doi.org/10.5066/P9PT90QX). Of the 600 sites, tree-level fire-315 

scar data with sufficient sample size (at least three trees, recording at least four fires between 316 

1700-1880) were available for 406 sites, which we refer to hereafter as our fire history sites (Fig. 317 

1; Table S1). To generate a single composite time series of fire occurrence at each site, we used 318 

the burnr package (v. 0.6.1)80 in the R statistical platform (v. 4.1.3)81, applying filters for minimum 319 

number of trees recording (two), minimum number of trees scarred (two), and proportion of trees 320 

scarred (0.10). 321 

 322 

Contemporary fire records 323 

 324 

We obtained fire perimeters from the Monitoring Trends in Burn Severity (MTBS) program46,82, 325 

which includes all fires over 1,000 acres (405 ha) in our southwestern study area occurring from 326 

1985 to 2019. To capture fires with acreage less than 1,000 and/or occurring in 2020, we 327 

acquired fire perimeters from the National Interagency Fire Center (NIFC)83. We intersected these 328 

fires with fire history site locations (Fig. 1), identifying 102 contemporary fires intersecting 206 of 329 

406 fire history sites. Fires ranged in size from 25 to over 538,000 acres.  330 

 331 

For each fire, we generated a gridded burn severity map, represented as modeled Composite 332 

Burn Index (CBI), using Google Earth Engine84 and code developed and distributed by Parks et 333 

al.85. CBI, which scales from 0 to 3, was developed as a field protocol for validating satellite-334 

derived burn severity one year after fire86 (Key & Benson, 2006), and can be modeled from 335 

satellite data85. We used modeled CBI as opposed to delta Normalized Burn Ratio (dNBR)46,47, to 336 

improve comparability across fires, sites, and years85. Satellite-measured CBI better predicts 337 

overstory ponderosa pine tree mortality in the southwestern US than dNBR51. Subsequently, we 338 

extracted CBI values at each fire history site for each overlapping recent burn. 339 

 340 

Field sampling 341 

 342 

To quantify tree mortality from contemporary fires, we sampled fire effects at a subset of fire 343 

history sites across a gradient of contemporary burn severity and fire management strategies. 344 

Data collection focused on six key geographic areas (Fig. 1, Table 1) where networks of fire 345 

history sites had been established prior to wildfires occurring over the past ten years (2011-2020): 346 

the Jemez87,88,89,90, Rincon45, Santa Catalina91,92, Pinaleño61, and Chiricahua 347 

Mountains93,94,95,96,97,98, and the Kaibab Plateau99. In the Jemez Mountains, sites are in Bandelier 348 

National Monument (including the Bandelier Wilderness), the Valles Caldera National Preserve, 349 

and the Santa Fe National Forest. The Rincon Mountain sites are mostly located in the Saguaro 350 

Wilderness (within Saguaro National Park), and about half of the sites on the Kaibab Plateau are 351 

in proposed wilderness in Grand Canyon National Park; the remaining sites sampled in Arizona 352 

are within the Coronado and Kaibab National Forests.  353 

 354 
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We relocated each fire history site and established a 10-m radius plot. If we found a tree or stump 355 

sampled in the original fire history data collection, the plot was centered at its location (see Fig. 356 

S1); if a sampled tree was not located (typically due to high severity fire effects), we centered the 357 

plot at the coordinates provided by the original researcher. Where we found multiple sampled 358 

trees or stumps at least 20 m apart, we installed a plot at each, for a total of 91 plots at 74 distinct 359 

fire history sites. For all trees in the field plots, we recorded tree diameter at breast height (dbh), 360 

species, and status (live or dead). We measured diameter and assigned species for downed logs 361 

and recorded an overall count of trees both live and dead, standing and down. A qualitative 362 

description of site conditions and photographic documentation (Fig. 3; Fig. S1) completed our site 363 

characterization. 364 

 365 

Data analysis 366 

 367 

Our first objective was to compare historical and contemporary fire frequency. Although some fire 368 

history sites recorded fires in the 1400s and earlier, a consistent record across all sites was not 369 

interpretable until around 1700. To generate a continuous time series of fire occurrence from both 370 

the site composites generated from site-level fire history data and contemporary fire dates from 371 

MTBS and NIFC, we cut off the dendroecological record at the year 1984, from which point 372 

(1985-2020) we appended the modern, satellite-derived fire record. Because the contemporary 373 

period was only 35 years and included relatively few fires (and even fewer reburns necessary to 374 

produce a fire intervals) compared with 180 years for the historical period (1700-1880), a direct 375 

comparison of mean fire return interval at individual fire history sites was infeasible. Instead, we 376 

calculated 10-year moving averages of fires at each site from 1700 through 2020, which we used 377 

to examine fire frequency trends across the entire time frame of our study.  378 

 379 

Our second objective was to compare historical and contemporary fire severity. To compare fire 380 

effects derived from two distinct types of evidence (tree-ring fire scars and satellites), we 381 

classified contemporary severity as a binary categorical variable related to mature tree mortality 382 

vs. survival, as follows: 1) unlikely tree mortality; consistent with a tree surviving to record fire 383 

scars, and 2) likely tree mortality, wherein trees are killed and thus would not record fire. To 384 

develop this classification, we generated a logistic regression model to identify the threshold 385 

above which probability of overstory tree mortality exceeds 0.5—in other words, trees are more 386 

likely than not to be killed. Using this 0.5 probability of mortality threshold avoids biasing our 387 

contemporary severity classification toward either a more conservative or liberal interpretation of 388 

severity. Our implicit assumption is that, for living trees at fire history sites to have recorded 389 

multiple short-interval fires without being killed, those fires must have predominantly burned 390 

below this threshold. To generate our 0.5 probability of mortality threshold (Fig. S2), we used site-391 

specific modeled CBI to predict field-measured overstory (dbh ≥ 12.7 cm) tree mortality from 834 392 

trees at 87 plots after filtering for size and our assessment of whether, if dead, they were killed by 393 

the most recent fire. Our use of trees ≥ 12.7-cm dbh to model the relationship between burn 394 

severity and tree survival is consistent with prior studies51, but also generally supported by the 395 

historical ages at which trees recorded fire scars (and thus demonstrate survival through 396 

historical fires), as follows. The median number of years between the pith ring (center) of the tree 397 

and the first fire scar across our data (n = 2215 trees with pith) was 47 years, which corresponds 398 

well with 35 years reported by Brown et al.100 and 52 years reported by Yocom and Fulé101. Given 399 

that most fire scar samples are collected at <30 cm above the ground, the years between pith 400 

and first fire scar may underestimate tree age by up to 5 years102,90; accordingly, we estimate the 401 

median tree age at first fire scar in our study to range between 47 and 52 years. Established age-402 

size relationships for ponderosa pine in Arizona (age = 10.4* dbh(cm)0.66)103, the most frequently-403 

sampled tree species, yield size estimates of 10-12 cm dbh for 47-52-year old ponderosa pine 404 

trees. Thus, we expect that historical fires were generally not lethal for trees ≥ 12.7-cm dbh for 405 

these trees to have recorded multiple fires over 5-10 decades beginning at ages between 47 and 406 

52 years. By species, trees included in this analysis were 29.1% ponderosa pine, 27.2% Douglas 407 

fir, 14.7% Southwestern white pine, 12.1% white fir, 9.1% Arizona pine, 4.9% quaking aspen, 408 
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1.9% Engelmann spruce, and less than 1% of other species. To assess the robustness of our 409 

results to the tree dbh cutoff used in this model, we also examined relationships between tree 410 

survival and CBI using larger cutoff values of 25.4 and 38.1 cm. We present both the satellite-411 

derived modeled CBI values of contemporary fires as well as the number of fires occurring above 412 

or below the tree mortality threshold.  413 

 414 

To assess associations between contemporary burn severity and management strategy, we 415 

classified fires by management type (suppressed wildfire, wildland fire use, and prescribed burn). 416 

This could not be determined for 13 fires (12.7%). For the wildland fire use category, we included 417 

wildfires listed as “resource benefit,” “prescribed natural fire,” or “managed for multiple uses,” 418 

depending on source and date as these terms were variously applied over the study period to 419 

refer to the same type of fire. We tested for differences in burn severity (CBI) between sites 420 

burned in suppressed wildfire vs. wildland fire use and prescribed burn using a linear mixed-421 

effects model with fire management strategy as a fixed effect and fire identity as a random effect. 422 

All analyses and data visualization were performed in R (v. 4.1.3)81. 423 
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Figures and Tables 724 

 725 

726 

Figure 1. Study area map showing locations of 406 tree-ring fire history sites in the southwestern 727 

United States analyzed in this study and contemporary fire history (1985-2020). 728 
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729 

Figure 2. Smoothed ten-year moving average of fires per decade from 1700 to 2020 for a) all 730 

tree-ring fire history sites in the southwestern United States (n = 406) and b) geographic areas 731 

targeted for field sampling (n = 226 total sites). The time series were created by combining tree-732 

ring fire scar records with contemporary fire perimeter data. Grey shading shows the standard 733 

error of mean fires per decade. 734 

 735 
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736 

Figure 3. Plot photographs from fire history sites across the spectrum of burn severity in six field-737 

sampled geographic areas: (a) Chiricahua, (b) Kaibab, (c) Pinaleño, (d) Santa Catalina, (e) 738 

Jemez, and (f) Rincon Mountains. The satellite-derived burn severity rating is given for each of 739 

these sites, in units of modeled Composite Burn Index (CBI), which scales from 0 (low-severity) to 740 

3 (high-severity), are given in the bottom left corner. Photo credit: E. McClure, S. Parks, & M. 741 

Kunkel. 742 

 743 
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Figure 4. Burn severity, quantified by modeled Composite Burn Index (CBI), for the first fire 745 

between 1985 and 2020 at tree-ring fire history sites in the southwestern United States. Burn 746 

severity is reported for all fire types, prescribed burns, suppressed wildfires, and wildland fire use 747 

fires. Sites were filtered by our ability to assign fire type and CBI value: n = 186 for all, 13 for 748 

prescribed burn, 146 for suppressed wildfire, and 27 for wildland fire use. Divisions correspond to 749 

standard CBI severity classes (Key & Benson, 2006) subdivided by thirds. The dashed line 750 

represents a CBI value of 1.61, corresponding to the threshold above which the probability of 751 

overstory tree mortality exceeds 50% (mortality more likely than not). 752 
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Table 1. The number of tree-ring fire-scar sites, field plots, contemporary fires, and the percent of 754 

tree-ring fire-scar sites burned from 1985 - 2020 in the southwestern United States and multiple 755 

sub-regions. 756 

 757 

Geographic area 
tree-ring fire 

scar sites 

 
 

field plots 
fires 

1985-2020 

% tree-ring 
sites burned 
1985-2020 

Chiricahua 17 5 5 100.0 

Jemez 100 25 19 55.0 

Kaibab 8 10 14 100.0 
Pinaleño 11 13 3 84.6 
Rincon 60 25 18 70.0 
Santa Catalina 30 13 5 96.7 
Other 180 0 38 23.9 

All 406 91 102 50.7 

 758 
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