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1. Abstract  
Logging operations are widespread across the Oregon Coast Range and conventional logging practices pose a 
risk of  contamination to surface water quality. The NASA DEVELOP Oregon Coast Ecological 
Conservation team partnered with nonprofit Oregon Wild to quantify the extent of  clearcutting and 
commercial thinning in 80 Coast Range drinking watersheds between 2000 and 2022. This project used all 
available Landsat data from 1997 through June 2023 in Google Earth Engine. Sensors used include Landsat 5 
Thematic Mapper, Landsat 7 Enhanced Thematic Mapper Plus, Landsat 8 Operational Land Imager, and 
Landsat 9 Operational Land Imager-2. The Continuous Change Detection and Classification (CCDC) 
algorithm was used with Landsat observations to identify clearcutting patches. Percent change in summer 
median Landsat Normalized Difference Vegetation Index (NDVI) images were used to identify areas of  
forest disturbance including commercial thinning. The team concluded that logging, including both 
clearcutting and commercial thinning, impacted 31% of  forested area in drinking watersheds and the intensity 
of  logging remained consistent from year to year. Clearcutting occurred primarily on private land while 
commercial thinning occurred primarily on state and federal lands. This study showed that CCDC effectively 
identifies clearcutting, and percent change in NDVI successfully identifies disturbances including commercial 
thinning. Key constraints included the lack of  field validation data and the inability to attribute disturbances 
to logging with certainty. Ultimately, this study identified the drinking watersheds and communities most 
likely to be impacted by logging activity. These results can inform legislation aimed at balancing the 
commercial and environmental benefits of  forestlands. 

Key Terms 
Logging, Watershed, Drinking Water Quality, Landsat, Continuous Change Detection and Classification, 
Google Earth Engine, Oregon Coast Range, NDVI 

2. Introduction 

2.1 Background Information 
In Oregon, surface water accounts for approximately 70% of  all water use and nearly 3.5 million Oregonians 
in both rural and more densely populated municipalities like Portland, Salem, Eugene, Medford, and Bend 
rely on surface water for some or all of  their supply (Souder, 2021; Oregon Department of  Environmental 
Quality, 2018). As surface water flows across the landscape, it is vulnerable to contamination from both 
natural and anthropogenic sources. According to the Oregon Department of  Environmental Quality, natural 
causes of  drinking water impairment in Oregon include landslides, streambank erosion, and riparian or 
upland disturbance due to fire and extreme weather (2018). Common sources of  anthropogenic pollution 
include urban stormwater runoff, municipal and industrial wastewater, mining sites, animal management 
areas, wastewater systems, agricultural practices, construction sites, and forestry operations (Oregon 
Department of  Environmental Quality, 2018).  

In Oregon, forests play an important role in protecting surface waters from contamination by preventing 
erosion and filtering rain and snowfall before delivering it to streams. Although forestry practices designed to 
minimize impact to water quality have improved significantly in recent decades, conventional logging 
practices like clearcutting, particularly in riparian zones, and short logging cycles pose a significant threat to 
water quality across the state (Souder, 2021). In 1996, Congress expanded the Safe Drinking Water Act to 
include drinking water source protection. Since then, community drinking water systems have moved from a 
framework focused on treatment to one that recognizes the importance of  prevention. Studies show that 
prevention activities, particularly water source protection, effectively lower treatment and maintenance costs 
and reduce the risk associated with contaminants where regulatory standards and monitoring capacity may be 
limited (Freeman et al., 2008; U.S. Environmental Protection Agency, 2023).  

In this context, the goal of  this study was to use Earth observations to understand the extent of  clearcutting 
and commercial thinning in Oregon’s coastal drinking watersheds from 2000 to 2022. Ultimately, the results 
of  this study will help inform decision-making related to water source protection and logging. This study 
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defines clearcutting as the removal of  all trees in an area exceeding two acres. Commercial thinning practices 
vary widely, ranging from partial thinning of  forest cover to small patch removal. This analysis focused on 80 
drinking watersheds in the Oregon Coast Range ranging from 0.04 to 924 square miles in size (Figure 1). The 
Oregon Coast Range is a mountainous region west of  the Willamette Valley and is characterized by a mild 
climate with a very wet winter season and relatively dry summers, with an average yearly precipitation of  over 
100 inches (Oregon Department of  Environmental Quality, 2018). The land cover in this region is dominated 
by temperate coniferous forests, with common tree species including Douglas fir, western hemlock, western 
redcedar, and Sitka spruce. Industrial private companies—primarily timber companies—are the largest 
landowners in this region, followed by the US Forest Service and Bureau of  Land Management. Most of  the 
remaining area is managed by private non-industrial owners or the State Department of  Forestry (U.S. Bureau 
of  Land Management, 2023). In recent decades, logging regulations have restricted clearcutting on national 
forestlands. In contrast, conventional logging practices like clearcutting have become more prevalent on 
privately owned land (Kennedy & Spies, 2004). 

 
Figure 1. Locations of  drinking watersheds within the Oregon Coast Range (modified from Oregon Wild). 

The Willamette Valley contains the cities of  Portland, Salem, Corvallis, and Eugene, and is otherwise 
comprised mostly of  agricultural land.  

Given the clear link between forest management and drinking water quality (Shah et al., 2022), there is a need 
to map and monitor logging activity on the Oregon Coast, particularly in drinking watersheds. Temporal 
segmentation approaches like the Continuous Change Detection and Classification algorithm (CCDC) and 
LandTrendr have been widely used to monitor forest disturbances and degradation across a range of  forest 
types (Chen et al., 2021; Kennedy et al., 2010; Pasquarella et al., 2018; Sulla-Menashe et al., 2014). CCDC 
incorporates all available Landsat data to generate pixel-level timeseries that account for seasonality and 
interannual trends in surface reflectance and brightness temperature (Zhu & Woodcock, 2014). One of  the 
primary optical remote sensing challenges for the Oregon Coast Range is frequent cloud cover, particularly in 
the winter months. A pixel-based approach like CCDC effectively addresses this challenge of  obtaining cloud-
free imagery by using any cloud-free pixel regardless of  the overall scene cloud cover instead of  relying on a 
limited number of  entirely clear scenes like many other satellite-based approaches (Zhu & Woodcock, 2014). 
In temperate regions, like the Oregon Coast Range, satellite-based forest monitoring is also complicated by 
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seasonality including both phenology and changes in precipitation. Recent research publications show how 
CCDC incorporates seasonality and subtle degradation trends, making it an appropriate method for 
monitoring logging in temperate forests (Chen et al., 2012; Pasquarella et al., 2018). Following these 
applications, the DEVELOP team implemented CCDC from 2000 to 2022 across the Oregon coast to map, 
quantify, and assess the extent of  clearcutting in 80 drinking watersheds.  

Note that fires, like clearcutting, also remove the majority of  trees over large areas. As a result, fires cannot be 
distinguished from logging using a method like CCDC that relies on changes in surface reflectance alone.  
To be able to identify clearcutting with a high degree of  certainty, the project team confirmed that there were 
no major fires in the study watersheds. Another form of  logging that occurs along the Oregon Coast Range is 
commercial thinning. This logging treatment is characterized by the partial removal of  trees in an area of  2 
acres or more, as opposed to the full removal of  vegetation associated with clearcutting (Wilson and Sader, 
2002). Since the Normalized Difference Vegetation Index (NDVI) is a common measure of  vegetation 
presence and often used to monitor forest change, the team chose this index to be the foundation for the 
thinning analysis (Lunetta et al., 2002; Mancino, et al., 2014; Sader, Bertrand and Wilson, 2003).  

2.2 Project Partners & Objectives 
The Oregon Coast Range Ecological Conservation team partnered with Oregon Wild, a non-profit 
organization founded in 1974, whose mission is to protect Oregon’s wildlife, rivers, and forests. They are a 
vocal advocate for sustainable forest management practices and engage with the community through public 
education, lobbying, volunteer opportunities, and activism (Oregon Wild, n.d.). In recent years, one of  their 
primary focuses has been to counter erosion and improve drinking water quality by promoting legislation that 
establishes riparian buffer zones around water bodies that feed into community drinking water sources. While 
there is some public awareness of  logging activity and its impact on water quality, the magnitude of  the 
problem is not wholly understood (Oregon Wild, n.d.). In this context, the team’s main objective is to provide 
spatiotemporal information on the extent of  clearcutting and commercial thinning on the Oregon coast 
through the creation of  watershed level logging maps and summary statistics to help Oregon Wild educate 
the public and assist upcoming forest management legislation.  

3. Methodology 

3.1 Data Acquisition  
To run CCDC, the team accessed all available Tier 1 top-of-atmosphere reflectance Landsat data for the study 
region from 1997 to June 2023 in Google Earth Engine (US Geological Survey, 2013). Landsat data has a 30-
meter spatial resolution and a 16-day temporal resolution. To create a forest mask for the study region, the 
team downloaded National Land Cover Database (NLCD) tree canopy cover data for 2001 from the USGS 
ScienceBase Catalog and 2011, 2016, and 2021 NLCD tree canopy cover data from the USFS FSGeodata 
Clearinghouse (U.S. Geological Survey, 2003; U.S. Forest Service, 2014, 2019, 2023). The team also 
downloaded NLCD 2006 land cover data from the USGS ScienceBase Catalog when tree canopy cover data 
were not available as a separate layer (U.S. Geological Survey, 2011). NLCD data are currently produced as a 
raster layer with a 30-meter resolution based on Landsat and Sentinel-2 data and are commonly used for land 
cover change analysis. To help validate results and set thresholds, the team used National Agriculture Imagery 
Program (NAIP) images from 2020 and 2022 (USGS EROS Archive, 2023). Oregon Wild also provided the 
team with a shapefile of  drinking watersheds which was used for reporting forest cover and logging activity 
statistics by watershed ownership type based on the Oregon Department of  Forestry public land 
management layer (Oregon Department of  Forestry, 2016). 

Table 1. Earth observations used for analysis 

Platform and Sensor Data Product Dates Acquisition Method

Landsat 5 Thematic 
Mapper

Level 2, Collection 2, Tier 1 Top 
of  Atmosphere Reflectance

January 1997 to June 
2013

Earth Engine Data 
Catalog/USGS
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3.2 Data Processing 
3.2.1 CCDC 
Before running CCDC, the team retrieved all available Landsat images and corresponding surface reflectance 
values for the specified study region and period (Table 1). To facilitate working with an algorithm as data 
intensive as CCDC, the project team took advantage of  a suite of  CCDC visualization and pre-processing 
tools developed by Paulo Arévalo and Eric Bullock on Google Earth Engine (Arévalo et al., 2020). One of  
the tools in this suite allowed the team to filter images for clouds, shadows, and haze and merge them into a 
single Image Collection. Using this suite of  tools not only greatly simplified preprocessing but also allowed 
the team to quickly visualize CCDC timeseries and outputs before running the algorithm over the full study 
area (Arévalo et al, 2020). 

After pre-processing, the team ran the CCDC algorithm over the entire filtered image collection from 1997 to 
June 2023. Observations from before 2000 and after 2022 were included so that CCDC could fit more 
accurate regression models at the edges of  the study period of  2000-2022. To avoid processing errors, the 
team divided the study area into 36 units and processed CCDC in sections before creating an aggregated 
mosaic. As CCDC detects model breaks based on multiple bands, the team used all Landsat bands aside from 
blue, which can be affected by aerosols, and thermal bands, which are not commonly used to detect forest 
degradation, to identify breaks (Arévalo et al., 2020). Breaks are inserted when six or more consecutive 
observations deviate from the predicted value. After a break is inserted, the algorithm generates a new 
harmonic regression model (Figure 2). While CCDC parameters can be adjusted to make the model more or 
less sensitive to change, the team followed the default parameters outlined in Arévalo et al. (2020). The 
resulting CCDC product is a 23-band image of  outputs including the model slope, amplitude, largest break 
magnitude for each band, and date of  largest break, which can then be used to distinguish land cover change 
from natural variability. At this stage, the team took advantage of  the tools developed by Arévalo et al. (2020) 
to explore the results and extract meaningful information on forest loss from the CCDC image.  

Figure 2. A CCDC time series showing shortwave infrared measurements (blue) and resulting harmonic 
regression models (red, yellow) for a study area pixel that was clearcut in 2004.  

3.2.2 Forest Mask 
After running CCDC for the study area, the team applied a forest mask to the 23-band image to remove non-
forested areas from further examination. The team created the forest mask using NLCD land cover layers in 
5-year increments over the study period (U.S. Geological Survey, 2003, 2011; U.S. Forest Service, 2014, 2019, 

Landsat 7 Enhanced 
Thematic Mapper +

Level 2, Collection 2, Tier 1 Top 
of  Atmosphere Reflectance

January 2000 to 
present

Earth Engine Data 
Catalog/USGS

Landsat 8 Operational 
Land Imager

Level 2, Collection 2, Tier 1 Top 
of  Atmosphere Reflectance

February 2013 to 
present

Earth Engine Data 
Catalog/USGS

Landsat 9 Operational 
Land Imager – 2 

Level 2, Collection 2, Tier 1 Top 
of  Atmosphere Reflectance

September 2021 to 
present

Earth Engine Data 
Catalog/USGS
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2023). For the tree canopy cover raster layers, pixel values represent the percent of  pixel area forested. To 
convert this to a binary layer, the team labeled pixels that were at least 40% forested as forest and considered 
those below this threshold non-forest. For the NLCD 2006 land cover layer, where a tree canopy raster was 
not available, the team aggregated pixels labeled as “deciduous forest,” “coniferous forest,” and “mixed 
forest” to forest, and labeled all others non-forest. The team merged all resulting binary forest rasters to 
create the forest mask, which represents the maximum forested extent over the study period (“Forest” in 
Figure 1). 

3.2.3 Extracting CCDC Model Break Information 
After applying the forest mask to the CCDC image, team members extracted single-band images, visualizing 
the date and magnitude of  the largest model break for the shortwave infrared band (SWIR1). The team 
selected model breaks based on the SWIR1 band as it captures changes in dense vegetation and is frequently 
used when analyzing forest change with CCDC (Chen et al., 2021). The pixel values for the magnitude image 
ranged from -0.15 to 0.15, where negative values represent forest growth and positive values represent forest 
loss or degradation. The accuracy of  CCDC results in identifying patches of  clearcutting by year is visualized 
in Appendix A1.   

3.2.4 CCDC Post-Processing 
To isolate areas of  clearcutting within the study region and period, the team implemented several masking 
techniques. First, the team removed areas where the year of  the largest model break was either before 2000 or 
after 2022. Next, the team masked pixels where the largest break magnitude was less than 0.075, indicating no 
change or forest regrowth. This threshold was selected based on visual comparison of  pixel magnitude with 
annual Landsat median images. To reduce noise, the team then applied another mask to remove groups of  
less than 9 connected pixels, representing a 2-acre area. This threshold was set based on partner knowledge 
that commercial clearcutting events are almost always larger than 2-acres. Finally, the team filled small gaps of  
1 or 2 pixels within larger clearcut patches since these small areas were functionally part of  the clearcut event. 

3.2.5 Landsat Summer Median NDVI Images 
To identify commercial thinning, the team used NDVI. To do this, the team obtained cloud-free Landsat 
images over the study period, then created median NDVI images with a composite period including the 
summer months of  June, July, and August for each year in Google Earth Engine. NDVI is a vegetation index 
frequently used to assess forest change calculated with the near infrared and red bands (Equation 1; Rouse et 
al., 1974). The team only included summer months in these composite images to reduce the effect of  
seasonality.  

 

(1) 
3.2.6 NDVI Percent Change and Post-Processing  
Next, the team created images showing the percent change in NDVI year-to-year (Equation 2). The team 
applied several masks to identify disturbance areas likely to be commercial thinning. Based on visual 
comparison with Landsat and NAIP true color imagery, the team defined substantial forest loss as less than 
-8% change in NDVI. Pixels that did not meet this threshold were removed. Second, the team removed any 
patches under 2-acres since, like clearcutting, commercial thinning is unlikely to be applied to areas below this 
threshold. Given that clearcut areas also have significant NDVI loss, initial thinning and clearcutting results 
overlapped considerably. To avoid double counting logging activity as both commercial thinning and 
clearcutting, the team removed areas the CCDC analysis identified as clearcutting from the thinning layer. As 
thinning can span over two years but is unlikely to happen more than once during the study period, the team 
removed pixels that had been flagged as potential thinning in more than two years. Visual interpretation 
confirmed that these areas are frequently non-forest landcover like shrublands or floodplains which 
experience frequent NDVI fluctuation. In instances where thinning was detected in two years, the team 
attributed thinning to the year with the greatest NDVI loss. The team’s methodology in identifying areas of  
commercial thinning is demonstrated in Appendix A2. 

NDVI  =
NIR − RED
NIR + RED

 5



A N N I V E R S A R Y

   

 
(2) 

3.3 Data Analysis 
The team calculated zonal statistics for each drinking watershed in the study area, including total area, forest 
area, percent forested area, area clearcut each year from 2000-2022, and percent of  forested area clearcut each 
year. Additionally, team members calculated the same zonal statistics for the following land ownership types 
within the drinking watersheds: private, federal, state, local, and tribal. Next, the team calculated the area 
thinned each year and the percent of  forested area thinned each year for each drinking watershed and land 
ownership type. Yearly totals for watershed and ownership type clearcutting and thinning estimates were then 
summed to find the total area clearcut or thinned over the 22-year study period.  

In discussion with partner organization Oregon Wild, the team determined that commercial thinning 
operations do not typically occur on privately managed lands. Functionally, the primary logging activity on 
private land is clearcutting, and little to no commercial thinning. However, this analysis identified thinning 
around the edges of  clearcuts within private land. Given the 30-meter spatial resolution of  a Landsat pixel, 
these thinning pixels represented the area at the edge of  a clearcut where the forest was partially removed. 
While these edge areas experienced a substantial decrease in NDVI, this decrease is not attributable to 
commercial thinning. Therefore, the team also calculated zonal statistics by watershed and land ownership 
type with thinning on private land removed.  

To estimate total area impacted by clearcutting and thinning, the team dissolved the watershed layer to create 
a new layer of  the maximum extent of  all watersheds and then calculated global zonal statistics. This was 
necessary as some watersheds were nested or overlapping, therefore summing the logging area of  all 
watersheds would overestimate the total effected area. Finally, the team summed the area clearcut with area 
thinned to estimate total area logged, and summed percent of  forest area clearcut and thinned to estimate the 
total percent of  forest area logged.  

4. Results & Discussion 
4.1 Analysis of  Results 
4.1.1 Clearcut Results 
The team’s analysis on clearcutting found that 26% of  the forested area within the 80 selected watersheds 
experienced clearcutting between 2000 and 2022. This is equivalent to approximately 584 square miles of  
land. The team found that the amount of  clearcutting that occurred year to year remained relatively stable at 
around 1% of  forested area, or 25 square miles, per year. As shown in Table 2, the majority of  the study 
area’s watersheds had less than 50% of  their area clearcut over the study period. 35 of  the 80 watersheds had 
25 - 50% of  their forest area clearcut. Meanwhile, only 4 of  the observed watersheds had more than 50% of  
their forest area clearcut. The watershed with the most clearcutting was Rockaway Beach where 78% of  the 
forest area was clearcut over the study period.  

Table 2. Results identifying the number of  watersheds characterized by different percentages of  clearcutting. 

Per cent Ch a nge =
NDVI Year 2  −  NDVI Year 1

NDVI Year 1
× 100
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Oregon Wild gave the team a list of  seven focus watersheds (Appendix B), including the watershed that 
supplies Seaside, a coastal city located in the northern region of  the project’s study area with a population of  
around 7,000 (U.S. Census Bureau).  Here the team found that 56% of  the watershed, or 30 square miles, was 
clearcut between 2000 and 2022 (Figure 3). Approximately 2.5% of  the watershed’s forest area was clearcut 
each year over the study period. This watershed is a good example of  the long-term rotational logging 
common within drinking watersheds. 

 
Figure 3. 2000 – 2022 clearcut forest clearcut date map for the watershed supplying the city of  Seaside, OR. 

4.1.2 Commercial Thinning Results 
The team found that 5.6%, about 352 square miles, of  forested area in the 80 drinking watersheds was 
thinned. One of  the primary disturbances in the Oregon Coast Range is commercial thinning, which happens 
mainly on federal and state land. The rate of  forest thinning remained relatively consistent from 2000-2022 at 
a rate of  0.7%, or 5 square miles, yearly across the total study area. As evident in Table 3 thinning impacted 
less than 10% of  forest area in 33 watersheds, 10-25% in 41 watersheds, and over 25% in the remaining 5 
watersheds.  

As previously mentioned, the team performed additional zonal statistics after removing the thinning areas 
from private lands. These results more accurately reflect the reality of  logging in the Coast Range. 
Commercial thinning results excluding thinning on private land found that 5%, 113 square miles, of  the study 
area was thinned. Of  the 80 watersheds, 65 experienced under 10% commercial thinning, 12 experienced 
10-25% thinning, and the remaining 3 watersheds experienced 25-50% thinning (Table 3). 

% of  Watershed Clearcut Number of  Watersheds 

0 - 10% 23

10 – 25% 18

25 – 50% 35

50 – 75% 2

75 – 100% 2
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Table 3. Results identifying the number of  watersheds characterized by different percentages of  commercial 
thinning. 

After discussion with the partner organization and reviewing watershed level statistics across the study area, 
the team elected to highlight the four contiguous drinking watersheds serving Lincoln City, OR (Figure 4). 
Lincoln City is a small coastal community with a population just under 10,000 (U.S. Census Bureau). The 
team found that of  the 60 square miles of  forested area in Lincoln City, 5%, or 3.2 square miles, had been 
commercially thinned over the study period. 

 
Figure 4. Areas of  commercial thinning by year in Lincoln City drinking watershed. 

4.1.3 Total Results & Ownership 
After running zonal statistics on the 80 watersheds, the team found that 31% of  the study area was impacted 
by logging, including both clearcutting and commercial thinning. Of  this total, 26% of  forested areas were 
clearcut and 5% were identified as commercial thinning. Overall, 58% of  forest area in Seaside’s drinking 
watershed was logged and 34% of  forest area in Lincoln City’s drinking watersheds was logged (Figure 5). See 
Appendix B for logging estimates for all seven focus watersheds including Seaside, Lincoln City, Yamhill, 
Yachats, Willamina, Rockaway Beach, and Hillsboro. 

% of  Watershed 
Thinned

Number of  Watersheds Number of  Watersheds (Excluding 
thinning on private land) 

0 — 10% 33 65

10 — 25% 41 12

25 — 50% 5 3

50 — 75% 1 0

75 —100% 0 0
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Figure 5. Areas of  clearcutting and thinning in Seaside and Lincoln City drinking watersheds. 

In addition to quantifying logging by watershed, the team considered five land ownership types within the 
maximum extent of  the 80 study drinking watersheds including private, federal, state, local, and tribal lands 
(Figure 6). These results show that clearcutting is more common on private land than land owned by federal 
or state agencies, while commercial thinning is more prevalent on Oregon state land (Table 4). While a large 
percentage of  locally owned and tribal land experienced logging activity, these classifications account for a 
very small proportion of  the study area, respectively 2% and 0.2%, and so results for these ownership types 
should be taken with a degree of  caution. 
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Figure 6. Land ownership in each of  the observed watersheds. 

Table 4. Results identifying the percentage of  different logging practices for each land ownership type.  

*As previously explained, results identifying thinning on private land can mostly be attributed to clearcutting 
and so the team did not count thinning in these areas. 
**Percentages based on very small areas. 

4.1.4 Errors and Uncertainties 
While performing analysis and exploring results, the team encountered several points of  uncertainty and 
potential error. To set thresholds and mask the initial CCDC and NDVI outputs, the team relied on visual 
comparison of  Landsat and high-resolution NAIP imagery as well as qualitative information from Oregon 
Wild. For instance, as part of  the clearcutting analysis, the team set a threshold of  0.075 SWIR1 reflectance to 
mask out pixels where the magnitude of  the largest CCDC model break was not large enough to be classified 
as a clearcut. While this threshold looked appropriate based on a visual assessment, the threshold may have 
been set more accurately using field validation points.  

Land Ownership % Clearcut % Thinned Total % Logged 

Federal 3% 12% 15%

State 18% 24% 42%

Private 42%  0% * 42%

Local** 13% 18% 31%

Tribal** 18% 27% 45%
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It’s also important to note that results cannot be attributed to logging with certainty given that the 
methodology relies on changes in surface reflectance which may be prompted by a range of  disturbances like 
fires, landslides, and windstorms. This uncertainty is especially relevant to commercial thinning analysis, as the 
change in landcover related to thinning events, and thus reflectance, is subtle. The forest mask introduced an 
additional source of  uncertainty. The team identified forested areas by creating a mask that combined NLCD 
tree canopy cover data over the study period. This data had a spatial resolution coarser than Landsat data and 
some non-forest areas were included. Additionally, as the forest mask combined tree canopy layers over a 20-
year period, the mask includes some areas that were only forested for a short period. These areas may 
introduce error for years where they are not forested. This was particularly visible in the commercial thinning 
analysis for places with substantial NDVI fluctuation like shrublands or riverbeds.  

Additional uncertainties include the underestimation of  clearcut areas in 2022. Despite using all available 
Landsat data from 2023, the CCDC algorithm did not have enough observation points to accurately detect 
model breaks at the end of  the study period. Lastly, the Landsat 7 ETM+ scan line error was visible in the 
results of  the commercial thinning analysis. This is a common problem in remote sensing analysis. There 
were thus limited observations across the study period resulting in banding and likely overestimation of  
commercial thinning for years that rely on Landsat 7 data alone. A common solution to this error after 2015 
would be to supplement the analysis with Sentinel-2 observations.  

4.2 Feasibility Assessment 
This project successfully used Landsat satellite data to quantify and map logging across two decades. The 
team found that the CCDC algorithm is an effective method to identify clearcut areas in the Oregon Coast 
Range, and that using Landsat provides CCDC with sufficient observations to accurately map the date of  
occurrence for clearcut events. Although running CCDC is computationally intensive, the visualization suite 
created by Arévalo et al. (2020) allows users to create time series showing land cover change on-the-fly for 
any area in the world, as well as map the magnitude and timing of  change. While this tool is beneficial for 
exploratory analysis, the maps, animations, and summary statistics produced by the team can aid Oregon Wild 
in informing legislation and heightening public awareness of  logging in drinking watersheds.  

In addition, the team found that percent change in NDVI is an effective metric for identifying subtle forest 
disturbances in the Coast Range, including commercial thinning. However, without appropriate validation or 
additional data and analysis, it is not possible to attribute these disturbances to a commercial thinning event 
with certainty. 

By focusing on drinking watersheds in the Oregon Coast Range, the team was able to identify watersheds 
most impacted by logging. This will allow Oregon Wild to focus public education campaigns on communities 
whose drinking water may be at risk of  contamination due to logging activity in their drinking watersheds. 
Logging estimates by ownership type will also benefit Oregon Wild. For instance, the team found that a 
relatively high percentage of  thinning occurred on state land, which could help the partner inform legislation 
that regulates logging on state land. 

4.3 Future Work 
The most important next step would be to validate the results of  this study using field data in conjunction 
with high resolution imagery. Although the methods consistently and accurately identified clearcutting and 
commercial thinning patches, the degree to which forest loss resulting from natural disturbances was 
misidentified as logging is unknown. Field validation sites, particularly in areas affected by disturbances such 
as floods and landslides, would help to refine the methodology. 

Oregon Wild could additionally apply the team’s analysis to other forested regions in Oregon, with the caveat 
that this method may be less appropriate for areas where severe wildfires are common. This study’s 
methodology could also be used to quantify and map logging before 2000 or update results as more recent 
data becomes available. To further build off  these results, water quality should be monitored in heavily logged 
watersheds. This could provide insight into the relationship between water quality and logging on the Oregon 
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coast. In addition, future studies could estimate the carbon impacts associated with logging using remotely 
sensed space-borne data such as aboveground biomass density data from Sentinel-1 and the Global 
Ecosystem Dynamics Investigation (GEDI).  

5. Conclusions 
This project also quantifies the extent of  logging by land ownership type. The team found that clearcutting 
occurred predominantly on private land, 42% of  forest area on private land was impacted by logging activity, 
and that commercial thinning mainly took place on areas owned by the state or federal government. CCDC 
proved to be an effective method for identifying areas of  clearcutting in the Oregon Coast Range. While 
percent change in NDVI was a suitable tool to identify commercial thinning, the team concluded that it was 
hard to attribute changes in NDVI to commercial thinning as opposed to other disturbances. This led to 
likely overestimation in the commercial thinning results that would require future field validation to amend 
errors. 

Ultimately, this research will increase transparency regarding the extent of  logging on public and private land
—information that is often difficult or impossible for the public to access. Oregon Wild can use the results 
of  this study to increase community awareness and help forest stakeholders make informed decisions about 
where and how logging occurs, particularly in drinking watersheds.  
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7. Glossary 
CCDC – Continuous Change Detection and Classification 
Clearcutting –the removal of  all trees in an area of  2 acres or more 
Commercial thinning – partial removal of  trees in an area of  2 acres or more 
Drinking watershed – Area over which surface water flows to reach a single outlet point used to source 
drinking water, such as a reservoir 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
ETM+ – Enhanced Thematic Mapper Plus; sensor on Landsat 7 satellite capturing 8 spectral bands 
MODIS – Moderate Resolution Imaging Spectroradiometer 
NDVI – Normalized Difference Vegetation Index 
NIR – near infrared spectral band 
OLI – Operational Land Imager; sensor on Landsat 8 satellite capturing 9 spectral bands 
OLI-2 – Operational Land Imager 2; sensor on Landsat 9 satellite capturing 9 spectral bands, replica of  OLI 
NIR – near infrared spectral band 
Riparian – adjacent to a river 
SWIR – shortwave infrared spectral band 
TM – Thematic Mapper; sensor on Landsat 5 satellite capturing 7 spectral bands 
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9. Appendices 

Appendix A: Examples of  Logging on the Oregon Coast Range 

Figure A1: True color images of  an example of  clearcutting and identified using CCDC in purple. 

Figure A2: True color images of  an area, seen in yellow, identified as commercial thinning using percent 
change in NDVI as derived from NAIP. Heavily thinned patches are counted as clearcutting, visualized in 
purple.  
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Appendix B: Total Logging Results for Highlighted Watersheds 
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Figure B1: Maps of  highlighted watersheds chosen by 
Oregon Wild displaying CCDC clearcutting results 

by year and total commercial logging for the 
following watersheds: Hillsboro, Rockaway Beach, 

Willamina, Yachats, and Yamhill, Seaside, and 
Lincoln City. 
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Appendix C: Total Logging on the Oregon Coast Range 

 
Figure C1: Map of  total logging, including clearcutting and commercial thinning, within the 80 watersheds in 

the team’s study area.
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