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Abstract 

The North Pacific Ocean is warming and overall Pacific salmon abundance is higher now than at any other time in the past century. 
This increase in abundance is in large part due to warming-related changes in marine ecosystems at northern latitudes that primarily 
benefit pink salmon, and industrial-scale hatchery production to support commercial fisheries. A large body of evidence indicates 
that increasing and more variable ocean temperatures, as well as competition among salmon at sea, are associated with shifts in 

salmon productivity, body size, and age at maturation. However, these relationships vary by species, location, and time, resulting in 

increased harvest opportunities in some regions and exacerbated conservation concerns in others. The weight-of-evidence suggests 
North Pacific salmon nations should, as a minimum, limit further increases in hatchery salmon production until there is a better scientific 
understanding of hatchery and wild salmon distribution at sea, how they interact, and how the consequences of these interactions are 
influenced by broader climate and ecosystem conditions. Coordinated research to overcome knowledge gaps and develop strategies to 

reduce unintended interactions between hatchery and wild salmon could be funded (in part) by a tax placed on industrial-scale hatchery 
salmon releases. A tax would formalize recognition that there are finite prey resources to support salmon in the ocean and that both 

prey and wild salmon represent a “common property” whose use should not be without cost to those that seek to benefit from them. We 
highlight additional approaches salmon nations can take to adapt to changing conditions and suggest that improved communication 

and collaboration among North Pacific salmon research and management agencies will be key to balancing the benefits and risks of a 
warming and more crowded ocean. 
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A warming and more crowded North Pacific 

Ocean 

The North Pacific is getting warmer and experiencing more 
frequent temperature extremes (Laufkötter et al. 2020 ), both 

on its surface ( Fig. 1 ) and at depth (Reagan et al. 2024 ). Re- 
gionally, consistent with Arctic amplification of global warm- 
ing, ocean warming is occurring faster at northern latitudes 
than equatorial ones, with the Arctic Ocean warming at four 
times the global average (Rantanen et al. 2022 ). Ocean warm- 
ing can now be unequivocally linked to humans, as illustrated 

by climate attribution studies that indicate recent sea surface 
temperatures at the North Pacific scale have reached levels 
that would have been virtually impossible in the preindustrial 
(1800s) climate (Litzow et al. 2024 ). 

Coincident with ocean warming, there are now, on aver- 
age, more salmon in the North Pacific than at any time in the 
past century ( Fig. 2 ), with 2018, 2019, 2021, and 2023 as four 
of the highest abundance years on record since 1925. In the 
North Pacific, abundances (i.e. number of salmon that survive 
to become adults) are dominated by three species: pink ( On- 
corhync hus g orbusc ha) , chum ( O. k eta ), and sockeye salmon 

( O. nerka ). Other species [i.e. chinook ( O. tshawytscha ), coho 

( O. kisutch ), and masu salmon ( O. masou ), and plus steel- 
head trout ( O . m ykiss )] constitute < 5% of the total abun- 
dance (Ruggerone and Irvine 2018 ). While the majority of 
g
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hese salmon are of natural origin, ∼25% of recent numerical
stimates of adult pink, chum, and sockeye abundance are of
atchery origin (Ruggerone and Irvine 2018 ). When converted 

o biomass and including immature fish, hatchery-produced 

sh (primarily chum salmon that are larger and rear for longer
n marine waters than most other salmon) represent ∼40% 

f total salmon biomass in the North Pacific (Ruggerone and
rvine 2018 ). 

acific salmon responses to warming and 

ompetition vary in space and o v er time 

 large body of evidence indicates that salmon growth and
urvival are associated with ocean temperatures and oceano- 
raphic processes. For example, salmon survival has been re- 
eatedly shown to correlate with (i) sea surface temperatures 
SSTs) that can index the habitat conditions salmon experi- 
nce during early marine life (Mueter et al. 2002 , Malick et
l. 2017 , Malick 2020 ); (ii) broader scale indices of ocean
emperature [e.g. Pacific Decadal Oscillation (PDO); Man- 
ua et al. 1997 ]; and (iii) ocean currents and circulation pat-
erns [North Pacific Gyre Oscillation (NPGO); Di Lorenzo et 
l. 2008 ]. These direct and indirect relationships with tem-
erature are hypothesized to arise from changes in oceano- 
raphic conditions (as reflected indirectly by SST) and their 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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Figure 1. Sea surface temperature (SST in ◦C) anomalies for (a) North Pacific, (b) Eastern Bering Sea, and (c) British Columbia coastal waters through 
2023 relative to 1854–1949 averages. Both annual and 3-year running average anomalies are shown. Data from data NOAA ER SS Tv5 (Huang et al. 2017 ). 
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Figure 2. Annual abundances of pink, chum, and sock e y e salmon (catch and spawners) returning to Asian and North American watersheds from 1925 to 
2023. Time series through 2015 is from Ruggerone and Irvine (2018 ); estimates from 2016 to 2023 were derived using “approach 3” in Ruggerone and 
Irvine (2018 ), which uses the relationship between harvest rate and log e total catch for a given species and region from 1996 to 2015 to estimate the 
harvest rate and total abundance based on catch alone from 2016 to 2023. Catch data from 2016 to 2023 taken from NPAFC ( 2024a ). 
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nfluence on primary and secondary production and hence
bundances of prey and predators. There is strong evidence
or spatial variation in these responses, ranging from generally
egative relationships at more southern latitudes (e.g. north-
rn California Current north to southern British Columbia) to
trongly positive ones further north (e.g. Bering Sea in Alaska)
 Fig. 3 ; Mueter et al. 2002 , Malick et al. 2017 , Connors et al.
020 , Malick 2020 ). These differences in effects are hypoth-
sized to arise from differences in oceanographic processes
etween regions with the generally beneficial effect of warm-
ng in the north (e.g. Gulf of Alaska and Bering Sea) arising
rom increased prey production, especially during early ma-
ine life (Brodeur et al. 1996 , Moss et al. 2005 , Ruggerone
t al. 2005 , 2007 , Cross et al. 2009 ). At more southern lati-
udes (e.g. northern California Current), warming ocean tem-
eratures are associated with reduced primary and secondary
roduction. Warming temperatures are also associated with
educed prey availability and nutritional content (Mackas et
l. 2007 , Ashlock et al. 2021 , Garzke et al. 2023 ), as well as
ncreased metabolic requirements, especially for larger salmon
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Figure 3. Influence of warming oceans and increasing salmon abundance on sockeye across the eastern North Pacific. (a) Ocean entry locations for 
sock e y e populations in the West Coast (circles), Gulf of Alaska (squares), and Bering Sea (triangles) ecosystems. (b) Posterior probability distributions of 
the predicted effect of total pink, chum, and sock e y e salmon competitors (top), sea surface temperature (SST; middle), and the combined effect from all 
co v ariate terms (bottom), on sock e y e returns per spawner of 47 sock e y e salmon populations originating from the Bering Sea, Gulf of Alaska, and west 
coast of North America (southeast Alaska and British Columbia). Posterior hyperdistributions of the covariate effects are in bold lines, with individual 
population-specific posterior distributions illustrated by the thin lines. Covariate effects are standardized (i.e. per standard deviation unit increase in each 
co v ariate), which equates to 1.5 ◦C SST and 181 million salmon above the mean. Derived from Connors et al. (2020) . (c) Mean survival (top), proportion of 
ocean age-3 sock e y e salmon in the adult return (middle), and length-at-age of 24 sock e y e salmon populations (1978 −2005) from British Columbia to 
W ashington state [bottom; W est Coast region in panel (a)] during odd- versus even-numbered brood years, which interact with above and below average 
pink salmon abundance at sea. Values are normalized (z) relative to the entire data time series, except survival, which is the mean residual (log e recruits 
per spawner) from the spawner recruitment relationship. Reproduced from Ruggerone and Connors (2015) . (d) Mean interannual change (%) in scale 
growth [difference between a given year and adjacent years for five Bristol Bay (Bering Sea region in panel (a)] sockeye populations (Kvichak, Egegik, 
Naknek, Ugashik, and Wood River) during the third year at sea in odd v ersus e v en y ears, i.e. relativ ely high and low pink salmon abundance, respectively. 
Reproduced from Ruggerone et al. ( 2016 ). (e) Mean interannual change (%) in scale growth for seven Gulf of Alaska sockeye populations (Chignik, Black, 
Kenai, Coghill, Copper, Chilkat, and Hugh Smith) during the third year at sea in odd versus even years. Derived from Rand and Ruggerone (2024) . 
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Davis et al. 1998 , Beauchamp 2009 ). Responses to warming
ary within regions over time for several salmon species (Lit-
ow et al. 2018 ), likely due to, at least in part, the emergence
f climate conditions that have no analogue in the histori-
al record. For example, climate conditions including sea-level
ressure, regional temperature, wind mixing, and alongshore
ater transport during 2014–2019 appear to be unique in the
istorical record for the Gulf of Alaska, and these novel condi-
ions are associated with a switch to unique, negative correla-
ions between the PDO and salmon abundance in the Gulf of
laska, contrasting with positive or neutral correlations dur-

ng previous decades (Litzow et al. 2020 ). 
There is also a large and growing decades-long body of evi-

ence indicating that high abundances of salmon and density-
ependent interactions among salmon at sea reduce salmon
rowth (Peterman 1984 , Ruggerone et al. 2003 , McKinnell
nd Reichardt 2012 , Oke et al. 2020 , Ohlberger et al. 2023 ,
and and Ruggerone 2024 ), delay maturation (Ruggerone
nd Connors 2015 , Cline et al. 2019 ), and reduce salmon sur-
ival (Cunningham et al. 2018 , Kendall et al. 2020 , Litz et
l. 2021 , Ohlberger et al. 2022 , Ruggerone et al. 2023 ). Con-
ext matters, and for some populations, especially of sockeye
almon, these effects are in general more apparent for salmon
hat originate at southern latitudes than northern latitudes
 Fig. 3 ). These effects have been hypothesized to be due to
he negative effects of a warming ocean on primary and sec-
ndary productivity at more southern latitudes, at least par-
ially compounding the negative effects of competition, while
he opposite is hypothesized to occur at more northern lat-
tudes (Connors et al. 2020 ). For Chinook, coho, and chum
almon, however, competition for prey in the north also ap-
ears to be affecting growth, survival, and abundance (Rug-
erone et al. 2012 , 2023 , Shaul and Geiger 2016 , Kaeriyama
022 ). In addition, there is evidence that competitive interac-
ions may be influenced by life history and associated ocean
istributions; e.g. Chinook salmon migrating northward from
he Pacific Northwest show stronger evidence of competition
ith pink salmon than do Chinook populations remaining

urther south, where pink salmon are less abundant (Buckner
t al. 2023 ). 

hanging thermal habitat and shifting salmon 

bundance 

cean temperature influences the distribution of physiologi-
ally suitable habitat for Pacific salmon and, in turn, their dis-
ribution at sea. Distribution in relation to historical tempera-
ures has been inferred from high seas salmon surveys (Welch
t al. 1995 , 1998 , Lindley et al. 2021 , Langan et al. 2024 ).
s the ocean warms, there is an expectation that a redistri-
ution of salmon northward will occur (Shelton et al. 2021 ).
he absolute amount of suitable habitat in the North Pacific is
xpected to shrink; those species with the narrowest thermal
olerance (like Chinook and sockeye) are expected to expe-
ience the largest reductions in thermal habitat (e.g. 88% re-
uction in summer habitat for Chinook) under climate change
Abdul-Aziz et al. 2011 ). This reduction in thermal habitat
ue to warming may further exacerbate competition among
almon at sea by reducing the areas in which they forage for
 limited prey base, as well as increasing the distance south-
rn populations need to migrate to reach foraging areas in
he north (Larson et al. 2013 ). While warming is expected to
pen up new marine habitats for salmon in the Arctic (e.g.
unmall et al. 2018 , 2024 ), it is likely of a much smaller mag-
itude than the projected reduction in habitat in the North
acific and Bering Sea (Lindley et al. 2021 ). Warming ocean
emperatures may also increase bioenergetic demands, partic-
larly for larger-bodied species like Chinook and chum, which
ay further compound direct and indirect competition among

almon for prey (Beauchamp 2009 ), though these effects may
e partially offset by shifts to cooler and less bioenergetically
ostly habitats. 

As a result of changes in suitable thermal habitat and pos-
tive effects on early marine growth and survival for salmon
t northern latitudes (particularly for some sockeye and pink
opulations), a warming ocean is expected to continue shift-
ng abundance of salmon northwards, creating new/more op-
ortunities for harvest in the north and fewer opportuni-
ies in the south. Evidence for these shifts is already clear
n historical trends in commercial landings, where catch has
teadily increased at northern latitudes since the mid-1970s
nd declined at southern ones ( Fig. 4 ). Record returns (and
arvests) of salmon such as sockeye in Bristol Bay, Alaska,
ave been hypothesized to be in response, at least in part,
o temperature-driven changes in ocean productivity, plank-
on abundance, and growth during early marine life (Rug-
erone et al. 2005 , 2007 ). In contrast, recent warming in the
astern Bering Sea appears to have reduced the energy den-
ity of juvenile chum salmon due to abundance of relatively
oor-quality prey, potentially leading to declining adult re-
urns (Farley et al. 2024 ). Of course other factors not associ-
ted with temperature change influence broad patterns in har-
est (including myriad other stressors, particularly at southern
nd of range), but this general pattern of increasing abundance
or some species at northern latitudes likely reflects, at least
artially, previously hypothesized climate-mediated shifts in
bundance (Hare and Francis 1995 , Mantua et al. 1997 ). We
ote, however, that these climate-mediated shifts in abundance
ay have reached their limits for some species and popula-

ions as the conditions they experience are pushed outside
heir envelopes of historical variation that salmon are adapted
o. For example, at the northern extent of their range, Chi-
ook salmon population productivity appears to have become
imited by warming freshwater habitats that reduce adult mi-
ration success (Howard and von Biela 2023 ), chum salmon
bundance in this region has declined, and warming in the
ulf of Alaska appears to have exceeded suitable levels for

ome sockeye, causing recent commercial fishery collapses
Litzow et al. 2024 ). 

Recent decades have also seen increases in the incidental
arvest of Pacific salmon in the Arctic, including the Macken-
ie River; many are considered to be strays from outside the
rea (Dunmall et al. 2018 , Northern Hemisphere Pink Salmon
xpert Group 2023 ). This expansion is likely to be due, at

east in part, to a climate change-induced range-expansion cor-
idor emerging in recent years (Dunmall et al. 2024 ). In other
arts of the far north, like the Barents Sea in northern Scan-
inavia, which is warming at seven times the rate of the rest
f the world’s oceans (Rantanen et al. 2022 ), there has been a
ecent “explosion” of non-native pink salmon (Diaz Pauli et
l. 2023 ), including vagrants captured as far west as the North
merican Arctic, all from what are now self-sustaining popu-

ations that resulted from introductions in north-western Rus-
ia (Northern Hemisphere Pink Salmon Expert Group 2023 ).
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Figure 4. Commercial harvest of all five Pacific salmon species by country from 1925 to 2023. Values are 5-year running averages in millions of fish. 
Countries are approximately ordered north to south (top to bottom) and west to east (left to right). US West Coast includes salmon originating from 

Washington State, Oregon, Idaho, and California. Note variable y -axis ranges. Data from NPAFC ( 2024a ). 
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Should salmon nations cooper ativ ely manag e, 
and consider limiting, hatchery production as 

ocean warms? 

Industrial-scale artificial propagation of salmon to support 
commercial fisheries throughout Asia and North America has 
been undertaken for almost half a century. Artificial propaga- 
tion also occurs at a much smaller scale to support recovery 
of at-risk populations. Total releases of hatchery fish, espe- 
cially chum and pink salmon, have increased over time and 

in recent decades have been greater at more northern than 

southern latitudes, particularly in Alaska and Russia ( Fig. 5 ).
While these hatchery salmon benefited from relatively favor- 
able northern ocean conditions during early marine life, un- 
intended consequences may include exacerbated conservation 

risks for southern populations that often experience relatively 
poor early marine conditions and then to migrate north and 

have to compete with abundant salmon later in their marine 
lives (e.g. Larson et al. 2013 , Connors et al. 2020 , Buckner et 
al. 2022 ). Large-scale hatchery releases may also further inten- 
sify direct and indirect competition among salmon for prey as 
thermally suitable habitat shrinks with ocean warming. Thus,
abundant hatchery salmon may inhibit the natural density- 
dependent compensatory response that provides resilience to 

wild salmon at low population abundances (Ricker 1954 ). 
Questions about the extent to which ocean habitat can 

be limiting for salmon have been raised for decades (Peter- 
man 1978 , 1984 , Kaeriyama et al. 2012 , Kaeriyama 2022 ).
This has led some to ask: Should salmon nations coopera- 
tively manage, and consider limiting, hatchery production as 
the ocean warms (Heard 1998 , Holt et al. 2008 , Peterman et 
l. 2012 )? This question has been raised in light of broad-
cale evidence of declining size of salmon across the North
acific (Bigler et al. 1996 , Cooney and Brodeur 1998 , Pyper
nd Peterman 1999 , Oke et al. 2020 ) coincident with increas-
ng hatchery production. Although the evidence for density- 
ependent interactions among salmon at sea has only grown,
t largely comes from research involving the central and east-
rn North Pacific and Bering Sea. Some scientists have argued,
ased primarily on research in the western North Pacific, that
almon are not abundant enough to significantly alter prey 
vailability for other salmon and cause reduced growth and 

urvival (Shuntov and Temnykh 2005 , Shuntov et al. 2017 ,
adchenko et al. 2018 , Naydenko and Somov 2019 , Somov

t al. 2024 ). This alternative view may stem from differences
etween western and eastern North Pacific ecosystems in pri- 
ary and secondary production and overall prey availability,

nd deserves further discussion to identify if there are areas
ithin the North Pacific where density-dependent competi- 

ion is not significant. We note, however, that most salmon
opulations migrate long distances at sea, and scientists have 

dentified effects of high salmon density on salmon returning 
o most regions of North America and Asia. 

A lack of broad recognition by hatchery managers and 

anagement agencies for the weight of evidence for the con-
equences of inter- and intraspecific competition among many 
almon populations across the North Pacific has made coop- 
rative management of hatchery production at the North Pa- 
ific scale difficult. This has been compounded by asymme- 
ry in the incentives and disincentives to cooperation among 
he salmon-producing regions and nations (see Holt et al.
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Figure 5. Hatchery releases of all Pacific salmon species by country from 1952 to 2023. Values are 5-year running a v erages. Countries are appro ximately 
ordered north to south (top to bottom) and west to east (left to right). US West Coast includes salmon originating from Washington State, Oregon, 
Idaho, and California. Note variable y -axis ranges. Data from NPAFC ( 2024b ). 
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008 for an excellent examination of this). For example, while
arge-scale hatchery production may have unintended effects
n both local and distant wild salmon populations, hatchery
roduction underpins harvests in the local fishery and pro-
ides socioeconomic benefits to it (Amoroso et al. 2017 , Har-
ison and Gould 2022 , Ohlberger et al. 2022 ). 

Correlations underpin our understanding of salmon re-
ponses to ocean conditions and density-dependent inter-
ctions. While these correlations are usually assumed to
e causative (e.g. based on consistent relationships relating
almon density to diet, growth, survival, and abundance), we
re often reminded of the adage “correlation does not equal
ausation.” Manipulative experiments, which are the gold
tandard approach to establishing causation (Hilborn 2016 ),
re logistically , socially , and economically impossible at the
cale of the North Pacific. However, the natural experiment
esulting from the strongly biennial patterns of pink salmon
bundance ( ∼25 fold difference in abundance between odd
nd even years in some major North Pacific ecosystems) pro-
ides strong and consistent evidence in support of the hypoth-
sis that pink salmon can directly and indirectly influence ma-
ine ecosystems. For example, 90 publications provide quan-
itative evidence in support of hypothesis that pink salmon
an influence all five species of Pacific salmon, steelhead trout,
our forage fish species, squid, 11 species of seabirds, and two
etaceans ( Fig. 3 ; Table 1 and Supplement 2 in Ruggerone et
l. 2023 ). 
e  
dapting salmon management to a warming 

nd more cro w ded ocean 

here are, of course, inherent challenges to understanding
he drivers of population dynamics for highly migratory and
roadly distributed species like salmon that spend much of
heir lives at sea. Opportunities to fill key gaps in knowl-
dge are identified in the North Pacific Anadromous Fish
ommission 2023 −2027 science plan (SSC 2023 ), and associ-
ted working group recommendations (NPAFC 2023 ). These
lanning documents were produced by a collaboration of the
ajor salmon-producing nations, indicating broad support

or additional science in these areas. Recommendations in-
lude coordinated research on the distribution and ecology of
almon at sea, including, e.g. increased investment in coordi-
ated and cooperative ocean basin scale surveys (e.g. Beamish
t al. 2023 ) and use of new technologies [genetics, eDNA
Deeg et al. 2023 ), autonomous sampling, next generation
agging and tracking, and otolith microchemistry]. They also
nclude a need for more studies that compare populations,
egions, and species to help statistically tease apart popula-
ion (e.g. life history) and ecosystem factors (currents, food
eb, etc.) that influence (are associated with) responses to
arming and competition (Malick et al. 2017 , Connors et al.
020 , Buckner et al. 2022 ). Process-based studies could iden-
ify and inform proximate mechanisms for apparent ocean
arming and competition effects, trophic dynamics (Graham

t al. 2021 ), and seasonal and geographic patterns of prey
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abundance. They could also help better understand when,
where, and why trophic cascades might occur (e.g. Batten et al.
2018 , Naydenko and Somov 2019 ), tradeoffs between preda- 
tion risk, prey patch density, and competition for prey while 
foraging in aggregations (Polyakov et al. 2022 ), and impli- 
cations of increasing bioenergetic foraging requirements of 
salmon in a warming ocean on competition among salmon.
Lastly, there is a well-recognized need for more comprehen- 
sive assessment and reporting of hatchery and wild contri- 
butions to spawning abundance and harvests across manage- 
ment jurisdictions, including mass marking 100% of hatchery 
fish so that hatchery salmon can be reliably identified and wild 

salmon status can be accurately evaluated. 
There is now compelling weight-of-evidence across species,

life stages, regions, and time that competition among salmon 

at sea is often substantial and can have population-level im- 
pacts (e.g. Fig. 3 ). While there are, and likely always will be,
outstanding knowledge gaps, we argue that adapting salmon 

management to a warming and more crowded ocean re- 
quires actions that explicitly take this weight of evidence into 

account. These actions include limiting further increases in 

hatchery production at the North Pacific scale, and compre- 
hensively evaluating the benefits and costs (ecological, social,
and economic) of reducing the large numbers of hatchery 
salmon (primarily pink and chum salmon) released. Scientists 
and salmon managers need a better understanding of hatchery 
salmon effects on wild salmon, including their marine distri- 
butions, how they interact, and how this is influenced by the 
broader climate and ecosystem conditions in which these in- 
teractions occur. Other strategies to minimize adverse interac- 
tions between hatchery and wild salmon in the changing ocean 

environment should be identified. 
Developing strategies and sharing scientific understanding 

will of course take greater coordination and collaboration 

among salmon nations, as well as financial resources to sup- 
port it. We suggest that, at least in theory, such coordinated 

effort could be funded (in part) by a tax placed on hatchery 
releases. For example, a tax of one cent ($0.01) per fish re- 
leased would generate ∼$50 million a year (assuming current 
magnitude of total hatchery releases). The funds raised by this 
tax could support monitoring and research efforts required to 

improve the knowledge about the role hatchery production 

plays in exacerbating competition among salmon at sea, and 

to develop management strategies to minimize those effects.
The specifics of the tax would need to be negotiated among 
salmon nations, but this improved understanding should in- 
centivize hatchery-producing regions and nations to support 
such a tax because our current understanding of interactions 
at sea is often inferred from survivors returning from the 
at-sea feeding grounds (as opposed to manipulative experi- 
ments), and essentially assumes that hatchery and wild fish 

are sympatric. A more nuanced understanding will likely iden- 
tify where and when hatchery production is and is not likely 
to exacerbate conservation concerns and undermine recovery 
and which species and populations are most and least vulner- 
able to it. Importantly, the imposition of such a tax would for- 
malize recognition among salmon nations that there are finite 
resources to support salmon in the ocean and that salmon rep- 
resent a “common property” whose exploitation should not 
be without cost. Hatchery releases that are designed to sup- 
port conservation and mitigation (largely Chinook, coho, and 

steelhead at more southern latitudes, which make up a small 
amount of total hatchery releases) could be exempt from the 
ax. Taxes or fees are often imposed on those that benefit from
he use of common natural resource property; e.g. cattle graz-
ng on public lands in the United States is permitted for those
hat pay a fee per head of cattle. 

Adapting management, however, will require more than 

ust reducing uncertainty in the role of hatchery production 

n exacerbating competition among salmon at sea and incen- 
ivizing coordination and collaboration. It will also likely re- 
uire fundamental shifts in how fisheries are managed. For ex-
mple, there will be an increasing need for a shift away from
arge mixed-stock (hatchery-wild) marine fisheries, which can 

ntercept salmon originating from distant areas. Management 
f such fisheries is complex because at-risk populations often 

igrate through fishing areas along with more abundant and 

roductive populations, including hatchery salmon. In such 

ases, a change in management regulations to use more termi-
al and selective fisheries (e.g. fishwheels and traps) can help
o sustainably harvest abundant stocks while minimizing risk 

o weak ones (Gayeski et al. 2018 , Atlas et al. 2021 , Fairbanks
ishery Advisory Committee 2023 ). In addition, management 
ay need to shift from a historical focus on maximizing har-

ests while avoiding overfishing, to increasing resilience to 

limate-induced shocks to fisheries and broader North Pacific 
cosystems change (Litzow et al. 2024 ) by explicitly manag-
ng for a diverse portfolio of wild salmon populations that
an help on aggregate to buffer against adverse responses to
limate and ecosystem change (Schindler et al. 2010 ). 
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