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Abstract 

Background In most regions and ecosystems, soils are the largest terrestrial carbon pool. Their potential vulner-
ability to climate and land use change, management, and other drivers, along with soils’ ability to mitigate climate 
change through carbon sequestration, makes them important to carbon balance and management. To date, most 
studies of soil carbon management have been based at either large or site-specific scales, resulting in either broad 
generalizations or narrow conclusions, respectively. Advancing the science and practice of soil carbon management 
requires scientific progress at intermediate scales. Here, we conducted the fifth in a series of ecoregional assessments 
of the effects of land use change and forest management on soil carbon stocks, this time addressing the Northeast 
U.S. We used synthesis approaches including (1) meta-analysis of published literature, (2) soil survey and (3) national 
forest inventory databases to examine overall effects and underlying drivers of deforestation, reforestation, and forest 
harvesting on soil carbon stocks. The three complementary data sources allowed us to quantify direction, magnitude, 
and uncertainty in trends.

Results Our meta-analysis findings revealed regionally consistent declines in soil carbon stocks due to deforestation, 
whether for agriculture or urban development. Conversely, reforestation led to significant increases in soil C stocks, 
with variation based on specific geographic factors. Forest harvesting showed no significant effect on soil carbon 
stocks, regardless of place-based or practice-specific factors. Observational soil survey and national forest inventory 
data generally supported meta-analytic harvest trends, and provided broader context by revealing the factors that act 
as baseline controls on soil carbon stocks in this ecoregion of carbon-dense soils. These factors include a range of soil 
physical, parent material, and topographic controls, with land use and climate factors also playing a role.

Conclusions Forest harvesting has limited potential to alter forest soil C stocks in either direction, in contrast 
to the significant changes driven by land use shifts. These findings underscore the importance of understanding soil 
C changes at intermediate scales, and the need for an all-lands approach to managing soil carbon for climate change 
mitigation in the Northeast U.S.
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Background
Soil carbon (C) is an integral part of ecological, bio-
geochemical, and hydrologic processes within forest 
ecosystems, thus underpinning numerous ecological 
values and ecosystem services [1, 2]. In recognition of 
this importance and the critical role soils play in pro-
posed climate change mitigation strategies, interest in 
the effects of land use change and forest management 
on soil C has increased ([3, 4].

High-level review papers on land use change, forest 
management, and soil C are numerous and have con-
tributed to calls for climate change mitigation through 
C management (e.g., [5–11]). Quantitative reviews of 
afforestation, forest harvesting, fire management, and 
other practices have estimated broad-scale manage-
ment effects upon soil C, and identified broad-scale 
factors responsible for variation in those effects [12–
16]. However, reviews often provide generalizations 
that do not align with the findings of individual site-
level studies. This disparity emphasizes the need for 
research on soil C management at intermediate (land-
scape to ecoregional) scales, which are often the focus 
of decision making by landowners, forest managers, 
and policymakers.

As new primary research continues to emerge, syn-
thesis approaches are becoming increasingly useful for 
addressing soil C management at intermediate scales. 
The flexibility of synthesis tools is part of their utility; 
for example, meta-analysis enables estimating treatment 
effects across multiple studies while discerning factors 
that drive variation in these effects [17]. However, all 
meta-analyses are constrained by the available studies 
they synthesize,in the context of research on land use 
and C management, this means meta-analyses are help-
ful in identifying trends across select sites, but unable 
to address the diversity of conditions across intervening 
spaces [18]. Drawing in more extensive observational 
data, such as from soil survey and forest inventory pro-
grams, compensates for this problem. Compared to 
meta-analysis of published (relatively controlled) studies, 
observational survey or inventory datasets lack experi-
mental control, may not possess desired auxiliary vari-
ables, and introduce other sources of variation that can 
obscure or confound trends. Nonetheless, observational 
data enable inferences over intervening areas that have 
not been reported in the literature, and auxiliary vari-
ables can be obtained from other sources to evaluate and 
contextualize meta-analysis results [19]. In pursuit of a 
more nuanced view of land use and C management, com-
bining meta-analysis with observational data has been 
useful for downscaling from broad patterns (e.g., [14, 
20] to the uniqueness of distinct ecoregions [21–24], and 
promises to find applications in still more.

The U.S. Northeast (Fig. 1) is a 359,000 sq. km region 
that is home to nearly 50 million people (14% of the U.S. 
population), yet despite its large population, is ~ 75% for-
ested (see “Study area" Sect. for description). From north-
ern Pennsylvania and New Jersey to Maine, the forests 
of the Northeast are currently among the most C-dense 
in the U.S. [25]. But the large contemporary C stocks 
of these forest lands belie the region’s history. Native 
Americans managed the forests of the region for millen-
nia before Euro-American colonists displaced them and 
largely deforested the region in the seventeenth–nine-
teenth centuries, resulting in large reductions in forest C 
stocks [26–28]. Agricultural abandonment and reforesta-
tion since that time have driven regional forest C stock 
increases, but these increases are slowing with time for 
two reasons: (1) forests are sequestering C more slowly 
as they mature, (2) deforestation for urban development 
and agriculture in the last several decades is once again 
causing forest area to decline across the Northeast [25, 
29–31]. With these regional land use and C dynamics 
as the backdrop, scientific management, public percep-
tions, and policy discussions are more concerned than 
ever with questions of C balance and management in 
the Northeast U.S. Often, these considerations focus on 
forest management more than land use change, and on 
aboveground C rather than soils, which hold over half 
of total ecosystem C [25]. Such questions are also fre-
quently discussed without considering broader land use 
change drivers and pressures that are critically impor-
tant in a region where nearly 80% of forest lands are pri-
vately owned [32]. The present synthesis, representing 
the fifth in a series of ecoregional assessments, addresses 
soils—the dominant terrestrial C pool in the region—and 
examines the effects of both land use change and forest 
management.

Results
Meta‑analysis: soil C stock change across land uses
The first of our three synthesis approaches, meta-anal-
ysis of published literature (see “Approach” and “Meta-
analysis” Sects), indicated that the five land use and 
management treatments we were able to address with 
the available data had significantly different effects on 
soil C stocks (Fig.  2; P < 0.001; Qb = 790; Qt = 5791). 
Deforestation decreased soil C stocks, with (1) forest-
to-agriculture driving significantly larger losses than (2) 
forest-to-developed land use change. Conversely, refor-
estation increased soil C stocks, with similar effect sizes 
for reforestation of (3) formerly agricultural vs. (4) min-
ing industry lands. Forest harvesting (5) had no statisti-
cally significant effect (P > 0.05) on soil C stocks.

Meta-analysis indicated that land uses also differed in 
the depth distribution of their effects on soil C stocks 
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(Fig.  3). Deforestation for agriculture caused signifi-
cant declines in soil C stocks in all analyzed portions of 
the profile (see “Meta-analysis” Sect), with significantly 
larger losses from O horizons than mineral soil horizons 
or whole soil profiles. Reforestation following agricul-
ture showed the opposite trend, with very large positive 

effects on O horizons, modest but still statistically signifi-
cant increases for mineral soil horizons, and intermedi-
ate values for soil profiles. Reforestation formerly mining 
industry lands caused large soil C stock increases in O 
horizons and soil profiles (no mineral soil horizons were 

Fig. 1 Map of the study area. Shaded polygons are ECOMAP Ecological Sections. Black points, which are approximate, represent the locations 
of study sites in papers reviewed for the meta-analysis. Red squares and blue triangles show locations of soil survey pedons and NFI plots, 
respectively

Fig. 2 Meta-analytic main effects of land use and management 
treatments on soil C stocks, for all depths and horizons. The plot 
shows the mean effect size (as the ln-transformed response ratio 
R), bootstrapped confidence interval, and sample size for each 
treatment. Bold sample sizes indicate meta-analytic groups 
with confidence intervals not overlapping 0% change (indicated 
with a dotted vertical line)

Fig. 3 Meta-analytic effects of land use and management 
treatments on soil C stocks, shown separately for organic horizons, 
mineral soils, and whole soil profiles. The plot shows the mean 
effect size (as the ln-transformed response ratio R), bootstrapped 
confidence interval, and sample size for each treatment and depth 
with sufficient data. Bold sample sizes indicate meta-analytic groups 
with confidence intervals not overlapping 0% change (indicated 
with a dotted vertical line)
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reported), while the significant, negative effects of defor-
estation for development were based entirely on results 
published for mineral soil horizons. Forest harvesting did 
not significantly affect soil C stocks in O horizons, min-
eral soil horizons (either collectively or by horizon), or 
soil profiles.

Meta‑analysis: a closer look at agricultural reforestation
Reforestation following agriculture was one of two 
land uses with enough data to support more detailed 
meta-analyses. Organic horizon C stock increases dur-
ing reforestation varied according to most of the poten-
tial predictor variables analyzed. Table  1 presents these 
statistically significant results, and indicates the large 
amounts of total (Qt) and between-group (Qb) heteroge-
neity resulting from near-zero agricultural O horizon C 
stock values (see “Meta-analysis” Sect. for information 
about heterogeneity and response ratio calculations). 
A subset of the factors that were statistically significant 
predictors of this variation are illustrated in Fig. 4. Previ-
ously cultivated soils gained significantly more O horizon 
C than soils previously managed as pasture or meadow; 

O horizon gains were largest for reforestation by conif-
erous forests, intermediate for mixed forests, and least 
for deciduous forests. Ecological Province, Section, and 

Table 1 Meta-analysis results for potential predictors of C stock changes during post-agricultural reforestation

Statistics include the between-group (Qb) or continuous model (Qm) heterogeneity, total heterogeneity (Qt), and P value for each predictor variable

Organic horizons Mineral soils (all horizons)

Factor Qb (Qm) Qt P Factor Qb (Qm) Qt P

Study identity 953.7 1800 < 0.001 Study identity 4.5 18.9 0.72

Previous land use 136.7 1800 < 0.001 Previous land use 0.1 18.9 0.71

Stand-level forest type group 684.4 1800 < 0.001 Stand-level forest type group 0.5 18.9 0.78

Stand-level forest type 885.6 1800 < 0.001 Stand-level forest type 2.2 18.9 0.83

Ecoprovince 847.3 1800 < 0.001 Ecoprovince 1.1 18.9 0.77

Ecosection 847.3 1800 < 0.001 Ecosection 1.2 18.9 0.88

Ecosubsection 953.7 1800 < 0.001 Ecosubsection 1.8 18.9 0.94

Mean annual temperature 586.6 1800 < 0.001 Mean annual temperature 0.0 18.9 1.00

Mean annual precipitation 90.3 1800 < 0.001 Mean annual precipitation 0.0 18.9 0.95

Elevation 465.4 1800 < 0.001 Elevation 0.0 18.9 0.87

Slope steepness group 556.4 1800 < 0.001 Slope steepness group 0.4 18.9 0.83

Aspect class 516.8 1800 < 0.001 Aspect class 1.0 18.8 0.60

Landform group 614.0 1800 < 0.001 Landform group 0.8 18.9 0.94

Parent material 410.1 1800 < 0.001 Parent material 0.2 18.9 0.90

Surface geology 614.0 1800 < 0.001 Surface geology 0.9 18.8 0.82

Soil Order 827.2 1800 < 0.001 Soil Order 1.0 18.6 0.60

Soil Suborder 856.5 1800 < 0.001 Soil Suborder 1.4 18.3 0.85

Soil Great Group 953.7 1800 < 0.001 Soil Great Group 2.9 16.7 0.71

Soil Subgroup 953.7 1800 < 0.001 Soil Subgroup 2.9 16.7 0.71

Organic subhorizon 200.1 1800 < 0.001 Soil master horizon 1.6 18.9 0.80

Soil texture 2.9 18.8 0.89

Wetness group 827.2 1800 < 0.001 Wetness group 2.0 18.9 0.57

Drainage index 510.1 1800 < 0.001 Drainage index 0.9 18.9 0.36

Productivity index 465.8 1800 < 0.001 Productivity index 0.1 18.9 0.80

Fig. 4 Meta-analytic effects of post-agricultural reforestation 
on organic horizon C stocks, as dependent on several predictor 
variables. The plot shows the mean effect size (as the ln-transformed 
response ratio R), bootstrapped confidence interval, and sample 
size for each group. Groups plotted are a subset of those showing 
statistically significant differences in effect sizes
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Subsection were significant predictors of variation in O 
horizon C gains; these ecoregional patterns were associ-
ated with statistically significant meta-regression P values 
for mean annual temperature (larger O horizon gains in 
warmer areas), mean annual precipitation and elevation 
(significantly smaller gains in wetter areas and at higher 
elevations). Organic horizon C gains also were signifi-
cantly larger in flatter vs. steeper, and S-facing vs. E-fac-
ing topographic settings (which were the only two slope 
aspects that could be explicitly tested). Landform and 
parent material influences were evident as larger O hori-
zon gains for soils formed in sandy outwash materials (vs. 
finer-textured soils formed in till and glaciated uplands). 
Carbon increases in O horizons overall were driven by 
increases in more litter-like, less decomposed materials 
(Oie subhorizons) more than increases in older, more 
decomposed organic materials (Oea subhorizons). Lastly, 
statistically significant effects of soil taxonomy (Suborder 
and Great Group) indicated that O horizon C gains dur-
ing reforestation were influenced by a range of integra-
tive, soil-specific factors.

Among studies of post-agricultural reforestation, O 
horizons and mineral soil horizons were similar in that 
no predictor variable exceeded the explanatory power (as 
Qb/Qt) of study identity as a predictor of C stock changes 
during reforestation. On the other hand, mineral soil 
horizons were very different from O horizons in that 
none of their predictors of variation tested had statisti-
cally significant P values. In the case of some predictor 
variables, certain categorical groups showed mineral soil 
C stock changes with confidence intervals that did not 
overlap 0% (Additional file 1: Table S1), and the nuances 
of interpreting statistical significance of meta-analysis 
results are discussed in Methods Sect. “Meta-analysis”.

Meta‑analysis: a closer look at forest harvesting
Among studies of forest harvesting—the other treat-
ment with sufficient data for more detailed meta-analy-
ses—none of the predictor variables tested significantly 
affected soil C stocks (Table  2). In the case of both 
organic and mineral soil horizons, some predictor vari-
ables revealed individual categorical groups with effect 
sizes and confidence intervals that did not overlap 0% 
change in soil C stocks (Additional file 1: Table S2). For 
soil bulk density (Db), neither organic nor mineral soil 
horizons showed statistically significant effects of har-
vesting, and none of the variation among mineral soils 
was significantly related to any of the tested predictor 
variables (O horizons were too few to analyze). Some 
individual categorical groups had Db response ratios with 
effect sizes and confidence intervals that did not overlap 
0% change (Additional file 1: Table S3).

Observational data: broader context and evaluation 
of meta‑analytic trends
The first of our two observational datasets, consisting of 
soil survey pedons harmonized with GIS data, supported 
parametric statistical analyses indicating a range of fac-
tors that influence soil C stocks across the study area 
(Table 3). To aid in comparing to meta-analysis data, we 
focused on two distinct portions of the profile: surface 
horizons (O and A horizons), and whole soil profiles. In 
general, variation in soil C stocks was more explainable 
in surface horizons (O and A horizons, n = 793) than in 
whole soil profiles (to refusal or 50  cm depth, n = 873). 
However, multiple regression models for both portions 
of the profile had adjusted R2 values indicating that over 
half the variance remained unexplained (see Sects. “Syn-
thesis of soil pedon and GIS data” and “Statistical analysis 
of NCSS and NFI data” for analytical details). The opti-
mal surface horizon model indicated that C stocks were 
larger in organic soils (Histosols) and where surface hori-
zons consisted of organic soil materials; where surface 
soils were mineral (i.e., A horizons), categorical texture 
class variables indicated larger C stocks for finer-textured 
soils and smaller C stocks for coarser soils. Several vari-
ables related to land use, management, and vegetation 
were present in the surface horizon model: compared to 
reference forest lands, soil C stocks on pasture/hay lands 
and recently deforested lands were smaller, soil C stocks 
in recently harvested forests were larger, and soil C 
stocks decreased with increasing aboveground biomass. 
Compared to the default parent material dummy vari-
able (coarse till), several parent materials were associated 
with smaller surface horizon C stocks, including alluvial, 
colluvial, and residual deposits and fine-textured till. 
The same soil C associations with parent material were 
evident for whole soil profiles, which additionally indi-
cated that outwash (by definition coarse) and proglacial 
deposits (whether coarse or fine) were associated with 
smaller soil C stocks. Surface horizon and soil profile 
models both showed that C stocks increased with eleva-
tion; profile C also exhibited a positive relationship with 
mean annual precipitation. Regarding land use, profile 
C was less on barren lands and developed open spaces 
than in reference forests (which were the dummy variable 
default), and profile C increased with aboveground bio-
mass. The remaining variables in the optimal whole soil 
profile C model were related to soil taxonomy, with Mol-
lisols, Alfisols, and Inceptisols holding significantly less C 
than Spodosols (the dummy variable default) and Histo-
sols holding more.

The second of our two observational datasets (from 
the U.S. Department of Agriculture Forest Service 
[USDA FS] National Forest Inventory [NFI] program) 
revealed two key results supporting meta-analytic 
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harvest trends, and one which, like soil pedon data, ran 
counter to them. First, NFI data indicated that neither 
of the sampled mineral soil depth increments (0–10 
and 10–20  cm) had significantly different C stocks 
as a function of past harvesting (t-test, P = 0.82 and 
P = 0.90, respectively; see “National Forest Inventory 
dataset” and “Statistical analysis of NCSS and NFI data" 
Sections), which was generally congruent with meta-
analysis results indicating no significant harvest effects 
on C stocks in mineral soil horizons. Second, NFI data 
indicated a similar relationship between stand age 

and O horizon C stocks as detected by meta-analysis 
(Fig.  4), with forests aged 26–50  years having signifi-
cantly lower C stocks than older stands. This result fol-
lowed the meta-analytic pattern that forests harvested 
26–50  years prior to sampling (roughly the latter 2–3 
decades of the twentieth century for this dataset) had 
a negative O horizon C stock response ratio with con-
fidence intervals that did not overlap 0% change (Fig. 4, 
Table 4). In terms of the key difference, NFI data (like 
the soil survey pedon + GIS data) indicated that O 
horizons in harvested forests held significantly more C 

Table 2 Meta-analysis results for potential predictors of C stock changes in response to forest harvesting, for organic vs. mineral soil 
horizons

Statistics include the between-group (Qb) or continuous model (Qm) heterogeneity, total heterogeneity (Qt), and P value for each predictor variable

Organic horizons Mineral soils (all horizons)

Factor Qb(Qm) Qt P Factor Qb(Qm) Qt P

Study identity 7.5 16.5 0.58 Study identity 2.0 16.8 0.98

Time since harvest 0.9 16.7 0.83 Time since harvest 1.3 16.9 0.73

Harvest system 0.0 16.7 0.94 Harvest system 0.0 16.9 0.92

Basal area removal fraction 1.0 16.7 0.62 Basal area removal fraction 0.0 16.9 0.99

Harvest type 1.7 16.7 0.64 Harvest type 0.1 16.9 0.99

Materials removed 0.0 16.7 0.98 Materials removed 0.2 16.9 0.89

Season of harvest 0.3 16.5 0.88 Season of harvest 0.4 16.9 0.81

Felling methods 0.1 16.7 0.78 Felling methods 0.2 16.9 0.64

Hauling methods 1.2 16.7 0.75 Hauling methods 0.3 16.9 0.96

Traction type 0.3 16.7 0.88 Traction type 0.6 16.9 0.76

Landscape-level forest type 0.2 16.7 0.64 Landscape-level forest type 0.4 16.8 0.54

Stand-level forest type group 1.0 16.7 0.59 Stand-level forest type group 0.4 16.9 0.82

Stand-level forest type 5.4 16.7 0.25 Stand-level forest type 1.0 16.9 0.90

Mean annual temperature 1.3 16.7 0.26 Mean annual temperature 0.9 16.9 0.33

Mean annual precipitation 0.0 16.7 0.97 Mean annual precipitation 0.2 16.9 0.66

Ecoprovince 1.2 16.7 0.54 Ecoprovince 0.5 16.8 0.78

Ecosection 4.1 16.7 0.66 Ecosection 1.3 16.8 0.93

Ecosubsection 5.7 16.5 0.89 Ecosubsection 1.5 16.7 1.00

Elevation 2.2 16.7 0.14 Elevation 0.1 16.9 0.74

Slope steepness group 4.6 16.7 0.20 Slope steepness group 0.1 16.9 0.99

Aspect class 3.5 16.7 0.32 Aspect class 0.1 16.9 0.99

Landform group 5.5 16.7 0.48 Landform group 1.6 16.9 0.90

Parent material 5.5 16.5 0.48 Parent material 1.4 16.9 0.92

Surface geology 3.2 16.7 0.67 Surface geology 0.2 16.8 1.00

Soil Order 0.8 16.7 0.86 Soil Order 0.7 16.9 0.88

Soil Suborder 0.9 16.7 0.93 Soil Suborder 0.7 16.9 0.95

Soil Great Group 3.2 16.5 0.79 Soil Great Group 0.9 16.9 0.97

Soil Subgroup 9.1 16.4 0.70 Soil Subgroup 2.4 16.9 1.00

Organic subhorizon 3.0 16.7 0.70 Soil master horizon 1.0 16.9 0.91

Soil texture 0.9 16.9 0.99

Wetness group 0.3 16.7 0.85 Wetness group 0.5 16.9 0.80

Drainage index 1.4 15.5 0.28 Drainage index 0.0 16.6 0.87

Productivity index 1.9 15.5 0.17 Productivity index 0.1 16.6 0.75
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Table 3 Variables included in optimal best subsets regression models of O&A horizon (R2 = 0.45) and profile total (R2 = 0.32) C stocks 
(P = 0.001 for each), based on soil pedon and GIS data

O & A horizon C stocks Profile C stocks (to refusal or 50 cm)
Type Variable Coef. t P Type Variable Coef. t P 

Constant 4.13 86.55 <0.001 Constant 5.02 93.85 <0.001

Soil Sapric organic 1.06 12.10 <0.001 Land use /veg Barren -1.70 -5.87 <0.001

Land use /veg Deforested -0.98 -3.67 <0.001 Soil Mollisols -1.18 -2.77 0.006

Soil Histosols 0.85 3.12 0.002 Soil Histosols 1.09 2.53 0.012

Soil Sand -0.80 -5.17 <0.001 Parent material Colluvium/residuum -0.66 -4.41 <0.001

Land use /veg Harvested forest 0.79 2.44 0.015 Parent material Alluvium -0.53 -2.49 0.013

Soil Hemic organic 0.74 6.68 <0.001 Soil Alfisols -0.51 -2.68 0.008

Soil Fibric organic 0.65 5.90 <0.001 Parent material Fine proglacial -0.49 -5.31 <0.001

Soil Clay 0.60 2.60 0.01 Parent material Coarse proglacial -0.40 -2.33 0.02

Parent material Alluvium -0.58 -3.35 <0.001 Parent material Outwash -0.35 -2.64 0.008

Parent material Colluvium/residuum -0.47 -3.96 <0.001 Soil Inceptisols -0.35 -4.86 <0.001

Soil Silty clay 0.41 3.32 <0.001 Parent material Fine till -0.33 -4.41 <0.001

Soil Loamy sand -0.33 -3.19 0.001 Land use /veg Developed-Open -0.32 -2.83 0.005

Soil Sandy loam -0.29 -4.33 <0.001 Topography Elevation 0.19 5.89 <0.001

Parent material Fine till -0.20 -3.50 <0.001 Climate MAP 0.19 5.62 <0.001

Topography Elevation 0.19 7.41 <0.001 Land use /veg Aboveground Biomass 0.11 3.78 <0.001

Land use /veg Pasture/Hay -0.18 -2.65 0.008

Land use /veg Aboveground biomass -0.07 -2.28 0.023

Variables are sorted by their relative strength of influence (in terms of standardized slope coefficients) and color-coded to distinguish those that are positively 
(orange) vs. negatively (blue) related to C stocks. See Additional file 1: Table S4 for the complete list of variables included in the selection pool for this modeling 
procedure

Table 4 Summary of study conclusions

Confidence ratings indicate high (H) versus medium (M) confidence in strength of inference, based upon the degree of support across data sources

Finding Confidence Management, C accounting, & policy considerations

1. Deforestation decreases soil C stocks H Soil C losses are largest at the surface of the profile and diminish 
with depth; declining regional forest cover in recent decades suggest land 
use change is having increasingly negative effects on the regional forest 
sector C budget

2. Reforestation increases soil C stocks H Soil C gains are largest at the surface of the profile and diminish 
with depth; across the region, large areas of forest that were once farmed 
are likely on a trajectory of long-term soil C increase

3. Soil C increases with reforestation vary by site H Landform, soil, and vegetation influence O horizon C gains; site-level 
uncertainty in rates is tied to unknown factors (potentially includ-
ing past agricultural practices)

4. Forest harvesting does not affect soil C stocks H Harvesting in general does not affect soil C; outcomes to the contrary are 
highly exceptional and not predictable based on natural factors or silvicul-
tural practices

5. O horizon C may be vulnerable to harvest in select settings M For Spodosols, northern & boreal tree communities, steep slopes, 
and S-facing aspects, there is some (highly limited) evidence for O horizon 
C losses; low-risk-tolerance management may minimize interventions 
in such settings while increasing them in settings with no evidence for O 
horizon C losses

6. Existing management guidelines benefit soil C M Soil- and water-protecting practices that are already implemented most 
of the time as best management practices or for legal compliance are 
not explicitly targeting soil C protection, but are likely promoting it

7. Partial harvest systems require further research H Clearcutting is studied far more frequently than it occurs; more research 
on more extensive partial harvests is needed to better constrain soil C 
outcomes

8. Soil C is one aspect of forest climate vulnerability M Silviculture and soil C management can facilitate forest climate adapta-
tion and mitigation by placing soils, topography, and tree communities 
in landscape context to define goals and objectives for diverse stands 
and settings
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(t-test, P < 0.001, 21 vs. 14 Mg C  ha−1) than forests that 
had not been recently harvested.

Discussion
Land use change, forest harvesting, and soil C change 
in a regional context
This analysis focused on the Northeast is the most data-
rich, intensive effort in our series of ecoregional inves-
tigations of land use and forest management effects on 
soil C stocks in the U.S. [21–24]. Among these studies, 
the Northeast is also unique as the only ecoregion where 
there is no detectable effect of forest management on soil 
C stocks, either overall or as a function of place-based or 
practice-specific factors. In addition to the absence of any 
forest harvesting effects, another key finding of the pre-
sent analysis is the clear evidence of the effects of land 
use change on soil C stocks. Where deforestation has 
occurred (whether for agriculture or urban development), 
it has caused significant soil C losses, and these losses are 
likely substantial at a regional scale given the increasing 
urbanization and declines in forest cover in New Eng-
land in recent decades [29, 33]. Contrary to the negative 
effect of deforestation, our analysis demonstrates that 
reforestation consistently increases soil C stocks in the 
Northeast, and reveals place-based factors that explain 
variation in those increases. These findings enhance the 
results of detailed site-level studies in the region (e.g., 
[34, 35] by revealing broader relationships between soil 
C stock changes and those place-based factors, which 
may be useful in prioritizing reforestation efforts. For 
example, planting conifers on outwash soils drives larger 
O horizon C gains than hardwood regrowth on finer-
textured till soils, and because outwash soils tend to be 
less agriculturally productive, they may be more likely to 
support such a land use change. This place-based varia-
tion aside, long-term soil C increases are probably wide-
spread in the Northeast because so much of the region 
was farmed decades to centuries in the past. Reforesting 
soils thus represent a component of the regional forest C 
sink that is rarely quantified as research tends to focus on 
more readily measured aboveground C pools [27, 36, 37]. 
The exclusion of soils from forest C stock assessments in 
the Northeast is unfortunate in light of the large propor-
tion of total ecosystem C that soils hold, and the more 
rapid rates of soil C gain after reforestation than other 
ecoregions of the U.S. [20, 25]. Collectively, these find-
ings have two important implications for future land use 
change and C management in the Northeast. First, from a 
wider perspective, urbanization of farmland is also prob-
ably C-negative, because it drives agriculture to become 
more fossil fuel intensive and to expand at the expense 
of forestland [38, 39]. Second—and considering forest-
land specifically—where climate change driven declines 

in forest health or other environmental changes may 
contribute to deforestation, forest management can help 
mitigate these threats to the maintenance of forestland 
area and C stocks. Ultimately, maintaining forest land as 
forest, whether or not it is managed, is a way to maintain 
the largest terrestrial C stock in the region.

Northeast forest soils and global change
Forest soils in the Northeast have larger C stocks than 
in most other areas of the U.S. [40], with profile totals 
ranging from 60 to 241  Mg  C   ha−1 in our meta-anal-
ysis dataset. Thesesoils frequently include well-devel-
oped O horizons, averaging 12% of the whole-profile C 
stock, and high C concentrations in mineral soils, both 
of which may be due to some combination of acid par-
ent material, productive vegetation, and generally cool, 
wet climate [41–45]. As large C stocks often translate 
to high variability, and in any case, hinder the detection 
of small treatment effects [46], the large baseline soil C 
stocks of Northeast forest soils may partly explain why 
they appear resistant to forest harvest. However, several 
of these C-positive factors—notably, the large proportion 
of C held in unprotected surface organic matter and the 
role of historical climate and vegetation inputs—imply 
several mechanisms whereby climate change could alter 
soil C stocks in the long term. First, warming and wetting 
accelerate microbial activity, lengthen decomposition 
seasons, and increase hydrologic exports of C in runoff, 
surface and groundwater [47, 48]. Second, the potential 
for increased fire activity due to the increasingly episodic 
nature of precipitation may make O horizons vulnerable, 
particularly in coniferous forests with thicker litter layers, 
forests that are overstocked or have high fuels density, 
or otherwise unhealthy forests [49–52]. Third, climate 
change impacts on forests and their C are occurring in 
synergy with other global change drivers. For example, as 
Northeast forest soils recover from prior decades of ele-
vated nitrogen (N) and acid deposition, which increased 
soil C via biogeochemical mechanisms, climate change 
may interact with changing nutrient demand, microbial 
community composition and biochemistry to destabi-
lize SOM [53, 54]. Although not yet widely observed, 
one mechanism for these interactions is the potential for 
coupled vegetation-microbial “mining” of N-rich SOM 
due to simultaneous increases in primary production and 
N limitation [55–57]. Climate change is also increasing 
nonnative earthworm populations and associated inva-
sive species in the Northeast, significantly altering soil C 
stocks and their vertical distribution [58, 59]. In the con-
text of these synergistic global change drivers, regional 
reductions in soil C stocks, particularly in O horizons, 
appear likely. Thus forest managers and other resource 
professionals will increasingly have to contend with soils 



Page 9 of 19Nave et al. Carbon Balance and Management            (2024) 19:5  

that are losing organic matter for reasons beyond their 
direct control, even as their own forest management 
decisions have little direct effect on soil C [60].

Forest climate vulnerability, soil C management, 
and adaptation
The potential for climate change to affect soil C through 
a variety of direct, biogeochemical, disturbance, and 
land use change mechanisms points to several ways that 
management can be used to mitigate soil C vulnerabil-
ity, while also mitigating overall forest vulnerability to 
climate change [61, 62]. Reiterating that meta-analysis 
revealed no statistically significant effects of harvesting 
on soil C stocks, we draw attention to several of its more 
nuanced findings that may inform management options. 
For example, O horizon C stocks for (1) Spodosols and 
(2) forest types with climate-vulnerable northern tree 
species had slightly negative effect sizes, with confidence 
intervals that did not overlap 0% change (Additional 
file 1: Table S2). This implies that Spodosols supporting 
northern and boreal tree species may have some level 
of soil C vulnerability to harvesting, and may argue for 
alternative management approaches for these climate-
vulnerable soil and forest types. One such approach 
could be to move away from harvesting on Spodosols 
and instead manage for climate-vulnerable northern 
forest types more on Inceptisols, which have smaller C 
stocks (Table 3) and showed no harvest effect on their O 
horizons. Other options may be to harvest northern for-
est types on Spodosols only under certain settings (e.g., 
N-facing slopes) or meteorological conditions (e.g., fro-
zen ground). In either case, placing soils, topography, 
tree species, and silvicultural details in landscape context 
can facilitate management to jointly mitigate soil C and 
climate vulnerabilities.

Moving beyond merely mitigating vulnerabilities, soil 
C management can also be used to increase adaptive 
capacity in the face of climate change. For example, active 
forest management to favor diverse mixtures of south-
ern species on inherently more productive soils, such 
as Alfisols, targets soils that have less C to begin with 
(Table 3) and are not affected by harvest, while facilitat-
ing transition to more climate-adapted forest types [63–
65]. Where factors such as topography or drainage favor 
more cold-adapted soil and forest types, careful harvest 
removals can increase structural and compositional com-
plexity—traits which increase adaptive capacity—while 
maintaining these climate-vulnerable systems [66–68].

Setting aside climate change, our meta-analysis 
revealed several additional patterns that can inform for-
est management in the heterogeneous landscapes of the 
Northeast. These more nuanced patterns should be inter-
preted cautiously as they are based upon meta-analytic 

groups with nonzero, negative response ratios rather than 
predictor variables with P < 0.05 statistical significance 
(Additional file  1: Tables S2, S3, Sect.  “Meta-analysis"). 
The first of these patterns were tendencies for harvesting 
(1) large proportions of stand basal area or (2) on steeply 
sloping terrain or (3) on south-facing slopes to diminish 
O horizon C stocks (Additional file 1: Table S2). In light 
of these potential vulnerabilities, increasing retention in 
stands on steep terrain, especially on south-facing slopes, 
may minimize the risk of soil C losses. The second pat-
tern of note among these more nuanced findings was that 
light to moderate basal area reductions (vs. heavy basal 
area reductions) were associated with a tendency for 
mineral soil Db to increase (Additional file 1: Table S3). 
This may be because harvesting fewer trees results in 
fewer harvest residues (e.g., tree tops, limbs) being avail-
able to protect harvesting and hauling trails from vehicle 
traffic [69]. In this hypothetical scenario, reducing har-
vest intensity (or forgoing harvest altogether) on steep 
slopes can be used to minimize risks to soil C stocks and 
physical properties, while furthering other objectives 
such as those related to water quality or wildlife habitat. 
At the same time, an adequate supply of wood can be 
maintained by increasing removals in flatter settings, at 
no apparent risk to soil C or physical properties, as our 
meta-analysis revealed no changes for any other har-
vest intensity or slope steepness groups. Overall, these 
patterns support harvest prescriptions that are usually 
already employed to support soil and water quality guide-
lines [70, 71], indicating that even when these guidelines 
are implemented for other reasons, they are compatible 
with if not beneficial to soil C management.

Caveats
In each ecoregional soil C assessment that has comprised 
this series of analyses, we have used multiple independ-
ent approaches to assess confidence in results by judging 
their consistency across data sources and methods. Here, 
we discuss and discount a trend that emerged in two of 
the three data sources in the present analysis, which we 
believe to be an artifact that highlights the challenge of 
using observational data to understand forest C change 
and its drivers. That is, while meta-analysis revealed no 
statistically significant harvest effects, the two observa-
tional datasets indicated that O horizon C stocks were 
significantly larger in forests harvested in the last 2–3 
decades than those without recent management. Most 
of all, we discount this trend because meta-analysis is 
a more robust technique, being based upon individual 
published studies that have been designed to minimize 
the influence of the many sources of variation in soil C 
stocks, thus maximizing their ability to detect any effects 
of harvest. Observational survey and inventory programs 
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are decidedly not designed to provide such a statistical 
framework, much less one that can rigorously address 
questions as specific as we focus on here. Relying on 
observational data to assess change in a case such as this 
thus risks a Type 1 error or “false positive,” especially 
given the strongly unbalanced design of our observa-
tional datasets: forests harvested in the past 2–3 decades 
represented only 3% and 12% of the observations in the 
soil pedon/GIS and NFI datasets, respectively. With such 
small sample sizes, it is reasonably likely that observa-
tions of harvested soils are directionally skewed by fac-
tors that influence soil C stocks in their own right. Such 
factors may have an even larger influence on our esti-
mates of soil C change if they are confounded with geo-
graphic or site factors that make a forest more likely to be 
harvested. The small sample sizes of recently harvested 
sites in our two observational datasets also highlight 
another important point about the results of our analysis. 
The estimated regional area of harvested forests based on 
our observational datasets (3–12%) compares well with 
a geospatial analysis of silvicultural practices that placed 
total harvested area in the range of 2–17%, across states, 
over approximately the same period [72]. In the same 
analysis, clearcutting represented 21% of harvested area 
regionally, whereas 12 of 20 published papers that we 
found for inclusion in our meta-analysis (60%) reported 
the results of this most intensive type of forest harvest-
ing. In combination, the lack of any overall meta-ana-
lytic harvest effects, the preponderance of less intensive 
types of harvesting, and the modest extent of harvesting 
in general, indicate that harvesting has little potential to 
affect soil C in the Northeast.

Another caveat relates to soil sampling depths. As 
described in Sect.  “Meta-analysis”, published stud-
ies presented us with data for a wide range of sampling 
approaches and depths. Our prior ecoregional soil C 
assessments have indicated significantly different man-
agement effects on different soil horizons, with O hori-
zons typically being most responsive [21–24]. Thus, in 
the present analysis, we used the same approach to sys-
tematically categorize data across sampling approaches 
into a set of depth-related variables for further investiga-
tion. Surprisingly, soil horizons did not differ significantly 
in their responses to harvest (Table  2). The reasons for 
this lack of a significant effect are as uncertain as the rea-
sons for the lack of an overall harvest effect, which has 
at least been implied in certain settings or for certain 
practices in other ecoregions. The mutually consistent O 
horizon increase in our two observational datasets, one 
of which (the soil survey pedon dataset) samples by hori-
zon and the other of which (the national forest inventory 
dataset) samples by a horizon / depth hybrid approach, 
may imply that there may be functional interactions 

between soil horizons. However, as discussed in the prior 
paragraph, we discount these results due to the potential 
for spatial design problems, which should be expected in 
a region where a large share of the harvesting is done in 
northern coniferous forest types with large O horizon C 
stocks [42, 44, 73–75].

Insights from regional case studies
While our synthesis demonstrates regional consistency 
in the lack of harvest impacts on soil C stocks, detailed 
site-level case studies sometimes arrive at other conclu-
sions, which inform our results and their implications. 
The Hubbard Brook Experimental Forest Watershed 
5 clearcut study is one of these studies, and it has been 
the focus of several mechanistic and long-term resam-
pling studies. Data for our meta-analysis come from the 
most recent resampling (1998) of the experiment, which 
was implemented in 1983 [76]. In this longitudinal study, 
O horizon and mineral soil C stocks have both changed 
significantly, albeit over different timescales. During the 
initial years after treatment, O horizons declined due to 
mixing with the surface mineral soil [77]. Organic hori-
zons have recovered since that time, yet mineral soil C 
stocks have declined sufficiently to drive net losses in 
whole profile soil C [76]. Molecular characterization 
has revealed that loss of mineral soil C has been accom-
panied by replacement of more degraded (likely slower-
cycling) SOM by more recent, residue-derived C inputs 
[78], a process supported by SOM fractionation results 
from a clearcut experiment at the nearby Bartlett Experi-
mental Forest [79]. While these results together provide 
a pattern and a mechanism for situations in which soil 
C stocks decline after harvesting, they are tempered by 
the wider results of our analysis, which suggests that 
they are exceptional. This may be a result of the experi-
mental treatment in the Watershed 5 study, which rep-
resents intensive harvesting (whole-tree harvest of all 
stems down to 5 cm diameter) that is almost never seen 
in operational forestry in the region [72].

Like Hubbard Brook and Bartlett, Yanai et  al. [80] 
studied clearcut-origin northern hardwoods on Spodo-
sols in northern New England, in an effort to critically 
assess chronosequence results and constrain temporal 
trajectories of organic matter stocks following harvest. 
In their study, the authors justifiably sampled combined 
O and A horizons as part of what they defined as the 
“forest floor,” for reasons including mixing of organic 
and mineral horizons during harvesting. When resa-
mpled after 15  years, individual stands showed every 
possible trajectory of change, including increases, 
decreases, and no change in forest floor organic mat-
ter. This result highlights a frequent criticism of the 
chronosequence approach. One of the important 
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conclusions of the study remains the argument that 
stands harvested at different points in time differ not 
only in the circumstances of their individual harvests, 
but in the environmental conditions in which they have 
developed since. As rates of climate and other global 
change drivers continue to increase, this argues for a 
conservative approach to interpreting soil C stock data 
from forests differing in their ages. With this in mind, 
our results showing that O horizon C stocks vary with 
stand age (Fig.  5) provide limited basis for predicting 
C stock changes into the future for harvested forests, 
much the same as aboveground C should also be inter-
preted with caution when extrapolating past conditions 
into the future [81]. Rather, it is more appropriate to 
view chronosequences as current snapshots of C stocks 
in forests with different histories, and from there, to 
allow those current conditions to guide future man-
agement. In this regard it is clear that the oldest for-
ests are the most effective C reserves at present, due to 
their large above- and belowground C stocks. Younger 
forests meet a range of other objectives in landscape-
scale management, with their more rapid rates of C 
accumulation in this region and elsewhere [82] provid-
ing opportunities to transfer C from rapidly aggrading 
aboveground biomass to more slowly cycling soil pools. 
Our analysis indicates that regionally, harvesting older 
forests to make them better suited to increased rates of 

climate change and disturbance does not come at the 
expense of C stored in the soil.

Across the 7 states in the region analyzed by Belair et al. 
[72], 72–100% of the area harvested in the past 2–3 dec-
ades has consisted of various types of partial harvesting, 
making primary studies of these other silvicultural inter-
ventions very important. Increasingly, the soil C litera-
ture is turning in this direction, with studies addressing 
more prevalent treatments such as single- and group-tree 
selection, crop tree release, various types of thinning, and 
shelterwood harvests. Two recent partial harvest studies, 
both in northern hardwoods, provide several nuanced 
insights that help advance the clearcutting-biased litera-
ture on this topic [83, 84]. First, neither of these stud-
ies detected significant changes in total organic horizon 
C stocks (though Puhlick and Fernandez [83] reported 
fine-fraction O horizon declines). Second, both stud-
ies identified inputs of C, via harvest residues, as a pos-
sible mechanism for sustaining O horizon C stocks 
during the period following harvesting. Third, both stud-
ies suggested that microclimatic changes after harvest-
ing could lead to altered soil C in the future, especially 
with increased climate change, and Puhlick and Fernan-
dez [83] specifically referenced using harvest residues 
to physically protect soils from climate-intensified pre-
cipitation events. Importantly, those authors identified a 
trade-off between broadcasting harvest residues to miti-
gate weather and microclimate effects vs. concentrating 
them on trails to minimize machine traffic impacts. Our 
finding that light to moderate harvests tended to increase 
mineral soil Db, while heavy basal area reductions had no 
effect (Additional file  1: Table  S3) highlights this trade-
off: partial harvests generate fewer residues, requiring 
managers to make difficult choices among competing 
uses. Ultimately, the outcomes of these difficult choices 
for soil C will be most favorable when the same choice 
is not made in all situations, much in the same way that 
management is most effective when planned and imple-
mented at a landscape scale. At such a scale, prescrip-
tions for individual stands will naturally differ based on 
site conditions, with a balanced range of management 
actions across the landscape mosaic meeting multiple 
objectives.

Conclusions
The key inferences of this study are summarized in 
Table  4. Across the landscape mosaics of the North-
east U.S., soils are losing C where forests are being con-
verted to other land uses and gaining it where forests 
are gradually recovering from historic deforestation. In 
the case of deforestation, conversion from forest to agri-
culture causes larger soil C stock declines per unit area 
than does deforestation for urban development. Soil C 

Fig. 5 Organic horizon C stocks as a function of time since harvest 
based on meta-analysis results (filled circles) and NFI plots (open 
squares). Time since harvest (years) is presented as a categorical 
variable (age class group), due to the difficulty of precisely 
constraining years since harvest among the published studies used 
for meta-analysis. Y-axis values for NFI plot data are ln-transformed 
C stocks and 95% confidence intervals; for meta-analysis results, 
y-axis values are C stock changes (ln-transformed response ratios 
and bootstrapped confidence intervals). Letters denote statistical 
significance of pairwise comparisons (Tukey test) for NFI plot data; 
for meta-analysis results, the asterisk indicates the age class group 
with confidence intervals not overlapping 0% change (R = 1.00)
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stock increases under reforestation are driven by a com-
bination of known and unknown site-specific factors, 
including physiography, forest type, and past agricultural 
management practices. In general, forest harvesting has 
no effect on soil C stocks, and no place-based or practice-
specific factors reveal any significant or systematic devia-
tion from this overall trend, though a small minority of 
individual studies indicate significant changes in soil C 
stocks. Overall, interactions between individual site his-
tories (e.g., disturbance, management) and place-based 
factors (e.g., physiography, soil type) mediate the effects 
of land use and forest management on soil C stocks. Rec-
ognizing these influences and using them to prioritize 
management strategies and actions at landscape levels 
(with examples provided herein) can promote C manage-
ment as a tool in climate change adaptation and mitiga-
tion in this region.

Methods
Study area
Following previously published assessments [21–24], 
we delineated the study area for this analysis using the 
USDA FS ECOMAP system [85, 86]. Our focus was on 
glaciated northeastern U.S. states with regionally consist-
ent climate, physiography, and vegetation, as constrained 
by the boundaries of several previously published ecore-
gional assessments [1, 23]. We synthesized data from 
within the 19 ECOMAP Ecological Sections comprising 
the study area, which entirely encompasses the states of 
Maine (ME), New Hampshire (NH), Vermont (VT), Mas-
sachusetts (MA), Rhode Island (RI), Connecticut (CT), 
and New York (NY), and includes portions of New Jersey 
(NJ), Pennsylvania (PA), and Ohio (OH, Fig. 1). Ecologi-
cal Sections tier beneath the Province level in the hierar-
chical ECOMAP system and are summarized below.

The climate of the study area ranges from warm to 
hot continental, with cold winters and warm summers. 
Mean annual air temperatures range from 3 to 11º and 
mean annual precipitation from 850 to 1400  mm. Cli-
matic extremes occur in interior mountain areas, which 
are generally colder and wetter, and climatic moderation 
occurs near the maritime influence of the Atlantic Ocean. 
Approximately three-fourths of the region is forested, 
with diverse cover types ranging from boreal conifers in 
the north and at high elevations, to mesic conifer-north-
ern hardwoods mixtures across the majority of the study 
area and at intermediate elevations, to oak (Quercus 
spp.)-hickory (Carya spp.) and oak-pine (Pinus spp.) 
cover types in the southernmost and coastal ecological 
sections. Elevations range from sea level to 1913 m above 
sea level. The geology of the study area consists of a wide 
range of sedimentary, igneous, and metamorphic rock 
types occurring as mountains, ridges, valleys, cuestas, 

monadnocks, plateaus, and peneplains. Across most of 
the study area, these bedrock features are buried beneath 
glacial drift deposited during Wisconsinan glaciation ca. 
28,000–14,000 years before present. Postglacial lakes and 
their outbursts, as well as erosion and alluvial deposi-
tion during the Holocene have modified the landscape in 
many areas. The most extensive soil orders of the region 
are Spodosols and Inceptisols, which are generally more 
common in areas that are cooler, wetter, and more topo-
graphically rugged; Alfisols and sporadic Mollisols are 
found in flatter, more clay-rich settings such as lakeplains 
and major river valleys. Histosols are found in interior 
and coastal wetlands, Entisols are found in wetlands and 
on modern floodplains, and Ultisols are present to a lim-
ited extent, especially in residual and colluvial parent 
materials near the southern limit of continental glacia-
tion. Further and more detailed description of the study 
area’s climate, vegetation, geology, and soils is available in 
McNab et al. [86].

Approach
We used synthesis methods detailed in previous ecore-
gional papers [21–24] and refined modestly for the 
current analysis. Methods included: (1) effect size meta-
analysis of data from published papers; (2) synthesis of 
soil survey pedon observations with GIS information; (3) 
analysis of NFI data from plots in which soils, biomass, 
and other ecosystem properties were measured. We 
employed these methods as follows. First, we used meta-
analysis to quantify the effects of five distinct land uses 
on soil C stocks: deforestation for agriculture, deforesta-
tion for urban development, reforestation after agricul-
ture, reforestation on former industrial lands, and forest 
harvest. Second, using meta-analysis, we examined these 
effects in greater detail, quantifying their magnitude and 
uncertainty for three a priori defined portions of the soil 
profile: organic horizons, mineral soils, and whole soil 
profiles. Subsequently, for the two land uses with suffi-
cient data (agricultural reforestation, forest harvest), we 
tested a range of potential predictor variables (Table  1 
and electronic supporting information) for their ability to 
explain variation in soil C stock changes. Finally, follow-
ing all meta-analyses, we analyzed soil pedon/GIS and 
NFI data as two independent sources of information, in 
order to assess the level of support for trends indicated 
by meta-analysis, and place meta-analysis results in the 
context of baseline soil C stocks and their controls across 
the study area.

Meta‑analysis
We synthesized data from 35 relevant papers, published 
between 1997 and 2023, identified through an extensive 
literature review (see Additional files1 and 2; Fig. 1). As 



Page 13 of 19Nave et al. Carbon Balance and Management            (2024) 19:5  

with our prior meta-analyses, we followed a predeter-
mined protocol for assessing each publication found dur-
ing our literature review to determine its suitability. To 
be included, each paper had to: (1) provide control and 
treatment values for soil C (concentration or stock) or 
bulk density, for at least one relevant treatment; (2) offer 
adequate metadata to constrain locations and use as 
potential predictor variables; (3) present response data 
not included in previous studies; (4) fall within the study 
area. In this analysis, we introduced two new features 
compared to previous assessments. First, we incorpo-
rated bulk density (Db) as a specific response parameter 
of interest. Second, in several cases, we directly contacted 
study authors to obtain data not reported in, but under-
pinning several forest harvest papers from the region [73, 
83, 84, 87, 88]. These personal communications were nec-
essary to bring summarized data from these important 
regional papers to the same level of site-specific detail 
found in the majority of other forest harvest papers (or 
their associated Additional file 2: Datasets).

From all 35 papers, we extracted control and treatment 
soil C (or Db) values and utilized them to calculate effect 
sizes (as the ln-transformed response ratio R). As in our 
other published meta-analyses, these response ratios 
span a wide range of forest types, soil depths, amount 
of time elapsed since experimental treatments, and 
other sources of variation, both known and unknown. 
Response ratios also vary in terms of how their control 
conditions were defined. Reflecting the dominant land 
use history of the region, nearly all comparisons were 
between recently harvested forests vs. 60–100  year old 
second-growth forests; the remainder were a handful of 
studies that compared recently harvested forests to for-
ests with no known Euro-American disturbance or man-
agement history. To analyze the data, we used MetaWin 
3 [89] to conduct fixed-effects, categorical and continu-
ous meta-analyses [17, 90], with bootstrapped confidence 
intervals determined using the Student’s t distribution 
[91, 92]. We chose to conduct an unweighted meta-
analysis, which maximizes data availability, as weighted 
meta-analyses require sample size and variance statistics 
reported ~ 50% of the time in this literature. Furthermore, 
we did not assume that the data met parametric assump-
tions of a weighted meta-analysis.

In this meta-analysis, soil organic carbon (SOC) stock 
(Mg C  ha−1) was our response variable of specific inter-
est. When data were not reported in those units we con-
verted them, as needed, using the same basic approaches 
as our other assessments [21–24], refined for the current 
region. For studies reporting soil organic materials as the 
concentration of soil organic matter (%SOM, derived 
from loss on ignition; 22 of 614 total response ratios), 
we converted %SOM to %SOC using soil order-specific 

factors and models from Boyle et  al. [93]. For papers 
that reported soil C as %SOC, we derived a relation-
ship between %SOC and Db for the 243 observations 
that reported both, and used the resulting model to pre-
dict Db from %SOC for papers only reporting the latter 
(%SOC,41 of 614 total response ratios). Based on the 
diagnostic shape of the %SOC vs. Db relationship, and 
principles outlined in Federer [94], we used an expo-
nential decay model to fit the data. The resulting model 
(1) had r2 = 0.90, P < 0.001, and a standard error of the 
estimate of 0.13, for soils with C concentrations ranging 
from 0.17 to 48.77% and Db values ranging from 0.02 to 
1.78 g  cm−3.

We then computed SOC stock (Mg  C   ha−1) as the 
product of the reported %SOC, the predicted Db, and the 
reported sampling interval depth or horizon thickness. 
For studies reporting soil organic materials as a thickness 
measurement (3 response ratios, all organic horizons), 
we obtained the average organic horizon C concentration 
for the reported soil series from Soil Series Data Explorer 
(https:// casoi lreso urce. lawr. ucdav is. edu/ sde/), used it to 
predict Db, and then computed SOC stock as the product 
of the predicted %SOC and Db values and the reported 
organic horizon thickness. In three studies (k = 33 
response ratios) involving land use change, either the 
control or treatment value for organic horizon C stock 
was 0; we set these values equal to 0.00001  Mg  C   ha−1 
in order to be able to compute a response ratio for these 
observations.

To evaluate place-based and practice-specific factors 
that may influence treatment effects on soil C stocks, 
we extracted a wide range of ecological, geographic, 
climatic, experimental, and methodological predictor 
variables from each paper. When needed, we looked up 
missing study site information in other publications from 
the same sites, or using geocoordinates reported in the 
papers, or by accessing information about the soil series 
reported from those study sites, via the USDA Natural 
Resources Conservation Service (USDA NRCS) online 
Official Soil Series Descriptions (https:// soils eries. sc. 
egov. usda. gov/ osdna me. aspx). When key information 
was missing, but geocoordinates were provided, we used 
GIS lookups (Sect.  “Synthesis of soil pedon and GIS 
data”) to obtain the necessary attributes for each study. 
The meta-analysis database we developed is provided as 
electronic supporting information.

Our strategy for categorizing soil sampling depths 
requires detailed description, because we tested for 
effects of depth in the soil profile in two ways (i.e., using 
two different variables). First, recognizing a fundamental 

(1)
Db = 0.0867 + 1.1178 ∗ exp(−0.1266 ∗ %SOC)

https://casoilresource.lawr.ucdavis.edu/sde/
https://soilseries.sc.egov.usda.gov/osdname.aspx
https://soilseries.sc.egov.usda.gov/osdname.aspx
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difference between organic soil horizons, mineral soil 
horizons, and soil profiles, we categorized each response 
ratio according to a high-level “soil material” variable 
(organic, mineral, or profile). For the second approach, 
we first recorded either the genetic horizon (e.g., Oe, Oa, 
A, Bw1) or sampling increment (as depth range in cm) 
for each response ratio. Then, we placed genetic horizons 
and sampling depths into a “soil master horizon” variable. 
Probable master horizons included the master horizons 
O, A, E, B, C, as well as their various combinations (e.g., 
EB, BC). For papers reporting data by horizon, categoriz-
ing response ratios to their master horizon was straight-
forward; for papers reporting data by depth increment, 
we correlated each reported depth increment to its 
probable master horizon, based upon associated meth-
ods descriptions or soil series descriptions. When soil C 
stocks were reported for increments greater than 50 cm 
total depth, we summed them and categorized them as 
profiles, which we distinguished between mineral profiles 
(mineral soils only) and whole profiles (mineral soils plus 
organic horizons).

As in prior published assessments, we used meta-anal-
ysis to identify significant predictors of variation in soil 
C stock responses to management, which is completed 
statistically by parsing variation into within-group (Qw) 
and between-group heterogeneity (Qb) and inspect-
ing corresponding P values [95]. Grouping variables 
that have large Qb relative to Qw are statistically signifi-
cant (P < 0.05) and explain a larger share of total varia-
tion among all studies (Qt). However, we recognize that 
the statistical significance of P values is only one way to 
assess significance of meta-analysis results. In this study, 
in addition to identifying statistically significant predic-
tors variation based on their P values, we were also con-
cerned with identifying individual groups of response 
ratios that did not have predictors with statistically sig-
nificant P values, but which were significantly different 
from zero percent change based on their bootstrapped 
confidence intervals not overlapping zero. In all meta-
analyses, we imposed a small sample size criterion, elect-
ing a priori to exclude from discussions of statistical or 
practical significance any group that showed statistical 
significance (or was significantly different from zero per-
cent change) but had fewer than k = 5 response ratios.

Synthesis of soil pedon and GIS data
We complemented the experimental strength of meta-
analysis, which generates strong inferences for a rela-
tively limited number of intensively studied sites, with 
an extensive soil pedon dataset for our study area. These 
were data for geo-located soil pedons from the USDA 
NRCS, National Cooperative Soil Survey (NCSS) Data-
base (July 2019 version), including latitude, longitude, 

soil taxonomy, and physical and chemical properties 
of individual soil horizons according to Schoeneberger 
et  al. [96] and Burt et  al. [97]. Data from the NCSS 
Database span decades of soil survey,as in prior papers 
[20–24], we only used pedons from 1989-present to 
increase concurrence with other datasets used in our 
analyses. In addition to the data contained in the NCSS 
Database, we used GIS to extract the following attrib-
utes for each geo-located NCSS pedon: land cover from 
the most closely coincident version of the National 
Land Cover Dataset [98–100], aboveground biomass 
density from the National Biomass Carbon Dataset 
(NBCD2000; [101, 102]), mean annual temperature 
(MAT) and precipitation (MAP) for the 1981–2010 
period [103], landscape-level forest type [104], surface 
geology [105], integrated soil moisture [106], drainage 
[107] and productivity [65] indices, and elevation, slope 
aspect, and slope gradient from a 30 m digital elevation 
model (US Geological Survey 2023 [108]). To more pre-
cisely constrain recent land use and management his-
tory than is possible using the 250-m resolution, 5-year 
interval NLCD products, we used a combination of the 
USDA FS Landscape Change Monitoring System [109] 
and Google Earth Pro. This entailed using the LCMS 
to flag all pedon geolocations that experienced a “Fast 
Loss” in forest cover during the period of record (1985–
2021) and then manually inspecting all available aerial 
and satellite imagery (1984–2019) for those pedon loca-
tions in Google Earth Pro to attribute specific types of 
forest change (i.e., partial harvest, heavy harvest, or 
deforestation for development).

As in prior published assessments, we used gap-filling 
techniques to estimate Db for soil horizons in the NCSS 
Database that did not possess measured values. Using an 
initial dataset of n = 4542 individual horizons from 1282 
NCSS pedons, we developed a Db—%C relationship from 
the n = 1405 horizons with measured Db and %C values 
for the fine earth fraction (soil passing a 2 mm sieve). For 
Db, we preferentially used db_od (oven-dry mass divided 
by oven-dry volume) and, in limited cases, used oven-dry 
mass divided by field-moist volume (db_fmstw) where 
only that variant was available. For %C, we preferentially 
used the following: (1) %organic C measured directly, or 
(2) %total C minus %inorganic C, or (3) assumed %total 
C = %organic C, for samples with no measured %inor-
ganic C but pH < 7.0. We excluded the very small number 
of soils with pH > 7.0 and no reported value for %inor-
ganic C, as in these cases it would have been impossible 
to calculate %organic C. Next, we derived an exponential 
decay model following the same approach as described in 
Sect.  “Statistical analysis of NCSS and NFI data”, gener-
ating a resulting Db—%C relationship, Eq.  (2), that had 
r2 = 0.52, P < 0.001, and a standard error of the estimate of 
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0.21, for soils with %C ranging from 0.00 to 62.43% and 
Db ranging from 0.19 to 2.44 g  cm−3.

For all horizons, we then computed SOC stock (Mg C 
 ha−1) as the product of %C, Db, and horizon thickness. 
For tests involving whole profile C stocks, we summed 
the C stocks of individual horizons to a depth of 50 cm 
or refusal (e.g., by bedrock), assuming that C was homog-
enously vertically distributed in the case of horizons that 
spanning 50  cm and thus mathematically truncating 
these horizons at a depth of 50 cm in the profile C stock 
summation.

National forest inventory dataset
We complemented our meta-analysis and NCSS 
pedon + GIS datasets with observational data from the 
USDA FS NFI. The NFI plots are the basis for what is 
widely known as the Forest Inventory and Analysis (FIA) 
program, which provides data from an equal-probabil-
ity sample of all forest lands in the conterminous U.S. 
Across the conterminous U.S, there is one permanent 
plot on approximately every 2400  ha, randomly placed 
within a systematic hexagonal sampling frame [110]. All 
NFI plots with at least one forest condition are meas-
ured every 5–7  years in the eastern U.S. Soils are sam-
pled from a subset of these plots, according to a protocol 
in which organic horizons are sampled first and mineral 
soils are then sampled in depth increments of 0–10 and 
10–20  cm. The NFI plot design ensures no systematic 
bias with regard to location, ownership, composition, 
soil, physiographic factors, or other characteristics. We 
obtained data for this analysis from a July 2022 query 
of the FIA Database for records of organic horizon, 
0–10  cm and 10–20  cm mineral soil C stocks (all in 
Mg C  ha−1). To ensure data consistency, we constrained 
the query to plots that were at least 75% under the same 
condition, excluding plots divided along sharp bounda-
ries with different stand age, slope, wetness, etc., such 
that local variation in such factors would misrepresent 
conditions at the actual location of soil sampling. Moreo-
ver, we only used the most recent observation available 
in the FIA Database [111] of each long-term NFI plot, 
and only plots observed since 2000, aligning the NFI data 
with meta-analysis and NCSS pedon datasets. Similar to 
the NCSS pedon data, we used GIS lookups of NFI plot 
locations to obtain the following attributes, from the 
same sources: mean annual temperature and precipita-
tion [103], surface geology [105], and soil taxonomic 
order [112]. Altogether, our NFI datasets for this ecore-
gion included n = 470 organic horizons and n = 319 min-
eral soils (Phase 3 or P3 plots).

(2)
Db = 0.9080 + 0.8002 ∗ exp(−0.2752 ∗ %SOC)

Statistical analysis of NCSS and NFI data
To complement the non-parametric meta-analysis of 
experimental data from published papers, we used para-
metric statistics (SigmaPlot 14, SYSTAT Software, San 
Jose, CA US) to analyze observational NCSS and NFI 
data. To identify factors influencing baseline SOC stocks 
in (1) O and A horizons and (2) whole soil profiles (to 
50  cm or refusal), we analyzed NCSS data using best 
subsets regressions to identify variables with statistically 
significant categorical or continuous relationships with 
SOC stocks. In these analyses, we coded categorical pre-
dictors as dummy variables and standardized continuous 
predictors by subtracting the mean and dividing by the 
standard deviation. Before beginning model selection, we 
defined the optimal model as having the highest adjusted 
R2 and being comprised entirely of variables with sig-
nificant partial P values. We set these criteria in order 
to identify the largest possible suite of factors influenc-
ing SOC stocks, while protecting against over-fitting by 
including variables that increased total proportion of var-
iance explained, but themselves lacked significant rela-
tionships with SOC stocks. For NFI data, we used t-tests 
to compare control vs. harvested C stocks for the three 
soil depths reported by the FIA program, and ANOVA 
with the Tukey post-hoc test to compare mean O horizon 
C stocks across forest age class groups. For all of these 
statistical analyses, we used ln-transformations as neces-
sary to normalize response variables, and in all analyses, 
we set P < 0.05 as the threshold for statistically significant 
results.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13021- 024- 00251-7.

Additional file 1: Table S1. Factors associated with non-zero changes in 
mineral soil C stocks during post-agricultural reforestation. For each factor, 
levels appearing under the Gain column indicate groups of response 
ratios with a positive effect size and a bootstrapped confidence interval 
that did not overlap 0% change; levels under the Loss column indicate 
groups of response ratios with a negative effect size and a bootstrapped 
confidence interval that did not overlap 0% change. See section “Meta-
analysis” for interpretation of these marginally significant results. Table S2. 
Factors associated with non-zero changes in soil C stocks with harvest. 
Results are shown separately for O horizons (upper half of the table) vs. 
mineral soils (lower half of the table). For each factor, levels appearing 
under the Loss column indicate groups of response ratios with a negative 
effect size and a bootstrapped confidence interval that did not overlap 0% 
change; levels under the Gain column indicate groups of response ratios 
with a positive effect size and a bootstrapped confidence interval that 
did not overlap 0% change. See section “Meta-analysis” for interpretation 
of these marginally significant tendencies. Table S3. Factors associated 
with non-zero mineral soil Db changes with harvest. For each factor, 
levels appearing under the Decline column indicate groups of response 
ratios with a negative effect size (decrease in Db) and a bootstrapped 
confidence interval that did not overlap 0% change; levels under the 
Increase column indicate groups of response ratios with a positive effect 
size (increase in Db) and a bootstrapped confidence interval that did not 
overlap 0% change. See section “Meta-analysis” for interpretation of these 

https://doi.org/10.1186/s13021-024-00251-7
https://doi.org/10.1186/s13021-024-00251-7


Page 16 of 19Nave et al. Carbon Balance and Management            (2024) 19:5 

marginally significant tendencies. Table S4. Selection pool of variables 
available for inclusion in best subsets regression models of C stocks in 
O&A horizons (left half of table) vs. whole soil profiles (right half of table) 
in the soil survey pedon + GIS dataset. For categorical factors, which were 
coded as dummy variables, parentheses indicate the levels of each factor 
and the dummy variable default is indicated with bold text; all other fac-
tors are continuous.

Additional file 2. compiled meta-analysis dataset used to test for land 
use change and harvest effects on soil carbon stocks.
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