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ABSTRACT

A key issue in ecosystem management in the

western U.S. is the determination of the historic

range of variability of fire and its ecological signif-

icance prior to major land-use changes associated

with Euro-American settlement. The present study

relates spatial variation in historical fire occurrence

to variation in abiotic and biotic predictors of fire

frequency and severity across the elevational range

of ponderosa pine in northern Colorado. Logistic

regression was used to relate fire frequency to

environmental predictors and to derive a proba-

bility surface for mapping purposes. These results

indicate that less than 20% of the ponderosa pine

zone had an historic fire regime (pre-1915) of rel-

atively frequent fires (mean fire intervals, MFI,

<30 years). More than 80% is reconstructed to

have had a lower frequency (MFI ‡ 30 years),

more variable severity fire regime. High fire fre-

quency is clearly associated with low elevations.

Lower and more variable fire frequencies, associ-

ated with high and moderate severities, occur

across a broad range of elevation and are related to

variations in other environmental variables. Only a

small part of the ponderosa pine zone fits the

widespread view that the historic fire regime was

characterized mainly by frequent, low-severity that

maintained open conditions. Management at-

tempts to restore historic forest structures and/or

fire conditions must recognize that infrequent se-

vere fires were an important component of the

historic fire regime in this cover type in northern

Colorado.
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ponderosa; geographic information system; Colo-
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INTRODUCTION

A key issue in ecosystem management in the

western U.S. is the determination of the historic

range of variability of fire and its ecological signif-

icance prior to major land-use changes associated

with Euro-American settlement. Although broad

generalizations have been made about the effects of

fire suppression on current forest structures and

recent fire behavior in the West (for example, see

Covington 2000; Healthy Forest Restoration

Act—HFRA 2003), historic fire regimes varied

substantially in frequency and severity across the

West (Gutsell and others 2001; Veblen 2003a).

Even for different areas of the ponderosa pine

(Pinus ponderosa) cover type there is considerable

debate about the pre-1900 fire regime and the

ecological consequences of modern fire exclusionReceived 2 December 2005; accepted 5 October 2006
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(Covington and others 1997; Shinneman and Ba-

ker 1997; Baker and Ehle 2001; Allen and others

2002).

A widespread viewpoint is that fire exclusion in

the U.S. West during the past circa 100 years has

dramatically reduced the occurrence of formerly

frequent low-severity fires which in turn has pro-

moted an unnatural increase in forest density and

the risk of high-severity fires (Covington 2000;

HFRA 2003). Much of the supporting information

for this fire exclusion-fuels buildup model comes

from studies in the dry ponderosa pine ecosystems

of the Southwest (Swetnam and Baisan 1996; Fule

and others 1997; Mast and others 1999). In pon-

derosa pine forests in the Southwest and elsewhere

(for example, dry ponderosa pine forests in western

Montana; Gruell 1983; Arno and others 1995)

where the goals of ecological restoration and fuels

reduction have been shown to converge, manage-

ment to reduce wildfire risk can also restore forest

stands to historic conditions. However, geographic

variations in climate, topography, site productivity,

and land-use history across the widely distributed

ponderosa pine cover type provide ample reason

for conducting site-specific research to evaluate the

fire exclusion-fuels buildup model.

In the Colorado Front Range, it is well estab-

lished that both low- and high-severity fires played

significant roles in the shaping of historic ponder-

osa pine forests (Veblen and Lorenz 1986; Brown

and others 1999; Kaufmann and others 2000; Ehle

and Baker 2003). Evidence of pre-twentieth cen-

tury (that is, prior to any effects of fire exclusion)

high-severity fires in the ponderosa pine zone in-

cludes historical photographs, as well as tree age

structures, and dendroecological reconstructions of

past stand conditions (Veblen and Lorenz 1986,

1991; Mast and others 1998; Kaufmann and others

2000; Ehle and Baker 2003; Sherriff and Veblen

2006). Yet, how past fires varied in severity spa-

tially over the montane zone of ponderosa pine-

dominated forests (circa 1,800–3,000 m) is uncer-

tain. Recent studies in the Front Range have doc-

umented the occurrence of mixed-severity fire

regimes, including inferences of the relative

importance of low- and high-severity fire, in pon-

derosa pine-dominated ecosystems over relatively

narrow gradients of elevation and topographic

variation (Brown and others 1999; Kaufmann and

others 2000; Ehle and Baker 2003). Despite these

advances towards a more spatially explicit under-

standing of historic fire regimes, broad-scale pat-

terns of historic fire regime type across the full

range of ponderosa pine-dominated forests have

not been examined.

The goal of this research is to map patterns in

historical fire occurrence across the ponderosa pine

zone in the northern Front Range by developing an

empirical predictive model of past fire frequency

classes from tree-ring fire history descriptors and

spatial associations of parameters determined from

digital terrain data. Although the primary quanti-

tative criterion used in this analysis is fire fre-

quency, we also have related fire frequency to fire

severity by examining tree population age struc-

tures to show that where fire frequency is high, fire

severity is low (Sherriff 2004; Sherriff and Veblen

2006). In the context of fuels management and

ecological restoration, our primary goal is to dis-

tinguish between areas formerly characterized by

relatively frequent low-severity fires and those

where less frequent high- or moderate-severity

fires were important. In the former areas, surface

fires killed mostly juvenile trees and maintained

relatively open stands. In the latter, stands were

initially dense and higher severity fires killed high

percentages of crown trees within a fire perimeter.

Our working hypothesis is that broad classes of past

fire frequency can be predicted from the same types

of abiotic factors successfully used in predicting

spatial variation in local vegetation patterns (for

example, see Miller and Franklin 2002). For a

60,875-ha area in the ponderosa pine zone of

Arapaho-Roosevelt National Forest (ARNF) on the

eastern slope of the Front Range (Figure 1), we

reconstruct, or ‘‘retrodict’’, the habitats character-

ized by different historic fire frequency classes. The

objectives are to: (1) characterize fire frequency

across the elevational range of ponderosa pine; (2)

identify environmental conditions associated with

different fire frequency classes; and (3) create and

evaluate spatial models of fire frequency classes

based on environmental conditions for the pon-

derosa pine zone of ARNF.

STUDY AREA

The vegetation pattern in the Front Range varies

along environmental gradients of elevation and

moisture (Peet 1981). The montane zone extends

from approximately 1,800–3,000 m; it is charac-

terized primarily by forests but also includes limited

areas of grasslands and shrublands (Marr 1961).

Forest vegetation of the montane zone varies from

open park-like stands of ponderosa pine at the

plains-grassland ecotone to dense stands mixed

with Douglas-fir (Pseudotsuga menziesii) in more

mesic sites and north-facing slopes. In the upper

montane zone, topographic position becomes

increasingly important with dense stands of pon-
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derosa pine-Douglas-fir on north-facing slopes and

more open ponderosa pine woodlands on south-

facing slopes. Aspen (Populus tremuloides), limber

pine (Pinus flexilis) and lodgepole pine (Pinus con-

torta) often co-occur with ponderosa pine and

Douglas-fir at higher elevations in the montane

zone.

To characterize environmental attributes associ-

ated with different fire frequencies, we used fire

history data from 37 sites previously described by

Veblen and others (2000) and 17 new sites (Sherriff

2004) extending across the full elevation range of

ponderosa pine in the northern Colorado Front

Range on lands that belong to the City of Boulder

and Boulder County Open Space, Arapaho-Roose-

velt National Forest, and Rocky Mountain National

Park (Figure 1). For the predictive habitat mapping

of fire frequency classes, the study area was delin-

eated from the U.S.D.A. Forest Service Integrated

Resource Inventory (IRI) vegetation cover maps of

nine watersheds in the ARNF contained within the

larger fire history sampling area. The IRI vegetation

data are cover type maps that have been field

checked by the Forest Service and derived from the

Resource Inventory System (RIS). In the context of

this study, the ponderosa pine zone includes areas

mapped as ponderosa pine (28.7%), ponderosa

pine-Douglas-fir (25.4%), Douglas-fir-ponderosa

pine (9.7%), and mixed conifer (36.2%) cover

types. Within the mixed conifer cover type pon-

derosa pine dominates 20.8% of the study area,

Douglas-fir 4.6%, lodgepole pine 8.0%, and aspen

2.8%. Thus, the 60,875-ha ARNF study area in-

cludes all cover types where ponderosa pine is a

dominant or co-dominant species; it is mapped as

dominant in approximately 75% of this area.

Figure 1. Location of 54

sites sampled for fire history

throughout the ponderosa

pine zone of the northern

Colorado Front Range. For

the predictive habitat

mapping of fire frequency

classes, the 60,875 ha study

area was delineated from the

Forest Service Integrated

Resource Inventory (IRI)

vegetation cover maps of the

Arapaho-Roosevelt National

Forest (ARNF) contained

within the larger fire history

sampling area.
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METHODS

Response Variables: Fire Frequency
Classes

Methods for sampling fire history for the 37 pre-

viously published sites are given in Veblen and

others (2000). The new sites added for this study

followed the same protocol for sampling fire scars

(Sherriff 2004). General areas for sampling were

subjectively located to maximize the elevation

range of sites where ponderosa pine dominated the

vegetation and to eliminate areas that showed sig-

nificant signs of logging. Relationships between

each fire frequency class and fire severity were

established by examining tree age structures

(Sherriff 2004; see Figure 2 for examples), tree-ring

growth releases on remnant trees, and episodes of

fire-caused mortality of mature trees (data pre-

sented in Sherriff 2004; Sherriff and Veblen 2006).

Tree establishment dates were determined by cor-

ing 38–164 trees with diameters at breast height

(dbh) larger than 4 cm (median = 123; to-

tal > 3,000 trees) in multiple transects at 24 of the

54 fire history sites. Coring height was approxi-

mately 20 cm and establishment dates were

determined by adding median ages of seedlings

around 20-cm tall (n = 252 for all species) that

were destructively sampled at the same site or a

similar site (see Sherriff 2004 for details).

A total of 54 fire history sites (Veblen and others

2000; Sherriff 2004) were used to define two clas-

ses of higher frequency-lower fire severity and

lower frequency-variable fire severity fires and to

examine their relationships with environmental

variables. Forty-eight of the 54 sites had a mini-

mum of ten fire-scarred trees and six sites had se-

ven to nine fire-scarred trees. A total of 779 fire-

scarred partial cross-sections collected from live and

dead trees were crossdated at the 54 sites (506

samples from Veblen and others 2000; 273 samples

from Sherriff 2004).

The most objective criteria for delimiting fire

history classes were the total number of fire events

(each recorded by ‡2 trees scarred per site) be-

tween 1700 and 1915, MFI (all fires) before Euro-

American influence (1700–1860), and numbers of

trees with multiple fire-scars (Table 1). Although

the number of fire-scarred trees (sample depth) is

low at most sites prior to the 1800s (mean of 3.5

fire dates and 4.6 samples per site before 1800),

only seven sites record no evidence of fire (no fire

scars) prior to 1800 (for detailed fire histories by

site see Veblen and others 1996; Sherriff 2004). For

sites recording relatively few fires prior to 1800 we

used stand age structure evidence to evaluate if the

scarcity of fire scars was likely due to destruction of

evidence by more recent severe fires which is an

inherent feature of a mixed-severity fire regime.

Taking into account the many limitations of fire

scars as proxies of past fire occurrence (Baker and

Ehle 2001; Veblen 2003b), two broad classes of fire

frequencies and fire effects were recognized as an

‘index’ of different fire regimes based on multi-
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Figure 2. Examples of typical patterns of fire intervals

and tree age structures for the A high frequency fire

class, B variable frequency fire class, and C low fre-

quency fire class. In this study, the low and variable fire

frequency classes are combined for analysis. The relative

frequency (%) of all aged trees (>4 cm dbh) is given in

20-year establishment classes. Numbers of tree ages are

118, 123, and 124 in A, B, and C, respectively. Species

are ponderosa pine (Pipo) and Douglas-fir (Psme). Empty

triangles represent local fires (single tree scarred) and

black triangles represent more widespread fires (more

than one tree scarred).
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variate criteria (Table 1; Figure 2). Sites in the high

fire frequency class include numerous short

(<30 years) fire return intervals as expected for

low-severity fires that are not dependent on the re-

growth of woody fuels. This classification of the

high fire frequency class was chosen because of a

consistent pattern of stands sampled for age struc-

ture that historically had frequent (six or more),

low-severity fires and no evidence of large post-fire

cohort ages prior to the twentieth century (Fig-

ure 2A; Sherriff 2004; Sherriff and Veblen 2006).

In addition, these fire history sites had less tem-

poral variability in fire intervals compared to sites

with fewer fire return intervals (Figure 2B; Sherriff

2004; Sherriff and Veblen 2006). In contrast, the

fire-scar evidence for the lower, more variable fire

frequency class exhibited four or fewer fire years

(recorded by at least two trees scarred) between

1700 and 1915 with fire intervals of 30 to more

than 100 years and clear evidence of post-fire co-

hort ages initiating prior to the 1900s (Figure 2B,

C). The lower, more variable fire frequency sites

predominantly had trees with single fire scars and

fire-scar evidence in clustered areas of the stand.

For predictively mapping fire frequency classes,

40 of the 54 fire history sites were randomly se-

lected for model development (training), and the

remaining 14 sites were used for model evaluation

(Test1). In addition to the 14 sites (Test1) originally

sampled for fire history, 50 additional sites were

sampled for model evaluation (Test2) using a less

intensive procedure that did not require cutting of

fire-scar samples. The criteria used to identify fire

frequency classes for the 50 additional sites were

derived from the results of the more intensive

sampling of fire history and forest structure con-

ducted at the 54 fire history sites where fire scars

were cut (Table 2). A 1-km point grid of the ARNF

study area was delineated and 50 points were

randomly selected for field sampling in plots of

100 · 300 m. Any sites with abundant logging or

other human disturbances were rejected and an

adjacent point was sampled. At each random point,

the number of fire-scarred trees and number of fire

scars on each tree were counted and forest struc-

ture was documented in a 100 · 300 m plot using

criteria in Table 2. Additionally, three to ten cores

were taken for tree ages and estimation of the last

fire date in each plot (Barrett and Arno 1988). The

data from these 50 less intensively sampled sites

were used independently in model evaluation

(Test2), and also were combined with the 14 fire

history sites (Test1) to provide an assessment of

model accuracy based on all 64 test sites.

Predictor Variables: Environmental
Conditions

Potential predictor variables of fire frequency clas-

ses were derived from two sources: (1) terrain

variables from a 30-m digital elevation model

(DEM); and (2) cover type from digital vegetation

maps of the ARNF Integrated Resource Inventory

(IRI) and of Rocky Mountain National Park. Ele-

vation, slope steepness, aspect and slope curvature

were all derived from the 30-m DEM. To transform

aspect from a circular to a linear value, an arcsine

transformation was used to create an index of )1 to

+1 (‘‘southness’’ to ‘‘northness’’). Slope curvature

(concavity to convexity) and hillslope position are

related to soil depth, texture and potential soil

moisture and represent proxy measures of soil

texture (Wilson and Gallant 2000). Ravine drain-

ages were delineated from the 30-m DEM using Arc

GRID (ESRI 2002) hydrologic terrain modeling (see

Jenson and Domingue 1988) and distance to ravine

drainage was calculated. Forested areas adjacent to

grasslands may have fire regimes that are influ-

enced by a different fire frequency and behavior in

grasslands; thus, distance-to-grassland was also

Table 1. Criteria used to Classify Fire Frequency Classes at 54 Fire History Sites

Fire frequency class No. sites Criteria (1700–1915)

High 9 Six or more fire years (recorded by at least two scarred trees/fire) or

MFI < 30 years for all fires from 1700 to 1860

More than 50% of the fire-scarred trees have multiple fire scars

Three or more trees with at least three fire scars

Low and variable 35 Four or fewer fire years (recorded by at least two scarred trees/fire) or

MFI ‡ 30 years for all fires from 1700 to 1860

Fewer than 50% of the fire-scarred trees have multiple fire scars

Two or fewer trees with at least three fire scars

Fire history from 1700 to 1915 was considered at each site because of potential effects of fire suppression after approximately 1915. Mean fire interval (MFI) was calculated only
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used as a predictor variable. Proximity to grassland

was calculated as the distance to the edge of

grassland areas of at least 0.1 ha. Environmental

conditions at each site were classified in terms of

the mean elevation, slope steepness, aspect, prox-

imity to grassland, distance to ravine and the

associated fire frequency class. Transformations of

predictor variables were also examined (for exam-

ple, Log distance-to-grassland) to optimize predic-

tive power. Other environmental (abiotic) variables

such as geology and soils were not available at the

resolution required for analysis.

As an exploratory step in assessing the spatial

variation in fire frequency classes, we used a three-

class cover type classification as a predictor variable

(pure ponderosa pine, ponderosa pine-Douglas-fir,

and mixed conifer) to identify possible cover types

associated with the two fire frequency classes. The

cover types of the 54 fire history sites sampled are

representative of the cover types in the ARNF study

area. Field observations delineated 32 of the 54 fire

history sites in ponderosa pine stands, eight in the

ponderosa pine-Douglas-fir cover type, and 14 in

the mixed conifer cover type with ponderosa pine

as the dominant or co-dominant species.

Analytical Methods

General Linear Models (GLMs) have been used

extensively in ecological modeling research (for

example, see Franklin 1995; Guisan and Zimmer-

mann 2000). Logistic regression is the suitable GLM

to use when the dependent variable is binary

(presence or absence). Logistic regression uses a

logit link to define the relationship between the

dependent and the sum of the predictor variables

(Hosmer and Lemeshow 2000). An advantage to

using a probability surface is that the probability

values can be used as an ‘index’ of habitat suit-

ability (Franklin 1995).

In this study, environmental variables were used

to predict the presence or absence of the high fire

frequency class and the lower, more variable fire

frequency class at the site level (n = 40 sites) using

logistic regression (SPSS for Windows 10.0 software

1999). A combination of stepwise and iterative

procedures was used to examine environmental

variables and each fire frequency class. Variables

that did not contribute significantly (P < 0.05) to

reduce variance were excluded with a backward

elimination procedure. Collinearity among predic-

tor variables can be problematic with multiple

regression, however none of the predictor variables

in this study were highly correlated. Only the

coefficients of statistically significant (P < 0.05)

predictor variables associated with the dependent

variable (fire frequency class) were used for pre-

dicting the probability of two fire frequency classes

across the 60,875-ha ARNF study area. In ArcGIS,

each predictor variable was multiplied by its coef-

ficient and summed to produce a linear predictor

for the fire frequency class (Miller and Franklin

2002). A logistic transformation was used to gen-

erate probability values between 0 and 1:

Probability ðfire frequency classÞ ¼ eFFC=ð1þ eFFCÞ
ð1Þ

The results yielded a map depicting a probability

surface (suitability) of the presence of each fire

frequency class (FFC). For predictive purposes, a

decision has to be made on the probabilities that

represent class presence. Consequently, a threshold

Table 2. Multi-Variate Criteria used to Identify a Specific Fire Frequency Class at Each of the 50 Random
Points throughout the ARNF Study Area where Fire Scars were not Cut

Fire frequency class Observation criteria

High Multiple and single fire scars on trees

Three or more trees with at least three fire scars/tree

Multi-aged stands with a patchy spatial pattern

Abundant trees <10 cm dbh

Abundant grass and understory vegetation

Low and variable Primarily single fire scars on trees

Four or fewer trees with more than two fires scars/tree

Single or multiple cohort ages

Moderate to very low numbers of trees <10 cm dbh and <1.3 m height

Self-thinning

Uniform spatial pattern

The number of fire-scarred trees and number of fire scars on each tree were counted and forest structure was documented in plots of 100 · 300 m.
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is needed to transform the probability map into

class presence data (Fieldling and Bell 1997; Manel

and others 2001; Liu and others 2005). Although

0.5 is a common threshold used to differentiate

between binary states, alternative threshold values

are often chosen to minimize the number of

omission and commission errors and provide the

best agreement between predicted and observed

values in the training dataset (Fieldling and Bell

1997; Franklin 1998; Guisan and Zimmerman

2000; Liu and others 2005). There has been much

discussion in the literature on how best to evaluate

the predictions of these types of models and chose

an appropriate threshold. To date, there is no uni-

form agreement on the most appropriate methods.

Two elements commonly identified as important

for defining the appropriate threshold include (1)

the relative cost of false positives and false negative

errors, although assigning values to these costs is

subjective and dependent upon the context within

which the classification rule will be used, and (2)

the prevalence of positive cases (for examples, see

Zweig and Campbell 1993; Fieldling and Bell 1997;

Manel and others 2001; Liu and others 2005). For

instance, a lower probability threshold can con-

siderably reduce omission errors, particularly when

the dependent variable may be uncommon or

when the prevalence of presence or absence is

unequal (Fieldling and Bell 1997; Franklin 1998).

Unequal prevalence of class sizes can also influence

the scores of logistic regression and many other

classifiers, and produce scores biased towards the

larger class (Fieldling and Bell 1997; Hosmer and

Lemeshow 2000). In the current study, the pres-

ence of high fire frequency is uncommon in com-

parison to the alternative (lower and more variable

fire frequency) and the prevalence of sites of high

fire frequency presence is unequal in comparison

to the alternative. Our approach follows a protocol

of choosing a probability threshold to reduce

omission errors (false negatives of high fire fre-

quency sites), but also to minimize the overall error

rate by representing a balance (minimum) of

omission and commission errors in the training

dataset for each fire type. We used a threshold to

transform the probability map into areas delineated

as either high fire frequency or the alternative, and

assess model performance using a matrix of cor-

rectly and incorrectly classified class predictions.

Thus, our approach includes several considerations

besides the fit of the GLM, which allows us to ad-

dress our primary goal of producing a model that

best estimates the area that historically had a rela-

tively high frequency of fire return intervals in the

range of 10–30 years. The presence/absence of a

predicted fire frequency type for each site was

delineated based on the majority of cells in one of

the two fire frequency classes using zonal statistics

in ArcGIS. All modeling and map compilations

were raster based and conducted at the finest res-

olution (30 · 30 m) permitted by the data. This

approach does not formally consider spatial auto-

correlation; however, the sites are widely spaced

throughout the study area and only three sites are

within one kilometer of each other (Figure 1).

Model Evaluation

Accuracy measures were derived from a matrix of

correctly and incorrectly classified fire frequency

class predictions to assess omission versus com-

mission errors for the prediction of the training

dataset. The number of sites correctly predicted for

the training and test sites was the primary criterion

used to assess the accuracy of each predictive

model. Additionally, accuracy measures of both

omission and commission errors are presented for

the combined evaluation datasets of Test1 and

Test2. These measures include the correct classifi-

cation rate (CCR) and the Kappa K statistic. CCR

represents the proportion of omission and com-

mission errors. The Kappa K statistic indicates the

overall agreement between the prediction and the

model evaluation dataset as opposed to random

chance. Fieldling and Bell (1997) indicate values

less than 40% have poor agreement, 40–70% have

good agreement and values greater than 70%

represent excellent agreement.

RESULTS

There were no significant relationships of the fire

frequency classes with cover type (ponderosa pine

compared to ponderosa pine-Douglas-fir and mixed

conifer) for the 54 fire history sample sites. Among

the nine sites classified as high fire frequency sites,

seven are in ponderosa pine stands and two are in

ponderosa pine-Douglas-fir stands. The sites clas-

sified as lower, more variable fire frequency oc-

curred across all three cover types. Consequently,

the focus of the fire frequency modeling was on

abiotic predictors of fire frequency classes, rather

than cover type predictors, throughout the ARNF

study area and cover type was excluded from the

stepwise regression.

Fire Frequency Model

Elevation is the only significant predictor variable

of the high fire frequency class (Table 3). High fire

frequency sites tend to occur at lower elevations. A

A Spatially-Explicit Reconstruction of Historical Fire Occurrence



value of 0.3 was chosen as the probability threshold

to distinguish between fire type classes because it

minimizes the overall error rate for the training

dataset. With a probability threshold of 0.5, the

logistic regression predicted four of the six training

sites of high fire frequency correctly, but when the

threshold was adjusted to 0.3 the accuracy in-

creased to five of six sites (Table 4). Evaluation of

the 64 test sites yields similar results (Table 4; Fig-

ure 3). Only six of 64 test sites and five of 40

training sites range between the 0.3 and 0.5

thresholds, all other values fall closer to their

optimal values of 1 or 0, which also suggests a

better fit of the entire dataset (particularly high fire

frequency sites) by using the 0.3 threshold than the

standard 0.5 threshold (Figure 3; only the test sites

are presented). Using the 0.3 threshold, nine of the

ten high fire frequency test sites were correctly

predicted (Table 4; Figure 3). The overall CCR of

omission and commission error for the combined

datasets of Test1 and Test2 is 95.3%. The Kappa

value is 82.9%, indicating excellent predictive

agreement with the test dataset. The high predic-

tion accuracy indicates that elevation by itself is a

good predictor of high fire frequency areas.

The low and variable fire frequency sites tend to

be at higher elevation than high fire frequency

sites. Fifty-two of 54 test sites (Figure 3) and 31 of

34 training sites were predicted accurately (Ta-

ble 4). The overall CCR of omission and commis-

sion error is 95.3%. The Kappa value is 82.9%,

which demonstrates excellent prediction agree-

ment with test datasets.

In the ponderosa pine zone of the ARNF, lower

elevations below approximately 2,100 m are more

favorable to high fire frequency than higher ele-

vation areas (Figure 4B, C). Using the 0.3 threshold

for defining class presence, the logistic regression

model predicts 18.7% of the study area as high fire

frequency (Figure 4C). In contrast to high fire fre-

quency sites that are restricted to lower elevations,

low and variable fire frequency sites occur across a

broad range of the study area at higher elevation

than the high fire frequency sites. Most of the study

area is predicted to have a low and variable fire

frequency in which 81.3% of the area is predicted

to be in this fire frequency class (Figure 4C).

DISCUSSION

The main goal of our study was to roughly estimate

the area of the ponderosa pine zone of the northern

Front Range that conforms to the general view-

point that modern stand structures and fuel con-

ditions are primarily a consequence of reduction in

low-severity fires during the twentieth century.

Our results indicate that less than 20% of the study

area of ponderosa pine zone historically had a rel-

atively high frequency of fire return intervals in the

range of 10–30 years (Figure 4). More than 80% of

the study area was reconstructed to have had lower

and more variable fire frequencies with only a few

fire years (recorded by at least two scarred trees)

occurring over the last few centuries (Figure 4).

Thus, forest structure over most of the ponderosa

pine zone was molded by infrequent fires (fire

intervals of 30 to over 100 years) rather than fre-

quent surface fires. Years of widespread fire events

in association with extreme weather are recorded

by fire scars on many trees dispersed throughout

the ponderosa pine zone (Veblen and others 2000).

Many post-fire cohorts (for example, see

Figure 2C) and tree-growth releases (indicating

competitive suppression in closed stands prior to

burning) date from a few years after the dates of

widespread fire (Veblen and Lorenz 1986; Goldb-

lum and Veblen 1992; Sherriff 2004; Sherriff and

Veblen 2006). We interpret this evidence to mean

that over most of the ponderosa pine zone, forest

structures were shaped primarily by infrequent

severe fires that killed large percentages of canopy

trees promoting dense post-fire cohort ages in the

northern Front Range.

According to the logistic regression analysis ap-

plied here, the high fire frequency class was clearly

delimited by elevation (below circa 2,100 m).

Highly similar results were obtained with classifi-

cation tree models (CART; De’ath and Fabricius

Table 3. Logistic Regression Model of High Fire Frequency Developed from 40 Fire History Training Sites
and the Probability Threshold for Balancing Omission and Commission Errors of the Training Dataset

Fire frequency class

Predictor

variables Coefficient SE P

Lower

95% CI

Upper

95% CI

Prediction

threshold

High frequency Elevation )0.007 0.002 0.006 )0.003 )0.011 0.3

Constant 13.396 5.298 0.011

Only significant coefficients (P < 0.05) were used in the analysis.

R. L. Sherriff and T. T. Veblen



2000) that were applied to the same fire frequency

and environmental data sets (Sherriff 2004) but are

not redundantly presented here. Elevation may be

a proxy for other factors such as proximity to

grasslands, given that the lowest elevations are

adjacent to the plains-grassland ecotone, where the

highest fire frequencies occur. Due to the overrid-

ing influence of low elevation, other factors such as

topographic position may be inconsequential for

determining fire frequency in areas adjacent to the

plains-grassland ecotone. If a training dataset larger

than 40 had been used, distance-to-grasslands

would have been a statistically significant predictor

of fire frequency areas, given that there is a clear

pattern when all 54 fire history sites are analyzed

(data not shown, P = 0.035, logistic regression).

Greater proximity to grassland in lower elevation

areas probably promotes more frequent fire be-

cause of a greater abundance of fine, herbaceous

fuels. The lower and more variable fire frequency

class occurs across a broad range of elevation in

relation to other environmental conditions such as

aspect, slope steepness and distance to ravines

(Sherriff 2004). Mesic north-facing aspects are

important for the lowest fire frequency class, and

these areas tend to be on steep slopes and generally

far from ravines and grassland areas (Sherriff

2004). At increasing distance from ravines and

grasslands, lower amounts of fine fuel may hinder

frequent fire occurrence. Across the ponderosa pine

zone, a gradient exists with increasing elevation

towards less frequent and higher severity fires

(Sherriff 2004); however additional sites are nee-

ded to clarify these trends.

The fire frequency criteria used in the current

analyses are subject to general limitations of tree-

ring based fire history methodologies (see Swetnam

and Baisan 1996; Baker and Ehle 2001; Veblen

2003b). In the present study, we minimized limi-

tations of these methodologies by identifying two

broad classes of past fire occurrence that were de-

fined by a combination of fire scars, tree age

structures, stand densities, tree death dates, and

growth releases (Figure 2; Sherriff 2004; Sherriff

and Veblen 2006). These converging lines of evi-

dence clearly distinguished areas of mainly fre-

quent low-severity fires from areas of less frequent

and higher-severity fires.

Another limitation of the current analysis is the

limited number of sites relatively undisturbed by

recent anthropogenic activities available for model

development relative to the spatial heterogeneity

within the ponderosa pine zone. In particular,

logging and residential development has greatly

reduced the number of suitable sample sites at low

elevations. These disturbances also limited sam-

pling at the upper elevation range (2,000–2,100 m)

of the high fire frequency regime to only a few

sites. The distribution and prevalence of sites would

have influenced the coefficient of the predictor

variable (elevation) in the logistic regression by

limiting the range for high fire frequency, which is

why the 0.3 threshold better represents the overall

Table 4. Number of Sites Classified Correctly for Each Fire Frequency Class Prediction for the Training,
Test1 and Test2 Sites

Training Test1 Test2

HF sites correctly classified as HF 5 3 6

HF sites incorrectly classified as LF 1 0 1

LF sites correctly classified as LF 31 11 41

LF sites incorrectly classified as HF 3 0 2

Total number of sites 40 14 50

HF indicates high fire frequency and LF indicates low and variable fire frequency.
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Figure 3. Predicted probabilities of class presence versus

elevation for each of the evaluation sites. The optimal

probability is 1.0 for high fire frequency and 0 for low

and variable fire frequency. Sites of high (low and vari-

able) fire frequency were considered to be accurately

predicted if the observed probability ranged between 0.3

and 1 (<0.3).
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distribution of the fire history sites than the stan-

dard 0.5 threshold. Additional sites would probably

allow for a better prediction of environmental

conditions associated with different fire frequency

classes. Nevertheless, this initial assessment of a

predictive fire frequency model clearly identifies

elevation associated with fire frequency classes in

ponderosa pine forests of the northern Front

Range. Furthermore, in comparison with published

fire history studies in other ponderosa pine eco-

systems, the current dataset stands out as one of

the largest in terms of numbers of sites and fire-

scarred trees sampled (Baker and Ehle 2001).

A major problem in the use of tree-ring based fire

history methodologies is uncertainty about the spa-

tial extent to which fire-scar data may be extrapo-

lated from one or a few sample points to a larger,

spatially heterogeneous landscape (Swetnam and

Baisan 1996; Baker and Ehle 2001; Veblen 2003b).

Our results indicate that within the ponderosa pine

zone there is substantial spatial variation in historic

fire regimes, and also indicate the degree of uncer-

tainty in classifying a site as having a frequent, low-

severity fire regime or a lower, higher-severity fire

regime. Indication of uncertainty in class member-

ship is a key advantage of using a logistic regression

model in the mapping procedure (Franklin 1995).

The current results imply that for other ponderosa

pine ecosystems, substantial research efforts based

on large numbers of fire history sites across the full

range of environmental conditions in spatially het-

erogeneous environments will be required to obtain

a better understanding of the spatial variability in

historic fire regimes.

Management Implications

The most important management implication of

this study is both simple and robust: only a small

fraction of the ponderosa pine zone of the northern

Front Range fits the widespread notion that the

historic fire regime was characterized mainly by

frequent (that is, return intervals < 30 years) low-

severity fires that maintained open woodlands. This

is a critically important finding, because much of

the current fuels reduction management in this

landscape is based on the belief that thinning of

stands throughout the ponderosa pine zone would

both reduce fire hazard and restore the vegetation

to an open structure formerly maintained by rela-

tively frequent fires (for example, Front Range

Fuels Treatment Partnership Strategy 2003). Such a

perception is in fact valid only for the lowest ele-

vations of ponderosa pine, especially those close to

the plains-grassland ecotone such as the City of

Boulder Open Space lands (Forest Ecosystem

Management Plan, Boulder Open Space and

Mountain Parks 1999). Frequent fires, presumably

Figure 4. Cover type map

and high fire frequency

prediction of the Arapaho-

Roosevelt National Forest

study area (60,875-ha):

A cover type includes pure

ponderosa pine forest (dark

green), ponderosa pine-

Douglas-fir forest (grey) and

mixed conifer forest (light

green), which includes

Douglas-fir-ponderosa pine

based from the Forest

Service IRI vegetation data;

B the probability map of the

high fire frequency

prediction; and C the fire

frequency map shows the

18.7% (yellow) area

predicted as high fire

frequency below circa

2,100 m, and the 81.3%

area predicted as low and

variable fire frequency

(green).
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of low severity, would have killed mostly juvenile

trees, resulting in low densities of mature trees.

The perception that the decline in fire frequency

over the past circa 80 years has led to substantial

increases in stand density at many sites is supported

in our study area only for the lowest elevations of

ponderosa pine (Veblen and Lorenz 1986; Sherriff

2004; Sherriff and Veblen 2006). Even in this low

elevation sector, however, some sites had historic

fire regimes dominated by infrequent rather than

frequent fires (for example, steep and north-facing

slopes; Sherriff 2004). These infrequent fires, in-

ferred to be high-severity fires from age structure

data, killed high percentages of trees within a fire

perimeter, and promoted the establishment of

naturally dense forest patches (Veblen and Lorenz

1986; Sherriff 2004; Sherriff and Veblen 2006).

Nevertheless, at a coarse-scale for sites below

approximately 2,100 m there is a convergence be-

tween the management objectives of fuels reduc-

tion through thinning and of landscape restoration

to conditions that existed prior to fire exclusion.

Across the montane zone of the Front Range,

there has been a dramatic decline in fire frequency

that began in the early twentieth century (Veblen

and others 2000). In comparison with the late

nineteenth century which was a time of wide-

spread burning in association with climatic condi-

tions favorable to fire (Veblen and others 2000),

the decline in fire occurrence may reflect active

suppression of natural and human-caused fires,

fewer ignitions by humans, fine-fuel reduction by

livestock grazing, and/or climatic conditions less

favorable to widespread fire. However, this study

suggests that, except for the low elevation areas,

widespread surface fires were not the primary fire

type shaping forest structures in the pre-twentieth

century in the northern Colorado Front Range. The

fires that occurred in the nineteenth century and

earlier at higher elevations (but still including some

areas of relatively pure ponderosa pine forest), in-

cluded infrequent high-severity fires that shaped

the relatively dense, post-fire stands of the modern

landscape. The high tree densities at higher eleva-

tions are primarily a legacy of nineteenth century

severe fires rather than a consequence of any

suppression of low-severity fires. Thus, manage-

ment efforts to create large areas of open wood-

lands in the higher elevation areas of the ponderosa

pine zone of ARNF would not be consistent with

historic fire regimes and stand structures.

We caution that the fire frequency model pre-

sented in this study was empirically derived from

the specific fire history and site conditions of the

northern Colorado Front Range, and that it is un-

known how well it would apply to other ponderosa

pine ecosystems. Clearly, this model indicates eco-

logically significant variation in fire regimes in

relation to topography and elevation within the

ponderosa pine zone. The research design and re-

sults of the present study, however, suggest that a

similar empirical modeling approach would im-

prove our understanding of the spatial variability of

fire regimes in other ponderosa pine ecosystems.

A clear delineation of the spatial extent of past fire

regime types is a major concern for ecosystem

managers in the context of wildfire risk and ecolog-

ical restoration in the areas wildland–urban inter-

face. At low elevations in our study area the historic

fire regime of more frequent and low-severity fires

implies that the goals of ecological restoration and

wildland fire hazard mitigation converge. In con-

trast, in areas naturally characterized by low fre-

quencies of mixed- to high-severity fires, the goals of

ecological restoration and fire hazard mitigation of-

ten diverge. The potential for extreme fire behavior

may largely be explained by extreme weather con-

ditions (for example, high winds and low humidity

during severe acute drought) rather than fuel con-

ditions (Schoennagel and others 2004). This is

illustrated by the 2002 Hayman fire (55,915 ha) in

Colorado in which more than 24,000 ha burned at

high severity throughout ponderosa pine and

mixed-conifer forests in a single day (Finney and

others 2003). In such areas forest thinning will not

achieve restoration goals and is of questionable

effectiveness in preventing severe wildfires.
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