#### Aquatic and Other Environmental Impacts of Roads: The Case for Road Density as Indicator of Human Disturbance and Road-Density Reduction as Restoration Target; A Concise Review Pacific Rivers Council Science Publication 09-001

by

Gary Carnefix and Chris Frissell (Research Associate and Director of Science and Conservation, respectively, Pacific Rivers Council; <u>gary@pacificrivers.org</u>, <u>chris@pacificrivers.org</u>; 406-883-1503 (office), 406-883-1504 (fax) PMB 219, 48901 Highway 93, Suite A, Polson, MT 59860)

#### <u>Abstract</u>

Roads have well-documented, significant and widespread ecological impacts across multiple scales, often far beyond the area of the road "footprint". Such impacts often create large and extensive departures from the natural conditions to which organisms are adapted, which increase with the extent and/or density of the road network. Road density is a useful metric or indicator of human impact at all scales broader than a single local site because it integrates impacts of human disturbance from activities that are associated with roads and their use (e.g., timber harvest, mining, human wildfire ignitions, invasive species introduction and spread, etc.) with direct road impacts. Multiple, convergent lines of empirical evidence summarized herein support two robust conclusions: 1) no truly "safe" threshold road density exists, but rather negative impacts begin to accrue and be expressed with incursion of the very first road segment; and 2) highly significant impacts (e.g., threat of extirpation of sensitive species) are already apparent at road densities on the order of 0.6 km per square km (1 mile per square mile) or less. Therefore, restoration strategies prioritized to reduce road densities in areas of high aquatic resource value from low-to-moderately-low levels to zeroto-low densities (e.g., <1 mile per square mile, lower if attainable) are likely to be most efficient and effective in terms of both economic cost and ecological benefit. By strong inference from these empirical studies of systems and species sensitive to humans' environmental impact, with limited exceptions, investments that only reduce high road density to moderate road density are unlikely to produce any but small incremental improvements in abundance, and will not result in robust populations of sensitive species.

#### Aquatic and other environmental impacts of roads

Roads have well-documented, significant and widespread ecological impacts across multiple scales, often far beyond the area of the road "footprint", with negative effects on biological integrity in both terrestrial and aquatic ecosystems (Forman & Alexander 1998; Gucinski et al. 2001; Trombulak & Frissell 2000).

These include direct mortality from road construction and vehicle collisions. modification of animal behavior, alteration of the physical environment, alteration of the chemical environment, spread of exotic species and increased human use of areas (Forman 2004; Forman & Alexander 1998; Gucinski et al. 2001; Trombulak & Frissell 2000). Road construction kills stationary and slow-moving organisms, injures organisms adjacent to a road and alters physical conditions beneath a road (Trombulak & Frissell 2000), often including direct conversion of habitat to non-habitat within the road and roadside corridor "footprint" (Forman 2004). Behavior modification depends on species and road size/type, but ranges from road corridor use to avoidance to complete blockage of movement, which fragments or isolates populations, often with negative demographic and genetic effects, and with potential consequences up to and including local population or species extinction and biodiversity loss (Forman 2004; Gucinski et al. 2001; Trombulak & Frissell 2000). Additional behavior modification includes changes in home range, reproductive success, escape response and physiological state (Forman & Alexander 1998; Trombulak & Frissell 2000).

Roads change soil density, temperature, water content, light levels, dust, surface waters, patterns of runoff, erosion and sedimentation, as well as adding heavy metals (especially lead), salts, organic molecules, ozone, and nutrients to roadside environments (Forman 2004; Gucinski et al. 2001; Trombulak & Frissell 2000). When delivered to streams, these road-derived contaminants reduce water guality (Gucinski et al. 2001). Increased road-derived fine sediments in stream gravel have been linked to decreased fry emergence, decreased juvenile densities, loss of winter carrying capacity, increased predation of fishes, and reduced benthic organism populations and algal production (Gucinski et al. 2001). Roads greatly increase the frequency of landslides, debris flow, and other mass movement (Gucinski et al. 2001). Roads promote the dispersal of exotic species and pathogens by altering habitats, stressing native species, and providing corridors and vehicle transport for seed/organism dispersal (Forman 2004; Gucinski et al. 2001; Trombulak & Frissell 2000). Roads also promote increased hunting, fishing, poaching, passive harassment of animals, use conflicts, lost solitude, lost soil productivity, fires, and landscape modifications (Forman 2004; Gucinski et al. 2001; Trombulak & Frissell 2000). Presence of roads is highly correlated with changes in species composition, population sizes. and hydrologic and geomorphic processes that shape aquatic and riparian systems and habitat (Gucinski et al. 2001; Trombulak & Frissell 2000), including severing connections between streams and adjacent floodplain networks. converting subsurface to surface flow by intercepting groundwater flowpaths and diverting flow to streams, thereby increasing run-off, "flashiness" and erosion (Forman 2004; Gucinski et al. 2001).

In particular, roads have been consistently singled out as a primary cause of the reduced range and abundance of many aquatic species, not only in the West but also across the continent (CWWR, 1996; USFS and USBLM, 1997a; Trombulak and Frissell, 2000; Kessler et al., 2001; Angermeier et al., 2004). Czech et al. (2000) estimated that roads in the U.S. contribute to the endangerment of some 94 aquatic species. [Rhodes 2007, p. 7]

#### Road density as indicator of human disturbance to natural systems

Species and biological communities evolve through co-adapting to each other and the physical environment of their native ecosystems. The broad suite of significant road impacts just described often creates large and extensive departures from the natural processes, interactions and conditions to which organisms are adapted, which increase with the extent and/or density of the road network. Road density is also a useful metric or indicator of human impact at all scales broader than a single site because it integrates impacts of human disturbance from activities that are associated with roads and their use (e.g., timber harvest, mining, human wildfire ignitions, invasive species introduction and spread, hunting, fishing, poaching, etc.) along with direct road impacts (Lee et al. 1997; Quigley et al. 2001; Trombulak & Frissell 2000). Thus, an expectation that environmental degradation and associated biological impacts would increase with road density and, conversely, that remaining areas with very few or no roads would be strongholds of imperiled species and native biodiversity (in addition to providing other important ecosystem services such as clean water sources, carbon sequestration, recreation, and solitude) is both logical and obvious.

Objections have sometimes been raised to use of road density as an indicator of disturbance (or reductions in road density as a target for restoration) on grounds that all roads are not equal in ecological impact. However, while the latter is certainly true, validity and utility of road density as a robust indicator for watershed condition and aquatic impact – because of its integration of non-direct road-specific impacts as noted above – has been repeatedly demonstrated and is strongly confirmed by its extensive and repeated recommendation in the Forest Service's guidance for Roads Analysis (USDA Forest Service 1999).

Expectation that road density would be associated with environmental degradation or species declines is further confirmed by empirical evidence finding significant correlations between population/community strength of Threatened, Endangered, Sensitive or other native species or other measures of ecological integrity and roadless proportion or road density. Together, this evidence strongly indicates that significant negative impacts can be detectable beginning with even the first one-tenth-mile of road per square mile of watershed (Lee et al. 1997). Multiple lines of evidence further indicate that substantial water quality declines, watershed degradation, and aquatic species impact must be expected at road densities higher than about 1 mile per square mile (0.6 km per square km) or less. This in turn suggests that – with limited, generally site-specific exceptions – because adverse impacts become evident even at quite low road densities, the greatest restoration efficiency with limited resources will result

from targeting road reduction to high-value watersheds where low-to-moderatelylow road densities can be brought below a mile per square mile or less, rather than where moderate-to-high road density would be reduced, but still remain moderate-to-high (exceptions might include a particular high-risk or high-impact road segment directly impacting a specific, high-value population or highly productive habitat of an at-risk species). These lines of evidence include:

- At the landscape scale, increasing road densities and their attendant effects are correlated with declines in the status of some non-anadromous salmonid species (Gucinski et al. 2001).
- For example, Frissell and Carnefix (2007) found a significant relationship between bull trout spawner abundance and proportion of subwatershed area within designated Wilderness or Inventoried Roadless Areas (IRAs) for 19 subwatersheds in the Rock Creek drainage, Granite and Missoula Counties, Montana, and disproportionately high occurrence of native salmonids, including genetically pure populations, associated with IRAs statewide.
- Ripley et al. (2005) surveyed 172 stream reaches located throughout the majority of the lower two-thirds (where industrial activities, mainly timber harvest and roads, are most predominant) of the Kakwa River basin in central western Alberta, Canada, and modeled relationships of bull trout presence and abundance with environmental factors. Bull trout were observed only at road densities (in the subbasin draining to the sampling reach) ranging from 0 to 0.6 km per square km (1 mile per square mile). Road density was generally related

significantly and negatively to both bull trout occurrence and abundance in logistic and zero-inflated Poisson (ZIP) regression models. Notably, consistent, steepest decline in the modeled probability of bull trout occurrence fell between 0 and 0.4 km per square km (≈ 0.6 miles per square mile; see their Fig. 2 at right). This is consistent with other



**Fig. 2.** Logistic regression models of the predicted probability of bull trout (*Salvelinus confluentus*) occurrence and (*a*) percentage of the subbasin subjected to forest harvesting and (*b*) density of roads in the Kakwa River basin. [Ripley et al. 2005]

evidence (e.g., Lee et al. 1997, see below) that no truly "safe" threshold road density exists, but rather negative impacts begin to accrue and be expressed with incursion of the first road segment. Ripley et al. (2005) further used the modeled negative relation between bull trout occurrence and percentage of subbasin harvested (a primary driver of road construction) to forecast that forest harvesting over the next 20 years is projected to result in the local extirpation of bull trout from 24% to 43% of stream reaches that currently support the species in the basin.

- Similarly, bull trout redd numbers and changes in redd numbers with time were negatively correlated with density of logging roads in spawning tributary catchments in Montana's Swan River drainage (Baxter et al. 1999).
- U.S. Fish and Wildlife Service's Final Rule listing bull trout as threatened (USFWS 1999) states:

A recent assessment of the interior Columbia Basin ecosystem revealed that increasing road densities were associated with declines in four non-anadromous salmonid species (bull trout, Yellowstone cutthroat trout, westslope cutthroat trout, and redband trout) within the Columbia River Basin, likely through a variety of factors associated with roads (Quigley & Arbelbide 1997). Bull trout were less likely to use highly roaded basins for spawning and rearing, and if present, were likely to be at lower population levels (Quigley and Arbelbide 1997). Quigley et al. (1996) demonstrated that when average road densities were between 0.4 to 1.1 km/km/2\ (0.7 and 1.7 mi/mi/2\) on USFS lands, the proportion of subwatersheds supporting "strong" populations of key salmonids dropped substantially. Higher road densities were associated with further declines.

- Lee et al. (1997) concluded, "Our [Interior Columbia Basin] results clearly show that increasing road densities and their attendant effects are associated with declines in the status of four non-anadromous salmonid species [bull trout, westslope cutthroat trout, Yellowstone cutthroat trout, and redband trout]. They are less likely to use highly roaded areas for spawning and rearing, and if found are less likely to be at strong population levels."
- Within colder subwatersheds, bull trout populations were reported as strong nearly seven times more frequently in those with less than 2.5 miles of road per square mile than those with more (Rieman et al. 1997, Table 5).
- Of five watershed integrity indicator variables used, the proportion of a subbasin composed of wilderness or roadless areas seemed most closely associated with subbasins having high integrity indices within the Interior Columbia basin; 81 percent of the subbasins classified as having the highest integrity had relatively large proportions of wilderness and roadless areas (>50 percent). Conversely, of subbasins with the lowest integrity, 89 percent had low proportions of roadless and wilderness areas, and 83 percent had relatively high proportions of at least moderate

road density (0.27 miles/square mile) (Gucinski et al. 2001, p. 8, citing Quigley et al. 1997).

- Lee et al. (1997) compared projected road densities against known aquatic conditions across the Interior Columbia basin and found that areas with estimated road densities of <0.06 km per square km (0.1 miles per square mile) were most generally associated with areas of low degradation and areas with estimated road densities of >0.43 km per square km (0.7 miles per square mile) were most generally associated with high degradation.
- Extensive habitat and population surveys on the Clearwater National Forest, Idaho, found that with few exceptions, native salmonid abundance was higher and exotic brook trout abundance lower or zero in unroaded versus managed landscapes (Huntington 1995). Differences were largest (often several-fold to an order of magnitude) and most consistent in the lower-gradient ("B" and "C") channel types, which are most sensitive to road and other management impacts, and were evident despite less-thanideal stream habitat conditions in a large proportion of the stream segments in the unroaded landscapes, due to ongoing recovery from large fires within the past 50-150 years.
- Density of large wood (a crucial element of high quality aquatic habitat) in pools in tributaries to the Elk River, Oregon was negatively correlated with road density at intermediate ("network") spatial scales (Burnett et al. 2006). Road density was also negatively correlated with forest cover, which was likewise negatively correlated with large wood density, leading the authors to interpret the significant road density effect as an integrator or surrogate for impacts of the timber harvest associated with the road network.
- Frequency of large pools and all pools (crucial elements of aquatic habitat quality) declined with increasing road density in lower-gradient (<0.02) streams in the Interior Columbia River Basin (Lee et al. 1997).
- Thompson and Lee (2000) used existing data sets to model landscapelevel attributes and snorkel count categories of spring-summer chinook salmon (*Oncorhynchus tshawytscha*) and steelhead (*Oncorhynchus mykiss*) parr (juveniles) in Idaho. Resulting models predicted that chinook salmon parr would be in low count categories within subwatersheds with >1 km·km<sup>-2</sup> (1.6 miles per square mile) geometric mean road densities and/or <700 mm mean annual precipitation.</li>
- Inventoried roadless areas provide or affect habitat for over 55% of the Threatened, Endangered, or Proposed-for-listing species found on or affected by National Forest lands, representing approximately 25% of all animal species and 13% of all plant species listed under the Endangered Species Act within the United States, and for over 65% of Forest Servicedesignated sensitive species (Brown & Archuleta 2000).

Besides the perennial problem of resources insufficient to the overall restoration need, this prioritization issue takes on greater importance in the context of recent

or current agency policies and legislative initiatives. Though intended to efficiently and/or collaboratively address multiple restoration objectives simultaneously, most existing policies/proposals risk the perverse outcome of directing restoration efforts or expenditures away from the locations of greatest need and most-certain benefit for aquatic/watershed restoration, especially in the absence of robust scientific sideboards circumscribing the decision space. For example, our reviews of recent projects and forest plans (corroborated by private testimony from Forest Service personnel) suggest that while Forest Service Region One's "Integrated Restoration Strategy" includes a high-profile aquatic/watershed component, in practice purported "forest health" and fire-risk concerns drive the planning process and determine locations of projects, with any aquatic/watershed restoration measures subordinated to and entirely dependent for support on those perceived terrestrial priorities. Urgently needed aquatic/watershed restoration is thus held captive to terrestrial considerations, and these terrestrial considerations are often of high public controversy and sometimes of dubious scientific validity. By contrast, the scientific basis for and ecological and cost-effectiveness of aquatic/watershed restoration measures such as road decommissioning or stormproofing and fish-passage barrier removal are thoroughly documented, straightforward, and uncontroversial. Such watershed restoration work is urgently needed to meet acute policy and legal mandates of the National Forest Management Act, Clean Water Act, and Endangered Species Act. The mandates of these environmental laws, and public demand for clean water and healthy fisheries, will not be met if rational road impact reduction programs are subjugated to controversial fuels reduction and salvage timber sales. This programmatic linkage by management agencies hinders the ability of the agency to restore watersheds and remediate roads effectively, creates unnecessary spending inefficiencies that jeopardize aquatic resources, and clearly constitutes bad public policy.

#### Literature Cited

- Angermeier, P. L., A. P. Wheeler, and A. P. Rosenberger. 2004. A conceptual framework for assessing impacts of roads on aquatic biota. Fisheries **29**:19-29.
- Baxter, C. V., C. A. Frissell, and F. R. Hauer. 1999. Geomorphology, logging roads, and the distribution of bull trout spawning in a forested river basin: implications for management and conservation. Transactions of the American Fisheries Society **128**:854–867.
- Brown, S., and R. Archuleta. 2000. Forest Service Roadless Area Conservation Final Environmental Impact Statement: Biological Evaluation for Threatened, Endangered and Proposed Species and Sensitive Species. <u>http://roadless.fs.fed.us/documents/feis/specrep/Final\_biological\_evaluatio</u> <u>n.PDF</u>. U.S. Department of Agriculture Forest Service, Washington, DC.
- Burnett, K. M., G. H. Reeves, S. E. Clarke, and K. R. Christiansen. 2006. Comparing riparian and catchment influences on stream habitat in a

forested, montane landscape. American Fisheries Society Symposium **48**:175–197.

- Forman, R. T. T. 2004. Road ecology's promise: What's around the bend? Environment **46**:8-21.
- Forman, R. T. T., and L. E. Alexander. 1998. Roads and their major ecological effects. Annual Review of Ecology and Systematics **29**:207-231.
- Frissell, C., and G. Carnefix. 2007. The geography of freshwater habitat conservation: roadless areas and critical watersheds for native trout. Pages 210-217 in C. LoSapio, editor. Sustaining Wild Trout in a Changing World; Proceedings of Wild Trout IX Symposium; 2007 October 9-12; West Yellowstone, Montana. 308 pages. (pdf file of Proceedings available at <u>www.wildtroutsymposium.com</u>).
- Gucinski, H., M. J. Furniss, R. R. Ziemer, and M. H. Brookes. 2001. Forest roads: a synthesis of scientific information. Gen. Tech. Rep. PNWGTR-509. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.
- Huntington, C. W. 1995. Final Report: Fish Habitat and Salmonid Abundance within Managed and Unroaded Landscapes on the Clearwater National Forest, Idaho. Prepared for: Eastside Ecosystem Management Project, USDA Forest Service, Walla Walla, WA. Clearwater BioStudies, Inc., Canby, Oregon.
- Lee, D. C., J. R. Sedell, B. E. Rieman, R. F. Thurow, J. E. Williams, and others. 1997. Broadscale Assessment of Aquatic Species and Habitats. Pages 1057-1496 in S. J. Arbelbide, editor. An Assessment of Ecosystem Components in the Interior Columbia Basin and Portions of the Klamath and Great Basins: Vol. III. USDA Forest Service General Technical Report PNW-GTR-405.
- Quigley, T. M., and S. J. Arbelbide, editors. 1997. An assessment of ecosystem components in the interior Columbia basin and portions of the Klamath and Great basins. U.S. Forest Service General Technical Report PNW-405 (volumes I-4).
- Quigley, T. M., R. W. Haynes, and W. J. Hann. 2001. Estimating ecological integrity in the interior Columbia River basin. Forest Ecology and Management **153**:161-178.
- Rhodes, J. J. 2007. The watershed impacts of forest treatments to reduce fuels and modify fire behavior. <u>http://www.pacificrivers.org/science-</u> <u>research/resources-publications/the-watershed-impacts-of-forest-</u> <u>treatments-to-reduce-fuels-and-modify-fire-behavior</u>. Report prepared for Pacific Rivers Council., Eugene, OR.
- Rieman, B. E., D. C. Lee, and R. F. Thurow. 1997. Distribution, status, and likely future trends of bull trout within the Columbia River and Klamath River basins. North American Journal of Fisheries Management **17**:1111-1125.
- Ripley, T., G. Scrimgeour, and M. S. Boyce. 2005. Bull trout (Salvelinus confluentus) occurrence and abundance influenced by cumulative industrial developments in a Canadian boreal forest watershed. Can. J. Fish. Aquat. Sci. 62:2431–2442.

- Thompson, W. L., and D. C. Lee. 2000. Modeling relationships between landscape-level attributes and snorkel counts of chinook salmon and steelhead parr in Idaho. doi:10.1139/cjfas-57-9-1834. Can. J. Fish. Aquat. Sci. 57:1834–1842.
- Trombulak, S. C., and C. A. Frissell. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology **14**:18-30.
- U.S. Fish and Wildlife Service (USFWS). 1999. Endangered and Threatened Wildlife and Plants; Determination of Threatened Status for Bull Trout in the Coterminous United States; Final Rule. Federal Register **64**:58909-58933.
- USDA Forest Service. 1999. Roads Analysis: Informing Decisions about Managing the National Forest Transportation System. Misc. Rep. FS-643. U.S. Dept. of Agriculture Forest Service, Washington, D.C.



# QUAL2Kw user manual (version 5.1)

A Modeling framework for simulating river and stream water quality

July 2008

Publication No. 08-03-xxx printed on recycled paper



This report is available on the Department of Ecology home page on the World Wide Web at http://www.ecy.wa.gov/biblio/04030??.html

For a printed copy of this report, contact:

Department of Ecology Publications Distributions Office

Address: PO Box 47600, Olympia WA 98504-7600

*E-mail: <u>ecypub@ecy.wa.gov</u>* 

Phone: (360) 407-7472

Refer to Publication Number 04-03-010

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

The Department of Ecology is an equal-opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam-era veteran's status, or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact Joan LeTourneau at 360-407-6764 (voice) or 711 or 1-800-833-6388 (TTY).



# QUAL2Kw user manual (version 5.1)

# A modeling framework for simulating river and stream water quality

by

Greg Pelletier<sup>1</sup> and Steve Chapra<sup>2</sup>

Environmental Assessment Program Olympia, Washington 98504-7710

July 2008

Publication No. 08-03-xxx printed on recycled paper

<sup>&</sup>lt;sup>1</sup> Environmental Engineer, Washington State Department of Ecology, Olympia, WA.

<sup>&</sup>lt;sup>2</sup> Professor and Louis Berger Chair in Computing and Engineering, Tufts University, Medford, MA.

## **1 USERS MANUAL**

### 1.1 OVERVIEW

The computer code used to implement the calculations for QUAL2K is written in Visual Basic for Applications (VBA). A Fortran executable is also available as an option. Excel serves as the user interface.

Color is used to signify whether information is to be input by the user or output by the program:

- Pale Blue designates variable and parameter values that are to be entered by the user.
- **Pale Yellow** designates data that the user enters. This data are then displayed on graphs generated by Q2K.
- Pale Green designates output values generated by Q2K.
- **Dark solid colors** are used for labels and should not be changed.

All worksheets include three buttons (Figure 1):

- **Open Old Files.** When this button is clicked, the file browser will automatically open to allow you to access a data file. All QUAL2K data files have the extension, \*.q2k.
- **Run VBA.** This button causes Q2K to execute the VBA version of the model and to create a data file that holds the input values. The data file can then be accessed later using the **Open Old File** button.
- **Run Fortran.** This button causes Q2K to execute Fortran version of the model and to create a data file that holds the input values. The data file can then be accessed later using the **Open Old File** button. The Fortran and VBA versions give identical results except the Fortran version runs much faster because it is a compiled executable program.



Figure 1. The buttons used in Q2K.

## 1.2 MODEL PARAMETER WORKSHEETS

A series of worksheets are used to enter parameters that are required to generate a model run. These are identified by turquoise tabs.

#### 1.2.1 QUAL2K Worksheet

The QUAL2K Worksheet (Figure 2) is used to enter general information regarding a particular model application.

| Kicrosoft Excel - qual2kw5.xls                                                                                   |                                               |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|--|
| Eile Edit View Insert Format Tools Data Window Sheets                                                            | Plots Help Adobe PDF Type a question for help |  |  |  |  |  |  |  |
| <br>  D 😂 🔲 舟 時   馬 B. 19   X 時 高 - 🛷   ゆ - ゅ -   単                                                              | ∑ - ≜l Zl ∰ # 100% - ?                        |  |  |  |  |  |  |  |
|                                                                                                                  |                                               |  |  |  |  |  |  |  |
|                                                                                                                  | в с р-                                        |  |  |  |  |  |  |  |
| 1 OIIAL 2Km (version 5.1)                                                                                        |                                               |  |  |  |  |  |  |  |
| WOALZAW (VEISION 5.1)                                                                                            |                                               |  |  |  |  |  |  |  |
| 2 Stream Water Quality Model                                                                                     | Open Run Run                                  |  |  |  |  |  |  |  |
| 3 Greg Pelletier, Steve Chapra, and Hua Tao                                                                      | File VBA Fortran                              |  |  |  |  |  |  |  |
| 4 Department of Ecology and Tufts University                                                                     |                                               |  |  |  |  |  |  |  |
| 5                                                                                                                |                                               |  |  |  |  |  |  |  |
| 6                                                                                                                |                                               |  |  |  |  |  |  |  |
| 7 System ID:                                                                                                     | <b></b>                                       |  |  |  |  |  |  |  |
| 8 River name                                                                                                     | Boulder Creek                                 |  |  |  |  |  |  |  |
| 9 Saved file name                                                                                                | BC092187                                      |  |  |  |  |  |  |  |
| 10 Directory where the input/output files are saved                                                              |                                               |  |  |  |  |  |  |  |
|                                                                                                                  | 0                                             |  |  |  |  |  |  |  |
| 12 Day                                                                                                           | 1087                                          |  |  |  |  |  |  |  |
| 14 Time zone                                                                                                     | Mountain                                      |  |  |  |  |  |  |  |
| 15 Davlight savings time                                                                                         | Yes                                           |  |  |  |  |  |  |  |
| 16 Simulation and output options:                                                                                | 100                                           |  |  |  |  |  |  |  |
| 17 Calculation step                                                                                              | 11.25 minutes                                 |  |  |  |  |  |  |  |
| 18 Number of days                                                                                                | 5 days                                        |  |  |  |  |  |  |  |
| 19 Solution method (integration)                                                                                 | Euler                                         |  |  |  |  |  |  |  |
| 20 Solution method (pH)                                                                                          | Bisection                                     |  |  |  |  |  |  |  |
| 21 Simulate hyporheic exchange and pore water quality                                                            | No                                            |  |  |  |  |  |  |  |
| 22 Display dynamic diel output                                                                                   | Yes                                           |  |  |  |  |  |  |  |
| 23 State variables for simulation                                                                                | All                                           |  |  |  |  |  |  |  |
| 24 Simulate sediment diagenesis                                                                                  | Yes                                           |  |  |  |  |  |  |  |
| 25 Program determined calc step                                                                                  | 11.25 minutes                                 |  |  |  |  |  |  |  |
| 26 Time elapsed during last model run                                                                            | 0.27 minutes                                  |  |  |  |  |  |  |  |
| 27 Time of solar peop                                                                                            | 0:1/ AM                                       |  |  |  |  |  |  |  |
| 20 Time of subset                                                                                                | 7.49 PM                                       |  |  |  |  |  |  |  |
| 30 Photoperiod                                                                                                   | 13 54 hours                                   |  |  |  |  |  |  |  |
| 31                                                                                                               |                                               |  |  |  |  |  |  |  |
| 32                                                                                                               |                                               |  |  |  |  |  |  |  |
| 🕨 🔸 🕨 QUAL2K / Headwater / Reach / Air Temperature / Dew Point Temperature / Wind Speed / Cloud Cover / Si 📢 👘 🔽 |                                               |  |  |  |  |  |  |  |
| Ready                                                                                                            | NUM                                           |  |  |  |  |  |  |  |

#### Figure 2. The QUAL2K Worksheet.

**River name.** Name of the river or stream being modeled. After the program is run, this name along with the date, is displayed on all worksheets and charts.

Saved File name. This is the name of the data file generated when Q2K is run.

**Directory where file saved.** This specifies the complete path to the directory where the file is saved.

**Month.** The simulation month. This is entered in numerical format (e.g., January = 1, February = 2, etc.).

**Day.** The simulation day.

Year. The simulation year (e.g., 1993)

**Time zone.** A pull-down menu (Figure 3) allows you to select the proper U.S. time zone. For example, applications in the state of Washington will generally use the Pacific time zone. The user may also use cell B14 to enter any integer hour value for the time zone relative to GMT/UTC (e.g. the Pacific time zone is -8 hours, GMT/UTC is 0 hours, etc.). Leaving cell B14 blank will default to GMT/UTC for the time zone.

| Time zone                     | Mountain 🔫 |  |  |  |  |
|-------------------------------|------------|--|--|--|--|
| Daylight savings time         | Atlantic   |  |  |  |  |
| Calculation:                  | Eastern    |  |  |  |  |
| Calculation step              | Mountain   |  |  |  |  |
| Final time                    | Pacific    |  |  |  |  |
| Solution method (integration) | Alaska     |  |  |  |  |
| Solution method (pH)          | Samoa      |  |  |  |  |

Figure 3. The pull down menu for setting the time zone.

**Daylight savings time.** A pull down menu allows you to specify whether daylight savings time is in effect (Yes or No).

**Calculation step.** This is the time step used for the calculation. It must be selected from the pull down list.

**Number of days.** This defines the duration of the calculation. It must be an integer that is greater than or equal to 2 days. This constraint is imposed because the model is run in a time variable mode until it reaches a steady state. Therefore, the first day of simulation is by definition overwhelmingly dominated by its initial conditions. If the user enters a value less than 2 days, the program automatically sets the final time to 2 days. The final time should be at least twice the river's travel time. For streams with short travel times where bottom algae are simulated, it must usually be longer.

**Solution method (integration).** A pull down menu allows you to choose between three numerical methods for solving the differential equations for the state variables. These are (1) Euler's method, (2) the fourth-order Runge-Kutta (RK4) method, and (3) an adaptive time step method. The adaptive step method is only available if the Fortran executable is used. Detailed descriptions of these methods can be found in Chapra and Canale (2002). Euler's method is suggested as the default because it usually attains sufficiently accurate results at a moderate computational price. For cases where un-stable results occur with Euler's method or more accuracy is required, the more computationally burdensome RK4 method can be employed. **Solution method (pH).** A pull down menu allows you to choose between two numerical methods for solving for pH using root location. These are (1) Newton-Raphson (the default) and (2) bisection. Detailed descriptions of these methods can be found in Chapra and Canale (2002). Newton-Raphson is suggested as the default because it is faster. However, there are some cases where it can go unstable. If this occurs, the bisection, although slower, may be preferable. **Simulate hyporheic exchange and pore water quality.** Three options are available for simulation of hyporheic exchange and water quality:

- Choose 'No' to bypass calculation of mass transfer between the water column and the hyporheic pore water, and water quality kinetics in the hyporheic zone.
- Choose 'Level 1' to simulate mass transfer between the water column and the hyporheic pore water, with water quality kinetics in the hyporheic zone as an enhanced zero-order

or first-order oxidation rate of fast-reacting DOC with limitation from fast-reacting DOC and dissolved oxygen.

• Choose 'Level 2' to simulate mass transfer between the water column and the hyporheic pore water, with water quality kinetics with attached heterotrophic bacteria as a state variable in the hyporheic sediment zone with growth limitation from fast-reacting DOC, nitrate, ammonia, soluble reactive P, and dissolved oxygen.

Mass transfer between the water column and hyporheic pore water only occurs if there are positive values entered in column AL of the 'Reach' sheet for the hyporheic exchange flow. Kinetic model options and parameters are specified on the 'Rates' sheet.

**Display dynamic diel output.** Two options are available for displaying the dynamic output results:

- Select 'Yes' to display the dynamic diel results in output sheets and charts.
- Select 'No' to bypass writing of the dynamic diel results. This option will result in faster writing of the output files and charts and will save the users time if they are doing many runs and don't need to look at the dynamic output. The longitudinal results and charts are not affected by this choice.

**State variables for simulation.** Select whether all state variables will be simulated or only temperature.

**Simulate sediment diagenesis**. Select 'Yes' to simulate sediment diagenesis. Prescribed SOD and nutrient fluxes on the 'Reach' sheet are added to the calculated fluxes when sediment diagenesis is simulated. Select 'No' to bypass the sediment diagenesis subroutine. This option will use only the prescribed SOD and nutrient fluxes on the 'Reach' sheet to determine sediment fluxes.

**Program determined calc step (output).** The program takes the **Calculation step** entered by the user and then rounds it down to the next lowest whole base-2 number. In order to use a lower time step, you must reduce the calculation step below this value.

**Time of last calculation.** The computer automatically displays the computer time required for the simulation.

Time of sunrise. This is the time of sunrise for the farthest downstream reach.

Time of solar noon. This is the time of solar noon for the farthest downstream reach.

Time of sunset. This is the time of sunset for the farthest downstream reach.

**Photoperiod.** This is the fraction of the day that the sun is up for the farthest downstream reach. It is equal to the time in hours between sunrise and sunset divided by 24.

#### 1.2.2 Headwater Worksheet

This worksheet (Figure 4) is used to enter flow and concentration for the system's boundaries.

|      | Microsoft Excel - qual2kw5.xls                                                                                             |                   |          |         |         |                  |                 |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------|-------------------|----------|---------|---------|------------------|-----------------|--|--|--|
|      | <u>File E</u> dit <u>Vi</u> ew <u>I</u> nsert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>W</u> ir                       | ndow <u>H</u> elp |          |         | Туре    | a question for h | nelp - 8 ×      |  |  |  |
| *-   | 📩 📩 🖾 🐃 🔊 🖓 🖏 🚖 🐄 Reply with Chap                                                                                          | nes End Review    |          |         |         |                  |                 |  |  |  |
|      | B7 - £ 0.71348                                                                                                             | ·                 |          |         |         |                  |                 |  |  |  |
|      | D1 + )x 0.11346                                                                                                            | R                 | C        | D       | F       | F                | c =             |  |  |  |
|      |                                                                                                                            | U                 | C        | U       | L       |                  | <u>▲</u>        |  |  |  |
|      | QUALZAW                                                                                                                    |                   |          |         |         |                  |                 |  |  |  |
| 2    | 2 Stream Water Quality Model Open Run Run                                                                                  |                   |          |         |         |                  |                 |  |  |  |
| 3    | 3 Boulder Creek (8/21/1987) File VBA Fortran                                                                               |                   |          |         |         |                  |                 |  |  |  |
| E    |                                                                                                                            |                   |          |         |         |                  |                 |  |  |  |
| 4    | neadwater and Downstream Bol                                                                                               | indary Data:      |          |         |         |                  |                 |  |  |  |
| 5    |                                                                                                                            |                   |          |         |         |                  |                 |  |  |  |
| 6    |                                                                                                                            |                   |          |         |         |                  |                 |  |  |  |
| 1    | Headwater Flow 0.713 m3/s                                                                                                  |                   |          |         |         |                  |                 |  |  |  |
| H G  | Prescribed downstream boundary? No<br>Headwater Water Quality Units 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM               |                   |          |         |         |                  |                 |  |  |  |
| 10   | Temperature                                                                                                                | C                 | 14.88    | 14.04   | 13.29   | 12.69            | 12.26           |  |  |  |
| 11   | Conductivity                                                                                                               | umhos             | 276.42   | 277.23  | 279.22  | 282.26           | 286.14          |  |  |  |
| 12   | Inorganic Solids                                                                                                           | mgD/L             | 11.94    | 12.13   | 12.07   | 11.78            | 11.27           |  |  |  |
| 13   | Dissolved Oxygen                                                                                                           | mg/L              | 6.98     | 6.98    | 7.08    | 7.25             | 7.49            |  |  |  |
| 14   | CBODslow                                                                                                                   | mgO2/L            | 1.34     | 1.34    | 1.34    | 1.34             | 1.34            |  |  |  |
| 15   | CBODfast                                                                                                                   | mgO2/L            | 1.34     | 1.34    | 1.34    | 1.34             | 1.34            |  |  |  |
| 16   | Organic Nitrogen                                                                                                           | ugN/L             | 1561.00  | 1560.27 | 1565.73 | 1577.01          | 1593.33         |  |  |  |
| 17   | NH4-Nitrogen                                                                                                               | ugN/L             | 87.59    | 87.59   | 87.59   | 87.59            | 87.59           |  |  |  |
| 18   | NO3-Nitrogen                                                                                                               | ugN/L             | 165.56   | 165.56  | 165.56  | 165.56           | 165.56          |  |  |  |
| 19   | Organic Phosphorus                                                                                                         | ugP/L             | 18.15    | 25.31   | 33.43   | 41.96            | 50.32           |  |  |  |
| 20   | Inorganic Phosphorus (SRP)                                                                                                 | ugP/L             | 73.46    | 69.42   | 64.07   | 57.80            | 51.01           |  |  |  |
| 21   | Phytoplankton                                                                                                              | ugA/L             | 0.00     | 0.00    | 0.00    | 0.00             | 0.00            |  |  |  |
| 22   | Detritus (POM)                                                                                                             | mgD/L             | 1.29     | 1.43    | 1.54    | 1.61             | 1.65            |  |  |  |
| 23   | Pathogen                                                                                                                   | ciu/100 mL        | 0.00     | 0.00    | 01.00   | 0.00             | 0.00            |  |  |  |
| 24   |                                                                                                                            | nigcac03/L        | 90.91    | 91.18   | 91.93   | 93.09            | 94.00           |  |  |  |
| 20   | Downstroam Boundary Water Quality (optional)                                                                               | S.u.              | 12.00 AM | 1.00 AM | 2.00 AM | 3.00 AM          | 1.12<br>1.00 AM |  |  |  |
| 27   | Temperature                                                                                                                | C                 | 12.00 AW | 1.00 AW | 2.00 AW | 3.00 AW          | 4.00 AIVI       |  |  |  |
| 28   | Conductivity                                                                                                               | umbor             |          |         |         |                  |                 |  |  |  |
| H A  | 🛚 🔸 🕨 🔪 QUAL2K \ Headwater / Reach / Air Temperature / Dew Point Temperature / Wind Speed / Cloud Cover / Shade / Ra 🖣 🕨 🕨 |                   |          |         |         |                  |                 |  |  |  |
| Read | Ready NUM                                                                                                                  |                   |          |         |         |                  |                 |  |  |  |

## Figure 4. The Headwater Worksheet used to enter the headwater and downstream (optional) boundary conditions

**Flow.** The headwater's flow rate in  $m^3/s$ .

**Prescribed Downstream Boundary?** If the downstream boundary has an effect on the simulation, this option is set to yes. If this is done, the downstream boundary concentrations should be entered in cells D27:Z42.

**Headwater Water Quality.** This block of cells is used to enter the temperature and water quality boundary conditions at the river's headwater. For cases where the data varies in a diel fashion, Q2K allows you to enter values on an hourly basis. If the values are constant over the daily cycle, just enter the mean value in column D (that is, for 12:00 AM) and leave the other cells (columns E through Z) blank. Q2K will automatically apply the 12:00 AM value to the other times of day. **Downstream Boundary Water Quality.** If the downstream boundary has an effect on the simulation, this block of cells is used to enter the temperature and water quality conditions at the river's downstream boundary. headwater. As was the case with the headwater, if the values are constant over the daily cycle, just enter the mean value in column D (that is, for 12:00 AM) and leave the other cells to the right blank (columns E through Z). Q2K will automatically apply the 12:00 AM value to the other times of day.

#### 1.2.3 Reach Worksheet

This worksheet is used to enter information related to the river's headwater (Reach Number 0) and its reaches (Figure 5 through Figure 9).

| <b>N</b> | Microsoft Excel - qual2kw5.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |              |            |                  |              |                |               |          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|------------|------------------|--------------|----------------|---------------|----------|
|          | <u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nat <u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> | <u>l</u> elp |            |                  |              | Type a ques    | tion for help | • _ 8 ×  |
| *-       | 📩 📩 🖂 📭 🌆 🖄 🖬 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P Reply with Changes Fr                                | nd Review    |            |                  |              |                |               |          |
|          | G27 - £0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |              | •          |                  |              |                |               |          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B                                                      | С            | D          | F                | F            | G              | Н             |          |
| 1        | QUAL 2Kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | Ŭ            | U          | <b>L</b>         |              | Ŭ              |               | <u> </u> |
| H-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |              |            |                  |              |                |               |          |
| 2        | 2 Stream water Quality Model Open Old Run Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |              |            |                  |              |                |               |          |
| 3        | Boulder Creek (8/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/1987)                                                | File         |            | VBA              | Foi          | rtran          |               |          |
| 4        | Reach Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |              |            |                  |              |                |               |          |
| 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |              |            |                  |              |                |               |          |
| 6        | Reach for diel plot:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                     | ۲            | change di  | el plots to this | s reach      |                |               |          |
| 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |              | Reach      |                  |              | Downstream     | Ele           | vation   |
| 8        | Reach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Downstream                                             |              | length     | Down             | stream       | location       | Upstream      | Downst   |
| 9        | abelend of reach label(km)LatitudeLongitude(km)(m)(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |              |            |                  |              |                |               |          |
| 10       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Headwater                                              | 0            | 0.40       | 40.04            | 105.20       | 13.600         | 4070.000      | 167      |
| 11       | MP 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 1            | 0.42       | 40.05            | 105.20       | 13.1/5         | 16/6.000      | 16/      |
| 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 2            | 0.43       | 40.05            | 105.20       | 12.730         | 1673.600      | 167      |
| 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 3            | 0.05       | 40.05            | 105.19       | 11.900         | 1669 200      | 166      |
| 15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | - 4          | 0.05       | 40.05            | 105.10       | 10 200         | 1665 800      | 166      |
| 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 6            | 0.85       | 40.05            | 105.16       | 9.350          | 1662.400      | 165      |
| 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 7            | 0.85       | 40.05            | 105.15       | 8.500          | 1659.425      | 165      |
| 18       | MP 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 8            | 0.85       | 40.05            | 105.14       | 7.650          | 1656.450      | 165      |
| 19       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 9            | 0.85       | 40.05            | 105.13       | 6.800          | 1653.475      | 165      |
| 20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 10           | 0.85       | 40.05            | 105.12       | 5.950          | 1650.500      | 164      |
| 21       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 11           | 0.85       | 40.06            | 105.11       | 5.100          | 1647.525      | 164      |
| 22       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 12           | 0.85       | 40.06            | 105.10       | 4.250          | 1644.975      | 164      |
| 23       | MP 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 13           | 0.85       | 40.06            | 105.09       | 3.400          | 1642.425      | 163      |
| 24       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 14           | 0.85       | 40.07            | 105.09       | 2.550          | 1639.875      | 163      |
| 25       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | About Cool Ch                                          | 15           | 0.85       | 40.07            | 105.08       | 1./00          | 1637.325      | 163      |
| 20       | Last Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Above Coal CK                                          | 10           | 0.85       | 40.08            | 105.07       | 0.850          | 1634.775      | 163      |
| 21       | Last segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cuarcieek                                              | 17           | 0.60       | 40.08            | 105.06       | 0.000          | 1032.223      | 102      |
| 14 4     | VINCE VIEW AND A CONTRACT OF A | Reach / Air Temperature /                              | Dew Point    | t Temperat | ure / Wind       | Speed 🖌 Clou | ud Cover 🖌 Sha | de 🖉 Rat 🔳    |          |
| Read     | dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                  |              |            |                  |              |                | NUM           |          |

## Figure 5. The first part of the Reach Worksheet used to specify reach labels, distances and elevations.

**Reach for diel plot.** Cell B6 is used to enter the number of the reach for which diel plots will be generated. If a negative, zero or a value greater than the number of reaches is entered, the program automatically sets the value to the last downstream reach. Note that there is also a button to the right of cell B6 that allows the user to display a different reach on the diel plots if the model has been run with the option of displaying dynamic diel results.

**Reach Label (optional).** Q2K allows you to enter identification labels for each reach. Figure 6 provides an example to illustrate the naming scheme. The first two reaches of a river are shown. Because it includes the Jefferson City WWTP discharge, we might choose to enter the reach label "Jefferson City WWTP" for the first reach. Similarly we might label the second reach as "Sampling Station 27."



Figure 6. The first two reaches of a river system.

**Downstream end of reach label (optional).** Q2K allows you to enter identification labels for the boundaries between reaches. These labels are then displayed on other worksheets to identify the reaches. As shown in Figure 7, the downstream end of the first reach in Figure 6 could be labeled as "Jefferson Dam". Similarly, the downstream end of the second reach could be labeled as "Route 11 Bridge".

| Reach               | Downstream         |        |
|---------------------|--------------------|--------|
| Labei               | end of reach label | Number |
|                     | Headwater          | 0      |
| Jefferson City WWTP | Jefferson Dam      | 1      |
| Sampling Station 27 | Route 11 Bridge    | 2      |

#### Figure 7. An example of the labels that could be entered for the reaches in Figure 6.

**Reach numbers (output).** The model automatically numbers the reaches in ascending order. **Reach length (output).** The model automatically computes and displays the length of each reach. **Downstream Latitude and Longitude (output).** The model automatically computes and displays the latitude and longitude of the downstream ends of each reach in decimal degrees. **Downstream location.** The user must enter the river kilometer for the downstream end of each reach. Note that the reach distances can be in descending or ascending order.

**Upstream and downstream elevation.** The user must enter the elevation in meters above sea level for both the upstream and downstream ends of the reach. Note that this information is used for two primary purposes. First, it is used to detect an elevation drop due to a waterfall at the end of a reach. Second, it is used to correct oxygen saturation for elevation effects. **Note that it is not used to determine channel slope.** Channel slope is entered independently in column W. **Downstream Latitude and Longitude.** The user must enter the latitude and longitude of the downstream end of each reach in degrees, minutes, and seconds. Alternatively, they can be entered in decimal degrees, in which case, the minutes and seconds entries would be left blank or zero.

| N 12 | Aicrosoft Ex      | cel - (                            | qual2kv        | v5.xls       |                             |                 |                |              |              |              |                   |                |
|------|-------------------|------------------------------------|----------------|--------------|-----------------------------|-----------------|----------------|--------------|--------------|--------------|-------------------|----------------|
|      | <u>File E</u> dit | View                               | Insert         | Format Tool  | s <u>D</u> ata <u>W</u> ind | ow <u>H</u> elp |                |              |              | Type         | a question for he | ∮ <b>- 8</b> × |
| 1    | 📩 🏜 🖂             | <b>1</b>                           | <b>S</b>       | 15 🔎 🗤 R     | eply with <u>C</u> hange    | s End Review.   |                |              |              |              |                   |                |
|      | G27               | -                                  | f <sub>x</sub> | 0            |                             |                 |                |              |              |              |                   |                |
|      | Р                 |                                    | Q              | R            | S                           | Т               | U              | V            | W            | Х            | Y                 | Z              |
| 6    |                   |                                    |                | Hydra        | ulic Model (V               | Veir Override   | s Rating Curv  | es: Rating C | urves Overri | de Manning   | Formula)          |                |
| 7    | И                 | Weir Rating Curves Manning Formula |                |              |                             |                 |                |              |              |              |                   |                |
| 8    | Height            | V                                  | Vidth          | Vel          | ocity                       | De              | oth            | Channel      | Manning      | Bot Width    | Side              | Side           |
| 9    | (m)               |                                    | (m)            | Coefficient  | Exponent                    | Coefficient     | Exponent       | Slope        | n            | m            | Slope             | Slope          |
| 10   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.004        | 0.0800       | 12.50        | 0.00              | 0.00           |
| 11   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.004        | 0.0800       | 12.50        | 0.00              | 0.00           |
| 12   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.004        | 0.0800       | 12.50        | 0.00              | 0.00           |
| 13   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.004        | 0.0800       | 12.50        | 0.00              | 0.00           |
| 14   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.004        | 0.0800       | 12.50        | 0.00              | 0.00           |
| 15   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.004        | 0.0800       | 12.50        | 0.00              | 0.00           |
| 16   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.0035       | 0.0800       | 12.50        | 0.00              | 0.00           |
| 17   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.0035       | 0.0800       | 12.50        | 0.00              | 0.00           |
| 18   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.0035       | 0.0800       | 12.50        | 0.00              | 0.00           |
| 19   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.0035       | 0.0800       | 12.50        | 0.00              | 0.00           |
| 20   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.0035       | 0.0800       | 12.50        | 0.00              | 0.00           |
| 21   | 0.000             |                                    | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.003        | 0.0700       | 12.30        | 0.00              | 0.00           |
| 22   | 0.000             |                                    | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.003        | 0.0700       | 12.30        | 0.00              | 0.00           |
| 23   | 0.000             |                                    | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.003        | 0.0700       | 12.30        | 0.00              | 0.00           |
| 24   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.003        | 0.0700       | 12.30        | 0.00              | 0.00           |
| 25   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.003        | 0.0700       | 12.50        | 0.00              | 0.00           |
| 20   | 0.000             | 0                                  | 0.0000         | 0.0000       | 0.000                       | 0.0000          | 0.000          | 0.003        | 0.0700       | 12.50        | 0.00              | 0.00           |
| 14 4 | ► N \ OU.         | AL2K                               | / Headw        | ater \ Reach | Air Tempera                 | ture / Dew Po   | pint Temperatu | re / Wind S  | peed / Cloud | Cover / Shad | e / Rates /       |                |
| Read | iy                |                                    |                | ,,           | ,,                          | ,,              |                | ,,           |              | <u>,</u>     | NUM               |                |

Figure 8. The part of the Reach Worksheet used to specify the system's hydraulics.

Hydraulic Model. Q2K allows two options for computing velocity and depth based on flow: (1) rating curves or (2) the Manning formula. It is important to pick one of the options and leave the other blank or zero. If the model detects a blank or zero value for the Manning n, it will implement the rating curves. Otherwise, the Manning formula will be solved.

**Rating Curves:** 

**Velocity coefficient.** *a* for velocity  $(m/s) = aQ^b$  for Q in  $m^3/s$ 

#### **Velocity exponent.** *b*

**Depth or width coefficient.**  $\alpha$  for depth (m) or width (m) =  $\alpha Q^{\beta}$ . Not that the pull down selection in cell T8 is used to select whether the depth or width will be described by the coefficients and exponents in columns T and U.

#### **Depth or width exponent.** $\beta$

#### **Manning Formula:**

**Bottom width.** The reach's bottom width,  $B_0$  (m).

Side slope. Number must be greater than zero. For example, a rectangular channel would have both side slopes equal to zero.

**Channel slope.** The slope of the channel in meter of drop per meter of distance.

Manning n. Dimensionless number that parameterizes channel roughness. Values for weedless man-made canals range from 0.012 to 0.03 and for natural channels from 0.025 to 0.2. A value of 0.04 is a good starting value for many natural channels.

|    |              | -1           | E. u.l.e.    |                            |                             |               |             |               |                 |                |                      |                           |                        |
|----|--------------|--------------|--------------|----------------------------|-----------------------------|---------------|-------------|---------------|-----------------|----------------|----------------------|---------------------------|------------------------|
|    | ICTOSOTE EXC | ei - quaizki | wo.xis       |                            |                             |               |             |               |                 |                |                      |                           |                        |
|    | Eile Edit !  | /jew Insert  | Format To    | ools <u>D</u> ata <u>V</u> | <u>V</u> indow <u>H</u> elp |               |             |               |                 |                |                      | Type a que                | stion for help 🛛 🚽 🗗 🗙 |
| 1  | 📩 📩 🖂        | 🔁 🔊          | Ba 🕢 🐄       | Reply with Cha             |                             |               |             |               |                 |                |                      |                           |                        |
| -  | AA10 .       |              | 0            |                            |                             | •             |             |               |                 |                |                      |                           |                        |
|    | AA           |              | 0            |                            | AE                          | AE            | A.C.        | ΔLI           | A1              | A 1            | AIZ                  | AL                        | AM                     |
|    | AA           | AD           | AC           | AD                         | AE                          | AF            | AG          | АП            | AI              | AJ             | AN                   | AL                        | AIVI                   |
| 6  |              |              |              |                            |                             |               |             |               |                 |                |                      |                           |                        |
| 7  | Prescribed   | Prescribed   | Bottom       | Bottom                     | Prescribed                  | Prescribed    | Prescribed  | Prescribed    | Sediment        | Sediment       | Sediment/hyporheic   | Hyporheic                 | Hyporheic              |
| 8  | Dispersion   | Reaeration   | Algae        | SOD                        | SOD                         | CH4 flux      | NH4 flux    | Inorg P flux  | thermal cond    | thermal diff   | zone thickness       | exchange flow             | sediment porosity      |
| 9  | m2/s         | /d           | Coverage     | Coverage                   | gO2/m2/d                    | gO2/m2/d      | mgN/m2/d    | mgP/m2/d      | (W/m/degC)      | (cm^2/sec)     | (cm)                 | (fraction of stream flow) | (fraction of volume)   |
| 10 | 0.00         |              |              |                            |                             |               |             |               |                 |                |                      |                           |                        |
| 11 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 12 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 13 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 14 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 15 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 10 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 3%                        | 40%                    |
| 1/ | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 3%                        | 40%                    |
| 10 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.0             | 0.0064         | 10                   | 3%                        | 40%                    |
| 20 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.0             | 0.0064         | 10                   | 5%                        | 40%                    |
| 21 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.0             | 0.0004         | 10                   | 5%                        | 40%                    |
| 22 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.0             | 0.0064         | 10                   | 5%                        | 40%                    |
| 23 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 24 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 25 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 26 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 27 | 0.00         | 0.000        | 100%         | 100%                       | 0.00                        | 0.0000        | 0.0000      | 0.0000        | 1.6             | 0.0064         | 10                   | 5%                        | 40%                    |
| 20 |              | DK / Heady   | nter Bear    | ah / Air Tomo              | aratura / Dr                | W Doint Tom   | antura / MR | ind Speed / C | aud Covor / Sha | do / Potos / I | ight and Heat / Doi  | nt Sourcos / Diffuso Sou  |                        |
|    |              | LZK A Heady  | vacer X Read | JIA AI Temp                |                             | ew Positi Tem |             | nu speed X C  | oud cover X Sha | ue x nates X I | agint and meat X Pol | inc sources X Dirtuse Sol |                        |

Figure 9. The last part of the Reach Worksheet.

**Prescribed Dispersion.** If the dispersion at the downstream end of a reach is known, it can be entered in column Y of the Reach Worksheet. If this cell is left blank, the dispersion will be automatically computed by the program.

Weir Height. If a weir is located at the reach's downstream end, this is where the weir's height is entered. If the boundary is free-flowing, a zero or blank would be entered.

**Prescribed Reaeration.** If the reaeration for the reach is known, it can be entered in column AA of the Reach Worksheet. If it is left blank, the program will internally compute it based on entries on the Rates Worksheet.

**Bottom Algae Coverage.** In a river, the entire bottom of a reach might not be suitable for the growth of bottom algae. Therefore, Q2K allows the user to specify the percent of the bottom where plants can grow. For example, if only one fifth of a reach's bottom area has substrate suitable for plant growth, the bottom algae coverage would be set to 20%.

**Bottom SOD Coverage.** In a river, the entire bottom of a reach might not be suitable for the generation of sediment oxygen demand. Therefore, Q2K allows the user to specify the percent of the bottom where sediments accumulate and SOD (along with sediment nutrient fluxes) can occur. For example, if only three quarters of a reach's bottom area has accumulated sediment mud, the bottom SOD coverage for that reach would be set to 75%.

**Prescribed SOD.** Q2K simulates the sediment oxygen demand for a reach as a function of the amount of detritus and phytoplankton biomass that settles from the water to the sediments at steady state. Because the sediments may also contain additional organic matter due to runoff during prior non steady-state runoff periods, Q2K allows additional SOD to be prescribed for each reach in column AD of the Reach Worksheet.

**Prescribed CH**<sup>4</sup> (Methane) Flux. In a similar fashion to SOD, Q2K allows an additional flux of methane (reduced carbon) to be prescribed as an input to each reach in column AE of the Reach Worksheet

**Prescribed NH**<sup>4</sup> (Ammonium) Flux. In a similar fashion to SOD, Q2K allows an additional flux of ammonium nitrogen to be prescribed as an input to each reach in column AF of the Reach Worksheet

**Prescribed Inorganic Phosphorus Flux.** In a similar fashion to SOD, Q2K allows an additional flux of inorganic phosphorus to be prescribed as an input to each reach in column AG of the Reach Worksheet

**Sediment thermal conductitivity**. Table 4 of the model theory documentation provides some typical values. A default value of 1.6 W/(m °C) is suggested.

**Sediment thermal diffusivity.** Table 4 of the model theory documentation provides some typical values. A default value of 0.0064 cm<sup>2</sup>/sec is suggested.

**Sediment thickness**. Typically about 10 cm if there is negligible hyporheic exchange and approximately 20-100cm if there is substantial hyporheic exchange. Bencala and Walters (1983) define  $A_s$  as the cross-sectional area of the transient storage zone. If the transient storage zone is considered to be equivalent to the pore water in the hyporheic zone and  $A_s$  is known from tracer studies (for example using the method of Hart 1995), then the sediment hyporheic zone thickness can be estimated as  $A_s /$  (width \* porosity).

**Hyporheic exchange flow**. These values are only used if hyporheic exchange is simulated (if 'Level 1' or 'Level 2' is selected in cell B21 on the 'QUAL2K' sheet). The bulk hyporheic exchange flow is entered as a fraction of the total surface flow for the reach. For example, if 10 percent of the surface flow exchanges with the hyporheic zone within a reach, then a value of 0.1 (10%) is entered for the reach. An efficient method for estimating the parameters of the hyporheic exchange flow and the thickness of the hyporheic zone is provided by Hart (1995). An alternative to direct estimation of these parameters is to use the residual of the heat budget during the calibration of the temperature model to select appropriate values if all other heat exchange inputs are accurately estimated.

**Hyporheic sediment porosity**. These values are only used if hyporheic exchange is simulated (if 'Yes' is selected in cell B21 on the 'QUAL2K' sheet). Typical porosity of cobble, gravel, sand, silt sediments ranges from about 35% to 50%. A default value of 40% is suggested.

**Sky opening for longwave.** The sky opening fraction is used as a multiplier to adjust the downwelling (from atmosphere) and upwelling (from water) longwave radiation terms in the heat budget. A default value of 100% is recommended for no adjustment of the longwave radiation terms

#### 1.2.4 Reach Rates Worksheet

This worksheet is optional to enter information related to reach-specific rate constants and parameters (Figure 9.5). The rate parameters in this sheet are optional. If they are specified, they over-ride the global rate parameters that are specified on the 'Rates' sheet (see below). Rate parameters that depend on temperature are input for 20 °C on the 'Reach Rates' sheet and are adjusted for in-situ temperature by QUAL2Kw. If reach-specific rates are not specified, then the global rate parameters on the 'Rates' sheet will apply. The user should leave the cells blank in the 'Reach Rates' sheet to use global values from the 'Rates' sheet instead of specifying reach-specific values.

| × 1  | licrosoft                | Exce          | l - qual2k        | w5.xls          |                        |              |                |                |               |              |                    |              |           |                | _              |          |
|------|--------------------------|---------------|-------------------|-----------------|------------------------|--------------|----------------|----------------|---------------|--------------|--------------------|--------------|-----------|----------------|----------------|----------|
| :    | <u>File</u> <u>E</u> dit | : <u>V</u> ie | ew <u>I</u> nsert | F <u>o</u> rmat | <u>T</u> ools          | <u>D</u> ata | <u>W</u> indow | <u>S</u> heets | <u>P</u> lots | <u>H</u> elp | Ado <u>b</u> e PDF |              | Ту        | ype a questior | n for help 🛛 👻 | _ 8 ×    |
|      | C10                      | -             | f <sub>x</sub>    | 10.80548        | 8938128                | 349          |                |                |               |              |                    |              |           |                |                |          |
|      | A                        |               |                   |                 | В                      |              |                |                | С             |              | D                  | E            |           | F              | G              | <u>^</u> |
| 1    | QUAL                     | 2 <b>K</b> 1  | w                 |                 |                        |              |                |                |               |              |                    |              |           |                |                |          |
| 2    | Strea                    | m V           | Vater G           | Quality         | y Mod                  | iel          |                |                |               | 0            | n Old File         |              | Run       |                | Dun Fortr      |          |
| 3    | Bould                    | er (          | Creek (           | (8)21)1         | 1987                   |              |                |                |               | Ope          | en Old File        |              | VBA       |                | Run Foru       | an       |
|      | Ontio                    | nal           | reach             | sneci           | fic ra                 | nto n        | aram           | ators          | (lea          | ve h         | lank if n          | t used)      | -         |                |                |          |
| 5    | optio                    |               | reach             | speen           |                        | ne p         | arann          | etero          | liea          |              |                    | n useuj      |           |                |                |          |
|      |                          |               |                   |                 |                        |              |                |                |               |              | 10.0               |              | <b>CD</b> |                | E ( 0.0        |          |
| 6    | 0                        |               |                   |                 | 0                      |              |                |                | D             |              | ISS                | SI           | ow CB     | Ouidatian      | Fast CB        |          |
|      | numb                     | or            |                   |                 |                        | ,            |                |                | Poporat       | ion          | Velocity           | Poto         | is (      | Date           | Dxidalic       |          |
| 9    | namb                     |               |                   |                 | Taber                  |              |                | - '            | /d            |              | m/d                | //d          |           | /d             | //d            |          |
| 10   | 1                        |               | MP 0.4            |                 |                        |              |                | Í              | 1             | ).805        | n/d                | 74           |           | 74             | 74             |          |
| 11   | 2                        |               |                   |                 |                        |              |                | <u> </u>       | 10            | ).736        |                    |              |           |                |                |          |
| 12   | 3                        |               |                   |                 |                        |              |                |                | 10            | ).600        |                    |              |           |                |                |          |
| 13   | 4                        |               |                   |                 |                        |              |                |                | 10            | ).468        |                    |              |           |                |                |          |
| 14   | 5                        |               |                   |                 |                        |              |                |                | 10            | ).341        |                    |              |           |                |                |          |
| 15   | 5                        |               |                   |                 |                        |              |                |                |               | .611         |                    |              |           |                |                |          |
| 10   | <u>/</u><br>8            |               | MD 3.5            |                 |                        |              |                |                |               | .343         |                    |              | _         |                |                |          |
| 18   | 9                        |               | WI 5.5            |                 |                        |              |                |                |               | 7.416        |                    |              |           |                |                | -+       |
| 19   | 10                       |               |                   |                 |                        |              |                |                | 20            | ).539        |                    |              |           |                |                |          |
| 20   | 11                       |               |                   |                 |                        |              |                |                | 21            | 1.444        |                    |              |           |                |                |          |
| 21   | 12                       |               |                   |                 |                        |              |                |                | 20            | ).625        |                    |              |           |                |                |          |
| 22   | 13                       |               | MP 5.6            |                 |                        |              |                |                | 19            | 9.882        |                    |              |           |                |                |          |
| 23   | 14                       |               |                   |                 |                        |              |                |                | 19            | 9.207        |                    |              |           |                |                |          |
| 24   | 10                       |               |                   |                 |                        |              |                |                | 10            | 2.020        |                    |              |           |                |                |          |
| 26   | 17                       |               | Last Sec          | ment            |                        |              |                |                | 17            | 7 495        |                    |              |           |                |                | -        |
| 27   |                          |               | Luor bog          | mont            |                        |              |                |                |               |              |                    |              |           |                |                | -+       |
| 28   |                          |               |                   |                 |                        |              |                |                |               |              |                    |              |           |                |                |          |
| 29   |                          |               |                   |                 |                        |              |                |                |               |              |                    |              |           |                |                |          |
| 30   |                          |               |                   |                 |                        |              |                |                |               |              |                    |              |           |                |                |          |
| 31   |                          |               |                   |                 |                        |              |                |                |               |              |                    |              |           |                |                |          |
| 14 4 | →                        | UALZ          | 2K / Headv        | water 🔏 R       | $\left( each \right) $ | Reach        | Rates 🦯        | Air Tem        | perature      | r ∕ D        | ew Point Temp      | oerature 🔏 V | Vind Sp   | eed 🖌 Clou     | d Cover 🖌 Sł   | < >      |
| Read | у                        |               |                   |                 |                        |              |                |                |               |              |                    |              |           |                | NUM            |          |

#### Figure 9.5. The first part of the Reach Rates Worksheet.

The following reach-specific rate parameters may be entered on the 'Reach Rates' sheet:

- Reaeration rates
- Inorganic suspended solids settling velocity
- Slow CBOD rates
  - Hydrolysis
    - o Oxidation
- Fast CBOD oxidation rate

- Organic N rates
  - Hydrolysis
  - Settling velocity
- Ammonium nitrification rate
- Nitrate rates
  - Denitrification
  - o Sediment transfer coefficient
- Organic P rates
  - o Hydrolysis
  - Settling velocity
- Inorganic P settling velocity
- Phytoplankton rates
  - o Maximum growth rate
  - o Respiration
  - o Death
  - N half-saturation
  - o P half-saturation
  - o Light constant
  - Ammonia preference factor
  - Settling velocity
- Bottom plant rates
  - o Initial biomass
  - o maximum growth rate
  - first-order carrying capacity
  - o respiration
  - o excretion
  - o death
  - o external N half-saturation
  - o external P half-saturation
  - o light constant
  - o ammonia preference
  - o subsistence quota for N
  - o subsistence quota for P
  - o maximum uptake rate of N
  - o maximum uptake rate of P
  - o Internal N half-saturation ratio
  - o Internal P half-saturation ratio
  - N uptake from water column
  - P uptake from water column
- Detritus rates
  - o Dissolution
    - Settling velocity
- Pathogen rages
  - o Dieoff
  - Settling velocity
  - Alpha coefficient for light-enhanced dieoff
- Heterotrophic metabolism in the hyporheic zone
  - Maximum growth rate (level 1 and 2)
  - CBOD half-saturation (level 1 and 2)
  - $\circ$  O<sub>2</sub> inhibition (level 1 and 2)

- Respiration (level 2)
- o Death (level 2)
- o external N half saturation (level 2)
- o external P half saturation (level 2)
- o ammonia preference (level 2)
- o first-order carrying capacity (level 2)
- Generic constituent rates
  - o First-order decay rate
  - o Settling velocity

#### 1.2.5 Initial Conditions Worksheet

The initial conditions specified in this sheet are optional. If they are not specified then the initial conditions in the water column for each reach are assumed to be the same as the headwater, and initial plant biomass is assumed to be zero for zero-order growth and 1 gD/m^2 for first-order growth, with initial normalized intracellular N and P of 0. Entering realistic values for initial conditions allows for shorter simulation periods to reach equilibrium conditions for bottom algae. Leave the cells in this Worksheet blank if you want to use default headwater initial conditions and zero bottom algae biomass as the initial conditions.

#### 1.2.6 Meteorology and Shading Worksheets

Six worksheets are used to enter meteorological and shading data. All have the same general style as described below.

#### 1.2.6.1 Air Temperature

This worksheet is used to enter hourly air temperatures in degrees Celcius for each of the system's reaches (Figure 10).

**Labels and distances (output).** The program automatically displays each reach's upstream label. reach label, downstream label, reach number, upstream distance, and downstream distance (previously entered on the Headwater and Reach Worksheets) in columns A through F. **Air Temperatures.** Hourly air temperatures for each reach are entered in columns G through AD. If the values are constant over the daily cycle, just enter the mean value in column G (that is, for 12:00 AM) and leave the other cells (columns H through AD) blank. Q2K will automatically apply the 12:00 AM value to the other times of day.

| N 🔊  | Microsoft Exce | l - qual2       | kw5.xls  |         |            |            |           |            |            |                     |               |               |               |              |                |                  |             |     |
|------|----------------|-----------------|----------|---------|------------|------------|-----------|------------|------------|---------------------|---------------|---------------|---------------|--------------|----------------|------------------|-------------|-----|
| 8    | Eile Edit Vie  | w <u>I</u> nser | t Format | Tools   | Data       | Window     | Help      |            |            |                     |               |               |               |              | Туре           | e a question for | help 🚽 🗕 đ  | 5 × |
| *a   | 📩 📩 🖂 🛛        | a xa   🗘        | ስ 👒 🝙    | Rep     | oly with C |            | nd Review |            |            |                     |               |               |               |              |                |                  |             |     |
|      | G10 -          |                 | 18.5     |         |            |            |           | •          |            |                     |               |               |               |              |                |                  |             |     |
|      | A              |                 |          | В       |            | 0          | ;         | D          | E          | F                   | G             | Н             | - I           | J            | K              | L                | М           | -   |
| 1    | QUAL2K         | w               |          |         |            |            |           |            |            |                     |               |               |               |              |                |                  |             |     |
| 2    | Stream I       | Vater           | Qualit   |         | del        |            |           |            | hon        | Bun                 | Dun           | 1             |               |              |                |                  |             |     |
| 2    | Devidee        |                 | (0)04    | 4007    |            |            |           |            | File       | VBA                 | Fortran       |               |               |              |                |                  |             |     |
| 3    | bouider        | Creek           | (0/21)   | 1907    | <b>,</b>   |            |           |            |            |                     | Tortrait      |               |               |              |                |                  |             |     |
| 4    | Air Temp       | oeratu          | re Dat   | ta:     |            |            |           |            |            |                     |               |               |               |              |                |                  |             |     |
| 5    |                |                 |          |         |            |            |           |            |            |                     |               |               |               |              |                |                  |             |     |
| 7    |                |                 |          |         |            |            |           |            | Unstream   | Downstream          | 12:00 AM      | 1:00 AM       | 2:00 AM       | 3:00 AM      | 4:00 AM        | 5:00 AM          | 6:00 AM     |     |
| 8    | Upstream       |                 | Reach    |         | L          | ownstrea   | m         | Reach      | Distance   | Distance            | Hourly air te | emperature    | for each reac | h (degrees ( | )              |                  |             |     |
| 9    | Label          |                 | Label    |         | L          | .abel      |           | Number     | km         | km                  | (The input v  | alues are a   | plied as poir | nt estimates | at each time.  | . Linear inter   | polation is | us  |
| 10   | Headwater      |                 | MP 0.4   |         |            |            |           | 1          | 13.60      | 13.18               | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      |     |
| 11   |                |                 |          |         |            |            |           | 2          | 13.18      | 12.75               | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | 1   |
| 12   |                |                 |          |         |            |            |           | 3          | 12.75      | 11.90               | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | 1   |
| 13   |                |                 |          |         |            |            |           | 4          | 11.90      | 11.05               | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | 1   |
| 14   |                |                 |          |         |            |            |           | 5          | 11.05      | 10.20               | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | +   |
| 15   |                |                 |          |         |            |            |           | 6          | 10.20      | 9.35                | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | +   |
| 16   |                |                 |          |         |            |            |           |            | 9.35       | 8.50                | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | +   |
| 1/   |                |                 | MP 3.5   |         |            |            |           | 8          | 8.50       | 7.65                | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | +   |
| 18   |                |                 |          |         |            |            |           | 9          | 7.63       | 6.80                | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | +   |
| 20   |                |                 |          |         |            |            |           | 11         | 5.05       | 5.50                | 18.500        | 19,500        | 19,500        | 18.500       | 19,500         | 19,500           | 19,500      | +   |
| 20   |                |                 |          |         |            |            |           | 12         | 5.55       | 4.25                | 19,500        | 19,500        | 19 500        | 19 500       | 19 500         | 19 500           | 19 500      | +   |
| 22   |                |                 | MP 5.6   |         |            |            |           | 13         | 4 25       | 3.40                | 18 500        | 18 500        | 18 500        | 18 500       | 18 500         | 18 500           | 18 500      | +   |
| 23   |                |                 | WI 3.0   |         |            |            |           | 14         | 3 40       | 2 55                | 18 500        | 18 500        | 18 500        | 18 500       | 18 500         | 18 500           | 18 500      | +   |
| 24   |                |                 |          |         |            | _          |           | 15         | 2.55       | 1.70                | 18,500        | 18,500        | 18.500        | 18.500       | 18.500         | 18,500           | 18,500      | t   |
| 25   |                |                 |          |         | A          | bove Coa   | l Ck      | 16         | 1.70       | 0.85                | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      | T   |
| 26   | Above Coal     | Ck              | Last Seg | gment   | 0          | Coal Creel | (         | 17         | 0.85       | 0.00                | 18.500        | 18.500        | 18.500        | 18.500       | 18.500         | 18.500           | 18.500      |     |
| 27   |                | 2K 🖌 Hear       | dwater 🖌 | Reach \ | Air Ten    | nperature  | Dew Poir  | nt Tempera | ture 🖌 Win | l<br>d Speed 🖌 Clou | d Cover 🖌 Sha | ade 🖌 Rates 🗸 | Light and He  | at / Point S | Sources 🖌 Diff | use Sourc 4      |             | •   |
| Read | dy             |                 |          |         |            |            |           |            | X          |                     |               |               |               |              |                | NUM              |             | 1   |

Figure 10. The Air Temperature Worksheet.

#### 1.2.6.2 Dew-Point Temperature

This worksheet is used to enter hourly dew-point temperatures (degrees Celcius) for each of the system's reaches.

**Reach identifiers.** Reach information (which was formerly entered on the Reach Worksheet) is displayed in Columns A through F.

**Dew point Temperatures.** Hourly dew point temperatures for each reach are entered in columns G through AD. If the values are constant over the daily cycle, just enter the mean value in column G (that is, for 12:00 AM) and leave the other cells (columns H through AD) blank. Q2K will automatically apply the 12:00 AM value to the other times of day.

#### 1.2.6.3 Wind speed

This worksheet is used to enter hourly wind speeds (meters per second) for each of the system's reaches.

**Reach identifiers.** Reach information (which was formerly entered on the Reach Worksheet) is displayed in Columns A through F.

**Dew point Temperatures.** Hourly wind speeds for each reach are entered in columns G through AD. If the values are constant over the daily cycle, just enter the mean value in column G (that is, for 12:00 AM) and leave the other cells (columns H through AD) blank. Q2K will automatically apply the 12:00 AM value to the other times of day.

#### 1.2.6.4 Cloud cover

This worksheet is used to enter hourly cloud cover (% of sky covered) for each of the system's reaches.

**Reach identifiers.** Reach information (which was formerly entered on the Reach Worksheet) is displayed in Columns A through F.

**Dew point Temperatures.** Hourly cloud cover for each reach are entered in columns G through AD. If the values are constant over the daily cycle, just enter the mean value in column G (that is, for 12:00 AM) and leave the other cells (columns H through AD) blank. Q2K will automatically apply the 12:00 AM value to the other times of day.

#### 1.2.6.5 Shade

This worksheet is used to enter hourly shading for each of the system's reaches. Shading is defined as the percent of solar radiation that is blocked because of shade from topography and vegetation. If the values are constant over the daily cycle (full canopy or the river flows through a long culvert), just enter the mean value in column G (that is, for 12:00 AM) and leave the other cells (columns H through AD) blank. Q2K will automatically apply the 12:00 AM value to the other times of day.

#### 1.2.6.6 Solar radiation

This worksheet is used to enter hourly solar radiation for each of the system's reaches. Use of this sheet is optional and the values entered will only be used if the user selectes "Observed" in cell B16 of the 'Light and Heat' Worksheet to use observed values for solar radiation instead of one of the choices for a solar radiation model.

#### 1.2.7 Rates Worksheet

This worksheet is used to enter the model's rate parameters and choices for optional automatic calibration (Figure 11 through Figure 15).

| <b>N</b> | 🛚 Microsoft Excel - qual2kw5.xls                                                                                                 |                   |                     |                                       |          |                |           |   |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------------------------------|----------|----------------|-----------|---|--|
|          | 😰 File Edit View Insert Format Tools Data Window Help                                                                            |                   |                     |                                       |          |                |           |   |  |
| D        | 📂 🖬 🔒 🔂 🎒 🗋 🖤 👗 🖻 🛍 • 💅 🗍                                                                                                        | ω·α· 🤬 Σ - 🛃      | 👬 🛍 🚯 100%          | • 🕐 🗸                                 |          | Ask a Questio  | n         |   |  |
| <b>_</b> | 🟟 🏥 🔁 🖼 🍋 🖓 🦏 😥 🖤 Reply with Changes End Review                                                                                  |                   |                     |                                       |          |                |           |   |  |
| Aria     | Arial ・ 10 ・ B / U 三三三 国 \$ % 、 *& 梁 住 住 田・ ③・A・Ber Ber **                                                                       |                   |                     |                                       |          |                |           |   |  |
| -        | G3 ▼                                                                                                                             |                   |                     |                                       |          |                |           |   |  |
|          | A                                                                                                                                | В                 | С                   | D                                     | E        | F              | G         | H |  |
| 1        | QUAL2Kw                                                                                                                          |                   |                     |                                       |          |                |           |   |  |
| 2        | Stream Water Quality Model                                                                                                       | Open Ru           | un Ri               | un                                    |          | Run            | Fitness:  |   |  |
| 3        | Boulder Creek (8/21/1987)                                                                                                        | File VE           | BA For              | tran                                  | Au       | to-cal         | 1.15098   |   |  |
| 4        | Water Column Rates                                                                                                               |                   |                     |                                       |          |                | o         |   |  |
| 5        |                                                                                                                                  |                   |                     |                                       |          |                |           | - |  |
| 6        |                                                                                                                                  |                   |                     |                                       | Aut      | to-calibration | inputs    |   |  |
| 8        | Parameter<br>Stoichiometry:                                                                                                      | value             | Units               | Symbol                                | Auto-cal | Min value      | Max value |   |  |
| 9        | Carbon                                                                                                                           | 40                | gC                  | gC                                    | No       | 30             | 50        |   |  |
| 10       | Nitrogen                                                                                                                         | 7.2               | ğN                  | gN                                    | No       | 3              | 9         |   |  |
| 11       | Phosphorus                                                                                                                       | 1                 | gP                  | gP                                    | No       | 0.4            | 2         |   |  |
| 12       | 2 Dry weight 100 gD gD No 100 100 2 2 Dry weight 100 gD gD No 100 100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                            |                   |                     |                                       |          |                |           |   |  |
| 13       | 3 Chlorophyll gA gA No 0.4 2                                                                                                     |                   |                     |                                       |          |                |           |   |  |
| 15       | Settling velocity                                                                                                                | 0.81006           | m/d                 |                                       | Yes      | 0              | 2         |   |  |
| 16       | Oxygen:                                                                                                                          | 0.01000           | in/d                | , , , , , , , , , , , , , , , , , , , |          | v              | 2         |   |  |
| 17       | Reaeration model                                                                                                                 | USGS(pool-riffle) |                     |                                       |          |                |           |   |  |
| 18       | Temp correction                                                                                                                  | 1.024             |                     | θ.                                    |          |                |           |   |  |
| 19       | Reaeration wind effect                                                                                                           | None              |                     | - 4                                   |          |                |           |   |  |
| 20       | O2 for carbon oxidation                                                                                                          | 2.69              | gO <sub>2</sub> /gC | T <sub>or</sub>                       |          |                |           |   |  |
| 21       | O2 for NH4 nitrification                                                                                                         | 4.57              | gO <sub>2</sub> /gN | ron                                   |          |                |           |   |  |
| 22       | Oxygen inhib model CBOD oxidation                                                                                                | Exponential       |                     |                                       |          |                |           |   |  |
| 23       | Oxygen inhib parameter CBOD oxidation                                                                                            | 0.60              | L/mgO2              | K socf                                | No       | 0.60           | 0.60      |   |  |
| 24       | Oxygen inhib model nitrification                                                                                                 | Exponential       |                     |                                       |          |                |           |   |  |
| 25       | Oxygen inhib parameter nitrification                                                                                             | 0.60              | L/mgO2              | Ksona                                 | No       | 0.60           | 0.60      |   |  |
| 26       | Oxygen enhance model denitrification                                                                                             | Exponential       |                     |                                       |          |                |           |   |  |
| 27       | Oxygen enhance parameter denitrification                                                                                         | 0.60              | L/mgO2              | K sodn                                | No       | 0.60           | 0.60      |   |  |
| 28       | Oxygen inhib model phyto resp                                                                                                    | Exponential       |                     |                                       |          |                |           |   |  |
| 29       | Oxygen inhib parameter phyto resp                                                                                                | 0.60              | L/mgO2              | K sop                                 | No       | 0.60           | 0.60      |   |  |
| 30       | Oxygen enhance model bot alg resp                                                                                                | Exponential       |                     |                                       |          |                |           |   |  |
| 31       | Oxygen enhance parameter bot alg resp                                                                                            | 0.60              | L/mgO2              | K sob                                 | No       | 0.60           | 0.60      | - |  |
| H 4      | 🔹 🔸 🗷 QUAL2K 🗸 Headwater 🕺 Reach 🖉 Air Temperature 🥇 Dew Point Temperature 🦼 Wind Speed 🖉 Cloud Cover 🖉 Shade 🔪 Rates 🖉 Au 💶 💽 🔽 |                   |                     |                                       |          |                |           |   |  |
| Dra      | Draw = 😓 AutoShapes = 🔨 🔪 🖸 🖸 🔛 🖉 🖉 🖉 💆 = 💆 = 🗮 🔁 🖬 🚰 👘                                                                          |                   |                     |                                       |          |                |           |   |  |
| Read     | dy                                                                                                                               |                   |                     |                                       |          | 1              | MUM       |   |  |

## Figure 11a. The part of the Rates Worksheet used to input stoichiometry and rate parameters for inorganic suspended solids and oxygen.

#### Automatic calibration:

Q2K has the capability to automatically calibrate selected rate parameters. The user has the option of either specifying the values for each rate parameter that will be used, or allowing Q2K to auto-calibrate selected rate parameters. Column E is used to select either 'Yes' or 'No' to select whether a specific rate parameter will be automatically calibrated. If 'No' is selected in column E for a specific rate parameter, then the values entered in column B will be used for the simulation. The values in column B are always used when either the 'Run VBA' or 'Run Fortran' buttons are clicked. Columns E, F, and G are only used if Q2K's automatic calibration program is run using the 'Run Auto-cal' button on the 'Rates' Worksheet. Use column E to select whether to include a specific rate constant in the auto calibration.

Before automatic calibration can be run, the user must enter a formula in cell G3 of the 'Rates' sheet that calculates the goodness of fit of the model results compared with measured data. The user may enter any formula provided that the resulting value increases as the goodness of fit improves. For example, the inverse of the root mean squared error would be an acceptable choice since the RMSE decreases as goodness of fit improves, therefore, the inverse of the RMSE increases as goodness of fit improves. For more detailed information about how the goodness of fit is used by the genetic algorithm, the user is encouraged to consult the documentation fo the PIKIAI subroutine that is used in Q2K by Charbonneau and Knapp (1995).

The scratch area of the 'Fitness' worksheet is available for the user to construct a formula for the goodness of fit based on comparison of observed and predicted results. A formula must be entered in cell G3 such that fitness value is automatically recalculated for a new model run. The calculated fitness value in cell G3 must increase as the goodness of fit increases.

To run the automatic calibration, click on the 'Run Auto-cal' button above after making the appropriate selections in columns E, F, and G and constructing the fitness formula in cell G3. Control settings for the automatic calibration are available in cells J9:J21.

The genetic algorithm used by Q2K is PIKAIA. Detailed documentation of PIKAIA is available at the following link:

http://www.hao.ucar.edu/public/research/si/pikaia/pikaia.html

The genetic algorithm carries out its maximization task on a user-selected number of model runs to define a population (np). This population size remains constant throughout the evolutionary process. Rather than evolving the population until some preset tolerance criterion is satisfied, the genetic algorithm carries the evolution forward over a user-specified number of generations (ngen).

The control settings for the genetic algorithm are also entered in the 'Rates' sheet as shown in Figure 11b. The run time for the automatic calibration is determined by the number of model runs in a population (np) and the number of generations (ngen). The genetic algorithm will run the model at least np \* (ngen + 1) times during the automatic calibration. Detailed documentation of the PIKAIA genetic algorithm is provided by Charbonneau and Knapp (1995).

| Auto-calibration genetic algorithm control: |        |          |
|---------------------------------------------|--------|----------|
| Random number seed                          | 123456 | seed     |
| Model runs in a population (<=512)          | 100    | np       |
| Generations in the evolution                | 50     | ngen     |
| Digits to encode genotype (<=6)             | 5      | nd       |
| Crossover probability (0-1):                | 0.85   | pcross   |
| Mutation mode (1, 2, 3, 4, 5, or 6)         | 2      | imut     |
| Initial mutation rate (0-1):                | 0.01   | pmut     |
| Minimum mutation rate (0-1):                | 0.001  | pmutmn   |
| Maximum mutation rate (0-1):                | 0.5    | pmutmx   |
| Relative fitness differential (0-1):        | 1      | fdif     |
| Reproduction plan (1, 2, or 3):             | 1      | irep     |
| Elitism (0 or 1):                           | 1      | ielite   |
| Restart from previous evolution (0 or 1):   | 0      | irestart |

## Figure 12b. The part of the Rates Worksheet used to input the control settings for the genetic algorithm for automatic calibration.

**Random number seed.** Any integer value may be entered for a seed value for the random number generator.

Number of model runs in a population. (default 100)

**Number of generations in the evolution.** This is the number of generations over which solution for the automatic calibration is to evolve (default is 50)

**Number of digits to encode genotype** - number of significant digits (i.e., number of genes) retained in chromosomal encoding (default is 5)

**Crossover probability.** must be  $\leq 1.0$  (default is 0.85). If crossover takes place, either one or two splicing points are used, with equal probabilities

**Mutation mode**. 1/2/3/4/5 (default is 2)

- 1=one-point mutation, fixed rate
- 2=one-point, adjustable rate based on fitness
- 3=one-point, adjustable rate based on distance
- 4=one-point+creep, fixed rate
- 5=one-point+creep, adjustable rate based on fitness
- 6=one-point+creep, adjustable rate based on distance

**Initial mutation rate**. Should be small (default is 0.005) (Note: the mutation rate is the probability that any one gene locus will mutate in any one generation.)

Minimum mutation rate. Must be  $\geq 0.0$  (default is 0.0005)

**Maximum mutation rate**. Must be <= 1.0 (default is 0.25)

**Relative fitness differential**. Range from 0 (none) to 1 (maximum). (default is 1.)

**Reproduction plan.** 1/2/3=Full generational replacement/Steady-state-replace-random/Steady-State - Replace – worst (Default Is 1)

**Elitism flag**. 0/1=off/on (default is 0) (Applies only to reproduction plans 1 and 2)

**Restart from previous evolution.** 0=random initial values, 1=use the last generation of previous run for the initial population

#### Stoichiometry:

The model assumes a fixed stoichiometry of phytoplankton and detrital matter. Recommended values for these parameters are listed in Table 1.

#### Table 1 Recommended values for stoichiometry.

| Carbon      | 40 gC  |
|-------------|--------|
| Nitrogen    | 7.2 gN |
| Phosphorus  | 1 gP   |
| Dry weight  | 100 gD |
| Chlorophyll | 1 gA   |

It should be noted that chlorophyll is the most variable of these values with a range from about 0.5 to 2 gA.

#### **Inorganic suspended solids:**

#### Settling velocity

#### Oxygen:

**Reaeration model.** Recall that the Reach Worksheet (Figure 9) can be used to specify the reaeration rate for each reach. Note that when the reaeration is entered this way, all other options are overridden. If reaeration is not specified on the Reach Worksheet, a pull-down menu (Figure 12) is used to select among several options to determine river reaeration. The selected option will then be applied to all the cells that were left blank or zero on the Reach Worksheet. Note that the **Internal** option is the default and causes the reaeration to be computed internally depending on the river's depth and velocity.

| 17 | Reaeration model                  | USGS(pool-riffle)                          |
|----|-----------------------------------|--------------------------------------------|
| 18 | Temp correction                   | Internal                                   |
| 19 | Reaeration wind effect            | Churchill                                  |
| 20 | O2 for carbon oxidation           | Owens-Gibbs                                |
| 21 | O2 for NH4 nitrification          | Thackston-Dawson                           |
| 22 | Oxygen inhib model CBOD oxidation | USGS(pool-riffle)<br>USGS(chappel-control) |

#### Figure 13. The pull-down menu for global reaeration rates.

Temperature correction (reaeration). Suggested value: 1.024.

**Reaeration wind effect.** As in Figure 13, three options can be used in the event that you want to include the effect of wind on the reaeration rate. The default is to not include the wind effect (None).

| 19 | Reaeration wind effect   | None 🖛     |  |
|----|--------------------------|------------|--|
| 20 | O2 for carbon oxidation  | None       |  |
| 21 | O2 for NH4 nitrification | Wanninkhof |  |

#### Figure 14. The pull-down menu to specify wind-induced reaeration.

 $O_2$  for CBOD oxidation. Suggested value: 2.69 gO<sub>2</sub>/gC.  $O_2$  for NH<sub>4</sub> nitrification. Suggested value: 4.57 gO<sub>2</sub>/gC.

Several model rates are inhibited or enhanced (denitrification) at low oxygen concentration. The default for all these cases is the Exponential formula with a value of  $0.6 \text{ L/mgO}_2$  for the inhibition parameter..

**Oxygen inhibition C oxidation model.** A pull-down menus is used to choose among the following options:

- Half-saturation
- Exponential
- Second order

**Oxygen inhibition C parameter.** This should be the proper parameter for the chosen oxygen inhibition model specified in cell B22.

**Oxygen inhibition nitrification model.** A pull-down menus is used to choose among the following options:

- Half-saturation
- Exponential
- Second order

**Oxygen inhibition nitrification parameter.** This should be the proper parameter for the chosen oxygen inhibition model specified in cell B24.

**Oxygen enhancement denitrification model.** A pull-down menus is used to choose among the following options:

- Half-saturation
- Exponential
- Second order

**Oxygen enhancement denitrification parameter.** This should be the proper parameter for the oxygen enhancement model specified in cell specified in cell B26.

**Oxygen inhibition phytoplankton respiration.** A pull-down menus is used to choose among the following options:

- Half-saturation
- Exponential
- Second order

**Oxygen inhibition phytoplankton respiration parameter.** This should be the proper parameter for the chosen oxygen inhibition model specified in cell B28.

**Oxygen inhibition bottom algae respiration.** A pull-down menus is used to choose among the following options:

- Half-saturation
- Exponential
- Second order

**Oxygen inhibition bottom algae respiration parameter.** This should be the proper parameter for the chosen oxygen inhibition model specified in cell B30.

Figure 14 shows the part of the Rates Worksheet used to input rate parameters for slow CBOD, fast CBOD, organic N, ammonium, nitrate, organic P and inorganic P.

| 🛛 Microsoft Excel - qual2kw5.xls                                                                   |                                                  |                             |                     |                             |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|---------------------|-----------------------------|--|
|                                                                                                    | <u>File Edit View Insert Format Tools Data V</u> | <u>M</u> indow <u>H</u> elp | Type a question f   | for help 🛛 🚽 🗗 🗙            |  |
| D                                                                                                  | 🛩 🖬 🔒 🔁 🎒 🖓 😻 🐇 🖻 🛍 • 🚿 🗍                        | တင်းက 🗐 🍓 Σ 🗕 🛃             | 🚮 🛍 🚯 100%          | - 🛛 -                       |  |
|                                                                                                    | A                                                | В                           | С                   | D 🔒                         |  |
| 32                                                                                                 | Slow CBOD:                                       |                             |                     |                             |  |
| 33                                                                                                 | Hydrolysis rate                                  | 2                           | /d                  | k <sub>hc</sub>             |  |
| 34                                                                                                 | Temp correction                                  | 1.047                       |                     | $\boldsymbol{\theta}_{hc}$  |  |
| 35                                                                                                 | Oxidation rate                                   | 0                           | /d                  | k des                       |  |
| 36                                                                                                 | Temp correction                                  | 1.047                       |                     | $\boldsymbol{\theta}_{dcs}$ |  |
| 37                                                                                                 | Fast CBOD:                                       |                             |                     |                             |  |
| 38                                                                                                 | Oxidation rate                                   | 4                           | /d                  | k <sub>dc</sub>             |  |
| 39                                                                                                 | Temp correction                                  | 1.047                       |                     | $\boldsymbol{\theta}_{dc}$  |  |
| 40                                                                                                 | Organic N:                                       |                             |                     |                             |  |
| 41                                                                                                 | Hydrolysis                                       | 0.05                        | /d                  | k <sub>hn</sub>             |  |
| 42                                                                                                 | Temp correction                                  | 1.07                        |                     | $\boldsymbol{\theta}_{hn}$  |  |
| 43                                                                                                 | Settling velocity                                | 0.25                        | m/d                 | V on                        |  |
| 44                                                                                                 | Ammonium:                                        |                             |                     |                             |  |
| 45                                                                                                 | Nitrification                                    | 2                           | /d                  | k na                        |  |
| 46                                                                                                 | Temp correction                                  | 1.07                        |                     | $\theta_{na}$               |  |
| 47                                                                                                 | Nitrate:                                         |                             |                     |                             |  |
| 48                                                                                                 | Denitrification                                  | 1                           | /d                  | k dn                        |  |
| 49                                                                                                 | Temp correction                                  | 1.07                        |                     | $\boldsymbol{\theta}_{dn}$  |  |
| 50                                                                                                 | Sed denitrification transfer coeff               | 0                           | m/d                 | v <sub>dī</sub>             |  |
| 51                                                                                                 | Temp correction                                  | 1.07                        |                     | $\boldsymbol{\theta}_{di}$  |  |
| 52                                                                                                 | Organic P:                                       |                             |                     |                             |  |
| 53                                                                                                 | Hydrolysis                                       | 2                           | /d                  | k hp                        |  |
| 54                                                                                                 | Temp correction                                  | 1.07                        |                     | $\boldsymbol{\theta}_{hp}$  |  |
| 55                                                                                                 | Settling velocity                                | 0.25                        | m/d                 | V op                        |  |
| 56                                                                                                 | Inorganic P:                                     |                             |                     |                             |  |
| 57                                                                                                 | Settling velocity                                | 0                           | m/d                 | v <sub>ip</sub>             |  |
| 58                                                                                                 | Sed P oxygen attenuation half sat constant       | 0.05                        | mgO <sub>2</sub> /L | k spi ↓                     |  |
| 🛚 🖛 🕨 🖌 Wind Speed / Cloud Cover / Shade Rates / Light and Heat / Point Sources / Diffuse Sour 🔍 🕨 |                                                  |                             |                     |                             |  |
| Ready NUM /                                                                                        |                                                  |                             |                     |                             |  |

Figure 15. The part of the Rates Worksheet used to input rate parameters for slow CBOD, fast CBOD, organic N, ammonium, nitrate, organic P and inorganic P.

Slow CBOD:

Hydrolysis rate Temperature correction

Fast CBOD:

Oxidation rate Temperature correction

**Organic N:** 

Hydrolysis

Temperature correction Settling velocity

**Ammonium:** 

Nitrification Temperature correction

Nitrate:

#### **Denitrification Temperature correction Sediment denitrification transfer coefficient.** This parameter can be used to simulate the diffusion of nitrate into the sediments where it is denitrified to nitrogen gas. **Temperature correction**

**Organic P:** 

Hydrolysis Temperature correction Settling velocity

**Inorganic P:** 

**Settling velocity.** This parameter is used to simulate enhanced loss to the sediments for cases where inorganic phosphorus sorbs to settling particulate matter.

Sed P oxygen attenuation half sat constant. This parameter is used to attenuate sediment feedback of phosphorus as a function of dissolved oxygen levels in the water. In the event that phosphorus is only released from the sediments at low oxygen levels, this parameter should be set to a value of  $0.05 \text{ mgO}_2/\text{L}$ .

Figure 15 shows the part of the Rates Worksheet used to input rate parameters for phytoplankton.

| Microsoft Excel - qual2kw5.xls                                                                         |                                                                                                   |                                                   |            |                            |     |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------|------------|----------------------------|-----|--|
| 8                                                                                                      | <u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>V</u> | a <u>Window</u> Help Type a question for help 🗸 🖉 |            |                            | .8× |  |
|                                                                                                        | 🖙 🖬 🔒 🔁 🎒 🕼 🖤 🗼 🖻 🛍 • 🚿                                                                           | ю - си - 🝓 Σ - Ž↓                                 | 👬 🚺 🚯 100% | • 🝳 🗸                      |     |  |
|                                                                                                        | A                                                                                                 | В                                                 | С          | D                          |     |  |
| 59                                                                                                     | Phytoplankton:                                                                                    |                                                   |            |                            |     |  |
| 60                                                                                                     | Max Growth rate                                                                                   | 2.5                                               | /d         | $k_{gp}$                   |     |  |
| 61                                                                                                     | Temp correction                                                                                   | 1.07                                              |            | $\boldsymbol{\theta}_{gp}$ |     |  |
| 62                                                                                                     | Respiration rate                                                                                  | 0.1                                               | /d         | $k_{rp}$                   |     |  |
| 63                                                                                                     | Temp correction                                                                                   | 1.07                                              |            | $\boldsymbol{\theta}_{rp}$ |     |  |
| 64                                                                                                     | Death rate                                                                                        | 0                                                 | /d         | k <sub>dp</sub>            |     |  |
| 65                                                                                                     | Temp correction                                                                                   | 1                                                 |            | $\boldsymbol{\theta}_{dp}$ |     |  |
| 66                                                                                                     | Nitrogen half sat constant                                                                        | 15                                                | ugN/L      | k sPp                      |     |  |
| 67                                                                                                     | Phosphorus half sat constant                                                                      | 2                                                 | ugP/L      | k <sub>sNp</sub>           |     |  |
| 68                                                                                                     | Inorganic carbon half sat constant                                                                | 1.30E-05                                          | moles/L    | k sCp                      |     |  |
| 69                                                                                                     | Phytoplankton use HCO3- as substrate                                                              | Yes                                               |            |                            |     |  |
| 70                                                                                                     | Light model                                                                                       | Half saturation                                   |            |                            |     |  |
| 71                                                                                                     | Light constant                                                                                    | 57.6                                              | langleys/d | K <sub>Lp</sub>            |     |  |
| 72                                                                                                     | Ammonia preference                                                                                | 25                                                | ugN/L      | $k_{hnxp}$                 |     |  |
| 73                                                                                                     | Settling velocity                                                                                 | 0.15                                              | m/d        | va                         | -   |  |
| H + + H / Wind Speed / Cloud Cover / Shade Rates / Light and Heat / Point Sources / Diffuse Sour +   + |                                                                                                   |                                                   |            |                            |     |  |
| Ready NUM /                                                                                            |                                                                                                   |                                                   |            |                            |     |  |

Figure 16. The part of the Rates Worksheet used to input rate parameters for phytoplankton.

Floating Plants (Phytoplankton):

Maximum Growth Rate Temperature correction Respiration Temperature correction Death Temperature correction Nitrogen half saturation constant Phosphorus half saturation constant Inorganic carbon half saturation constant

**Inorganic carbon half saturation constant.** A brief summary of the literature suggests these guidelines for half saturation for  $CO_2/HCO3^-$ :

- Hein (1997) suggests a mid range value of CO<sub>2</sub> half-saturation for phytoplankton of about 13e-6 moles/L with a possible range of 0.1e-6 to 170e-6 moles/L for 25 freshwater species of phytoplankton (this range includes a mix of species that are restricted to CO<sub>2</sub> and species than can use HCO3<sup>-</sup>).
- Maberly and Spence (1983) summarize a range in the literature of 80e-6 to 706e-6 moles/L for the CO<sub>2</sub> half-saturation for macrophytes(this range includes a mix of species that are restricted to CO<sub>2</sub> and species than can use HCO3<sup>-</sup>).
- Maberly and Madsen (1998) report a range of 22e-6 to 170e-6 moles per liter for the half-saturation for species that are restricted to CO<sub>2</sub>, and 175e-6 to 550e-6 moles per liter for species that can use CO<sub>2</sub> and HCO3<sup>-</sup>. This paper suggests that species that can use HCO3<sup>-</sup> have significantly higher half-saturation constants compared with species that are restricted to CO<sub>2</sub>. The authors suggest that "... macrophytes that are restricted to CO<sub>2</sub>
have a higher affinity for uptake of  $CO_2$  than species that have an additional ability to use HCO3<sup>-</sup>", although the mechanism for the difference is not clear.

If HCO3<sup>-</sup> use is indicated in cell B69, then the half-saturation constant is applied to the sum of HCO3 and  $CO_2$  instead of only  $CO_2$ .

**Phytoplankton use HCO3** as substrate. Two options are available from the pull down list:

- 'Yes' if phytoplankton can use both HCO3- and CO2 as a substrate.
- 'No' if phytoplankon are restricted to CO2 as a substrate.

**Light model.** A pull-down menu is used to select among three light models: Half saturation, Smith and Steele. The Half saturation model is the default.

#### Light constant Ammonia preference Settling velocity

Figure 16 shows the part of the Rates Worksheet used to input rate parameters for bottom algae.

| Microsoft E   | xcel - qual2kw5.xls                                                             |                             |                      |                            |     |
|---------------|---------------------------------------------------------------------------------|-----------------------------|----------------------|----------------------------|-----|
| 📳 File Edit   | <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>Y</u> | <u>W</u> indow <u>H</u> elp | Type a question f    | for help 🚽 🗖               | ð × |
| i D 🛩 🖬 🗿     | ) 🔁 🎒 🖪 🔍 🖤 🕺 🖻 🛍 • 💅 🛛                                                         | ω - α - 🤮 Σ - Žļ            | 👬 🛍 🥀 100%           | • 😰 🗸                      |     |
|               | А                                                                               | В                           | С                    | D                          | Ē   |
| 74 Bottom A   | lgae:                                                                           |                             |                      |                            |     |
| 75 Growth m   | odel                                                                            | Zero-order                  |                      |                            |     |
| 76 Max Grow   | vth rate                                                                        | 300                         | mgA/m²/d or /d       | Cgb                        |     |
| 77 Temp cor   | rection                                                                         | 1.07                        |                      | $\theta_{gb}$              |     |
| 78 First-orde | r model carrying capacity                                                       | 1000                        | mgA/m <sup>2</sup>   | a b, max                   |     |
| 79 Respiratio | on rate                                                                         | 0.2                         | /d                   | k <sub>rb</sub>            |     |
| 80 Temp cor   | rection                                                                         | 1.07                        |                      | $\boldsymbol{\theta}_{rb}$ |     |
| 81 Excretion  | rate                                                                            | 0.2                         | /d                   | k eb                       |     |
| 82 Temp cor   | rection                                                                         | 1.07                        |                      | $\boldsymbol{\theta}_{db}$ |     |
| 83 Death rate | e                                                                               | 0.05                        | /d                   | k db                       |     |
| 84 Temp cor   | rection                                                                         | 1.07                        |                      | $\boldsymbol{\theta}_{db}$ |     |
| 85 External r | nitrogen half sat constant                                                      | 300                         | ugN/L                | k sPb                      |     |
| 86 External p | phosphorus half sat constant                                                    | 100                         | ugP/L                | k <sub>sNb</sub>           |     |
| 87 Inorganic  | carbon half sat constant                                                        | 1.30E-05                    | moles/L              | k <sub>sCb</sub>           |     |
| 88 Bottom al  | gae use HCO3- as substrate                                                      | Yes                         |                      |                            |     |
| 89 Light mod  | jel 🛛                                                                           | Half saturation             |                      |                            |     |
| 90 Light con  | stant                                                                           | 50                          | langleys/d           | K <sub>Lb</sub>            |     |
| 91 Ammonia    | preference                                                                      | 25                          | ugN/L                | k hnxb                     |     |
| 92 Subsisten  | ce quota for nitrogen                                                           | 0.72                        | mgN/mgA              | $q_{0N}$                   |     |
| 93 Subsisten  | ce quota for phosphorus                                                         | 0.1                         | mgP/mgA              | $q_{0P}$                   |     |
| 94 Maximum    | n uptake rate for nitrogen                                                      | 72                          | mgN/mgA/d            | $\rho_{mN}$                |     |
| 95 Maximum    | n uptake rate for phosphorus                                                    | 10                          | mgP/mgA/d            | ρ <sub>m</sub> p           |     |
| 96 Internal n | itrogen half sat constant                                                       | 0.9                         | mgN/mgA              | K <sub>qN</sub>            |     |
| 97 Internal p | hosphorus half sat constant                                                     | 0.13                        | mgP/mgA              | K <sub>qP</sub>            | -   |
| н ч н н 🗸 🗤   | ind Speed / Cloud Cover / Shade $\setminus Rai$                                 | tes / Light and Heat / Poi  | int Sources 🖌 Diffus | e Sour I ∢   [ ●           |     |
| Ready         |                                                                                 |                             | N                    | UM                         |     |

#### Figure 17. The part of the Rates Worksheet used to input rate parameters for bottom algae.

#### **Bottom algae:**

**Growth model.** The bottom algae can be simulated with either a zero-order or a first-order model. The default is zero order.

**Maximum growth rate.** Depending on the order model chosen, this is the maximum growth rate at 20 °C in units of  $gD/m^2/d$  (zero order) or  $d^{-1}$  (first order).

**Temperature correction.** Coefficient for temperature adjustment of the maximum growth rate. **First-order model carrying capacity.** In the event that a first-order model is chosen, a carrying capacity is required in order to bound growth.

**Basal respiration rate.** Laws and Challup suggest a default basal respiration rate of 0.042 d^-1 per Chapra (1997) equation 33.40.

**Photo-respiration rate parameter.** Laws and Challup suggest a default of 0.389 per Chapra (1997) equation 33.40 to correspond to growth-related respiration of about 39% of the growth rate. To use a single basal respiration rate without consideration of photo-respiration enter a value of 0.

**Temperature correction.** Coefficient for temperature adjustment of the basal respiration rate. **Death rate** 

**Temperature correction.** Coefficient for temperature adjustment of the death rate.

#### External nitrogen half saturation constant

#### External phosphorus half saturation constant

**Inorganic carbon half saturation constant.** A brief summary of the literature suggests these guidelines for half saturation for  $CO_2/HCO3^-$ :

- Hein (1997) suggests a mid range value of CO<sub>2</sub> half-saturation for phytoplankton of about 13e-6 moles/L with a possible range of 0.1e-6 to 170e-6 moles/L for 25 freshwater species of phytoplankton (this range includes a mix of species that are restricted to CO<sub>2</sub> and species than can use HCO3<sup>-</sup>).
- Maberly and Spence (1983) summarize a range in the literature of 80e-6 to 706e-6 moles/L for the CO<sub>2</sub> half-saturation for macrophytes(this range includes a mix of species that are restricted to CO<sub>2</sub> and species than can use HCO3<sup>-</sup>).
- Maberly and Madsen (1998) report a range of 22e-6 to 170e-6 moles per liter for the half-saturation for species that are restricted to CO<sub>2</sub>, and 175e-6 to 550e-6 moles per liter for species that can use CO<sub>2</sub> and HCO3<sup>-</sup>. This paper suggests that species that can use HCO3<sup>-</sup> have significantly higher half-saturation constants compared with species that are restricted to CO<sub>2</sub>. The authors suggest that "... macrophytes that are restricted to CO<sub>2</sub> have a higher affinity for uptake of CO<sub>2</sub> than species that have an additional ability to use HCO3<sup>-</sup>", although the mechanism for the difference is not clear.

If HCO3<sup>-</sup> use is indicated in cell B69, then the half-saturation constant is applied to the sum of HCO3 and CO<sub>2</sub> instead of only CO<sub>2</sub>.

Bottom algae use HCO3<sup>-</sup> as substrate. Two options are available from the pull down list:

- 'Yes' if bottom algae can use both HCO3- and CO2 as a substrate.
- 'No' if bottom algae are restricted to CO2 as a substrate.

**Light model.** A pull-down menu is used to select among three light models: Half saturation, Smith and Steele. The Half saturation model is the default.

Light Constant

Ammonia preference

Subsistence quota for nitrogen

Subsistence quota for phosphorus Maximum uptake rate for nitrogen

Maximum uptake rate for introgen Maximum uptake rate for phosphorus

Internal nitrogen half sat constant

QUAL2K

#### Internal phosphorus half sat constant

Figure 17 shows the part of the Rates Worksheet used to input rate parameters for bottom algae.

| Microsoft Excel - qual2kw5.xls                          |                             |                                |                                                | X |
|---------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------|---|
| Eile Edit View Insert Format Tools Data                 | <u>W</u> indow <u>H</u> elp | Type a question for he         | lp - 8                                         | x |
| 🔯 🏡 🚵 🜌 🖻 🐲 🖉 🗹 🥵 🕼                                     | anges End Review            |                                |                                                |   |
| A                                                       | В                           | С                              | D                                              |   |
| 98 Detritus (POM):                                      |                             |                                |                                                | - |
| 99 Dissolution rate                                     | 5                           | /d                             | k <sub>dt</sub>                                |   |
| 100 Temp correction                                     | 1.07                        |                                | $\boldsymbol{\theta}_{dt}$                     |   |
| 101 Settling velocity                                   | 1                           | m/d                            | v <sub>dt</sub>                                |   |
| 102 Pathogens:                                          |                             |                                |                                                |   |
| 103 Decay rate                                          | 0.8                         | /d                             | $k_{dx}$                                       |   |
| 104 Temp correction                                     | 1.07                        |                                | $\boldsymbol{\theta}_{dx}$                     |   |
| 105 Settling velocity                                   | 1                           | m/d                            | v <sub>x</sub>                                 |   |
| 106 alpha constant for light mortality                  | 1                           | /d per ly/hr                   |                                                |   |
| 107 <i>рН:</i>                                          |                             |                                |                                                |   |
| 108 Partial pressure of carbon dioxide                  | 347                         | ppm                            | P co2                                          |   |
| 109 Hyporheic metabolism                                |                             |                                |                                                |   |
| 110 Model for biofilm oxidation of fast CBOD            | Zero-order                  |                                | level 1                                        |   |
| 111 Max biofilm growth rate                             | 5                           | gO2/m^2/d or /d                | "                                              |   |
| 112 Temp correction                                     | 1.047                       |                                | "                                              |   |
| 113 Fast CBOD half-saturation                           | 0.5                         | mgO2/L                         | "                                              |   |
| 114 Oxygen inhib model                                  | Exponential                 |                                | "                                              |   |
| 115 Oxygen inhib parameter                              | 0.60                        | L/mgO2                         | "                                              |   |
| 116 Respiration rate                                    | 0.2                         | /d                             | level 2                                        |   |
| 117 Temp correction                                     | 1.07                        |                                | "                                              |   |
| 118 Death rate                                          | 0.05                        | /d                             | "                                              |   |
| 119 Temp correction                                     | 1.07                        |                                | "                                              |   |
| 120 External nitrogen half sat constant                 | 15                          | ugN/L                          |                                                |   |
| 121 External phosphorus half sat constant               | 2                           | ugP/L                          |                                                |   |
| 122 Ammonia preference                                  | 25                          | ugN/L                          |                                                |   |
| 123 First-order model carrying capacity                 | 100                         | gD/m²                          |                                                |   |
| 124 Generic constituent                                 | 0.0                         | /d                             |                                                |   |
| 125 Decay rate                                          | 0.0                         | /u                             |                                                |   |
| 120 Settling velocity                                   | 1.07                        | m/d                            |                                                |   |
| 128 Use generic constituent as COD?                     | No                          | ni/u                           |                                                |   |
| I → ► N OUAL2K / Headwater / Reach / Air Temr           | perature / Dew Point Tem    | perature / Wind Sn             | ee 🔳 🕨                                         |   |
|                                                         | 🔊 🔜 💩 - 🖉 - A - 1           |                                |                                                |   |
| I I I V QUAL2K / Headwater / Reach / Air Temp<br>Draw ▼ | Derature / Dew Point Temp   | erature 🔏 Wind Sp<br>= 📰 🛱 🛄 🍘 | <u>, ee                                   </u> | 1 |

Figure 18. The part of the Rates Worksheet used to input rate parameters for detritus, pathogens, pH, hyporheic metabolism, and the generic constituent.

**Detritus (POM):** 

Dissolution

Temperature correction Settling Velocity

Pathogens:

Decay Temperature correction Settling Velocity Alpha constant for light mortality

pH:

**pCO2.** The partial pressure of  $CO_2$  in the atmosphere.

#### Hyporheic metabolism:

**Model for biofilm oxidation of fast CBOD.** The biofilm oxidation of fast CBOD can be simulated with either a zero-order  $(gO_2/m^2/d)$  or a first-order  $(day^{-1})$  model. The default is zero order.

**Max biofilm growth rate.** Depending on the order model chosen, this is the maximum oxidation or growth rate at 20 °C in units of  $gO_2/m^2/d$  (zero order) or  $d^{-1}$  (first order).

Temp correction.

Fast CBOD half-saturation.

Oxygen inhib model.

Oxygen inhib parameter.

**Respiration rate.** This and the following parameters are only used if level 2 was selected in cell B21 of the QUAL2K sheet, and they are similar to the parameters for bottom algae above. **Temp correction.** 

Death rate.

Temp correction.

External nitrogen half sat constant.

External phosphorus half sat constant.

Ammonia preference.

**First-order model carrying capacity.** In the event that a first-order model is chosen, a carrying capacity is required in order to bound growth. This is the maximum possible biofilm biomass in  $gD/m^2$ .

#### Generic constituent:

Decay

Temperature correction

Settling Velocity

**Use generic constituent as COD?** The user has the option of using the generic constituent in one of two ways:

• Select 'Yes' to use the generic constituent variable as a non-carbonaceous nonnitrogenous form of chemical oxygen demand (COD) in units of mgO2/L.If 'Yes' is selected then the amount of COD that decays is subtracted from the dissolved oxygen state variable in the mass balance derivatives. The user should enter the COD concentrations in units of mgO<sub>2</sub>/L for headwater, downstream boundary (if used), point sources, and diffuse sources. • Select 'No' to assume that the generic constituent does not interact with any other state variables. The user should may enter the concentrations of the generic constituent in any consistent concentration units for headwater, downstream boundary (if used), point sources, and diffuse sources (use same concentration units for all).

#### 1.2.8 Light and Heat Worksheet

| Microsoft Ev           | al ausl2lau5                  | 1b44 const           | ab yla                |              |             |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|------------------------|-------------------------------|----------------------|-----------------------|--------------|-------------|---------|----------|--------------|---------------|---------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| MICTOSOTT EXC          | ei - quaizkwu                 | 1044_scrat           |                       |              |             |         | -        |              |               |               | <b>T</b>      | 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| : He Edit              | <u>v</u> iew <u>I</u> nsert F | Format <u>l</u> ools | <u>D</u> ata <u>V</u> | Mindow       | Contribute  | Sheets  | Plots    | Help         | Adobe PDF     |               | Type a        | question | n tor neip 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 6' 2     |
| i 🗋 💕 🛃 🔒              | 🖪 🛕   🖤                       | 🖏   🔏 🗈              | 🄁 - 🍼                 | <b>*</b> ) • | (레 - 1 😸 :  | Σ÷⊉↓    | X        |              | 100% 👻 🤅      | 0 🚽           | 10 - <b>B</b> | I        | 🔟 🕶 🌺 🕶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>A</u> - |
| Ct Open In Contri      | oute , Publish *              | To Website 🛛 🗖       | Post To Blo           | g _          |             |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| B16                    | r f∡ Br                       | ras                  |                       | -            |             |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|                        |                               | A                    |                       |              |             |         |          | E            | 3             |               | С             |          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l.         |
| 1 QUAL2                | (w                            |                      |                       |              |             |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 2 64                   | Watar Or                      | -                    | d = 1                 |              |             |         |          |              | Onor          |               | Dum           |          | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 2 Stream               | water Qu                      | anty mo              | aer                   |              |             |         |          |              | Elle          |               | KUN           |          | Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 3 Boulder              | Creek (8                      | /21/1987             | )                     |              |             |         |          |              | File          |               | VDA           |          | Fortran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| 4 Light Pa             | arameters                     | s and Su             | rface l               | Heat         | Transf      | er Mo   | dels:    |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 5                      |                               |                      |                       |              |             |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 6                      |                               |                      |                       |              |             |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 7 Parameter            |                               |                      |                       |              |             |         | Valu     | e            |               | Unit          |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 8 Photosynth           | etically Availa               | able Radiati         | on                    |              |             |         |          |              | 0.47          |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 9 Backgroun            | l light extinct               | ion                  |                       |              |             |         |          |              | 0.2           | /m            |               |          | k <sub>eb</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 10 Linear chlo         | rophyll light e               | extinction           |                       |              |             |         |          |              | 0.0088        | 1/m-(u        | ıgA/L)        |          | $\alpha_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| 11 Nonlinear of        | hlorophyll lig                | ht extinctio         | 1                     |              |             |         |          |              | 0.054         | 1/m-(u        | 1gA/L) 2/3    |          | $\alpha_{pn}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 12 ISS light ex        | tinction                      |                      |                       |              |             |         |          |              | 0.052         | 1/m-(r        | ngD/L)        |          | α,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 13 Detritus lig        | t extinction                  |                      |                       |              |             |         |          |              | 0.174         | 1/m-(r        | ngD/L)        |          | α。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 14 Macrophyte          | light extincti                | on                   |                       |              |             |         |          |              | 0.015         | 1/m-(g        | gD/m³)        |          | $\alpha_{mac}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 15 Solar short         | vave radiation                | 1                    |                       |              |             |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 16 Atmospheri          | c attenuation                 | model for s          | olar                  |              |             |         |          |              | Bras          | -             |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 17 Bras solar p        | arameter (use                 | d if Bras sol        | ar model i            | is sele      | cted)       |         |          |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 18 atmospheri          | c turbidity coe               | efficient (2=0       | lear, 5=s             | moggy        | , default=2 | 2)      |          |              | 3             |               |               |          | n <sub>fac</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L          |
| 19 Ryan-Stolze         | nbach solar p                 | arameter (u          | ed if Rya             | n-Stol:      | zenbach so  | lar mod | el is se | lected       | 0             |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 20 atmospheri          | c transmissior                | n coefficient        | (0.70-0.91            | 1, defa      | ult 0.8)    |         |          |              | 0.8           |               |               |          | a <sub>to</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 21 Downwellin          | g atmospheric                 | c longwave l         | R radiatio            | n            |             |         | _        |              |               |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 22 atmospheri          | c longwave e                  | missivity mo         | del                   |              |             |         |          |              | Brunt         |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 23 Brutsaert lo        | ngwave emiss                  | ivity parame         | ter (used             | if Brut      | saert longv | vave mo | del is s | electe       | ed)           |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 24 parameter           | or emissivity                 | using the B          | utsaert e             | quatio       | n           |         |          | _            | 1.24          |               |               |          | k brut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 25 Evaporation         | and air conv                  | ection/cond          | uction                |              |             |         | D        | L C          | 6             |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 26 wind speed          | function for e                | evaporation          | and air c             | onvec        | uon/condu   | ction   | Brad     | iy-Gra       | ives-Geyer    |               |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _          |
| 21<br>14 4 5 51 ( 1450 | Speed / Clau                  | id Cover / Sk        | ada / Sala            | v Lie        | ht and Hea  | t Doint | Course   | ve / P       | Viffuen Courr | oc / P        | tor / Fite    | 000 /    | Auto colibro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|                        |                               |                      |                       |              |             |         |          | s <u>∧</u> □ |               | es <u>/</u> K | ates & Fith   | iess X   | Auto-Calibra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Draw • 13   Auto       | snapes • 🔪 🤅                  |                      | ા જાયુ રહેવું વ       | 8 🖄          | Sa • 🚄      | · A · · |          | ₽ -          | Ţ             |               |               |          | and the second se |            |
| Ready                  |                               |                      |                       |              |             |         |          |              |               |               |               |          | NUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |

This worksheet is used to enter information related to the system's light and heat parameters.

Figure 19. The Light Worksheet used to input light-related parameters.

**Photosynthetically Available Radiation.** This is the fraction of incoming solar radiation that is available for photosynthesis. It is recommended that this value be set to 0.47.

**Background light extinction.** This parameter accounts for light extinction due to water and color.

**Linear chlorophyll light extinction.** This parameter accounts for the linear dependence of light extinction due to phytoplankton chlorophyll *a*. According to Riley (1956), this parameter should be set to  $0.0088/(m \mu gA/L)$ .

**Nonlinear chlorophyll light extinction.** This parameter accounts for the nonlinear dependence of light extinction due to phytoplankton chlorophyll *a*. According to Riley (1956), this parameter should be set to  $0.054/(m (\mu gA/L)^{2/3})$ . Note that if the relationship is believed to be linear, this parameter can be set to zero and the linear coefficient modified accordingly.

**Inorganic suspended solids light extinction.** This parameter accounts for the nonlinear dependence of light extinction on inorganic suspended solids.

**Detritus light extinction.** This parameter accounts for the nonlinear dependence of light extinction on detritus.

Atmospheric attenuation model for solar (default: Bras). A pull down menu allows you to choose among 2 options: the Bras or the Ryan-Stolzenbach models. To use observed data from the 'Solar' Worksheet select 'Observed'.

Atmospheric turbidity coefficient (2=clear, 5=smoggy, default=2). This is used if the Bras solar model is selected

Atmospheric transmission coefficient (0.70-0.91, default 0.8). This is used if the Ryan-Stolzenbach solar model is selected.

Atmospheric longwave emissivity model (recommended default: Brutsaert). A pull down menu allows you to choose among 6 options: the Brutsaert, Brunt Idso-Jackson, Koberg, Satterlund, or Swinbank models.

**Parameter for emissivity using the Brutsaert equation.** Brutsaert (1982) recommended a default value of 1.24 based on typical values for various physical constants. Several articles have since been published with various recommended values considering the uncertainty and calibration to observations of downwelling longwave radiation. Crawford and Duchon (1999) suggested a range for kbrut from 1.28 in January to 1.16 in July with sinusoidal seasonal variaton. Sridhar and Elliot (2002) recommended an average value of 1.31 based on calibration to observed longwave radiation data in Oklahoma, with values ranging from 1.30 to 1.32 between four sites. Culf and Gash (1993) also recommended a value of 1.31 instead of 1.24 during dry seasons in Niger, and a reduced value during wet seasons. A default value of 1.24 is suggested. **Wind speed function for evaporation and air convection/conduction (default: Brady-Graves-Geyer).** A pull down menu allows you to choose among 3 options: the Brady-Graves-

## 1.2.9 Point Sources Worksheet

Geyer, the Adams 1, or the Adams 2 models.

| × 1  | Aicrosoft Excel - qual2kw5.xls                |                  |                                  |               |               |                   |                 |               |                     |            |
|------|-----------------------------------------------|------------------|----------------------------------|---------------|---------------|-------------------|-----------------|---------------|---------------------|------------|
|      | Elle Edit View Insert Format Tools Data Wind  | low <u>H</u> elp |                                  |               |               |                   |                 | 1             | Type a question for | nelp 🗸 🗗 🗙 |
| D    | 🖻 🖶 🔒 🔩 🎒 🕼 🖤 🗼 🖻 🋍 • 🝼 🗠                     | × Ci + 🤮 Σ       | - <u>2</u>   <u>2</u>   <u>1</u> | <i>4</i> 100% | • 🛛 🗸         |                   |                 |               |                     |            |
|      | A                                             | В                | С                                | D             | E             | F                 | G               | Н             | I                   | J          |
| 1    | QUAL2Kw                                       |                  |                                  |               |               |                   |                 |               |                     |            |
| 2    | Stream Water Quality Model                    |                  | On                               | en            | Run           | Bun               |                 |               |                     |            |
| -    | Boulder Creek (8/21/1987)                     |                  | Fi                               | le            | VBA           | Fortran           |                 |               |                     |            |
|      | Bounder Creek (0/21/1507)                     |                  |                                  |               |               |                   |                 |               |                     |            |
| 4    | Point Source Data:                            |                  |                                  |               |               |                   |                 |               |                     |            |
| 5    |                                               |                  |                                  |               |               |                   |                 |               |                     |            |
| 6    |                                               |                  | Point                            | Point         |               | Tomporatura       |                 | Soo           | cific Conductor     | c0         |
| 8    |                                               |                  | Abstraction                      | Inflow        | mean          | range/2           | time of         | mean          | range/2             | time of    |
| 9    | Name                                          | Location (km)    | m3/s                             | m3/s          | °C            | °C                | max             | umhos         | umhos               | max        |
| 10   | Boulder WWTP                                  | 13.60            | 0.0000                           | 0.7500        | 20.06         | 0.72              | 5:13 PM         | 638.44        | 24.95               | 11:05 AM   |
| 11   |                                               | 10.20            | 0.0000                           | 0.5900        | 15.00         | 0.00              | 3:00 PM         | 500.00        | 0.00                | 3:00 PM    |
| 12   |                                               | 6.60             | 1.9000                           | 0.0000        | 0.00          | 0.00              | 12:00 AM        | 0.00          | 0.00                | 12:00 AM   |
| 13   |                                               |                  |                                  |               |               |                   |                 |               |                     |            |
| H 4  | 🕩 M 🗶 Dew Point Temperature 🖌 Wind Speed 🖌 Cl | oud Cover 🖌 Shad | le 🗶 Rates 🗶 Li                  | ght and Hea   | t 🔪 Point Sou | rces / Diffuse So | ources 🦯 warnin | gs Hydraulics | Data / Tem 🖣        |            |
| Read | iy                                            |                  |                                  |               |               |                   |                 |               | NUM                 |            |

This worksheet is used to enter information related the system's point sources.

#### Figure 20. The Point Sources Worksheet.

Name. User-specified label to identify the particular point source inflow or abstraction. Location. The kilometer where the point source or abstraction enters or leaves the river. Source Inflows and Outflows. A source can either be an inflow (loading or tributary) or an outflow (abstraction). Note that it can not be both. If there is an abstraction flow (i.e., a positive value in column C), the remaining information in columns D through AZ will be ignored. **Point abstraction.** For an abstraction, a positive<sup>3</sup> value for flow  $(m^3/s)$  must be entered. If this is done, the values in columns D through AZ should be left blank.

**Point inflow.** For an input, a value for flow  $(m^3/s)$  must be entered in column D. Column C should be a zero or a blank.

**Constituents.** The temperature and the water quality concentrations of the inflow are entered in columns E through AZ.

QUAL2K allows the temperature and concentrations of each point source to be entered as a sinusoid that varies over the diel cycle. Figure 20 shows an example for the temperature of the Boulder CO WWTP.



Figure 21. Temperature for the Boulder, CO wastewater treatment plant effluent on Sept. 21-22, 1987 along with a sinusoidal fit to the data.

#### 1.2.10 Diffuse Sources Worksheet

This worksheet is used to enter information related the system's diffuse (i.e., non-point) sources and abstractions.

| _  |                         |           |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
|----|-------------------------|-----------|-------------------|--------------------|----------------|-----------|---------|----------|----------|----------|----------|-----------|----------|---------|----------|-------------|----------|------------|-------------|---------------|-----|---|
|    | Microsoft Excel - qual2 | kw5.xls   |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             |               | _ 0 | X |
| 8  | Eile Edit View Insert   | t Format  | t <u>T</u> ools D | ata <u>W</u> indov | v <u>H</u> elp |           |         |          |          |          |          |           |          |         |          |             |          |            | Type a ques | tion for help | 8   | × |
|    | ) 🛩 🖩 🔒 🗞 🍊 🖸           | L 💖 🛛 J   | ; 🖻 🛍 •           | 🛷 🗠 -              | Ci + 📢         | δ. Σ - 2  |         | 🛍 🤞 🛚    | 0% -     | 2.       |          |           |          |         |          |             |          |            |             |               |     |   |
|    | A                       | В         | С                 | D                  | E              | F         | Cort An | condina  | 1        | J        | К        | L         | М        | N       | 0        | Р           | Q        | R          | S           | Т             | U   | = |
| 1  | QUAL2Kw                 |           |                   |                    |                |           | SOLLAS  | centing  |          |          |          |           |          |         |          |             |          |            |             |               |     | 1 |
|    | Stream Water Ove        |           | dal               | Onon               | Du             | -         | Dum     |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
| -4 | Stream water waa        | inty mo   | uer               | Open               | Ku             |           | Run     |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
| 3  | Boulder Creek (8/2      | 1/1987    | )                 | File               | VB             | A   I     | Fortran |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
| 4  | Diffuse Source Dat      | ta:       |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
| 5  | 5                       |           |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
| 6  | 3                       |           |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
| 7  | 7                       |           |                   | Diffuse            | Diffuse        |           | Spec    | Inorg    | Diss     | CBOD     | CBOD     | Organic   | Ammon    | Nitrate | Organic  | Inorganic   | Phyto    |            |             |               |     |   |
| 8  | 3                       |           |                   | Abstraction        | Inflow         | Temp      | Cond    | SS       | Oxygen   | slow     | fast     | N         | N        | N       | Р        | Р           | plankton | Detritus   | Pathogen    | Alk           | pН  |   |
| 9  | Name                    | Up (km)   | Down (km)         | m3/s               | m3/s           | С         | umhos   | mgD/L    | mg/L     | mgO2/L   | mgO2/L   | ugN/L     | ugN/L    | ugN/L   | ugP/L    | ugP/L       | ug/L     | mgD/L      | cfu/100 mL  | mgCaCO3/L     |     |   |
| 10 | 0 Groundwater           | 13.60     | 6.60              | 0.0000             | 0.2574         | 15.00     | 600.00  | 0.00     | 4.00     | 1.00     | 1.00     | 500.0     | 500.0    | 2000.0  | 100.0    | 100.0       | 0.0      | 0.0        | 0.0         | 150.0         | 6.9 |   |
| 11 | 1 Groundwater           | 6.60      | 0.00              | 0.0000             | 0.2426         | 15.00     | 600.00  | 0.00     | 4.00     | 1.00     | 1.00     | 500.0     | 500.0    | 2000.0  | 100.0    | 100.0       | 0.0      | 0.0        | 0.0         | 200.0         | 6.9 |   |
| 12 | 2                       |           |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             |               |     |   |
| 13 | 3                       |           |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             |               |     | - |
| н  | I Dew Point Tem         | nperature | / Wind Sp         | peed 🔏 Clou        | d Cover        | 🖌 Shade 🖌 | Rates 🖌 | Light an | d Heat 🏑 | Point Se | ources 🔪 | Diffuse S | ources / | warning | s 🖌 Hydr | aulics Data | / Tem    | perature I | Data 📈 WQ   |               | •   | 1 |
| Re | eady                    |           |                   |                    |                |           |         |          |          |          |          |           |          |         |          |             |          |            |             | NUM           |     |   |

#### Figure 22. The Diffuse Sources Worksheet.

**Name.** User-specified label to identify the particular diffuse inflow or abstraction. **Location.** The upstream and downstream kilometers over which the diffuse source or abstraction enters or leaves the river.

<sup>&</sup>lt;sup>3</sup> Some software treats an abstraction as a negative inflow. In Q2K, the flow is entered as a positive number and the software internally calculates it as a loss from the reach.

**Source inflows and outflows.** A distributed source can either be an inflow (loading or tributary) or an outflow (abstraction). Note that it can not be both. If there is an abstraction flow (i.e., a positive value in column D), the remaining information in columns E through U will be ignored. If a particular segment location actually has diffuse inflow and outflow, then these can both be entered on separate rows.

**Diffuse abstraction.** For an abstraction, a positive<sup>4</sup> value for flow  $(m^3/s)$  must be entered in column D. If this is done, the values in columns E through U should be left blank. **Diffuse inflow.** For an input, a value for flow  $(m^3/s)$  must be entered in column E. Column D should be a zero or a blank.

**Constituents.** The temperature and the water quality concentrations of the diffuse inflow are entered in columns F through U.

<sup>&</sup>lt;sup>4</sup> Some software treats an abstraction as a negative inflow. In Q2K, the flow is entered as a positive number and the software internally calculates it as a loss from the reach.

## 1.3 WARNINGS WORKSHEET

The Warnings Worksheet will display any warnings that occur when the model is run. It is a good idea to inspect the Warnings Worksheet after the model is run. If bad inputs are detected in some of the input Worksheets then Warnings may be provided. For example, if the user specifies in cell B21 of the QUAL2K Worksheet that hyporheic metabolism should not be calculated, but the user also includes a positive value for hyporheic exchange flow in column AL of the Reach Worksheet, then a warning will provided to explain that hyporheic simulation will not occur unless it is specified on the QUAL2K Worksheet.

## 1.4 DATA WORKSHEETS (OPTIONAL)

A series of worksheets are used to enter measured data for display on plots. This information is optional; that is, the model will run regardless of whether these sheets hold data. These are identified by pale yellow tabs.

#### 1.4.1 Hydraulics Data Worksheet (Optional)

This worksheet is used to enter data related to the system's hydraulics (Figure 22).

| 21   | Aicrosoft Excel - q            | ual2kw5.xls                    |                            |                  |                |            | (              | - 🗆 🗙    |
|------|--------------------------------|--------------------------------|----------------------------|------------------|----------------|------------|----------------|----------|
|      | <u>File E</u> dit <u>V</u> iew | <u>I</u> nsert F <u>o</u> rmat | <u>T</u> ools <u>D</u> ata | a <u>W</u> indow | <u>H</u> elp   | Type a que | stion for help | ×        |
|      | 🖻 🖬 🔒 🖏 d                      | 🗟 🗟 🚏 🕹                        | 🖻 🛍 - 😒                    | 🎗 🗠 🖓            | - 🤮 Σ -        | 2 I ZI 🛍   | ļ 极 100% ,     | • 🔹 🗸    |
|      | A                              | В                              | С                          | D                | E              | F          | G              | H 🔺      |
| 1    | QUAL2Kw                        |                                |                            | Undo             |                |            |                | _        |
| 2    | Stream Wat                     | ter Quality                    | y Model                    | c                | Open           | Run        | Run            |          |
| 3    | <b>Boulder Cre</b>             | ek (8/21/1                     | 1987)                      |                  | File           | VBA        | Fortran        |          |
| 4    | <b>Hydraulics</b>              | Data:                          |                            |                  |                |            |                | -        |
| 5    |                                |                                |                            |                  |                |            |                |          |
| 6    |                                |                                |                            |                  |                |            |                |          |
| 7    | Distance                       | Q-data                         | H-data                     | U-data           | Travel time    |            |                |          |
| 8    | x(km)                          | m3/s                           | m                          | m/s              | data (d)       |            |                |          |
| 9    | 6.800                          |                                |                            |                  | 0.210          |            |                |          |
| 10   | 0.000                          |                                |                            |                  | 0.530          |            |                |          |
| 11   |                                |                                |                            |                  |                |            |                |          |
| 12   |                                |                                |                            |                  |                |            |                |          |
| 13   |                                |                                |                            |                  |                | l          |                | <b>.</b> |
| H 4  | 🕨 🕨 🄏 Point Sour               | rces 🔏 Diffuse S               | Sources 🔏 w                | arnings 📐 Hy     | draulics Data, | Temperat   | ture Data 🔏 🗌  | • •      |
| Read | ly                             |                                |                            |                  |                |            | NUM            |          |

#### Figure 23. The Hydraulics Data Worksheet.

**Distance.** This is the distance (km) at which the hydraulics data are plotted.

*Q***-data.** Flow data in  $m^3/s$ .

*H*-data. Depth data in m.

*U*-data. Velocity data in m/s.

Travel time-data. Travel time in days.

#### 1.4.2 Temperature Data Worksheet

| <b>N</b>     | Nicrosoft Ex              | cel -        | qual2k         | w5.xls          |                            |               |                |         |                |          |               |         |    |
|--------------|---------------------------|--------------|----------------|-----------------|----------------------------|---------------|----------------|---------|----------------|----------|---------------|---------|----|
|              | <u>F</u> ile <u>E</u> dit | <u>V</u> iew | <u>I</u> nsert | F <u>o</u> rmat | <u>T</u> ools <u>D</u> ata | <u>W</u> indo | w <u>H</u> elp |         | Тур            | e a ques | tion for help |         | ₽× |
|              | 🛩 🖪 🔗                     | <b>1</b>     | <i>6</i> 🖪     | ₩¢ X            | 🖻 🛍 • 🚿                    | ю.,           | CH + 📢         | Σ-      | A↓ Z↓<br>Z↓ A↓ | 10. 🦧    | 100%          | - 🔹 .   |    |
|              | А                         |              |                | В               | С                          |               | D              | E       | F              | (        | G             | Н       |    |
| 1            | QUAL2                     | Kw           |                |                 |                            |               |                |         |                |          |               |         |    |
| 2            | Stream                    | Wa           | ter G          | Quality         | y Model                    |               | Open           |         | Ru             | n        | F             | Run     |    |
| 3            | Boulde                    | r Cr         | eek (          | (812111         | 1987)                      |               | File           |         | VB             | A        | Fo            | rtran   |    |
| 4            | Tempe                     | ratu         | re Da          | ata:            | Ē                          |               |                |         |                |          |               |         | 1  |
| 5            |                           |              |                |                 |                            |               |                |         |                |          |               |         | _  |
| 6            |                           |              |                |                 |                            |               |                |         |                |          |               |         |    |
| 7            | Distance                  |              | N              | lean            | Minimum                    | Ma            | <u>kimum</u>   |         |                |          |               |         |    |
| 8            | x(km)                     |              | Tem            | np-data         | Temp-data                  | Ten           | np-data        |         |                |          |               |         |    |
| 9            |                           | 13.60        | D              | 14.90           | 12.0                       | 0             | 18.60          |         |                |          |               |         |    |
| 10           |                           | 13.39        | ÐÏ             | 17.20           | 14.6                       | 0             | 20.10          |         |                |          |               |         |    |
| 11           |                           | 8.08         | B              | 15.66           | 13.5                       | 0             | 19.00          |         |                |          |               |         |    |
| 12           |                           | 3.83         | 3              | 16.13           | 13.0                       | 0             | 20.00          |         |                |          |               |         |    |
| 13           |                           | 0.42         | 2              | 15.69           | 12.1                       | 0             | 21.00          |         |                |          |               |         |    |
| 14           |                           |              |                |                 |                            |               |                |         |                |          |               |         | -  |
| <b>I</b> 4 4 | - > > > Po                | int So       | urces 🖌        | Diffuse S       | ources 🖉 war               | nings         | Hydrauli       | cs Data | ) Tempe        | erature  | Data 🖉        | VI • [] |    |
| Read         | ly                        |              |                |                 |                            |               |                |         |                |          | NUM           |         |    |

This worksheet is used to enter temperature data (Figure 23).

Figure 24. The Temperature Data Worksheet.

**Distance.** This is the distance (km) at which the temperature data are plotted. **Mean Temperature-data.** The mean temperature in °C. **Minimum Temperature-data.** The minimum temperature in °C. **Maximum Temperature-data.** The maximum temperature in °C.

#### 1.4.3 WQ Data Worksheet

This worksheet is used to enter mean daily values for water quality data. The first part of the worksheet is shown in Figure 24.

|       | Microsoft Exce                     | l - qual2kw5               | 5.xls                         |                          |                  |                |              |              |             |               |                 |                  |               |                        |                 | X        |
|-------|------------------------------------|----------------------------|-------------------------------|--------------------------|------------------|----------------|--------------|--------------|-------------|---------------|-----------------|------------------|---------------|------------------------|-----------------|----------|
| 8     | <u>File E</u> dit <u>V</u> i       | ew <u>I</u> nsert F        | F <u>o</u> rmat <u>T</u> ools | <u>D</u> ata <u>W</u> in | dow <u>H</u> elp |                |              |              |             |               |                 |                  |               | Type a question        | for help 🔹 🗕 🗗  | ×        |
|       | 😂 🔛 🔒 🦉                            | a 🙆 な 🔋                    | ሃ 👗 🖻 🛍                       | 🖥 • 🝼 🛛 🗠                | • CH + 🍓 Σ       | • 24 Z4 🛍      | ļ 穆 79%      | • 🛛 🗸        |             |               |                 |                  |               |                        |                 |          |
|       | A                                  | В                          | C                             | D                        | E                | F              | G            | н            |             | J             | K               | L                | M             | N                      | 0               | TE       |
| 1 2 3 | QUAL2Kw<br>Stream Wa<br>Boulder Cr | ter Quality<br>eek (8/21/1 | y Model<br>1987)              | Open<br>File             | Run<br>VBA       | Run<br>Fortran |              |              |             |               |                 | <u>,</u>         |               | ·                      |                 |          |
| 4     | Water Qua                          | lity Data:                 |                               |                          |                  |                |              |              |             |               |                 |                  |               |                        |                 |          |
| 5     |                                    |                            |                               |                          |                  |                |              |              |             |               |                 |                  |               |                        |                 |          |
| 7     | Distance                           | Cona (umhos)               | ISS (mgD/L)                   | DO (mgO2/L)              | CBODs (mgO2/L)   | CBODI (mgO2IL) | Norg (ugN/L) | NH4 (ugN/L)  | NO3 (ugN/L) | Porg (ugNIL)  | Inorg P (ugPIL) | Phyto (ugA/L)    | Detr (mgD/L)  | Pathogens (cluii06 mL) | Alk (mgCaCO3/L) | 2        |
| 8     | km                                 | data                       | oata                          | oata                     | oata             | o'ata          | őata         | oata         | data        | data          | data            | óata             | oata          | data                   | data            | 4        |
| 9     | 13.60                              | 294.71                     | 8.77                          | 8.26                     |                  |                | 1648.97      | 85.71        | 168.57      | 44.40         | 30.00           |                  | 1.09          |                        | 98.14           | •        |
| 10    | 13.39                              | 498.00                     | 8.51                          | 4.77                     |                  |                | 3043.66      | 4789         | 1704.29     | 208.29        | 2032.86         |                  | 5.74          |                        | 114.57          | 1        |
| 11    | 8.08                               | 483.43                     | 3.26                          | 3.80                     |                  |                | 3230.17      | 3826         | 1910.00     | 100.86        | 1815.71         |                  | 2.20          |                        | 117.86          | <u>ě</u> |
| 12    | 3.83                               | 504.14                     | 1.14                          | 5.96                     |                  |                | 3105.26      | 1760         | 2781.43     | 62.00         | 1534.29         |                  | 1.51          |                        | 116.43          | 3        |
| 13    | 0.42                               | 541.86                     | 14.09                         | 7.04                     |                  |                | 3341.14      | 746          | 3368.57     | 127.67        | 1153.33         |                  | 1.57          |                        | 147.57          | 4        |
| 14    |                                    |                            |                               |                          |                  |                |              |              |             |               |                 |                  |               |                        |                 | 4        |
| 10    |                                    |                            |                               |                          |                  |                |              |              |             |               |                 |                  |               |                        |                 | -        |
| 17    |                                    |                            |                               |                          |                  |                |              |              |             |               |                 |                  |               |                        |                 |          |
| H     | < > > / Diffus                     | e Sources 🔏                | warnings                      | Hydraulics Dat           | ta / Temperatu   | re Data 🔪 WQ 🛙 | Data / WQ C  | Data Min 🖌 V | VQ Data Ma  | x / Diel Data | / Source Su     | ,<br>mmary / Hyd | draulics Summ | nary / Temperature     | • · ·           | 1C       |
| Rea   | dv                                 |                            |                               |                          |                  |                |              |              |             |               |                 |                  |               | N                      | NUM             |          |

#### Figure 25. The first part of the Water Quality Data Worksheet.

**Distance.** This is the distance (km) at which the water quality data are plotted.

**Constituents.** The mean measured water quality concentrations are entered in columns B through Q.

**Other Concentrations and Fluxes.** A variety of other concentrations and fluxes are entered in Columns Q through AC as shown in Figure 25. These are

Bottom Algae in units of mgA/m<sup>2</sup>. Total nitrogen-data. Total phosphorus-data. Total suspended solids-data. NH<sub>3</sub> (unionized ammonia)-data % saturation-data. SOD-data Sediment ammonium flux. Sediment methane flux. Sediment inorganic phosphorus flux.

**Ultimate carbonaceous BOD.** This is the total of detritus, slow CBOD, fast CBOD, and phytoplankton biomass expressed as oxygen equivalents.

**Total Organic Carbon.** This is the total of inorganic suspended solids, phytoplankton biomass and detritus expressed as carbon.

**Hyporheic biofilm.** This is the observed biomass of heterotrophic bacteria biofilm expressed as  $gD/m^2$ .

|    | Micros          | oft   | Excel - qual2k                | w5.xls                 |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       | _ 🗆 🗙 |
|----|-----------------|-------|-------------------------------|------------------------|-------------------|-----------------|--------------|-------------|-----------|------------|-----------------|-------------|------------|---------------|-------------|------------|-----------------------|-------|
|    | Ele             | Edit  | t <u>V</u> iew <u>I</u> nsert | Format <u>T</u> ools E | ata <u>W</u> indo | ow <u>H</u> elp |              |             |           |            |                 |             |            |               |             | Туре       | e a question for help | ×     |
|    | -<br>ໂ 🚅 🛛      |       | a 🛯 🗛 🖪                       | 19 X 🗈 🙉 -             | - 🛷 🗠 -           | - Ci + 10       | λ Σ + ΔΙ     | 21 M 🖉      | 79% -     | 2          |                 |             |            |               |             |            |                       |       |
|    |                 |       |                               | V 00 E 45              |                   |                 | ⊕ —          | AV 800 -00  |           |            |                 |             |            |               |             | 1          | 1                     |       |
|    | P               |       | Q                             | R                      | S                 | T               | U            | V           | V         | ×          | Ŷ               | Z           | AA         | AB            | AC          | AD         | AE                    | AF    |
| 1  |                 |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       | _     |
| 2  |                 |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       |       |
| -  | -               |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       |       |
| 3  |                 |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       |       |
| 4  |                 |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       |       |
| 5  |                 |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       |       |
| 6  |                 |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       |       |
| 7  | pH              |       | Bot Alg (gDim*2)              | Bot Alg (mgAlm*3)      | TN (ugN/L)        | TP (ugP/L)      | TSS (mgD/L)  | NH3 (ugN/L) | ,         |            | Sediment        | Sediment    | Sediment   | Sediment      | CBODu       | TOC        | Hyporheic biofilm     |       |
| 8  | date            | a     | data                          | oata                   | data              | data            | o'ata        | data        | #sat-data | SOD-data   | JNH4-data       | JNO3-data   | JCH4-data  | Jinorg P-data | mgO2H       | mgCH       | gD/m*2                |       |
| 9  | 7               | 7.74  |                               |                        | 1981.43           | 77.14           | 9.86         |             |           |            |                 |             |            |               |             |            |                       |       |
| 10 | 1               | 7.10  | 40.00                         | 400.00                 | 9950.00           | 2298.57         | 14.26        |             |           |            |                 |             |            |               |             |            |                       |       |
| 11 | 2               | 7.29  |                               |                        | 9124.29           | 1938.57         | 5.46         |             |           |            |                 |             |            |               |             |            |                       |       |
| 12 | 2               | 7.60  |                               |                        | 7755.71           | 1611.43         | 2.66         |             |           |            |                 |             |            |               |             |            |                       |       |
| 13 |                 | 8.17  |                               |                        | 7568.57           | 1307.14         | 15.66        |             |           |            |                 |             |            |               |             |            |                       |       |
| 14 | _               | _     |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            |                       | - 1   |
| 15 |                 | _     |                               |                        |                   |                 |              |             |           |            |                 | -           |            |               |             | -          |                       | -     |
| 16 | -               | -     |                               |                        |                   |                 |              |             |           |            |                 | -           |            |               |             |            |                       |       |
| H  | 4 <b>&gt;</b> > | ı X İ | Diffuse Sources               | warnings 🖌 Hyd         | raulics Data      | / Temp          | erature Data | WQ Data     | WQ Dat    | a Min 🖌 WO | )<br>Data Max 🔏 | Diel Data 🖌 | Source Sum | mary / Hydr   | aulics Sumn | nary / Ter | nperature 🔹           |       |
| Re | ady             |       |                               |                        |                   |                 |              |             |           |            |                 |             |            |               |             |            | NUM                   |       |

Figure 26. The last part of the Water Quality Data Worksheet.

#### 1.4.4 WQ Data Min Worksheet

This worksheet is used to enter minimum daily values for water quality data. The layout is the same as for the WQ Data Worksheet.

#### 1.4.5 WQ Data Max Worksheet

This worksheet is used to enter maximum daily values for water quality data. The layout is the same as for the WQ Data Worksheet.

#### 1.4.6 Diel Data Worksheet

This worksheet is used to enter diel data for a selected reach. This data is then plotted as points on the graphs of diel model output. The user may also switch the dynamic diel plots to any reach by first entering a new reach number in cell C6 (press the enter key after entering the new value), and then using the button labeled "change diel plots to this reach". To show all diel data for all reaches in the Diel Data Worksheet (for example to clear the data or enter data for more reaches) you can turn off Excel's Autofilter feature by using the Excel menu selection "Data/Filter/Autofilter".

|     | Microsoft E       | xcel - qual2kw5.> | ds                              |                               |                    |                 |                  |                    |                   |             |                  | ×        |
|-----|-------------------|-------------------|---------------------------------|-------------------------------|--------------------|-----------------|------------------|--------------------|-------------------|-------------|------------------|----------|
|     | <u>File E</u> dit | View Insert For   | rmat <u>T</u> ools <u>D</u> ata | a <u>W</u> indow <u>H</u> elp |                    |                 |                  |                    |                   | Type a q    | uestion for help | 8×       |
|     |                   | a 📭 🖾 🖪 🤒         | X 🗈 🛍 🗸                         | * <u> </u>                    | Σ <b>-</b> A1 Z1 β | 100%            | • 2              |                    |                   |             |                  |          |
|     |                   |                   |                                 |                               |                    | E .             | Q.               | н                  |                   |             | K                |          |
| 1   |                   |                   | C                               | U                             | L                  |                 | 9                |                    |                   | 5           | ĸ                | <u> </u> |
|     | QUAL              |                   |                                 |                               | -                  |                 |                  |                    |                   |             |                  |          |
| 2   | Stream            | n Water Qua       | niity Model                     |                               | Open               | Ru              | 1                | Run                |                   |             |                  |          |
| 3   | Bouide            | er Creek (8/2     | 21/1987)                        |                               | File               | VB/             | °.  F            | ortran             |                   |             |                  |          |
| 4   | Diel Da           | ata:              |                                 |                               |                    |                 |                  |                    |                   |             |                  |          |
| 5   |                   |                   |                                 |                               |                    |                 |                  |                    |                   |             |                  |          |
| 6   |                   | Reach             | 17                              |                               | <                  | - change diel p | olots to this re | each               |                   |             |                  |          |
| 7   | -                 | Above Coal Ck     | Last Segment                    | Coal Creek                    |                    |                 |                  |                    |                   |             |                  |          |
| 8   |                   |                   | Temp Water                      | Tomo Sodimonte                | cond (umbos)       | ISS (ma/L)      | DO(ma/l)         | CBODs (maO2/L)     | CBODf (mgO2/L)    | No(ugN/L)   | NH4(uaN/L)       | NO3(ug)  |
| 10  | reach 🔻           | t (i <del>-</del> | (C) data 👻                      | (C) data                      | data 👻             | data 👻          | data 👻           | data 🗸             | data 👻            | data 👻      | data 🔫           | data     |
| 11  | 17                | 6.00              | 12.60                           |                               | 557.00             | 8.60            | 5.80             |                    |                   | 3706.80     | 830.00           | 384      |
| 12  | 17                | 10.00             | 12.40                           |                               | 557.00             | 13.80           | 11.30            |                    |                   | 3564.80     | 1050.00          | 353      |
| 13  | 17                | 14.00             | 20.80                           |                               | 536.00             | 36.20           | 12.00            |                    |                   | 2708.40     | 140.00           | 301      |
| 14  | 17                | 18.00             | 21.00                           |                               | 525.00             | 20.00           | 6.30             |                    |                   | 2250.40     | 680.00           | 297      |
| 15  | 17                | 22.00             | 16.90                           |                               | 546.00             | 9.40            | 4.40             |                    |                   | 3273.60     | 840.00           | 420      |
| 17  | 17                | 6.00              | 12.10                           |                               | 536.00             | 1.60            | 5.70             |                    |                   | 3396.00     | 1600.00          | 321      |
| 18  |                   |                   |                                 |                               |                    |                 |                  |                    |                   |             |                  |          |
| 19  |                   |                   |                                 |                               |                    |                 |                  |                    |                   |             |                  |          |
| 20  |                   |                   |                                 |                               |                    |                 |                  |                    |                   |             |                  |          |
| 21  |                   | ffuse Sources     | arnings Hydrau                  | lics Data / Temper            | rature Data / WC   | Data / WO       | Data Min / I     | WO Data Max Dial   | Data / Source Sum | many / Hydr | aulice S 🖌       |          |
| Rea | dv.               | nuse sources A    |                                 | inco baca X Temper            |                    |                 |                  | WQ Data Max X Diel | Data A Source Sum | nery A Hyur | NUM              |          |
| Rea | 47                |                   |                                 |                               |                    |                 |                  |                    |                   |             | NOM              | //       |

Figure 27. The Diel Data Worksheet.

## 1.5 OUTPUT WORKSHEETS

These are a series of worksheets that present tables of numerical output generated by Q2K. This information is displayed on plots along with measured data. These are identified by pale green tabs.

#### 1.5.1 Source Summary Worksheet

This worksheet summarizes the total loading for each model reach by time of day. Note that cell B1 indicates whether the output for the last model run was performed by the VBA or Fortran versions of Q2K.

| N 12 | Aicrosoft Excel - qual                                          | 2kw5.xls                                    |                                 |                  |             |               |                 | _ 🗆 🛛   |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------|---------------------------------------------|---------------------------------|------------------|-------------|---------------|-----------------|---------|--|--|--|--|--|--|--|
| 1    | <u>File E</u> dit <u>V</u> iew <u>I</u> nse                     | rt F <u>o</u> rmat <u>T</u> ools <u>D</u> a | ata <u>W</u> indow <u>H</u> elp |                  |             | Туре а        | question for he | P - ₽ × |  |  |  |  |  |  |  |
| D    | 🚔 🖬 🔒 🐔 🖾                                                       | d. 💖 🐰 🖻 🛍 -                                | 🛷 lo + ol + 🧕                   | Σ - <u>A</u> ↓ Z | († 🛍 🚜 🗄    | 100% 🗸 🛛 🗸    |                 | C       |  |  |  |  |  |  |  |
|      | A                                                               | B                                           | С                               | D                | E           | F             | G               | H 🔺     |  |  |  |  |  |  |  |
| 1    | QUAL2Kw                                                         | Fortran output                              | · · · · · ·                     |                  |             |               | I               |         |  |  |  |  |  |  |  |
| 2    | Stream Water                                                    | Quality Mode                                | 1                               | Open             | Ru          | n R           | un              |         |  |  |  |  |  |  |  |
| 3    | Boulder Creek                                                   | (8/21/1987)                                 |                                 | File             | VB          | A For         | tran            |         |  |  |  |  |  |  |  |
|      | Source Summ                                                     | ary (Hourly)                                |                                 |                  |             |               |                 |         |  |  |  |  |  |  |  |
| 5    | Source Summ                                                     |                                             |                                 |                  |             |               |                 |         |  |  |  |  |  |  |  |
| 6    |                                                                 |                                             |                                 |                  |             |               |                 |         |  |  |  |  |  |  |  |
| 7    | Time Reach Downstream Up Dist Down Dist Abstraction Inflow Temp |                                             |                                 |                  |             |               |                 |         |  |  |  |  |  |  |  |
| 8    |                                                                 | Label                                       | Label                           | x(km)            | x(km)       | cms           | cms             | С       |  |  |  |  |  |  |  |
| 9    | 8/21/87 12:00 AM                                                | MP 0.4                                      |                                 | 13.60            | 13.18       | 0.00          | 0.77            | 19.81   |  |  |  |  |  |  |  |
| 10   |                                                                 |                                             |                                 | 13.18            | 12.75       | 0.00          | 0.02            | 15.00   |  |  |  |  |  |  |  |
| 11   |                                                                 |                                             |                                 | 12.75            | 11.90       | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 12   |                                                                 |                                             |                                 | 11.90            | 11.05       | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 13   |                                                                 |                                             |                                 | 11.05            | 10.20       | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 14   |                                                                 |                                             |                                 | 10.20            | 9.35        | 0.00          | 0.62            | 15.00   |  |  |  |  |  |  |  |
| 15   |                                                                 | ND 2.5                                      |                                 | 9.35             | 8.50        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 10   |                                                                 | MP 3.5                                      |                                 | 8.30             | 6.00        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 1/   |                                                                 |                                             |                                 | 6 20             | 5.00        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 10   |                                                                 |                                             |                                 | 5.00             | 5.55        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 20   |                                                                 |                                             |                                 | 5 10             | 4 25        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 21   |                                                                 | MP 5.6                                      |                                 | 4 25             | 3.40        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 22   |                                                                 | WI 5.0                                      |                                 | 3.40             | 2.55        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 23   |                                                                 |                                             |                                 | 2.55             | 1.70        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 24   |                                                                 |                                             | Above Coal Ck                   | 1.70             | 0.85        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 25   |                                                                 | Last Segment                                | Coal Creek                      | 0.85             | 0.00        | 0.00          | 0.03            | 15.00   |  |  |  |  |  |  |  |
| 14 4 | ► ► \\ Source Summ                                              | ary / Hydraulics Sum                        | mary / Temperature              | e Output 🔏 V     | VQ Output / | WQ Min / WQ I | Max / Sedime    |         |  |  |  |  |  |  |  |
| Read | ły                                                              |                                             |                                 |                  |             |               | NUM             |         |  |  |  |  |  |  |  |

Figure 28. The Source Summary Worksheet.

#### 1.5.2 Hydraulics Summary Worksheet

This worksheet summarizes the hydraulic parameters for each model reach.

| <b>N</b> | Aicrosoft Excel - qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l2kw5.xls         |                                        |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|----------------|---------------|----------|--------|--------------|------------------|----------------|------------|---------------------|------------------------------------|------------------|--|
| 8        | File Edit View In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sert Format Too   | ls Data Wind                           | ow Help        |               |          |        |              |                  |                |            |                     | Type a question                    | for help 🛛 🗕 🖉 🗙 |  |
|          | RIANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | <br>-                                  | ~              | Σ _ A  Z      | i dan s  | 100%   | - 0          |                  |                |            |                     |                                    |                  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L9. ✓   & 48      | •••••••••••••••••••••••••••••••••••••• |                | Z • Z + A     | + 100.4  | 100 /e | • • • •      |                  |                |            |                     |                                    |                  |  |
| -        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В                 | С                                      | D              | E             | F        | G      | H            |                  | J              | K          | L                   | M                                  | N                |  |
| 1        | QUAL2Kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    | -                |  |
| 2        | Stream Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r Quality M       | odel                                   | Open           | Ru            | n        | Rur    | 1            |                  |                |            |                     |                                    |                  |  |
| 3        | Boulder Cree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k (8/21/198       | 7)                                     | File           | VB            | A        | Fortr  | an           |                  |                |            |                     |                                    |                  |  |
| Ľ,       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | .,                                     |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
| 4        | Hydraulics Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
| 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
| 6        | Reach Downstream Downstream Hydraulics Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
| 8        | Reach         Downstream         Hydraulics         Image: second secon |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
| 9        | Label         Label         Distance         Q, m3/s         E, m3/s         H, m         B, m         Ac, m^2         U, mps         trav time, d         Slope         ka20, /d         water/wind         Drop (m)           Headwater         Headwater         13.60         0.71         0.36         0.21         12.50         2.62         0.27         0.00         0.004000         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
| 10       | Label         Label         Label         Ustance         Q, m/s         F, m/s         F, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    |                  |  |
| 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 12.75                                  | 1.49           | 0.50          | 0.33     | 12.50  | 4.11         | 0.36             | 0.03           | 0.004000   | 17.93               | Pool-riffle/No wind                | 0.00             |  |
| 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 11.90                                  | 1.53           | 0.76          | 0.33     | 12.50  | 4.16         | 0.37             | 0.05           | 0.004000   | 17.95               | Pool-riffle/No wind                | 0.00             |  |
| 13       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 11.05                                  | 1.56           | 0.78          | 0.34     | 12.50  | 4.21         | 0.37             | 0.08           | 0.004000   | 17.98               | Pool-riffle/No wind                | 0.00             |  |
| 14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 10.20                                  | 1.59           | 0.79          | 0.34     | 12.50  | 4.26         | 0.37             | 0.11           | 0.004000   | 18.00               | Pool-riffle/No wind                | 0.00             |  |
| 15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 9.35                                   | 2.21           | 1.10          | 0.44     | 12.50  | 5.44         | 0.41             | 0.13           | 0.003500   | 16.79               | Pool-riffle/No wind                | 0.00             |  |
| 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 8.50                                   | 2.24           | 1.12          | 0.44     | 12.50  | 5.49         | 0.41             | 0.16           | 0.003500   | 16.81               | Pool-riffle/No wind                | 0.00             |  |
| 1/       | MP 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 7.65                                   | 2.27           | 1.14          | 0.44     | 12.50  | 5.54         | 0.41             | 0.18           | 0.003500   | 16.82               | Pool-riffle/No wind                | 0.00             |  |
| 10       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 5.60                                   | 2.30           | 1.15          | 0.45     | 12.50  | 2.02         | 0.41             | 0.20           | 0.003500   | 16.84               | Pool-riffle/No wind                | 0.00             |  |
| 20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 5.10                                   | 0.43           | 0.22          | 0.16     | 12.50  | 2.02         | 0.22             | 0.29           | 0.003000   | 13.69               | Pool-riffle/No wind                | 0.00             |  |
| 21       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 4.25                                   | 0.50           | 0.25          | 0.17     | 12.50  | 2.11         | 0.24             | 0.33           | 0.003000   | 13.66               | Pool-riffle/No wind                | 0.00             |  |
| 22       | MP 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 3.40                                   | 0.53           | 0.26          | 0.18     | 12.50  | 2.19         | 0.24             | 0.37           | 0.003000   | 13.63               | Pool-riffle/No wind                | 0.00             |  |
| 23       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 2.55                                   | 0.56           | 0.28          | 0.18     | 12.50  | 2.27         | 0.25             | 0.41           | 0.003000   | 14.33               | Pool-riffle/No wind                | 0.00             |  |
| 24       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1.70                                   | 0.59           | 0.30          | 0.19     | 12.50  | 2.35         | 0.25             | 0.45           | 0.003000   | 14.38               | Pool-riffle/No wind                | 0.00             |  |
| 25       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Above Coal Ck     | 0.85                                   | 0.62           | 0.31          | 0.19     | 12.50  | 2.42         | 0.26             | 0.49           | 0.003000   | 14.44               | Pool-riffle/No wind                | 0.00             |  |
| 26       | Last Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coal Creek        | 0.00                                   | 0.65           | 0.33          | 0.20     | 12.50  | 2.50         | 0.26             | 0.53           | 0.003000   | 14.49               | Pool-riffle/No wind                | 0.00             |  |
| 27       | A AL CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                        | anna amh u c f | Lutinut ( ) . | O. Outro | + /wo  | Min / Min II |                  | imant Church   | Dial Maker | Caluma / Dis        | Uturanhain / Travel Trave / Clause |                  |  |
| 14 4     | · · · K Source Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | many A Hydraulice | s summary /                            | emperature C   | Julput X W    | ο Ουτρυ  | ιχwQ   | MILL VVQ M   | lax <u>/</u> Sec | intent Huxes ( | Diel water | Loiumn <u>/</u> Die | Hypometic / Travel Time / How ,    |                  |  |
| Rear     | iy .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                        |                |               |          |        |              |                  |                |            |                     |                                    | NUM              |  |

Figure 29. The Hydraulics Summary Worksheet.

#### 1.5.3 Temperature Output Worksheet

This worksheet summarizes the temperature output for each model reach.

| 21     | 🛛 Microsoft Excel - qual2kw5.xls 📃 🗆 🔀                                                 |                               |             |                |          |                         |   |  |  |
|--------|----------------------------------------------------------------------------------------|-------------------------------|-------------|----------------|----------|-------------------------|---|--|--|
|        | <u>File E</u> dit <u>V</u> iew <u>I</u> nsert                                          | F <u>o</u> rmat <u>T</u> ools | Data Window | v <u>H</u> elp | Type a q | juestion for help 🛛 🚽 🗗 | × |  |  |
| -<br>- |                                                                                        | *** X 🗈 🏾                     |             | GI - Q. 5      | - + +    | 1 100% - 2              |   |  |  |
|        |                                                                                        |                               |             |                |          |                         | _ |  |  |
|        | A                                                                                      | D                             | U U         | U              | E        | F G                     | * |  |  |
| 1      | QUALZKW                                                                                |                               |             |                |          |                         |   |  |  |
| 2      | Stream Water                                                                           | Quality Mo                    | del         | Open           | Run      | Run                     |   |  |  |
| 3      | <b>Boulder Creek</b>                                                                   | (8 21 1987                    | 0           | File           | VBA      | Fortran                 |   |  |  |
| E.     | T                                                                                      |                               | ·           |                |          | ┛                       |   |  |  |
| 4      | Temperature O                                                                          | στρυτ                         |             |                |          |                         |   |  |  |
| 5      |                                                                                        |                               |             |                |          |                         |   |  |  |
|        | Peach                                                                                  | Distanco                      | Tomp/(C)    | Tomp(C)        | Tomp(C)  |                         |   |  |  |
| 8      | Lahel                                                                                  | v(km)                         | Average     | Minimum        | Maximum  |                         |   |  |  |
| 9      | Headwater                                                                              | 13.60                         | 15.37       | 12.05          | 18.69    |                         |   |  |  |
| 10     | MP 0.4                                                                                 | 13.39                         | 17.72       | 15.66          | 19.72    |                         |   |  |  |
| 11     |                                                                                        | 12.96                         | 17.68       | 15.53          | 19.73    |                         |   |  |  |
| 12     |                                                                                        | 12.33                         | 17.59       | 15.30          | 19.83    |                         |   |  |  |
| 13     |                                                                                        | 11.48                         | 17.51       | 15.11          | 19.96    |                         |   |  |  |
| 14     |                                                                                        | 10.63                         | 17.43       | 14.95          | 20.08    |                         |   |  |  |
| 15     |                                                                                        | 9.78                          | 16.75       | 14.87          | 18.84    |                         |   |  |  |
| 16     | 11D 0 5                                                                                | 8.93                          | 16.72       | 14.79          | 18.96    |                         |   |  |  |
| 17     | MP 3.5                                                                                 | 8.08                          | 16.70       | 14.72          | 19.05    |                         |   |  |  |
| 18     |                                                                                        | 1.23                          | 16.67       | 14.67          | 19.13    |                         |   |  |  |
| 20     |                                                                                        | 5.50                          | 16.00       | 14.00          | 19.22    |                         |   |  |  |
| 21     |                                                                                        | 4.68                          | 16.46       | 13.77          | 20.37    |                         |   |  |  |
| 22     | MP 5.6                                                                                 | 3.83                          | 16.40       | 13.46          | 20.72    |                         |   |  |  |
| 23     |                                                                                        | 2.98                          | 16.34       | 13.20          | 20.93    |                         |   |  |  |
| 24     |                                                                                        | 2.13                          | 16.29       | 13.00          | 21.02    |                         |   |  |  |
| 25     |                                                                                        | 1.28                          | 16.25       | 12.84          | 21.03    |                         |   |  |  |
| 26     | Last Segment                                                                           | 0.43                          | 16.22       | 12.73          | 20.99    |                         |   |  |  |
| 27     | Terminus                                                                               | 0.00                          | 16.22       | 12.73          | 20.99    |                         |   |  |  |
| 28     |                                                                                        |                               |             |                |          |                         | • |  |  |
| H -    | A + M / Source Summary / Hydraulics Summary Temperature Output / WQ Output / WQ Mi + M |                               |             |                |          |                         |   |  |  |
| Read   | ły                                                                                     |                               |             |                |          | NUM                     | 1 |  |  |

Figure 30. The Temperature Output Worksheet.

## 1.5.4 Water Quality Output Worksheet

This worksheet summarizes the mean concentration output for each model reach.

| ×   | Microsoft Excel - qual2k                                  | w5.xls     |                                |                 |                |                    |                     |               |                |               |                 | _                |       |
|-----|-----------------------------------------------------------|------------|--------------------------------|-----------------|----------------|--------------------|---------------------|---------------|----------------|---------------|-----------------|------------------|-------|
|     | Eile Edit View Insert                                     | Format 1   | ools <u>D</u> ata <u>W</u> ind | ow <u>H</u> elp |                |                    |                     |               |                |               | Type a que      | stion for help 🔹 | - 8 × |
|     | □ ☞ 目前的 毎 □ ♡ ↓ 助 晩 • グ い・ ∝ • 魚 Σ • 4 3   編 月 100% • □ _ |            |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| -   |                                                           |            |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| 1   |                                                           |            |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| L.  | States Wedge Duplin Medel Oppo                            |            |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| 4   | Stream water w                                            | quanty     | model                          | File            | Run            | Run                |                     |               |                |               |                 |                  |       |
| 3   | Boulder Creek                                             | (8/21/19   | 187)                           |                 | VBA            | Fortra             | in                  |               |                |               |                 |                  |       |
| 4   | Constituent Su                                            | mmary      |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| 5   | _                                                         |            |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| 6   |                                                           |            |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| 8   | Reach Lahel                                               | v(km)      | cond (umbos)                   | ISS (maD/L)     | DO(maO2/L)     | CBODs (maO2/L)     | CBODf (mgO2/L)      | No(uaN/L)     | NH4(ugN/L)     | NO3(uaN/L)    | Po (uaP/L)      | Inora P (uaP/L   | PF    |
| 9   | Headwater                                                 | 13.60      | 294.61                         | 8.61            | 8.28           | 1.34               | 1.34                | 1651.07       | 87.59          | 165.56        | 39.43           | 50.3             | 7     |
| 10  | MP 0.4                                                    | 13.39      | 472.18                         | 8.86            | 5.51           | 7.62               | 7.28                | 3304.73       | 5605.45        | 1438.52       | 289.75          | 2020.2           | 6     |
| 11  |                                                           | 12.96      | 473.52                         | 8.42            | 5.26           | 7.70               | 7.07                | 3244.12       | 5425.31        | 1563.63       | 278.99          | 2001.5           | 2     |
| 12  | 2                                                         | 12.33      | 476.11                         | 7.63            | 5.04           | 7.74               | 6.70                | 3129.04       | 5088.57        | 1789.17       | 259.33          | 1964.2           | 2     |
| 13  | 3                                                         | 11.48      | 478.59                         | 6.93            | 4.99           | 7.70               | 6.36                | 3020.77       | 4775.73        | 1991.52       | 241.52          | 1927.5           | 8     |
| 14  | l                                                         | 10.63      | 480.98                         | 6.30            | 5.04           | 7.59               | 6.02                | 2918.78       | 4484.00        | 2173.98       | 225.36          | 1891.6           | 7     |
| 15  | 5                                                         | 9.78       | 487.74                         | 5.05            | 4.96           | 5.81               | 4.54                | 2736.77       | 4390.59        | 1774.79       | 157.11          | 1627.4           | 5     |
| 16  |                                                           | 8.93       | 489.31                         | 4.72            | 5.14           | 5.70               | 4.34                | 2671.02       | 4169.09        | 1926.22       | 149.15          | 1605.0           | 6     |
| 1/  | MP 3.5                                                    | 8.08       | 490.83                         | 4.42            | 5.32           | 5.5/               | 4.15                | 2607.93       | 3958.65        | 2067.23       | 141./5          | 1583.0           | 3     |
| 10  |                                                           | 1.23       | 492.31                         | 4.14            | 5.49           | 5.44               | 3.97                | 2047.37       | 3738.98        | 2198.14       | 134.86          | 1061.3           | -     |
| 19  |                                                           | 0.30       | 493.73                         | 3.00            | 5.63           | 3.33               | 3.00                | 2491.11       | 3040.39        | 2230.30       | 131.33          | 1030.7           | 2     |
| 21  |                                                           | 4.68       | 507.11                         | 2.00            | 6.97           | 4.03               | 3.00                | 2016.80       | 2648.43        | 2513.59       | 105.65          | 1303.9           | 7     |
| 22  | MP 5.6                                                    | 3.83       | 512.60                         | 1.64            | 7.43           | 4.40               | 2.72                | 1838.44       | 2244.48        | 2594.89       | 96.43           | 1207.3           | 3     |
| 23  | 3                                                         | 2.98       | 517,48                         | 1.27            | 7.79           | 3.79               | 2.49                | 1688.10       | 1891.92        | 2650.42       | 88.90           | 1121.2           | 6     |
| 24  | 1                                                         | 2.13       | 521.84                         | 1.00            | 8.07           | 3.51               | 2.30                | 1560.02       | 1585.76        | 2683.54       | 82.66           | 1044.2           | 4     |
| 25  | 5                                                         | 1.28       | 525.77                         | 0.79            | 8.29           | 3.26               | 2.14                | 1449.93       | 1319.17        | 2699.95       | 77.42           | 974.9            | 9     |
| 26  | Last Segment                                              | 0.43       | 529.32                         | 0.63            | 8.45           | 3.04               | 2.00                | 1354.58       | 1087.21        | 2702.89       | 72.99           | 912.4            | 7     |
| 27  | / Terminus                                                | 0.00       | 529.32                         | 0.63            | 8.45           | 3.04               | 2.00                | 1354.58       | 1087.21        | 2702.89       | 72.99           | 912.4            | 7     |
| 28  | 3                                                         |            |                                |                 |                |                    |                     |               |                |               |                 |                  |       |
| М   | ♦ ► ► X Source Summary                                    | / / Hydrau | lics Summary / T               | emperature Ou   | itput 入 WQ Out | tput / WQ Min / WO | ) Max / Sediment Fi | uxes 🖉 Diel V | Vater Column 🛛 | Diel Hyporhei | c / Travel Time |                  |       |
| Rea | ady                                                       |            |                                |                 |                |                    |                     |               |                |               |                 | NUM              | /     |

Figure 31. The first part of the Water Quality Output Worksheet.

| 🛯 м  | Akirosoft Excel - qualZkw5.xls                                     |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      |   |
|------|--------------------------------------------------------------------|-----------|--------------------|-----------------|--------------|-----------|-----------|------------|------------|-------------|--------------|-------------|-------------|--------------|-------------------|------|---|
| 8    | Eile Edit View                                                     | Insert Fo | rmat <u>T</u> ools | Data Window He  | elp          |           |           |            |            |             |              |             |             | Type a       | question for help | 6    | × |
| D    | 〕 ☞ 🖬 괾 勉   @ Δ, ♥   & ங 酏 • ♂   ∞ • ~ • ●, Σ • 쉬 科 🛍 🛷 100% • ♡ . |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      |   |
|      | 0                                                                  | Р         | Q                  | R               | S            | т         | U         | V          | W          | Х           | Y            | Z           | AA          | AB           | AC                |      | = |
| 1    |                                                                    |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      | - |
| L'   |                                                                    |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      | - |
| 2    |                                                                    |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      |   |
| 3    |                                                                    |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      |   |
| 4    |                                                                    |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      |   |
| 5    |                                                                    |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      | - |
| 6    |                                                                    |           |                    |                 |              |           |           |            |            |             |              |             |             |              |                   |      |   |
| 7    |                                                                    |           |                    |                 |              |           |           |            | TSS        |             | Bot Algae    |             |             |              | Hyporheic biof    | ilm  |   |
| 8    | Pathogen                                                           | Alk       | pН                 | Bot Alg (gD/m2) | TOC          | TN        | TP        | TKN        | (mgD/L)    | CBODu       | mgA/m^2      | NH3         | DO sat      | pHsat        | gD/m^2            |      |   |
| 9    | 0.00                                                               | 98.13     | 7.82               | 21.40           | 1.40         | 1904.21   | 89.80     | 1/38.66    | 9.61       | 3.76        | 213.98       | 3.06        | 8.10        | 8.43         |                   | 0.00 |   |
| 10   | 0.00                                                               | 111.93    | 7.45               | 21.40           | 7.94         | 10348.70  | 2310.00   | 8910.18    | 14.60      | 21.30       | 213.98       | 27.06       | 7.74        | 0.40         |                   | 0.00 |   |
| 12   | 0.00                                                               | 110.12    | 7.13               | 21.02           | 7.10         | 10233.00  | 2200.01   | 0009.43    | 13.00      | 20.03       | 210.19       | 20.33       | 7.72        | 0.40         |                   | 0.00 |   |
| 13   | 0.00                                                               | 109.12    | 7.22               | 21.34           | 6.74         | 9788.02   | 2169 10   | 7796 50    | 10 72      | 18.13       | 215.42       | 32.93       | 7.74        | 8.47         |                   | 0.00 |   |
| 14   | 0.00                                                               | 108.22    | 7 33               | 22.10           | 6 33         | 9576.76   | 2117.04   | 7402 78    | 9.49       | 17.04       | 222.94       | 34.56       | 7 76        | 8 46         |                   | 0.00 |   |
| 15   | 0.00                                                               | 105.23    | 6.64               | 21.28           | 4.70         | 8902.15   | 1784.56   | 7127.37    | 7.19       | 12.65       | 212.82       | 6.03        | 7.87        | 8.45         |                   | 0.00 |   |
| 16   | 0.00                                                               | 104.53    | 6.75               | 21.36           | 4.48         | 8766.33   | 1754.22   | 6840.11    | 6.60       | 12.05       | 213.56       | 7.41        | 7.88        | 8.45         |                   | 0.00 |   |
| 17   | 0.00                                                               | 103.89    | 6.86               | 21.40           | 4.27         | 8633.81   | 1724.79   | 6566.58    | 6.07       | 11.49       | 214.02       | 9.00        | 7.88        | 8.44         |                   | 0.00 |   |
| 18   | 0.00                                                               | 103.30    | 6.96               | 21.42           | 4.08         | 8504.48   | 1696.23   | 6306.34    | 5.59       | 10.97       | 214.24       | 10.79       | 7.89        | 8.44         |                   | 0.00 |   |
| 19   | 0.00                                                               | 103.84    | 7.00               | 22.31           | 3.97         | 8378.07   | 1668.27   | 6139.69    | 5.24       | 10.67       | 223.06       | 11.31       | 7.90        | 8.44         |                   | 0.00 |   |
| 20   | 0.00                                                               | 107.53    | 7.13               | 22.93           | 3.50         | 7742.03   | 1530.12   | 5343.76    | 3.92       | 9.40        | 229.31       | 13.55       | 7.92        | 8.46         |                   | 0.00 |   |
| 21   | 0.00                                                               | 110.90    | 7.26               | 23.28           | 3.13         | 7178.81   | 1409.62   | 4665.23    | 3.01       | 8.41        | 232.75       | 16.47       | 7.95        | 8.47         |                   | 0.00 |   |
| 22   | 0.00                                                               | 114.02    | 7.38               | 23.41           | 2.83         | 6677.81   | 1303.76   | 4082.92    | 2.38       | 7.62        | 234.10       | 20.74       | 7.96        | 8.48         |                   | 0.00 |   |
| 23   | 0.00                                                               | 116.91    | 7.01               | 23.38           | 2.09         | 6230.43   | 1210.16   | 3060.02    | 1.92       | 6.98        | 233.83       | 27.60       | 7.98        | 8.49         |                   | 0.00 |   |
| 24   | 0.00                                                               | 122.15    | 7.02               | 23.23           | 2.39         | 5469.05   | 1052.42   | 2769 10    | 1.39       | 5.08        | 232.20       | 30.49       | 7.99        | 0.00         |                   | 0.00 |   |
| 20   | 0.00                                                               | 124.13    | 7.78               | 23.03           | 2.22         | 5144 68   | 985.46    | 2/05.10    | 1.34       | 5.50        | 230.32       | 40.07       | 8.00        | 8.51         |                   | 0.00 |   |
| 27   | 0.00                                                               | 124.55    | 7.78               | 22.86           | 2.08         | 5144.68   | 985.46    | 2441.79    | 1.15       | 5.58        | 228.57       | 41.99       | 8.01        | 8.51         |                   | 0.00 |   |
| 28   | 0.00                                                               |           |                    | 22100           | 2.00         |           | 2 30110   |            |            | 0.00        | 220101       | 41100       | 0.01        | 0.01         |                   |      | - |
| 14 4 | N Source !                                                         | Summary / | Hydraulics S       | ummary / Temper | ature Output | : \ WQ Ou | tput / WQ | Min / WQ I | Max / Sedi | iment Fluxe | s / Diel Wat | er Column 🔏 | Diel Hyporh | eic / Travel | Time /            | •    |   |
| Read | y                                                                  |           |                    |                 |              |           |           |            |            |             |              |             |             |              | NUM               |      | 1 |

Figure 32. The last part of the Water Quality Output Worksheet.

#### 1.5.5 Water Quality Minimum WQ Output Worksheet

This worksheet summarizes the minimum concentration for the model's water-quality variables for each model reach. It has the same layout as the Water Quality Output Worksheet (Figure 30 and Figure 31).

#### 1.5.6 Water Quality Maximum WQ Output Worksheet

This worksheet summarizes the maximum concentration for the model's water-quality variables for each model reach. It has the same layout as the Water Quality Output Worksheet (Figure 30 and Figure 31).

#### 1.5.7 Sediment Flux Output Worksheet

This worksheet summarizes the reach-averaged and daily-averaged fluxes of oxygen and nutrients between the water and the underlying sediment compartment for each model reach. The fluxes due to diagenesis and hyporheic exchange are reported separately. Positive values of flux indicate a source to the water from the sediment or hyporheic zone. Negative values indicate a loss from the water column to the sediment or hyporheic zone.

| Microsoft Excel -                         | qual2kw5.xls                                          |                |                   |                   |                     |                 |                 |                    |                     |                      |                  |          |
|-------------------------------------------|-------------------------------------------------------|----------------|-------------------|-------------------|---------------------|-----------------|-----------------|--------------------|---------------------|----------------------|------------------|----------|
| 😰 Eile Edit View                          | 🕲 File Edit View Insert Format Tools Data Window Help |                |                   |                   |                     |                 |                 |                    |                     |                      | .∂×              |          |
|                                           |                                                       |                |                   |                   |                     |                 |                 |                    |                     |                      |                  |          |
|                                           |                                                       |                |                   | - · Z* A* 🛄       | -                   | 4 •<br>         |                 | 1                  |                     | 1Z                   |                  |          |
|                                           |                                                       |                |                   |                   |                     |                 |                 |                    |                     |                      |                  |          |
| 1 QUALZAW                                 |                                                       |                |                   |                   |                     |                 |                 |                    |                     |                      |                  |          |
| 2 Stream Water Quality Model Open Run Run |                                                       |                |                   |                   |                     |                 |                 |                    |                     |                      |                  |          |
| 3 Boulder Cre                             | 3 Boulder Creek (8/21/1987) File VBA Fortran          |                |                   |                   |                     |                 |                 |                    |                     |                      |                  |          |
| A Sediment F                              | Iux Summar                                            | v (reach-av    | erane daily.      | average)          |                     | ·               |                 |                    |                     |                      |                  |          |
| 5                                         |                                                       | y (readin ar   | craye adily       | average/          |                     |                 |                 |                    |                     |                      |                  |          |
| 6                                         |                                                       | Diagenesis flu | xes between water | column and sedim  | ent (positive is so | ource to water) | Hyporheic excha | nge flux between v | vater column and s  | ediment (positive is | source to water) |          |
| 7 Reach                                   | Distance                                              | ĎŎ             | fast CBOD         | NH4               | Inorg P             | NO3             | DO              | fast CBOD          | NH4                 | Inorg P              | NO3              |          |
| 8 Label                                   | x(km)                                                 | gO2/m^2/d      | gO2/m^2/d         | mgN/m^2/d         | mgP/m^2/d           | mgN/m^2/d       | gO2/m^2/d       | gO2/m^2/d          | mgN/m^2/d           | mgP/m^2/d            | mgN/m^2/d        |          |
| 9 MP 0.4                                  | 13.39                                                 | -4.30          | 0.16              | 724.71            | 0.54                | -27.31          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | 0        |
| 10                                        | 12.96                                                 | -4.12          | 0.12              | 711.34            | 0.55                | -30.55          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | <u>0</u> |
| 11                                        | 12.33                                                 | -3.84          | -0.04             | 685.59            | 0.54                | -36.50          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | 2        |
| 12                                        | 11.48                                                 | -3.39          | -0.30             | 660.96            | 0.52                | -42.19          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | <u></u>  |
| 13                                        | 0.03                                                  | -3.34          | -0.30             | 503.00            | 0.40                | -47.09          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             |          |
| 15                                        | 8.93                                                  | 2.30           | -0.72             | 577 57            | 0.33                | 42.59           | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | <u></u>  |
| 16 MP 3.5                                 | 8.08                                                  | -2.40          | -0.82             | 560.04            | 0.30                | -46.71          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | ó –      |
| 17                                        | 7.23                                                  | -2.01          | -0.82             | 546.41            | 0.26                | -54.83          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | ó        |
| 18                                        | 6.38                                                  | -1.89          | -0.78             | 531.66            | 0.25                | -57.35          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | ō l      |
| 19                                        | 5.53                                                  | -1.43          | -0.61             | 459.85            | 0.21                | -67.33          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | 0        |
| 20                                        | 4.68                                                  | -1.12          | -0.47             | 397.02            | 0.18                | -73.83          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | 0        |
| 21 MP 5.6                                 | 3.83                                                  | -0.91          | -0.35             | 341.86            | 0.16                | -77.73          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | 0        |
| 22                                        | 2.98                                                  | -0.78          | -0.27             | 291.96            | 0.14                | -76.99          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | 0        |
| 23                                        | 2.13                                                  | -0.66          | -0.20             | 258.83            | 0.12                | -85.03          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | 0        |
| 24                                        | 1.28                                                  | -0.61          | -0.16             | 229.82            | 0.11                | -86.49          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | 2        |
| 25 Last Segment                           | 0.43                                                  | -0.59          | -0.14             | 206.30            | 0.10                | -86.04          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.0              | 4        |
| 26 Terminus                               | 0.00                                                  | -0.59          | -0.14             | 206.30            | 0.10                | -86.04          | 0.00            | 0.00               | 0.00                | 0.00                 | 0.00             | 4        |
| 21                                        |                                                       | - I - C        | Township          | h. h. / 11/0 0. h | the law and la      |                 | - thursday      | Nature Column /    | Distance and size / | Travel Trave / Flag  |                  | <u>+</u> |
| H I I N X Source S                        | summary / Hydr                                        | aulics Summary | Temperature O     | utput X WQ Outp   | out / wQ Min / \    | WQ Max X Sedime | nt Huxes / Diel | water column 🔏     | Diel Hyporheic      | Travel Time / Flow   | 11-1             |          |
| Ready                                     |                                                       |                |                   |                   |                     |                 |                 |                    |                     |                      | NUM              | //       |

Figure 33. The Sediment Flux Worksheet.

#### 1.5.8 Diel Water Column, Hyporheic, and Fluxes Worksheets

These worksheets displays diel output for temperature and water quality constituent data for the water column and sediment/hyporheic zone, and water column fluxes of a selected reach. The user may also switch the dynamic diel plots to any other reach by first entering a new reach number in cell C4 (press the enter key after entering the new value), and then using the button labeled "change diel plots to this reach". The diel variation in pH, total suspended solids, total phosphorus, total nitrogen, and oxygen saturation are also displayed.

The Diel Water Column Worksheet also displays the growth limitation factors for bottom algae due to temperature, light, nitrogen, phosphorus, carbon, and the combined limitation from all factors. The Diel Hyporheic Worksheet also displays the diel sediment fluxes from diagenesis and hyporheic metabolism and mass transfer. The Diel Fluxes Worksheet displays water column fluxes for heat, dissolved oxygen, and inorganic carbon.

| Microsoft Excel - qu             | Microsoft Excel - qualZkw5.xls |                                |                  |                  |               |                    |                     |             |                 |                |                 |                  |
|----------------------------------|--------------------------------|--------------------------------|------------------|------------------|---------------|--------------------|---------------------|-------------|-----------------|----------------|-----------------|------------------|
| Ele Edit View In                 | nsert Format <u>T</u> ool      | ls <u>D</u> ata <u>W</u> indow | Help             |                  |               |                    |                     |             |                 |                | Type a question | for help 🔍 🗕 🗗 🕽 |
|                                  | 6 1 1 X B                      | 🙉 • 🛷 🗠 -                      | οι - 🔍 Σ • I     | 1 Z 1 Mm .       | 100% •        | 2                  |                     |             |                 |                |                 |                  |
|                                  |                                | <u> </u>                       |                  | F                | G             |                    | 1                   | 1           | K               | 1              | M               | N                |
| 1                                | U U                            | U                              | L                |                  | 0             |                    |                     | 5           | N               | -              | IVI             |                  |
| 2                                |                                |                                |                  |                  |               |                    |                     |             |                 |                |                 |                  |
| 3 Boulder Creek (8/              | (21/1987)                      |                                |                  |                  |               |                    | -                   |             |                 |                |                 |                  |
| 4 Reach                          | 17                             |                                | < char           | ige diel plots t | o this reach  | Open               | Run R               | un          |                 |                |                 |                  |
| 5 Above Coal Ck                  | Last Segment                   | Coal Creek                     |                  | • •              |               | File               | VBA Foi             | tran        |                 |                |                 |                  |
| 6                                |                                |                                |                  |                  |               |                    |                     |             |                 |                |                 |                  |
| 7                                |                                | Water column                   | Water column:    |                  |               |                    |                     |             |                 |                | ,               |                  |
| 8 <mark>reach 🗸 🗸 🗸 🗸 🗸 🗸</mark> | t (i 🗸                         | temp (C) 🔻                     | cond (umho 🔫     | ISS (mg/ 🔻       | DO(mg/ 🔻      | CBODs (mgO2/ 🕶     | CBODf (mgO2/ 🕶      | No(ugN/ 🔻   | NH4(ugN/ ▼      | NO3(ugN/ 👻     | Po (ugP/L ▼     | Inorg P (ugP/I 🔫 |
| 2202 17                          | 0.00                           | 14.88                          | 535.68           | 0.56             | 5.43          | 2.97               | 1.95                | 1341.17     | 904.05          | 2764.22        | 69.52           | 879.58           |
| 2203 17                          | 0.19                           | 14.78                          | 535.59           | 0.56             | 5.42          | 2.97               | 1.95                | 1341.00     | 922.89          | 2768.19        | 69.60           | 879.68           |
| 2204 17                          | 0.38                           | 14.68                          | 535.49           | 0.56             | 5.41          | 2.97               | 1.94                | 1340.81     | 941.99          | 2772.05        | 69.68           | 879.84           |
| 2205 17                          | 0.56                           | 14.59                          | 535.37           | 0.56             | 5.40          | 2.97               | 1.94                | 1340.61     | 961.27          | 2775.79        | 69.76           | 880.09           |
| 2206 17                          | 0.75                           | 14.50                          | 535.24           | 0.56             | 5.40          | 2.97               | 1.94                | 1340.40     | 980.69          | 2779.39        | 69.83           | 880.41           |
| 2207 17                          | 0.94                           | 14.42                          | 535.09           | 0.56             | 5.40          | 2.98               | 1.94                | 1340.19     | 1000.19         | 2782.84        | 69.90           | 880.79           |
| 2208 17                          | 1.13                           | 14.34                          | 534.93           | 0.56             | 5.40          | 2.98               | 1.94                | 1339.96     | 1019.71         | 2786.13        | 69.98           | 881.25           |
| 2209 17                          | 1.31                           | 14.26                          | 534.76           | 0.56             | 5.40          | 2.98               | 1.94                | 1339.72     | 1039.20         | 2789.27        | 70.05           | 881.77           |
| 2210 17                          | 1.50                           | 14.18                          | 534.57           | 0.57             | 5.40          | 2.98               | 1.94                | 1339.47     | 1058.60         | 2792.26        | 70.12           | 882.35           |
| 2211 17                          | 1.69                           | 14.10                          | 534.37           | 0.57             | 5.41          | 2.98               | 1.94                | 1339.21     | 1077.85         | 2795.08        | 70.19           | 883.00           |
| 2212 17                          | 1.88                           | 14.03                          | 534.15           | 0.57             | 5.41          | 2.98               | 1.94                | 1338.95     | 1096.89         | 2797.75        | 70.26           | 883.70           |
| 2213 17                          | 2.06                           | 13.96                          | 533.93           | 0.57             | 5.41          | 2.98               | 1.94                | 1338.68     | 1115.69         | 2800.27        | 70.33           | 884.45           |
| 2214 17                          | 2.25                           | 13.89                          | 533.69           | 0.57             | 5.42          | 2.98               | 1.94                | 1338.40     | 1134.18         | 2802.63        | 70.40           | 885.26           |
| 2215 17                          | 2.44                           | 13.83                          | 533.45           | 0.58             | 5.42          | 2.99               | 1.94                | 1338.11     | 1152.34         | 2804.83        | 70.47           | 886.12           |
| 2216 17                          | 2.63                           | 13.76                          | 533.19           | 0.58             | 5.42          | 2.99               | 1.94                | 1337.82     | 1170.13         | 2806.84        | 70.54           | 887.02           |
| 2217 17                          | 2.81                           | 13.70                          | 532.93           | 0.58             | 5.43          | 2.99               | 1.94                | 1337.52     | 1187.50         | 2808.67        | 70.61           | 887.97           |
| 2218 17                          | 3.00                           | 13.64                          | 532.65           | 0.59             | 5.43          | 2.99               | 1.94                | 1337.22     | 1204.45         | 2810.28        | 70.67           | 888.95           |
| 2219 17                          | 3.19                           | 13.58                          | 532.37           | 0.59             | 5.44          | 2.99               | 1.95                | 1336.91     | 1220.95         | 2811.66        | 70.74           | 889.98           |
| 2220 17                          | 3.38                           | 13.53                          | 532.08           | 0.59             | 5.44          | 2.99               | 1.95                | 1336.60     | 1236.99         | 2812.77        | 70.81           | 891.05           |
| Source sum                       | mary A Hydraulics              | Summary / Ter                  | nperature Output | X wy Outpu       | ic X wQ Min , | ( vvQ max / Sedime | and Huxes & Diel Wa | ter column, | ( Diel Hypornei | C A Travel Tim | e X How X ve I  |                  |
| Ready                            |                                |                                |                  |                  |               |                    |                     |             |                 |                |                 | NUM              |

Figure 34. The Diel Output Worksheet.

## 1.6 PLOTS

These are a series of Excel charts that present model output in graphical form. These are identified by rose (spatial) and blue (diel) tabs.

#### 1.6.1 Spatial Charts

QUAL2K displays a series of charts that plot the model output and data versus distance (km) along the river.

Figure 34 shows an example of the plot for dissolved oxygen. The black line is the simulated mean DO (as displayed on the WQ Worksheet), whereas the dashed red lines are the minimum (WQ Min Worksheet) and maximum (WQ Max Worksheet) values, respectively. The black squares are the measured mean data points that were entered on the WQ Data Worksheet. The white squares are the minimum (WQ Min Worksheet) and maximum (WQ Max Worksheet) data points, respectively. The plot is labeled with the river name and the simulation date. Notice that this plot also displays the oxygen saturation as a dashed blue line.



#### Figure 35. The plot of dissolved oxygen versus distance downstream in km.

The following series of variables are plotted:

#### **Hydraulics Plots:**

- Travel Time
- Flow
- Velocity
- Depth
- Reaeration

**Temperature and state-variable plots:** 

- Temperature
- Conductivity
- ISS (Inorganic suspended solids)
- Dissolved oxygen
- Detritus
- Slow CBOD
- Fast CBOD
- DON (Dissolved organic nitrogen)
- NH4 (Ammonia nitrogen)
- NO3 (Nitrate nitrogen)
- DOP (Dissolved organic phosphorus)
- Inorganic phosphorus
- Phytoplankton
- Bot Pl gD per m2 (Bottom algae in units of gD/m<sup>2</sup>)
- Pathogen
- Alkalinity
- pH

Additional State-variable plots:

- Bot Pl mgA per m2 (Bottom algae in units of mgA/m<sup>2</sup>)
- CBODu
- NH3
- TN and TP
- TSS

Sediment-water plots:

- SOD
- CH4 Sed Flux
- NH4 Sed Flux
- Inorg P Sed Flux

#### 1.6.2 Diel Charts

QUAL2K displays a series of charts that plot the model output and data versus time of day (in hours) for temperature and the model state variables.

Figure 35 shows an example of the diel plot for dissolved oxygen. The black line is the simulated pH (as displayed on the Diel Output Worksheet). The black squares are the measured data points that were entered on the Diel Data Worksheet. The plot is labeled with the river name, the date and the name of the reach that is plotted. Notice that this plot also displays the oxygen saturation as a dashed blue line.



Figure 36. The diel plot of dissolved oxygen versus time of day.



## Annual Average Temperature

Average daily temperature from January to December.

| Emissions  | Time          | Value         | Change  |
|------------|---------------|---------------|---------|
| Historical | 1990          | 42.6 °F       |         |
| Low        | 2010-<br>2039 | 45.2+/-0.7 °F | +2.5 °F |
| Low        | 2040-<br>2069 | 47.2+/-1.2 °F | +4.5 °F |
| Low        | 2070-<br>2099 | 48.2+/-1.4 °F | +5.6 °F |
| High       | 2010-<br>2039 | 45.5+/-0.7 °F | +2.9 °F |
| High       | 2040-<br>2069 | 48.7+/-1.4 °F | +6.1 °F |
| High       | 2070-<br>2099 | 52.3+/-2.0 °F | +9.7 °F |

## Jun.-Aug. Maximum Temperature

| Average daily maximum             | Emissions  | Time          | Value         | Change   |
|-----------------------------------|------------|---------------|---------------|----------|
| temperature from Julie to August. | Historical | 1990          | 75.1 °F       |          |
|                                   | Low        | 2010-<br>2039 | 78.3+/-0.9 °F | +3.1 °F  |
|                                   | Low        | 2040-<br>2069 | 80.7+/-1.5 °F | +5.5 °F  |
|                                   | Low        | 2070-<br>2099 | 81.9+/-1.7 °F | +6.8 °F  |
|                                   | High       | 2010-<br>2039 | 78.7+/-0.9 °F | +3.6 °F  |
|                                   | High       | 2040-<br>2069 | 82.7+/-1.8 °F | +7.6 °F  |
|                                   | High       | 2070-<br>2099 | 87.2+/-2.6 °F | +12.1 °F |

Data Source: MACAv2-METDATA

## Warm Days (above 86°F (30°C))

Average number of days each year in which the daily maximum temperature is above 86°F (30°C).

| Emissions  | Time          | Value            | Change     |
|------------|---------------|------------------|------------|
| Historical | 1990          | 16.6 days        |            |
| Low        | 2010-<br>2039 | 26.9+/-2.8 days  | +10.2 days |
| Low        | 2040-<br>2069 | 36.3+/-5.5 days  | +19.7 days |
| Low        | 2070-<br>2099 | 42.4+/-6.7 days  | +25.7 days |
| High       | 2010-<br>2039 | 28.6+/-2.8 days  | +11.9 days |
| High       | 2040-<br>2069 | 45.0+/-6.8 days  | +28.3 days |
| High       | 2070-<br>2099 | 66.1+/-10.8 days | +49.5 days |

## Freeze Free Days

| Average number of days each year | Emissions  | Time          | Value                | Change     |
|----------------------------------|------------|---------------|----------------------|------------|
| temperature remains above        | Historical | 1990          | 175.2 days           |            |
| freezing at 32°F (0°C).          | Low        | 2010-<br>2039 | 198.7+/-7.6 days     | +23.5 days |
|                                  | Low        | 2040-<br>2069 | 216.6+/-13.0<br>days | +41.4 days |
|                                  | Low        | 2070-<br>2099 | 227.6+/-16.0<br>days | +52.4 days |
|                                  | High       | 2010-<br>2039 | 201.6+/-8.4 days     | +26.4 days |
|                                  | High       | 2040-<br>2069 | 230.5+/-15.5<br>days | +55.3 days |
|                                  | High       | 2070-<br>2099 | 262.8+/-18.6<br>days | +87.6 days |

Data Source: MACAv2-METDATA

## **Annual Precipitation**

Total precipitation from January to December.

| Emissions  | Time          | Value         | Change  |
|------------|---------------|---------------|---------|
| Historical | 1990          | 34.1 in       |         |
| Low        | 2010-<br>2039 | 35.4+/-1.3 in | +1.3 in |
| Low        | 2040-<br>2069 | 35.5+/-1.1 in | +1.4 in |
| Low        | 2070-<br>2099 | 36.0+/-1.6 in | +1.9 in |
| High       | 2010-<br>2039 | 34.9+/-1.1 in | +0.7 in |
| High       | 2040-<br>2069 | 35.9+/-1.6 in | +1.8 in |
| High       | 2070-<br>2099 | 37.1+/-1.9 in | +3.0 in |

## Oct.-Mar. Precipitation

Total precipitation from October to March.

| Emissions  | Time          | Value         | Change  |
|------------|---------------|---------------|---------|
| Historical | 1990          | 20.9 in       |         |
| Low        | 2010-<br>2039 | 21.8+/-0.7 in | +0.9 in |
| Low        | 2040-<br>2069 | 22.1+/-0.8 in | +1.2 in |
| Low        | 2070-<br>2099 | 22.4+/-1.0 in | +1.5 in |
| High       | 2010-<br>2039 | 21.5+/-0.9 in | +0.5 in |
| High       | 2040-<br>2069 | 22.3+/-1.0 in | +1.4 in |
| High       | 2070-<br>2099 | 23.6+/-1.0 in | +2.7 in |

#### Data Source: MACAv2-METDATA

## Apr.-Sept. Precipitation

Total precipitation from April to September.

| Emissions  | Time          | Value         | Change  |
|------------|---------------|---------------|---------|
| Historical | 1990          | 13.2 in       |         |
| Low        | 2010-<br>2039 | 13.5+/-0.8 in | +0.3 in |
| Low        | 2040-<br>2069 | 13.4+/-0.9 in | +0.2 in |
| Low        | 2070-<br>2099 | 13.6+/-1.1 in | +0.4 in |
| High       | 2010-<br>2039 | 13.4+/-0.6 in | +0.2 in |
| High       | 2040-<br>2069 | 13.6+/-1.1 in | +0.4 in |
| High       | 2070-<br>2099 | 13.5+/-1.4 in | +0.3 in |

## Apr. 1st Snow

Amount of water contained in the snowpack on April 1st.

| Emissions  | Time          | Value         | Change  |
|------------|---------------|---------------|---------|
| Historical | 1990          | 13.6 in       |         |
| Low        | 2010-<br>2039 | 12.0+/-0.8 in | -1.6 in |
| Low        | 2040-<br>2069 | 10.6+/-0.7 in | -3.0 in |
| Low        | 2070-<br>2099 | 9.4+/-1.1 in  | -4.2 in |
| High       | 2010-<br>2039 | 12.0+/-0.8 in | -1.7 in |
| High       | 2040-<br>2069 | 9.6+/-1.4 in  | -4.0 in |
| High       | 2070-<br>2099 | 6.1+/-1.6 in  | -7.5 in |

Data Source: VIC-MACAv2-LIVNEH

| May 1st Snow                     | _          |               |                    |               |
|----------------------------------|------------|---------------|--------------------|---------------|
| Amount of water contained in the | Emissions  | Time          | Value              | Change        |
| showpack off May 1st.            | Historical | 1990          | 11.5 in            |               |
|                                  | Low        | 2010-<br>2039 | 9.1+/-1.0 in       | -2.4 in       |
|                                  | Low        | 2040-<br>2069 | 7.5+/-0.7 in       | -4.0 in       |
|                                  | Low        | 2070-<br>2099 | 5.8+/-1.1 in       | -5.7 in       |
|                                  | High       | 2010-<br>2039 | 9.0+/-0.9 in       | -2.5 in       |
|                                  | High       | 2040-<br>2069 | 6.2+/-1.2 in       | -5.3 in       |
|                                  | High       | 2070-<br>2099 | 3.0+/-1.0 in       | -8.5 in       |
|                                  |            |               | Data Source: VIC-N | IACAv2-LIVNEH |

## Jul.-Sept. Soil Moisture

Average amount of water contained in the upper meters of soil from July to September.

| Emissions  | Time          | Value         | Change  |
|------------|---------------|---------------|---------|
| Historical | 1990          | 20.7 in       |         |
| Low        | 2010-<br>2039 | 19.4+/-0.4 in | -1.3 in |
| Low        | 2040-<br>2069 | 18.7+/-0.5 in | -2.0 in |
| Low        | 2070-<br>2099 | 18.4+/-0.7 in | -2.3 in |
| High       | 2010-<br>2039 | 19.5+/-0.5 in | -1.2 in |
| High       | 2040-<br>2069 | 18.2+/-0.7 in | -2.6 in |
| High       | 2070-<br>2099 | 17.1+/-1.1 in | -3.6 in |

Data Source: VIC-MACAv2-LIVNEH

## Heat Accumulation (above 32°F (0°C))

Measure of the heat accumulation in plants, calculated as the annual daily sum of degrees in which the average daily temperature exceeds 32°F (0°C), an important temperature threshold for species in achieving different phases in their life cycles. This metric is also called the cumulative degree days.

| Emissions  | Time  | Value           | Change     |
|------------|-------|-----------------|------------|
| Historical | 1990  | 4750.4 GDD (°F) |            |
| Low        | 2010- | 5450.9+/-190.0  | +700.5 GDD |
|            | 2039  | GDD (°F)        | (°F)       |
| Low        | 2040- | 6017.4+/-361.4  | +1267.0    |
|            | 2069  | GDD (°F)        | GDD (°F)   |
| Low        | 2070- | 6354.4+/-442.5  | +1604.0    |
|            | 2099  | GDD (°F)        | GDD (°F)   |
| High       | 2010- | 5544.3+/-196.3  | +793.9 GDD |
|            | 2039  | GDD (°F)        | (°F)       |
| High       | 2040- | 6492.4+/-436.4  | +1741.9    |
|            | 2069  | GDD (°F)        | GDD (°F)   |
| High       | 2070- | 7649.1+/-667.4  | +2898.7    |
|            | 2099  | GDD (°F)        | GDD (°F)   |

## Heat Accumulation (above 40°F (3°C))

| Measure of the heat accumulation                                                                                | Emissions  |   |
|-----------------------------------------------------------------------------------------------------------------|------------|---|
| daily sum of degrees in which the                                                                               | Historical | 1 |
| average daily temperature exceeds 40°F (3°C), an important                                                      | Low        | 2 |
| temperature threshold for species<br>in achieving different phases in<br>their life cycles. This metric is also | Low        | 2 |
| called the cumulative degree days.                                                                              | Low        | 2 |

| Emissions  | Time  | Value           | Change  |
|------------|-------|-----------------|---------|
| Historical | 1990  | 3456.2 GDD (°F) |         |
| Low        | 2010- | 4052.2+/-164.1  | +596.0  |
|            | 2039  | GDD (°F)        | GDD(°F) |
| Low        | 2040- | 4538.0+/-315.2  | +1081.7 |
|            | 2069  | GDD (°F)        | GDD(°F) |
| Low        | 2070- | 4829.0+/-382.5  | +1372.8 |
|            | 2099  | GDD (°F)        | GDD(°F) |
| High       | 2010- | 4132.4+/-167.7  | +676.1  |
|            | 2039  | GDD (°F)        | GDD(°F) |
| High       | 2040- | 4956.6+/-382.4  | +1500.4 |
|            | 2069  | GDD (°F)        | GDD(°F) |
| High       | 2070- | 5978.7+/-604.1  | +2522.5 |
|            | 2099  | GDD (°F)        | GDD(°F) |

#### Data Source: MACAv2-METDATA

## Heat Accumulation (above 45°F (5°C))

Measure of the heat accumulation in plants, calculated as the annual daily sum of degrees in which the average daily temperature exceeds 45°F (5°C), an important temperature threshold for species in achieving different phases in their life cycles. This metric is also called the cumulative degree days.

| Emissions  | Time  | Value           | Change  |
|------------|-------|-----------------|---------|
| Historical | 1990  | 2726.8 GDD (°F) |         |
| Low        | 2010- | 3255.2+/-146.8  | +528.4  |
|            | 2039  | GDD (°F)        | GDD(°F) |
| Low        | 2040- | 3689.1+/-282.8  | +962.3  |
|            | 2069  | GDD (°F)        | GDD(°F) |
| Low        | 2070- | 3947.7+/-340.7  | +1220.9 |
|            | 2099  | GDD (°F)        | GDD(°F) |
| High       | 2010- | 3327.6+/-149.4  | +600.8  |
|            | 2039  | GDD (°F)        | GDD(°F) |
| High       | 2040- | 4068.5+/-343.6  | +1341.7 |
|            | 2069  | GDD (°F)        | GDD(°F) |
| High       | 2070- | 4993.4+/-553.0  | +2266.6 |
|            | 2099  | GDD (°F)        | GDD(°F) |

## Heat Accumulation (above 50°F (10°C))

Measure of the heat accumulation in plants, calculated as the annual daily sum of degrees in which the average daily temperature exceeds 50°F (10°C), an important temperature threshold for species in achieving different phases in their life cycles. This metric is also called the cumulative degree days.

| Emissions  | Time  | Value           | Change  |
|------------|-------|-----------------|---------|
| Historical | 1990  | 1321.4 GDD (°F) |         |
| Low        | 2010- | 1694.6+/-109.0  | +373.1  |
|            | 2039  | GDD (°F)        | GDD(°F) |
| Low        | 2040- | 2010.3+/-209.9  | +688.9  |
|            | 2069  | GDD (°F)        | GDD(°F) |
| Low        | 2070- | 2196.3+/-250.2  | +874.9  |
|            | 2099  | GDD (°F)        | GDD(°F) |
| High       | 2010- | 1749.1+/-109.2  | +427.6  |
|            | 2039  | GDD (°F)        | GDD(°F) |
| High       | 2040- | 2298.9+/-256.0  | +977.4  |
|            | 2069  | GDD (°F)        | GDD(°F) |
| High       | 2070- | 3003.7+/-430.5  | +1682.2 |
|            | 2099  | GDD (°F)        | GDD(°F) |

Data Source: MACAv2-METDATA

## Growing Season Length

| <u> </u>                        |            |               |                      |             |
|---------------------------------|------------|---------------|----------------------|-------------|
| Average number of consecutive   | Emissions  | Time          | Value                | Change      |
| daily temperature remains above | Historical | 1990          | 95.2 days            |             |
| freezing at 32°F (0°C).         | Low        | 2010-<br>2039 | 120.4+/-9.6 days     | +25.2 days  |
|                                 | Low        | 2040-<br>2069 | 138.8+/-16.1<br>days | +43.6 days  |
|                                 | Low        | 2070-<br>2099 | 140.6+/-18.2<br>days | +45.4 days  |
|                                 | High       | 2010-<br>2039 | 124.0+/-10.8<br>days | +28.8 days  |
|                                 | High       | 2040-<br>2069 | 152.2+/-18.3<br>days | +57.0 days  |
|                                 | High       | 2070-<br>2099 | 175.3+/-22.5<br>days | +80.1 days  |
|                                 |            |               | Data Source: MACA    | Av2-METDATA |

### Data Sources:

MACAv2-METDATA: MACAv2-METDATA: downscaled climate data from CMIP5 bias corrected to climate observations from METDATA dataset.

VIC-MACAv2-LIVNEH: VIC-MACAv2-LIVNEH: modeled hydrology data using the VIC hydrology model forced with climate data from MACAv2-LIVNEH bias corrected to climate observations from LIVNEH dataset.

## Climate Toolbox Summaries THE CLIMATE TOOLBOX



The **Climate Toolbox** is a collection of tools that provide maps and graphs of climate and hydrology data so there is no need to download or process the data yourself to obtain the important information the data contain.



Past Climate Observations (1979-yesterday)

## **Regional Climate**

Maps of climate metrics provide a regional view of past and real-time conditions, forecasts and projections.



Climate Forecasts (Next 1-7 months)

## Local Climate

Graphs and dashboards of location-specific climate information illustrate past and real-time conditions, forecasts and projections.



Climate Projections (2030-2099)

## **Downloads**

Downloads of the visualizations or data can be integrated into your own analysis or presentations, or used in the decision-making process.

#### Produced by











## **CLIMATE TOOLBOX**

# The **Toolbox**



## Data

Experimental Data: The tools primarily use the experimental, gridded gridMET data from the University of California, Merced and variable infiltration capacity (VIC) hydrology dataset from the University of Washington. These high resolution (4-km), real-time data yield models of hydrology, fire danger, and soil moisture (Palmer Drought Severity Index).

Official Data: Some tools use official station observations and gridded model data from NRCS, USGS, NASA and NOAA, including streamflow, groundwater levels, reservoir levels, snow water equivalent, and soil moisture metrics.

Application-Specific Metrics: Several metrics in the tools can be used for decision making related to agriculture, drought, fire danger, and water availability.

## Climate

Water

LEARN MORE

Temperature Precipitation Humidity Solar radiation Wind speed

Snow water equivalent Soil moisture Runoff Streamflow Reservoir levels Groundwater levels **Drought indices** 

## Agriculture

Growing degrees days Palmer Drought Severity Index

## **Fire danger**

Days since rain Burning index Energy release component Vapor pressure deficit

Learn about other tools in the Tool Summaries series or read about how others are using the toolbox in our **Case Study series** at <u>ClimateToolbox.org</u>. Preliminary Review Draft

## Appendix C: Interior Columbia Basin Stream Type Chinook Salmon and Steelhead Populations: Habitat Intrinsic Potential Analysis

Thomas Cooney & Damon Holzer (NWFSC) March 16, 2006

| Introduction                                                 | C-2  |
|--------------------------------------------------------------|------|
| Methods                                                      | C-2  |
| Fish Density Data Analysis                                   | C-4  |
| Juvenile Abundance Transects                                 | C-4  |
| GIS Data Acquisition and Modeling                            | C-6  |
| Stream Gradient                                              | C-6  |
| Channel Bankfull and Wetted Width                            | C-7  |
| Valley Confinement                                           | C-7  |
| Determining Upstream and Downstream Extents                  | C-8  |
| Natural Barriers                                             | C-8  |
| Stream Width                                                 | C-8  |
| Water Temperature                                            | C-9  |
| Reach Level Habitat Potential Ratings                        | C-10 |
| Stream Width                                                 | C-10 |
| Valley Confinement                                           | C-10 |
| Gradient                                                     | C-11 |
| Riparian Vegetation                                          | C-11 |
| Initial Rating Assignments                                   | C-12 |
| Review and Modification Including Additional Habitat Screens | C-12 |
| Habitat Screens-Sedimentation                                | C-12 |
| Stream Velocity                                              | C-13 |
| John Day Gravel Assessment stream confinement and gradient   | C-14 |
| Middle Fork Salmon and Upper Columbia Redd Surveys           | C-14 |
| Species Specific Ratings                                     | C-16 |
| Yearling Chinook                                             | C-16 |
| Steelhead                                                    | C-17 |
| Population Totals: Historical Potential Spawning Habitat     | C-18 |
| Tributaries Supporting Two Chinook ESUs                      | C-18 |
| Upper Columbia Spring Chinook                                | C-18 |
| Snake River Spring/Summer Chinook                            | C-19 |
| Literature Cited                                             |      |

### Introduction

Interior Columbia River Basin (ICB) salmon and steelhead have evolved to take advantage of a wide diversity of habitats. Climatic, geological, topographic, and landcover patterns have produced a robust evolutionary trajectory in streams flowing through vastly disparate terrestrial environments. This opportunity for uniquely adapted populations has created a challenge for identifying, both qualitatively and quantitatively, intrinsic habitats within large watersheds such as the ICB. Though salmon and steelhead occupy streams flowing through a wide spectrum of upland environments, their freshwater habitat preferences are limited to a comparatively narrow set of hydrological and streambed conditions (Reiser and Bjornn, 1979). However, it is the interaction between apposite flow path structure and adjacent terrestrial geomorphologies that determines intrinsic suitability. Ultimately, site specific stream reach characteristics and salmonid habitat preferences are influenced negatively and positively by both adjacent and out of view landscapes.

The analysis described below is intended to provide a simple and objective overview of the distribution of historical production potential across the tributary habitats used by Interior Columbia basin yearling type Chinook and steelhead populations. The initial iterations of our approach were patterned after an analysis of Puget Sound Chinook habitat potential developed by the Puget Sound Technical Recovery Team. That approach relied on empirically derived relationships between salmon spawner densities and channel characteristics (Montgomery et al., 1999). In the Puget Sound Chinook application, production potential was expressed in terms of spawners per unit reach length and related to a set of physical reach level measures: stream width, stream gradient, valley width and vegetative cover. In combination these factors were related to the relative amount of pool habitat, an important determinant of relative spawning and juvenile density. Similar sets of reach level habitat measures have been used to map relative production potential for coho and steelhead in Oregon coastal watersheds (Nickelson, et al., 1992, Burnett, 2001) and for steelhead in the Willamette River drainage (Steel, 2004).

## Methods

We developed a reach level intrinsic potential (IP) analysis for application to stream type Chinook and steelhead spawning reaches assess habitat quality within currently and historically occupied portions of the ICB. This approach has enabled us to formulate a baseline perspective from which we can assess contemporary changes to productivity. Utilizing established relationships between habitat type, stream structure, landscape processes, and spawning use, we built a locally adapted Geographic Information System (GIS) based model incorporating regional spatial data, fisheries surveys, and professional knowledge. The GIS was used for the development, presentation, management and modeling of spatially referenced data. Modeled geomorphological characteristics were assigned to unique categories comprised of gradient, width, and valley confinement, from which additional stream and landform modifiers were incorporated to adjust intrinsic potential. We then evaluated these classes against known

Appendix C

#### Preliminary Review Draft

distributional densities in order to test modeled habitat quality. Results from these comparisons were used to weight and summarize reach areas for the entire stream network within the ICB based on relative Chinook salmon and steelhead habitat preferences.

We used the following process to develop the historical intrinsic potential analysis for Interior Columbia basin tributary habitats:

- 1. <u>Fish density vs. habitat characteristics</u>: Reviewed literature and available data sets relating simple measures of habitat characteristics to production potential for salmon and steelhead.
- 2. <u>GIS data acquisition</u>: Acquired and developed GIS data describing key habitat measures related to salmon and steelhead production potential for ICB ESU populations as determined in step 1.
- 3. <u>Determining boundaries</u>: Identified and applied criteria for defining the upper and lower boundaries to Chinook salmon and steelhead production within ICB watersheds using natural barrier locations and other habitat factors.
- 4. <u>Initial classification</u>: Classified stream reaches based on habitat characteristics (stream width, gradient, valley confinement) into categories representing varying levels of relative productivity. These habitat classes where then used to attribute spawning reaches, with respect to modeled salmon and steelhead production potentials, as high, moderate, low, negligible or none.
- 5. <u>Preliminary validation and updating</u>: Compared results from step 4 against specific measures of relative abundance of spawning adults and provided output to regional fisheries biologists for review. Additional habitat factors (reflected in GIS layers) were incorporated into the IP analysis to improve the correspondence of modeled distributions with empirical data and field observations.
- 6. <u>Finalizing and applying reach level ratings</u>: Finalized relative spawning potential rating categories as a function of physical habitat characteristics, and generated weighted totals by population and associated sub areas.
Preliminary Review Draft

## **Fish Density Data Analysis**

Our preliminary efforts focused on identifying published data and reports that related simple measures of habitat characteristics to stream type Chinook salmon and steelhead production. We found that direct measures of life stage specific productivity within particular reach characteristics are rarely available at fine scales or distributed across multiple watersheds. In fact, there is no single dataset with a consistent measure of relative abundance across the full range of environmental conditions found within ICB streams. As a result, we based our investigation on a set of discrete regional data sets. In general, we utilized spawning surveys, habitat studies, and stream transect juvenile sampling data to describe relative densities of stream type Chinook and steelhead in geospatially specific stream reaches.

#### Juvenile Abundance Transects

Initially, analyses relating densities of juveniles measured at a consistent life stage to habitat characteristics were used to assign relative intrinsic potential ratings and identify important structural elements within stream reaches. Studies generally show that for both yearling and stream type Chinook, juvenile densities are typically highest in relatively low gradient, unconfined stream reaches with well defined pool structure (e.g., Hillman& Miller, 2002, Petrosky & Holubetz, 1988), while steeper gradient relatively confined tributary reaches typically support the highest relative densities of juvenile steelhead (e.g., Slaney et al., 1980, Petrosky & Holubetz, 1988, Burnett, 2001). Steelhead have also been reported to use braided mainstem reaches for spawning and rearing, given appropriate flow, temperature and substrate conditions (e.g., ODFW, 1972).

*Idaho Parr Data*. Using juvenile transect survey data collected by the Idaho Department of Fish and Game (IDFG), we completed additional analyses comparing juvenile abundance to stream habitat. In the early to mid 1980's, IDFG biologists compiled a baseline data set for evaluating the effectiveness of habitat improvement projects. The data set included both measures of parr densities (Chinook and steelhead/rainbow trout) and habitat measures. The IDFG studies (as concluded (as discussed above) that Chinook parr densities were the highest in low gradient stream sections in relatively wide valleys and that steelhead/rainbow juvenile densities were the highest in steeper gradient, more confined reaches (e.g., Petrosky & Holubetz, 1988). The original analyses focused on data collected in years with relatively high parental escapements to minimize the confounding effect of relatively low seeding (Petrosky and Holubetz, 1988). We used data from naturally seeded areas from that parsed data set for the current analyses. For stream type Chinook (figure 1) and steelhead (figure 2), parr densities were plotted against gradient and stream width within two valley width categories corresponding to B channel and C channel designations (Rosgen, 1985) used in the original study. We found that wider stream reaches known to be used for spawning and rearing by steelhead were not well represented in the Idaho baseline study. A second data set, compiled by the Washington Department of Game for larger rivers in western Washington and Puget Sound, was also analyzed to provide some insight into production relationships in larger systems.

Appendix C



Figure 1. Idaho Spring/Summer Chinook. Juvenile densities vs. stream gradient for naturally seeded baseline monitoring areas in the Salmon and Clearwater River systems. Parsed data set—low seeding years not included (Petrosky and Holubetz, 1988). Dotted lines indicate assigned category boundaries.



Figure 2. Idaho Steelhead. Juvenile densities vs. stream gradient for naturally seeded baseline monitoring areas in the Salmon and Clearwater River systems. Parsed data set- low seeding years not included (Petrosky and Holubetz, 1988). Dotted lines indicate assigned category boundaries.

The results from these investigations became the foundation for our habitat modeling scheme and helped identify the structural elements that would be required for additional analyses. Specifically, it became quite apparent that accurate measures of stream width, gradient, and valley confinement would be crucial for assessing intrinsic potential within

the GIS. Developing models and acquiring data that describe these variables at a reasonable scale became our next task.

## **GIS Data Acquisition and Modeling**

The National Hydrography Dataset (NHD) 1:100,000-scale networked reach model was used as the base stream layer for our intrinsic potential analysis. The NHD's layer contains all hydrographic features, including naturally flowing reaches and anthropogenic constructs such as irrigation canals, ditches, and laterals. Using only natural flow paths from the networked data, we built a linearly referenced stream layer comprised of contiguous 200-meter stream reaches. Segments were *addressed* using a "from", "to", and "id" field by dividing each unique stream into a continuous set of 200-meter tabular entries (stream length / 200 = number of events per stream), from which linear referencing processes were used to geocode address attributes within the hydrography network. This segment length was chosen to facilitate our classification of salmonid barriers, as a 200-meter reach with a 20% gradient has been found to be impassable for upstream migrants (Cramer, 2001; WDNR, 2002). These 200-meter hydrosections have become the basic unit of measurement for all ICTRT intrinsic potential summaries and analyses.

#### <u>Stream Gradient</u>

Stream gradient has been found to be an important habitat qualifier for salmonid spawning preference, and is determined by the change in vertical distance over reach length. As a flow path characteristic, gradient functions both as an indicator of upstream limit on migration (Cramer, 2001; WDNR, 2002) and as a predictor of habitat quality within accessible reaches (Cramer, 2001; Lunetta *et al.*, 1997). Within the GIS, we used linear referencing techniques and zonal statistics to generate elevation values for all 200-meter stream segments. The minimum (downstream-most point) and maximum (upstream-most point) stream elevations were calculated using the USGS's National Elevation Dataset (NED) 10-meter horizontal resolution digital elevation models (DEMs).

Although spatial agreement is relatively high between the NHD's 100k hydrography and the NED, we had to augment standard neighborhood analysis techniques recognizing that even small misalignments can introduce large errors into the gradient calculations. We developed a procedure using Euclidean geometry to assign elevations for each segment in order to resolve the relatively small geographic differences between the DEM flow paths and our NHD derived 200-meter reach segments. Within each stream length, 10 equally spaced positions were linearly referenced to the reach and were given a unique code. We then calculated a contiguous zone for each point and computed a zonal statistical summary comparing the Euclidean output to the DEM. From these data, the minimum value determined for each zone was assumed to be the elevation of the DEM flow path, and therefore assignable to the vector stream layer for computational accuracy. An additional summary was generated for each unique 200-meter stream segment in order to obtain the minimum value from the previous calculation that used

intervening points. Using the measures from this output as the upstream and downstream elevations, we attributed all linear features with their computed gradient.

#### **Channel Bankfull and Wetted Width**

Stream widths are an important metric for determining the amount of available habitat and the upstream extent of migrants. In our analysis, we have utilized both bankfull and wetted widths as a means of recognizing spawning time differences between stream type Chinook and steelhead. Because steelhead spawn near the peak of the hydrograph, and conversely, stream type Chinook salmon spawn near its lowest point, it was more accurate to assign different stream dimensions for both species. Therefore, we have applied bankfull width to steelhead and wetted width to stream type Chinook salmon, and all measurements relating to specie specific habitat totals include these adjustments in the calculations.

Stream width is predominantly a function of stream discharge, which can be estimated from a combination of drainage area and precipitation (Leopold *et al.*, 1964; Sumioka *et al.* 1998). Therefore, utilizing discharge as a proxy for stream width, we estimated stream dimensions from watershed size and mean annual precipitation. We used measured widths from field based stream measurements within the Columbia River basin to develop equations for estimating bankfull and wetted width (ODFW, 1999; WDOE, 2004). Upstream drainage area and accumulated average annual precipitation for each width measurement were derived from 60-meter DEMs (resampled from the 10-meter NED) and a 4-km grid of mean annual precipitation (1971-2000) (NCDC, 2004).

We conducted an analysis using linear regression between measured stream width and the accumulated precipitation and basin size metrics. For bankfull width, we applied the appropriate channel measurement within the field data; for wetted width, only measurements taken during August and September were included to accurately represent stream type Chinook salmon spawning times. Both analyses yielded statistically significant relationships between the basin size, precipitation, and stream width values and the resulting regression model was applied to the 200-meter reach data.

#### Valley Confinement

We estimated mean valley width for each reach by projecting 20 transects across the DEM-defined valley floor in each 200-m segment, and then calculating the mean valley width of the segment. The horizontal extent of the transect (valley width) was determined using flood height calculations from previous studies (Hall, 2007). As with our gradient calculations, we accounted for spatial discrepancies between the NHD 100k streams and the DEM flow path by calculating floodplain width based on the DEM flow path, and then assigning the calculated floodplain width to the 200-meter stream segments for subsequent data analyses.

Specifically, the valley width was calculated by creating a Euclidean based layer whose value was inherited from and spatially centered to the flow path elevation for each transect. Additionally, the flood height value was added to this grid layer, and the

resulting calculation was subtracted from the NED. The results in this output grid showed the extent of the floodplain (based on the assigned flood height) where the values were less than or equal to zero. These valley areas were then summarized for all 20 transects independently, from which a mean value was generated and attributed to each 200-meter segment.

## **Determining Upstream and Downstream Extents**

Upstream limits on the potential use of tributary habitat for spawning and rearing by salmon and steelhead were defined in terms of physical barriers, stream gradient, width, and water temperature. Reaches above documented natural obstructions and DEM calculated gradient barriers were excluded as production areas. Stream reaches with gradients above 5% were also excluded as spawning/rearing areas for yearling Chinook salmon populations based on expert opinion and on a review of index reach data sets for ICB streams. Minimum stream widths capable of supporting spawning were estimated based on available width measurements for index reaches with documented redd counts and mapped distributions. Additionally, a water temperature model was used to mark the downstream extent of spring Chinook salmon in Upper Columbia and Lower Snake River populations.

### Natural Barriers

Barrier identification was our first data development scheme describing habitat quality, and employed both GIS calculated gradient barriers (representing the 20% limit described previously), and documented features such as falls, cascades, and reaches disconnected by sub-surface flows. We have utilized multiple digital, hardcopy, and field personnel sources to determine where natural obstructions mark the upstream extent of salmon and steelhead habitat. When possible, GIS datasets describing barriers were identified and incorporated into the base layer. In many cases archived report material and expert opinions had to be transferred to digital media and spatially referenced using recorded locations (such as river distance or an identifiable landmark). We have converted all sources of information into a GIS point feature theme and have preserved narratives and source information.

Within our IP analysis, natural barrier identification has been an ongoing process. Some features previously identified as complete barriers have been removed due to inconsistent information (such as salmon or steelhead observations above these locations) and others have been labeled as variably accessible due to significant year to year changes in stream flow, and hence passability. Local review of ICTRT data has provided many new additional barriers, which have been used to update stream accessibility metrics. In all cases, we have identified the 200-meter segments adjacent to complete migration blockages and have attributed all corresponding upstream features as inaccessible habitat.

### <u>Stream Width</u>

Stream channel size generally decreases as you move upstream. At some point, stream dimensions constrict to such a point that habitat becomes unusable for salmon and

steelhead. For spring Chinook, we used two data sets in order to determine stream size limitations; results from recent USFWS redd mapping efforts in the Middle Fork Salmon River, and Grande Ronde redd count index reaches. For steelhead, we utilized John Day redd count index reaches, O. *mykiss* presence/absence data from ODFW, IDFG parr count transects from the Salmon and Clearwater basins, and suitability maps developed by IDFG (Thurow, 1988). Channel widths calculated for the 200-meter segments used in the IP analysis were spatially joined to each dataset, and mean values were summarized for each unit. In both the spring Chinook and steelhead analyses, we used the 95<sup>th</sup> percentile low value for bankfull and wetted width to delineate our upstream extent. Use of smaller tributaries for juvenile rearing has been documented (e.g., Nez Perce tribal comment letter), and spawning in smaller tributaries may occur in particular situations. Further discussion of our stream width metrics will follow in the next section.

### Water Temperature

The lower reaches of many interior basin tributaries are subject to summer temperatures that are well above levels injurious to salmon and steelhead. Persistent high temperature levels can have a significant impact on the ability of a given reach to sustain both juvenile rearing and adult spawning. Although current thermal regimes within ICB drainages are significantly influenced by human activities, it is likely that some lower reach habitat has always been temperature limited. Unfortunately, there are no temporally or spatially broad datasets describing historical temperature profiles, so any model using contemporary data reflects current habitat degradations. This is important to note, because any modeling exercise which uses current data will have output shaped by modern externalities.

A Streamnet (1999) temperature dataset was used for modeling water temperatures as they relate to environmental characteristics. We adopted the temperature criteria used by Chapman & Chandler (2001) which determined that a weekly mean average temperature (WMAT) exceeding 22 degree C could potentially limit or exclude salmon and steelhead production. Using NCDC mean July temperatures (1971-2000), percent forest cover (calculated from USGS NLCD), and elevation (USGS DEM), we developed a reach specific model that predicts the likelihood of exceeding a WMAT of 22 degree C. In the Streamnet dataset we chose data points that were the least likely to be anthropogenically altered. These included locations directly above or below dams, within irrigation infrastructures, or adjacent to urbanized areas. The final analysis revealed significant relationships between a WMAT of 22 degree C and air temperature, percent forest cover, and elevation. These variables were used to develop a simple screen that either included or excluded 200-meter segments within the 22 degree C zone. This delineation was then used to define the lower extent of spring Chinook salmon spawning potential in Upper Columbia River and Lower Snake River Populations. It should be noted that the initial set of variables used in this analysis do not reflect the effects of groundwater on ameliorating temperatures in mainstem reaches with broad, alluvial flood plains such as those found in the Lower Yakima River.

## **Reach Level Habitat Potential Ratings**

Four different habitat measures were used to define our criteria for estimating reach specific production potential for stream type Chinook and steelhead within ICB habitats. The characteristics selected were; (1) stream width (modeled as bankfull and wetted width), (2) stream gradient (change in elevation over reach length), (3) valley width (relative width of valley compared to bankfull width) and (4) riparian vegetation (as a percent of landcover). We previously discussed how these variables were calculated using a GIS, and will now describe the methods employed for categorizing data.

### Stream Width.

We established three stream width categories after considering the range of widths associated with the empirical density data for Interior Columbia streams, the relative distribution of channel widths in areas identified as supporting steelhead spawning in the basin and the categories employed in the Puget Sound analysis. The three categories were 3.6 m(wetted) or 3.8 m(bankfull) to 25 m, 25 - 50 m and >50 m. The rationale for our upstream extent (minimum stream width) was described earlier, and agrees with other observations. For example, streams less than 3 m in bankfull width were at the lower margins sampled in the Idaho baseline study. Also, presence/absence data provided by the Nez Perce Tribal staff indicates that few streams less than 3 m support production for steelhead. WDFW has recommended using a 2 m wetted width as the lower limit for steelhead in western Washington streams. Although most transects within the Idaho parr data were between 3.8 m and 25 m bankfull width, the WDG study included mainstems up to 50 m wide, and this value defines the upper limit of our moderately sized width class. Very little abundance data existed for the largest mainstem rivers (>50 m).

Based on previous analyses, we set lower limits relative to spawning/rearing potential of 3.6 m (wetted width) for Chinook and 3.8 m (bankfull width) for steelhead. Spring Chinook spawn in the late summer and early fall, and summer wetted width is an appropriate measure of stream size relative to this time period. Steelhead spawn in the late spring on the end of the spring freshet, and bankfull width is a more appropriate measure of stream size relative to this period.

### Valley Confinement

The Idaho baseline study classified streams as B or C type channels using criteria defined by Rosgen (1985). Using the valley confinement estimates calculated earlier, we defined 200-meter reaches within our IP analysis as C type if valley width exceeded 20 times bankfull width. Values less than 20 times bankfull width were either attributed as confined or unconfined (defined below).

Confined streams with moderate to high gradients are unlikely to exhibit the stream structures necessary to support salmon and steelhead spawning. We incorporated a measure of confinement (as a function of valley to bankfull width) into our IP criteria, and assigned categories to all 200-meter segments. Streams that have a valley to bankfull width ratio less than 4 are defined as confined, and have virtually no opportunity for

lateral channel migration and floodplain development (Beechie *et al.*, 2006, Hall *et al.*, 2007). This means that confined channels lack instream processes which promote the development of suitable spawning substrates. If valley width was less than 4 times bankfull width, a stream segment was attributed as confined and the intrinsic production potential was downgraded by one level.

### <u>Gradient</u>

A set of gradient categories was developed based upon the Puget Sound TRT Chinook matrix (e.g., Table 2 in WRIA 18 Draft Summary Report - Puget Sound Chinook Recovery Analysis Team) and the categories used in the Idaho and Washington Game Department studies. For Chinook, most of the observed parr density/stream gradient data pairs fell within the 3 to 25 m stream width category. In general, densities were relatively high at gradients below 1.0 to 1.5 %. Although observations were relatively sparse, densities were low at gradients exceeding 1.5 to 2.0 percent. The frequency of samples exhibiting low pool cover (less than 50%) increased rapidly as gradients exceeded 1.5%.

Steelhead exhibited the reverse pattern with relatively low densities at gradients below 0.5, increasing as gradients rise to approximately 4%. Steelhead parr densities remained relatively high as gradients increased above 4%. We assigned the highest potential rating to gradients between 4% and 7% (an upper limit consistent with expert opinion cited in the draft Lower Columbia/Willamette TRT Viability report). Stream reaches in the 3.8-25 m bankfull width category that had gradients between 7 and 15% were designated with low potential. No spawning potential was assumed if gradients exceeded 15%. Steelhead parr densities at gradients exceeding 1.0 remained at relatively high levels in the widest streams in the sampled areas, but transects located in streams greater than 20 m bankfull width were not well represented.

We used adult steelhead spawning surveys to supplement the parr data analyses in determining relative ratings for streams exceeding 25 m bankfull width. Klickitat River index redd counts (YKFP 2002) and radio tracking results for Yakima Basin steelhead (Hockersmith et al., 1995) were geo-referenced and used to describe width and gradient classes in spawning locations within larger streams. We modified our ratings for the 25-50 meter wide category using the relative ratios generated from these analyses.

### **Riparian Vegetation**

An additional modifier was originally incorporated into the framework based on forest cover as a source of large woody debris (LWD). Using the USGS (2000) National Land Cover Dataset (NLCD), we calculated the percent of forest within buffered 200-meter stream segments, and classified reaches with greater than 90% forest cover as mesic forest. In Puget Sound stream systems (PSTRT 200?), pool structure is affected by the availability of large woody debris (LWD), which can mitigate for the limitations of moderate gradient reaches. Initially, we included the assumption that LWD sources within adjacent riparian areas (classified as mesic forest) would result in increased pool structure in moderate gradient reaches (and would therefore increase suitability). However, analysis of the USFWS Middle Fork adult redd data set did not support

increased production potential (redd densities) in forest versus non-forested reaches in moderate gradient or confined reaches. As a result, we dropped this rating category from our analysis.

### **Initial Rating Assignments**

Classes assigned to stream gradient, width (bankfull and wetted), and valley confinement were grouped into habitat categories and given a rating of "high", "moderate", "low", or "none." These relative ratings were determined from observed life stage specific abundance values within specific habitat classes and applied to the 200-meter stream segments within our IP dataset. Maps from this exercise were distributed to regional biologists for review.

## **Review and Modification Including Additional Habitat Screens**

The results from our habitat suitability classification were analyzed using two methods: solicited reviews from field biologists and comparisons with current spawning survey summaries. Firstly, maps were developed for individual watersheds and distributed to local agencies for review and comment. Feedback from this process then became the basis for developing sediment and stream velocity habitat screens as they relate to intrinsic quality. Secondly, statistical comparisons were made between IP habitat classes and productivity as measured by redd counts. The spring/summer Chinook survey from the Middle Fork Salmon River (USFWS) was used for our IP analysis of stream type Chinook, and WDFW steelhead surveys in the Upper Columbia (2004-06) were used to compare with O. mykiss IP values. Both datasets were important because they included redd surveys of entire streams, making non-occupied reaches significant and comparable to IP modeled categories. Based on these comparisons, some class specific adjustments were made to IP ratings, most notably for adding confinement as a significant feature in steelhead ratings, modification of gradient and width classes, and removal of the mesic forest modifier.

### Habitat Screens-Sedimentation

The ability of a particular reach to support salmonid spawning can be significantly affected by sediment conditions within that reach (e.g., Bjornn and Reiser, 1991). Relatively low gradient stream reaches meandering through wide valleys can be deposition areas for fine sediments, especially if the surrounding soil types are highly erosive and fine grained. We used available GIS layers summarizing soil characteristics to assign relative indices of erosion potential and particle size to each tributary reach. The indices were calculated as an average across the HUC-6 corresponding to each particular stream reach.

Stream sedimentation is often a critical factor limiting the spatial distribution of salmonid spawning. In riverine systems, certain environmental traits promote the accumulation of stream sediments that can obscure suitable substrates. Specifically, the deposition of fine particles within streams is effected by factors such as soil type and hydrological

conditions. In our analysis, these attributes were employed in order to determine where sedimentation might influence salmon and steelhead production. Most crucial to our investigation were the identification of highly erodible soils and low gradient streams which maximize particle detachment and limit transport.

Two primary data sources were utilized in our effort to locate probable sedimentation: the USDA-NRCS STATSGO soil survey, and reach level gradients obtained from USGS DEMs. The STATSGO dataset contains a measure of potential erodibility, or K factor, which is a predictive measure (0.0 - 1.0) of particle detachment resulting from rainfall. Soil texture and permeability are the key factors in determining the K factor, with clays having the lowest value (least erodible) and silts having the highest (most erodible). The USDA-NRCS considers soils with a K factor greater than 0.40 to be the most highly erodible and prone to runoff. Soils in this category are predominately composed of silts and silty loams. It should be noted that K factor is a measurement for bare soil conditions, and our analysis is for intrinsic habitats. However, natural disturbances would likely aid in the process of sedimentation more readily in soil units with the greatest erosion potential.

In addition to soil erodibility, we utilized stream gradients as a measure of depositional potential. Gradients were calculated for all 200-meter reaches within our study area using the minimum and maximum elevation per reach as obtained from the USGS DEMs. Low gradient streams result in lower flows and reduced stream power, which in turn promotes depositional rather than transport processes.

In order to determine stream reaches most at risk for sedimentation, we developed a habitat screening mechanism based on K factor and gradient. We first selected low gradient streams ( $\leq 0.5\%$ ) and then intersected these results with soil units having a K factor greater than 0.4. Also, we identified sub watersheds having at least 50% of their area within highly erodible soils (K > 0.4). Low gradient reaches within these watersheds and those intersecting highly erodible soil units were attributed with high sediment potential. Additionally, the accumulated mean K factor was calculated for upstream reaches above all 200-meter segments, and where the accumulated mean was greater than or equal to 0.4 we applied the sediment screen. In reaches that were previously classified with moderate or high IP ratings, values within the sediment screen dropped to low.

#### Stream Velocity

For steelhead, an additional screen was developed in order to address highly rated IP areas identified as low potential by regional biologists. These reaches were primarily at the upper ends of drainages or emanated from relatively arid headwater areas. Generally, it appeared that persistent low flow conditions would preclude steelhead occupation. Using the NHD Plus database, we spatially joined mean annual stream velocity attributes to the 200-segments within the IP analysis. We then compared existing measure of productivity at specific locations (John Day steelhead index reaches, IDFG suitability maps, and Upper Columbia redd counts) to NHD calculated mean annual velocities and determined upper and lower limits. As with the sediment screen, all moderate and high

potential rated reaches were changed to low if they were located outside the acceptable value range.

#### John Day Gravel Assessment-- stream confinement and gradient

Additional reviews from local biologists identified highly rated IP steelhead habitat within confined reaches and higher gradients that unlikely could support suitable substrate development. Stream gravel assessments within the Joseph Creek subwatershed were used to evaluate the significance of gradient and confinement to the distribution of suitable spawning substrates. The original dataset was developed by ODFW and was based upon stream surveys conducted in 1965 and 1966.

Spawning gravel summaries were classified by ODFW using "good" and "marginal" qualifiers, but the total of both categories were used for our analyses. We summarized mean bankfull width, confinement (valley width / bankfull width), and gradient for all 200 meter reach segments within the surveyed streams and joined it to the stream gravel dataset. The confinement parameter was expressed as the percent of stream confined (confinement was defined for reaches where valley width was less than or equal to 4 times bankfull width). To facilitate the standardization of gravel quantity among streams, the gravel area was divided by the bankfull stream area to compute the amount of gravel per unit stream area. These values were then multiplied by 10,000 to convert the values to integers.

We utilized an ANOVA to determine if there were differences between the amount of available spawning gravels within different gradient and confinement groups. Percent of stream confined was classified into two categories (<10% confined [uc], >10% confined [c]), and gradient was classified into 3 groups (0 - 1.5%, 1.5 - 4.0%, and > 4.0%). From the ANOVA, the streams with a greater percentage of confinement and higher gradients were shown to contain fewer spawning gravels as a percentage of stream area. These results were applied to our IP assessment by introducing confinement parameters to the steelhead habitat criteria.

#### <u>Middle Fork Salmon and Upper Columbia Redd Surveys</u>

The Middle Fork Salmon survey included GPS located redds within all accessible streams (1995-2003 return years, R. Thurow USFS pers. comm.). In the Upper Columbia (Okanogan, Methow, and Wenatchee subbasins), GPS data was collected (2004-2006) for redds observed in specific streams (C. Baldwin, WDFW pers. comm.) By identifying the nearest IP stream reach for each redd, we successfully quantified the total number observed per 200-meter segment in the intrinsic potential dataset. These results enabled us to evaluate our classification of IP habitat using observed redd densities by spatially joining predicted values to field measurements. Categories were summed by total Chinook or steelhead redds located within each habitat class, and an ANOVA was used to compare the total redd counts to unique categories. The results showed general agreement between our IP analysis (predicted quality) and redd density (observed productivity), but some differences were noted. These results were used to adjust model parameters to reflect spawning patterns observed for stream type Chinook in the Middle

Fork Salmon River and steelhead in the Upper Columbia, and formulated our final rating scheme.

Using the results from our ANOVA analyses, the greatest mean redd count for a habitat category was assigned a "high" intrinsic spawning potential. This group represented the most preferred habitat by observed Chinook and steelhead spawners in the dataset. Any grouping whose mean redd count was at least fifty percent of this highest value was also attributed with a "high" intrinsic potential. Continuing, those categories receiving between 25% and 50% of the highest value were given a "moderate" rating, between 12.5% and 25% a "low" rating, and less than 12.5% a "negligible" rating. The "negligible" rating was only applied to the stream type Chinook IP classification. These values were then used to weight potential habitat (for both area and length) so that a "high" rated reach was multiplied by 1.0, "moderate" by 0.5, "low" by 0.25, and "negligible" by 0.0. Functionally, the "negligible" category had the same effect on total habitat as inaccessible areas or those failing to meet our minimum width criteria (which were assigned a "none" rating). Neither the "none" or "negligible" classification contributed habitat, in terms of weighted length or area, to the total intrinsic spawning potential per population.

### **Species Specific Ratings**

The final rating assignments are provided in Tables C-1 and C-2 for yearling type Chinook salmon and steelhead reaches, respectively.

### Yearling Chinook

Table C-1. Relative potential for Interior Columbia basin Spring and Spring/Summer Chinook salmon spawning and initial rearing as a function of stream reach physical characteristics. BF: Bankfull stream width; Gradient: percent change over 200 m reach; and relative ronfinement: valley width expressed as ratio to BF stream width.

| Stream Width/ Gradient<br>Categories |            | Valley Width Ratio<br>(Ratio of valley width to bankfull stream width) |                                  |                         |  |
|--------------------------------------|------------|------------------------------------------------------------------------|----------------------------------|-------------------------|--|
| Bankfull Width<br>(BF)               | Gradient   | Confined<br>(<= 4 X BF width)                                          | Moderate<br>(4 to 20 X BF width) | Wide<br>> 20 X BF width |  |
| RF < 37 m                            | $\geq 0$   | None                                                                   | None                             | None                    |  |
|                                      |            |                                                                        |                                  |                         |  |
|                                      | 0 - 0.5    | Medium                                                                 | High                             | High                    |  |
|                                      | 0.5 - 1.5  | Low                                                                    | Medium                           | High                    |  |
| DE 27 to 25 m                        | 1.5 - 4.0  | Low                                                                    | Low                              | Medium                  |  |
| DF 5.7 10 25 III                     | 4.0 - 7.0  | Negligible                                                             | Low                              | Low                     |  |
|                                      | > 7.0      | None                                                                   | None                             | None                    |  |
|                                      |            |                                                                        |                                  |                         |  |
|                                      | 0 - 0.5    | None                                                                   | Medium                           | Medium                  |  |
| DE 25 m to 50 m                      | 0.5 - 10.0 | None                                                                   | None                             | None                    |  |
| BF 25 m to 50 m                      | ≥ 10       | None                                                                   | None                             | None                    |  |
|                                      |            |                                                                        |                                  |                         |  |
| BF > 50 m                            | $\geq 0$   | None                                                                   | None                             | None                    |  |

### Steelhead

Table C-2. Relative potential for Interior Columbia basin steelhead spawning and initial rearing as a function of stream reach physical characteristics. BF: Bankfull stream width; Gradient: percent change over 200 m reach; and relative confinement: valley width expressed as ration to BF stream width.

| Stream Width/ Gradient<br>Categories |           | Valley Width Ratio<br>(Ratio of valley width to bankfull stream width) |                                  |                         |  |
|--------------------------------------|-----------|------------------------------------------------------------------------|----------------------------------|-------------------------|--|
| Bankfull Width<br>(BF)               | Gradient  | Confined<br>(<= 4 X BF width)                                          | Moderate<br>(4 to 20 X BF width) | Wide<br>> 20 X BF width |  |
| RF < 3.8 m                           | $\geq 0$  | None                                                                   | None                             | None                    |  |
| DF < 5.0 m                           |           |                                                                        |                                  |                         |  |
|                                      | 0 - 0.5   | None                                                                   | Medium                           | Medium                  |  |
|                                      | 0.5 - 4.0 | Low                                                                    | High                             | High                    |  |
| BF 3.8 to 25 m                       | 4.0 - 7.0 | None                                                                   | Low                              | Low                     |  |
|                                      | > 7.0     | None                                                                   | None                             | None                    |  |
|                                      |           |                                                                        |                                  |                         |  |
|                                      | 0 - 4.0   | Low                                                                    | Medium                           | Medium                  |  |
| BF 25 m to 50 m                      | > 4.0     | None                                                                   | None                             | None                    |  |
|                                      |           |                                                                        |                                  |                         |  |
| BF > 50 m                            | $\geq 0$  | None                                                                   | Low                              | Low                     |  |

## **Population Totals: Historical Potential Spawning Habitat**

An estimate of potential spawning habitat area is a particularly relevant measure for use in expressing the size of specific populations relative to abundance and productivity criteria. A strong tendency for returning spawners to home back to natal spawning areas is a general characteristic of Chinook and steelhead. The predominant life history patterns for both of these species involve a year or more freshwater rearing, generally in the natal tributary. Returns to particular spawning reaches are therefore largely dependent upon the production from the previous generation of spawning in that same reach. As a result, the availability of suitable quantities of high quality rearing habitat also affects production and therefore average abundance associated with a particular spawning area.

Once final habitat adjustments were completed for the IP analysis, we weighted stream metrics using our new screening elements. In some cases, new criteria changed the rating by one or two categories, and in others the screen factor completely eliminated habitat potential (Table C-3). We used these updated results to generate population specific estimates of total spawning potential. We expressed the total amount of historical spawning habitat for each population as an equivalent amount of good spawning habitat. We weighted the amount of habitat (length and area) in each 200 meter reach within a population by a simple proportion corresponding to the assigned reach rating – high, medium, or low (we included a fourth category – negligible, for yearling type Chinook populations). Units of habitat rated with high production potential for a species were given a weight of 1. Units of medium production potential were given a relative rating of 0.5 and habitat units classified as low production potential were assigned a relative rating of 0.25. For Chinook populations, some reaches were rated as negligible. For the purposes of this analysis those reaches were assigned a weight of 0. A relative index of productivity for aggregate areas was calculated by summing the weighted total amounts of habitat within each category within the appropriate geographic units. The ratios of 1 to .5 to .25 for high, medium and low intrinsic potential categories reflect the patterns observed in the WDG steelhead parr density study (Gibbons et al., 1985, table 6) and are generally consistent with relative densities reported for spring Chinook late fall parr in the Idaho studies.

#### **Tributaries Supporting Two Chinook ESUs**

The intrinsic potential analysis described above is based on general physical requirements for Chinook spawning and early rearing. Some population areas in the Interior Basin support more than one Chinook ESU. We adjusted the total area assigned to the listed spring Chinook population in accordance with the following observations.

#### Upper Columbia Spring Chinook

Each of the extant populations of upper Columbia spring Chinook is associated with a population of summer Chinook. With the possible exception of the Entiat, summer Chinook runs are believed to have been endemic to each system. Upper Columbia River summer Chinook salmon are classified in a separate ESU. There are significant

differences in life history patterns between the two ESUs - summer Chinook return to the Columbia River primarily in July and August, spawn approximately 1 month later than spring Chinook, and leave their natal tributary for the mainstem during the summer of their first year of life. Summer Chinook spawn later and lower down in the mainstems of the major Upper Columbia tributaries. Gradient and substrate characteristics of stream habitat within the stream sections used for spawning are similar for both runs. There is some overlap in each system between the lower end of the spring run spawning and the upper end of summer Chinook spawning.

Summer Chinook salmon utilize the Wenatchee River mainstem up through Tumwater Canyon for spawning. Spring Chinook salmon spawning is generally confined to the major tributaries to the Wenatchee and the mainstem reach downstream of Lake Wenatchee to Tumwater Canyon.

In the Methow basin, summer Chinook spawning is confined to the mainstem Methow River below the Chewuch River confluence (Anon., 1998). Chapman et al. (1994) states that summer/fall Chinook utilize the lower 50 miles of the Methow River mainstem. In the Okanogan, summer Chinook salmon currently spawn between Zosel Dam and the town of Mallott and from Enloe Dam to Driscoll Island.

Spring Chinook spawning in the Entiat drainage occurs above river mile 16 of the mainstem and in the lower five miles of a major tributary, the Mad River. Summer Chinook spawning extends downstream from approximately river mile 20 to the mouth.

### Snake River Spring/Summer Chinook

There is limited potential for overlap in spawning/rearing areas among ESUs of Chinook in the Snake Basin.

Tucannon River: Currently, fall Chinook use the lower 10 km of the Tucannon mainstem for spawning (redd survey data summarized in Milk et al, 2005). Spring Chinook spawning currently occurs in the mainstem from the mouth of Sheep Cr. (river mile 52) downstream to King Grade (RM 21) - draft Lower Snake Recovery Plan p 82). The Tucannon system has been heavily impacted by human activities, resulting in increased stream temperatures and high sedimentation rates. Projections of historical temperatures indicate almost all of the mainstem Tucannon would have had average July temperatures below 22 deg. C. Table C-3. Population total historical intrinsic potential spawning habitat. Units are 10,000 m<sup>2</sup> (equivalent to 1 km of 10 wide stream of reach habitat rated in High category). Core area habitat is the portion of the total within the major tributary drainage for the corresponding population.

|                 | Steelhead    |            |      | Chinook        |                  |       |      |
|-----------------|--------------|------------|------|----------------|------------------|-------|------|
| ESU             | Population   | Total      | Core | ESU            | Population       | Total | Core |
|                 | UCENT-s      | 141        | 136  |                | UCENT            | 30    | 30   |
| Linner Columbia | UCMET-s      | 533        | 526  | Upper Columbia | UCMET            | 146   | 146  |
| Steelhead       | UCWEN-s      | 550        | 488  | Spring Chinook | UCWEN            | 153   | 153  |
| Oleemeau        | UCOKA-s (US) | 352        | 336  |                | UCOKA (US)       | 40    | 41   |
|                 | UCCRC-s      | 360        |      |                | SNASO            | 20    | 20   |
|                 | MCWSA-s      | 48         | 46   |                | SNTUC            | 44    | 44   |
|                 | MCKLI-s      | 436        | 435  |                | GRWEN            | 38    | 38   |
|                 | MCFIF-s      | 191        | 164  |                | GRLOS            | 106   | 106  |
|                 | DREST-s      | 408        | 408  |                | GRLOO            | 8     | 8    |
|                 | DRWST-s      | 825        | 457  |                | GRMIN            | 42    | 42   |
|                 | MCROC-s      | 67         | 67   |                | GRCAT            | 66    | 34   |
|                 | MCWIL-s      | 298        | 255  |                | GRUMA            | 91    | 91   |
|                 | DRCRO-s      | 1156       |      |                | IRMAI            | 48    | 48   |
|                 | JDLMT-s      | 1175       | 1170 |                | IRBSH            | 28    | 28   |
| Middle Columbia | JDNFJ-s      | 687        | 687  |                | SRLSR            | 44    | 28   |
| Steelhead       | JDMFJ-s      | 296        | 296  |                | SFMAI            | 75    | 55   |
|                 | JDSFJ-s      | 103        | 103  |                | SFSEC            | 47    | 47   |
|                 | JDUMA-s      | 335        | 335  |                | SFEFS            | 60    | 60   |
|                 | MCUMA-s      | 907        | 783  | Snake River    | SRCHA            | 34    | 21   |
|                 | WWMAI-s      | 371        | 360  | Spring/Summer  | MFBIG            | 60    | 60   |
|                 | WWTOU-s      | 229        | 229  | Chinook        | MFLMA            | 18    | 8    |
|                 | YRIOP-s      | 191        | 157  |                | MFCAM            | 26    | 26   |
|                 | YRSAT-S      | 411        | 180  |                | MFLOO            | 27    | 27   |
|                 | YRNAC-S      | 734        | 535  |                |                  | 53    | 53   |
|                 | YRUMA-S      | 921        | 921  |                | MESUL            | 12    | 12   |
|                 | SNIUC-S      | 212<br>457 | 188  |                |                  | 50    | 50   |
|                 | SNASU-S      | 157        | 94   |                |                  | 23    | 23   |
|                 |              | 743<br>011 | 743  |                | SREAN            | 41    | 40   |
|                 |              | 04 I<br>70 | 70   |                | SRINFS<br>SDI EM | 19    | 17   |
|                 |              | 340        | 340  |                |                  | 133   | 133  |
|                 | CRSEL-s      | 500        | 500  |                | SREMA            | 144   | 144  |
|                 |              | 262        | 262  |                | SREES            | 57    | 57   |
|                 | GRI MT-s     | 306        | 306  |                | SRVES            | 21    | 21   |
|                 | GR.IOS-s     | 194        | 194  |                | SRVAL            | 27    | 27   |
|                 | GRWAL-s      | 399        | 399  |                | SRUMA            | 69    | 69   |
|                 | GRUMA-s      | 714        | 714  |                | CI (CIM/         | 00    | 00   |
| Snake River     | IRMAI-s      | 304        | 304  |                |                  |       |      |
| Steelhead       | SRI SR-s     | 276        | 85   |                |                  |       |      |
|                 | SRCHA-s      | 169        | 60   |                |                  |       |      |
|                 | SFSFC-s      | 92         | 92   |                |                  |       |      |
|                 | SFMAI-s      | 299        | 299  |                |                  |       |      |
|                 | SRPAN-s      | 163        | 125  |                |                  |       |      |
|                 | MFBIG-s      | 428        | 428  |                |                  |       |      |
|                 | MFUMA-s      | 448        | 448  |                |                  |       |      |
|                 | SRNFS-s      | 98         | 62   |                |                  |       |      |
|                 | SRLEM-s      | 426        | 368  |                |                  |       |      |
|                 | SRPAH-s      | 385        | 257  |                |                  |       |      |
|                 | SREFS-s      | 379        | 165  |                |                  |       |      |
|                 | SRUMA-s      | 464        | 464  |                |                  |       |      |

## **Literature Cited**

- Burnett, K.M. 2001. Relationships among juvenile anadromous salmonids, their freshwater habitat, and landscape characteristics over multiple years and spatial scales in the Elk River, Oregon. Ph.D. Dissertation. Oregon State University, Corvallis, Oregon.
- Gibbons, R.G., P.K.J. Hahn and T. H. Johnson. 1985. Methodology for determining MSH steelhead spawning escapement requirements. Washington State Game Dept. Report. #85-11. 43 p.
- Grande Ronde Subbasin Spawning Gravel Abundance Survey 1965-66 [transcribed to computer file]. 2006. LaGrande, OR: Oregon Department of Fish and Wildlife.
- Hockersmith, E., J. Vella, L. Stuehrenberg, R. Iwamoto, G. Swan. 1995. Yakima River radio telemetry study: steelhead, 1989-93. Dept. of Energy. Bonneville Power Admin. Fish and Wildlife Div. Project 89-089. 95p.
- John Day River Steelhead Index Reach Redd Counts [computer file]. 1959-2003. Salem, OR: Oregon Department of Fish and Wildlife.
- Montgomery, D.R., E.M. Beamer, G.R. Pess and T.P. Quinn. 1999. Channel type and salmonid spawning distribution and abundance. Can. J. Aquat. Sci. 56:377-387.
- National Hydrography Dataset (NHDPlus) [computer file]. 2005. U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS). Available WEB: http://www.horizon-systems.com/nhdplus/drainage-area.htm [December 6, 2006].
- Petrosky, C. E. and T. B. Holubetz. 1988. Idaho habitat evaluation for offsite mitigation record. Annual report. 1987. Project 83-7. Dept. of Energy. Bonneville Power Admin. Fish and Wildlife Div.
- Rosgen, D.L. 1985. A stream classification system. North American Riparian Conference. Tucson, Arizona. April 16-18 1985.
- Steel, E. A., B. E. Feist, D. Jenson, G. R. Pess, M. B. Sheer, J. Brauner, R. E. Bilby. 2004. Landscape models to understand steelhead (Oncorhynchus mykiss) distribution and help prioritize barrier removals in the Willamette Basin, OR, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences, 61:999-1011.
- Thurow, Russ. 1985. Middle Fork Salmon River fisheries investigations. Idaho Department of Fish and Game. Project F-73-R-6. 96p.
- Wenatchee and Methow River Steelhead GPS Redd Surveys [computer file]. 2004-06. Wenatchee, WA: Washington State Department of Fish and Wildlife.

# Idaho's 2018/2020 Integrated Report

Appendix A: Clean Water Act Section 305 (b) List and Section 303(d) List





State of Idaho Department of Environmental Quality October 2020

#### Prepared by

Robert Esquivel Idaho Department of Environmental Quality Surface Water and Wastewater Division 1410 North Hilton Boise, Idaho 83706



Printed on recycled paper, DEQ October 2020, PID 303D, CA code 303D. Costs associated with this publication are available from the State of Idaho Department of Environmental Quality in accordance with Section 60-202, Idaho Code.

## **Table of Contents**

| Executive Summaryiv                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category 1: Waters are wholly within a designated wilderness or 2008 Idaho Road Rule<br>"Wild Land Recreation" area and are presumed to be fully supporting all beneficial uses 1                                                   |
| Category 2: Waters are fully supporting those beneficial uses that have been assessed. The use attainment of the remaining beneficial uses has not been determined due to insufficient (or no) data and information                 |
| Category 3: Waters have insufficient (or no) data and information to determine if beneficial uses are being attained or impaired                                                                                                    |
| Category 4a: Waters have a TMDL completed and approved by EPA                                                                                                                                                                       |
| Category 4b: Waters have had pollution control requirements other than a TMDL placed on<br>them, and these waters are reasonably expected to attain the water quality standard within<br>a reasonable period of time                |
| Category 4c: Waters failing to meet applicable water quality standards due to other types of pollution (e.g., flow alteration), not a pollutant                                                                                     |
| Category 5: Waters do not meet applicable water quality standards for one or more beneficial<br>uses due to one or more pollutants; therefore, an EPA-approved TMDL is needed.<br>Category 5 water bodies make up the § 303(d) list |

### **Executive Summary**

Appendix A provides the Clean Water Act § 305(b) list and § 303(d) list for the 2018/2020 Integrated Report. The § 305(b) list documents the current condition of all state surface waters, including publicly owned lakes, and the § 303(d) list identifies those waters that are impaired and need a total maximum daily load (TMDL). Impaired waters on the § 303(d) list are a subset of waters on the § 305(b) list.

## Category 1: Waters are wholly within a designated wilderness or 2008 Idaho Roadless Rule "Wild Land Recreation" area and are presumed to be fully supporting all beneficial uses.

#### 2018/2020 Integrated Report - Category 1

| 17060301            | Upper Selway                                   |       |       |
|---------------------|------------------------------------------------|-------|-------|
| ID17060301CL001_02  | Selway River - Bear Creek to Moose Creek       | 19.88 | Miles |
| ID17060301CL001_05  | Selway River - Bear Creek to Moose Creek       | 10.55 | Miles |
| ID17060301CL002 02  | Magpie Creek - source to mouth                 | 4.53  | Miles |
| ID17060301CL003_02  | Bitch Creek - source to mouth                  | 10.31 | Miles |
| ID17060301CL004_02  | Selway River - White Cap Creek to Bear Creek   | 22.98 | Miles |
| ID17060301CL004_05  | Selway River - White Cap Creek to Bear Creek   | 16.19 | Miles |
| ID17060301CL005_02  | Ditch Creek - source to mouth                  | 19.7  | Miles |
| ID17060301CL005_03  | Ditch Creek - source to mouth                  | 2.01  | Miles |
| ID17060301CL006_02  | Elk Creek - source to mouth                    | 10.14 | Miles |
| ID17060301CL007_02  | Goat Creek - source to mouth                   | 36.22 | Miles |
| ID17060301CL007_03  | Goat Creek - source to mouth                   | 8.57  | Miles |
| ID17060301CL012_02  | Eagle Creek - source to mouth                  | 26.98 | Miles |
| ID17060301CL013_02  | Crooked Creek - source to mouth                | 16.34 | Miles |
| ID17060301CL013_03  | Crooked Creek - source to mouth                | 3.49  | Miles |
| ID17060301CL014_05  | Selway River - Deep Creek to White Cap Creek   | 9.24  | Miles |
| ID17060301CL015_02  | Little Clearwater River- Flat Creek to mouth   | 8.59  | Miles |
| ID17060301CL015_04  | Little Clearwater River- Flat Creek to mouth   | 6.02  | Miles |
| ID17060301CL016_02  | Short Creek - source to mouth                  | 13.09 | Miles |
| ID17060301CL017_02  | Little Clearwater River - source to Flat Creek | 13.98 | Miles |
| ID17060301CL017_03  | Little Clearwater River - source to Flat Creek | 1.32  | Miles |
| ID17060301CL017_04  | Little Clearwater River - source to Flat Creek | 3.12  | Miles |
| ID17060301CL018_02  | Burnt Knob Creek - source to mouth             | 17.06 | Miles |
| ID17060301CL018_02L | Burnt Knob Lakes                               | 6.08  | Acres |
| ID17060301CL018_03  | Burnt Knob Creek - source to mouth             | 1.56  | Miles |
| ID17060301CL019_03  | Salamander Creek - source to mouth             | 4.22  | Miles |
| ID17060301CL022_01L | Gold Pan Lake                                  | 11.01 | Acres |

| ID17060301CL022_02L | Thirteen Lakes                                          | 12.84 | Acres |
|---------------------|---------------------------------------------------------|-------|-------|
| ID17060301CL022_03  | Selway River - confluence of Hidden and Surprise Creeks | 7.38  | Miles |
| ID17060301CL023_02  | Three Lakes Creek - source to mouth                     | 18.67 | Miles |
| ID17060301CL023_02L | Elk Track Lakes - Three Lakes Creek                     | 11.65 | Acres |
| ID17060301CL023_03  | Three Lakes Creek - source to mouth                     | 1.66  | Miles |
| ID17060301CL024_02  | Swet Creek - source to mouth                            | 12.72 | Miles |
| ID17060301CL024_02L | Swet Lake                                               | 11.23 | Acres |
| ID17060301CL025_02  | Stripe Creek - source to mouth                          | 4.4   | Miles |
| ID17060301CL026_02  | Hidden Creek - source to mouth                          | 6.73  | Miles |
| ID17060301CL027_02  | Surprise Creek - source to mouth                        | 13.65 | Miles |
| ID17060301CL028_02  | Wilkerson Creek - Storm Creek to mouth                  | 15.06 | Miles |
| ID17060301CL028_03  | Wilkerson Creek - Storm Creek to mouth                  | 4.56  | Miles |
| ID17060301CL029_02  | Wilkerson Creek - source to Storm Creek                 | 8.84  | Miles |
| ID17060301CL030_02  | Storm Creek - source to mouth                           | 18.19 | Miles |
| ID17060301CL030_03  | Storm Creek - source to mouth                           | 3.27  | Miles |
| ID17060301CL033_02  | Lazy Creek - source to mouth                            | 11.59 | Miles |
| ID17060301CL036_02  | Indian Creek - source to mouth                          | 36.16 | Miles |
| ID17060301CL037_02  | Schofield Creek - source to mouth                       | 12.99 | Miles |
| ID17060301CL039_03  | White Cap Creek - Canyon Creek to mouth                 | 3.09  | Miles |
| ID17060301CL040_02  | Canyon Creek - source to mouth                          | 37.52 | Miles |
| ID17060301CL040_02L | Unamed Lake - Canyon Creek                              | 9.36  | Acres |
| ID17060301CL040_03  | Canyon Creek - source to mouth                          | 1.37  | Miles |
| ID17060301CL041_02  | Cooper Creek - source to mouth                          | 10.78 | Miles |
| ID17060301CL041_03  | Cooper Creek - source to mouth                          | 0.72  | Miles |
| ID17060301CL042_01L | Triple Lakes                                            | 15.66 | Acres |
| ID17060301CL042_02  | White Cap Creek - source to Canyon Creek                | 48.5  | Miles |
| ID17060301CL042_02L | White Cap Lakes                                         | 36.16 | Acres |
| ID17060301CL042_03  | White Cap Creek - source to Canyon Creek                | 12.71 | Miles |
| ID17060301CL042_0L  | Unnamed Lakes in 17060301CL4202                         | 15.67 | Acres |
| ID17060301CL043_02  | Paloma Creek - source to mouth                          | 6.74  | Miles |
| ID17060301CL044_02  | Bad Luck Creek - source to mouth                        | 21.83 | Miles |
| ID17060301CL045_02  | Gardner Creek - source to mouth                         | 9.83  | Miles |

## Clearwater

ID17060302CL025\_02

ID17060302CL025\_03

ID17060302CL026 02

ID17060302CL027\_02

| ID17060301CL046_02  | North Star Creek - source to mouth      | 7.25  | Miles |
|---------------------|-----------------------------------------|-------|-------|
| ID17060301CL047_02  | Bear Creek - Cub Creek to mouth         | 13.01 | Miles |
| ID17060301CL048_02  | Cub Creek - Brushy Fork Creek to mouth  | 5.81  | Miles |
| ID17060301CL048_03  | Cub Creek - Brushy Fork Creek to mouth  | 4.29  | Miles |
| ID17060301CL049_02  | Brushy Fork Creek - source to mouth     | 20.51 | Miles |
| ID17060301CL049_02L | Brushy Fork Lake                        | 19.5  | Acres |
| ID17060301CL049_03  | Brushy Fork Creek - source to mouth     | 2.81  | Miles |
| ID17060301CL050_02  | Cub Creek - source to Brushy Fork Creek | 23.94 | Miles |
| ID17060301CL050_02L | Cub Lake                                | 40.42 | Acres |
| ID17060301CL051_02  | Paradise Creek - source to mouth        | 30.88 | Miles |
| ID17060301CL051_02L | Spruce Lake                             | 10.41 | Acres |
| ID17060301CL052_02  | Bear Creek - Wahoo Creek to Cub Creek   | 21.72 | Miles |
| ID17060301CL052_03  | Bear Creek - Wahoo Creek to Cub Creek   | 8.65  | Miles |
| ID17060301CL053_02L | Diamond Lake                            | 10.26 | Acres |
| ID17060301CL054_02  | Granite Creek - source to mouth         | 6.92  | Miles |
| ID17060301CL055_02  | Wahoo Creek - source to mouth           | 14.2  | Miles |
| ID17060301CL055_02L | Park Lakes                              | 22.86 | Acres |
| ID17060301CL055_03  | Wahoo Creek - source to mouth           | 5.51  | Miles |
| ID17060301CL056_02  | Pettibone Creek - source to mouth       | 30.83 | Miles |
| ID17060301CL056_02L | Sid and Papoose Lakes                   | 7.59  | Acres |
| ID17060301CL056_03  | Pettibone Creek - source to mouth       | 9.82  | Miles |
| ID17060301CL057_02  | Cow Creek - source to mouth             | 3.16  | Miles |
| ID17060301CL058_02  | Dog Creek - source to mouth             | 9.26  | Miles |
| 17060302            | Lower Selway                            |       |       |
| ID17060302CL021_02L | Buck Lake                               | 4.14  | Acres |
| ID17060302CL023_02  | Otter Creek - source to mouth           | 18.19 | Miles |
| ID17060302CL024_02  | Mink Creek - source to mouth            | 14.71 | Miles |
| ID17060302CL024_03  | Mink Creek - source to mouth            | 4.52  | Miles |

Moose Creek - East Fork Moose Creek to mouth

Marten Creek - source to mouth

Marten Creek - source to mouth

Trout Creek - source to mouth

33.6

5.22

12.28

5.52

Miles

Miles

Miles

Miles

| ID17060302CL027_05  | Moose Creek - East Fork Moose Creek to mouth             | 3.73  | Miles |
|---------------------|----------------------------------------------------------|-------|-------|
| ID17060302CL028_02  | East Fork Moose Creek - Cedar Creek to Moose Creek       | 27.93 | Miles |
| ID17060302CL028_04  | East Fork Moose Creek - Cedar Creek to Moose Creek       | 14.06 | Miles |
| ID17060302CL029_02  | Freeman Creek - source to mouth                          | 3.34  | Miles |
| ID17060302CL030_02  | Monument Creek - source to mouth                         | 7.17  | Miles |
| ID17060302CL031_02  | Elbow Creek - source to mouth                            | 10.86 | Miles |
| ID17060302CL032_02  | Battle Creek - source to mouth                           | 13.57 | Miles |
| ID17060302CL032_02L | Battle Lake                                              | 35.45 | Acres |
| ID17060302CL033_01L | Dead Elk Creek Lake                                      | 10.69 | Acres |
| ID17060302CL033_02  | East Fork Moose Creek - source to Cedar Creek            | 45.87 | Miles |
| ID17060302CL033_02L | Goat Lakes                                               | 41.15 | Acres |
| ID17060302CL033_03  | East Fork Moose Creek - source to Cedar Creek            | 11.67 | Miles |
| ID17060302CL033_03L | Moose Lake                                               | 9.51  | Acres |
| ID17060302CL033_0L  | Jeanette Lake                                            | 6.58  | Acres |
| ID17060302CL034_02  | Chute Creek - source to mouth                            | 2.87  | Miles |
| ID17060302CL035_02  | Dead Elk Creek - source to mouth                         | 3.92  | Miles |
| ID17060302CL036_02  | Cedar Creek - source to mouth                            | 27.05 | Miles |
| ID17060302CL036_03  | Cedar Creek - source to mouth                            | 5.14  | Miles |
| ID17060302CL037_02  | Maple Creek - source to mouth                            | 12.54 | Miles |
| ID17060302CL037_02L | Maple Lake                                               | 4.05  | Acres |
| ID17060302CL038_02  | Double Creek - source to mouth                           | 15.46 | Miles |
| ID17060302CL038_02L | May Lake                                                 | 11.78 | Acres |
| ID17060302CL039_02  | Fitting Creek - source to mouth                          | 4.88  | Miles |
| ID17060302CL040_02  | North Fork Moose Creek - Rhoda Creek to mouth            | 29.66 | Miles |
| ID17060302CL040_03  | North Fork Moose Creek - Rhoda Creek to mouth            | 0.57  | Miles |
| ID17060302CL040_05  | North Fork Moose Creek - Rhoda Creek to mouth            | 7.26  | Miles |
| ID17060302CL041_02  | North Fork Moose Creek - West Moose Creek to Rhoda Creek | 10.88 | Miles |
| ID17060302CL041_04  | North Fork Moose Creek - West Moose Creek to Rhoda Creek | 11.37 | Miles |
| ID17060302CL042_02  | North Fork Moose Creek - source to West Fork Moose Creek | 24.64 | Miles |
| ID17060302CL042_03  | North Fork Moose Creek - source to West Fork Moose Creek | 2.88  | Miles |
| ID17060302CL043_02  | West Fork Moose Creek - source to mouth                  | 35.64 | Miles |
| ID17060302CL043_03  | West Fork Moose Creek - source to mouth                  | 4.76  | Miles |

| ID17060302CL044_02  | Rhoda Creek - Wounded Doe Creek to mouth        | 2.86  | Miles |
|---------------------|-------------------------------------------------|-------|-------|
| ID17060302CL044_04  | Rhoda Creek - Wounded Doe Creek to mouth        | 3.18  | Miles |
| ID17060302CL045_01L | Wounded Doe Creek Lake                          | 7     | Acres |
| ID17060302CL045_02  | Wounded Doe Creek - source to mouth             | 22.87 | Miles |
| ID17060302CL045_03  | Wounded Doe Creek - source to mouth             | 4.99  | Miles |
| ID17060302CL046_01L | North and South Lone Lakes                      | 26.36 | Acres |
| ID17060302CL046_02  | Rhoda Creek - source to Wounded Doe Creek       | 31.9  | Miles |
| ID17060302CL046_02L | Two Lakes                                       | 22.73 | Acres |
| ID17060302CL046_03  | Rhoda Creek - source to Wounded Doe Creek       | 4.88  | Miles |
| ID17060302CL046_0L  | Shasta Lake                                     | 5.25  | Acres |
| ID17060302CL047_02  | Lizard Creek - Lizard Lakes to mouth            | 7.35  | Miles |
| ID17060302CL047_02L | Lizard Lakes                                    | 51.51 | Acres |
| ID17060302CL048_02  | Meeker Creek - source to mouth                  | 9.46  | Miles |
| ID17060302CL049_02  | Three Links Creek - source to mouth             | 40.31 | Miles |
| ID17060302CL049_02L | North and South Three Links Lakes               | 31.39 | Acres |
| ID17060302CL049_03  | Three Links Creek - source to mouth             | 10.18 | Miles |
| ID17060302CL049_04  | Three Links Creek - source to mouth             | 4.19  | Miles |
| ID17060302CL052_01L | Cove-Rainbow Lakes                              | 9.75  | Acres |
| 17060303            | Lochsa                                          |       |       |
| ID17060303CL007_02  | Old Man Creek - source to mouth                 | 41.94 | Miles |
| ID17060303CL007_02L | Old Man Lakes                                   | 77.18 | Acres |
| ID17060303CL007_0L  | Chimney Lake                                    | 4.93  | Acres |
| ID17060303CL010_02L | Rock Creek Lakes                                | 19.58 | Acres |
| ID17060303CL010_03  | Boulder Creek - source to mouth                 | 4.48  | Miles |
| ID17060303CL011_02L | Long Lake                                       | 28.25 | Acres |
| ID17060303CL015_02  | Sponge Creek - source to Fish Lake Creek        | 22.37 | Miles |
| ID17060303CL016_02  | Fish Lake Creek - source to mouth               | 23.73 | Miles |
| ID17060303CL016_02L | Fish Lake                                       | 53.12 | Acres |
| ID17060303CL018_02  | Warm Springs Creek - source to Wind Lakes Creek | 23.45 | Miles |
| ID17060303CL018_02L | Hungry Lake                                     | 23.66 | Acres |
| ID17060303CL019_02L | Wind Lakes                                      | 37.46 | Acres |
| ID17060303CL019_03  | Wind Lakes Creek - source to mouth              | 4.83  | Miles |
|                     |                                                 |       |       |

| ID17060303CL023_02L | Walton Lakes                                                 | 22.21 | Acres |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060303CL025_02  | White Sand Creek - source to Storm Creek                     | 33.27 | Miles |
| ID17060303CL025_02L | Garnet Lake, Parachute Lake                                  | 29.99 | Acres |
| ID17060303CL025_03  | White Sand Creek - source to Storm Creek                     | 2.1   | Miles |
| ID17060303CL025_0L  | Garnet Lake                                                  | 7.73  | Acres |
| ID17060303CL026_02L | Colt Creek Lakes                                             | 26.93 | Acres |
| ID17060303CL027_02L | Hoodoo Lake                                                  | 8.22  | Acres |
| ID17060303CL029_02  | Big Sand Creek - source to Hidden Creek                      | 22.61 | Miles |
| ID17060303CL029_02L | Big Sand Lake                                                | 69.72 | Acres |
| ID17060303CL030_01L | Tadpole Lake                                                 | 12.27 | Acres |
| ID17060303CL030_02  | Hidden Creek - source to mouth                               | 12.79 | Miles |
| ID17060303CL030_02L | Hidden Lake (Hidden Creek to source)                         | 117.8 | Acres |
| ID17060303CL030_03  | Hidden Creek - source to mouth                               | 3.47  | Miles |
| ID17060303CL031_02  | Big Flat Creek - source to mouth                             | 10.59 | Miles |
| ID17060303CL032_01L | Storm Lake                                                   | 13.38 | Acres |
| ID17060303CL032_02L | Maud Lake                                                    | 24.11 | Acres |
| ID17060303CL032_03L | Dan, Dodge, Maud Lakes                                       | 17.57 | Acres |
| ID17060303CL039_02  | Hopeful Creek - source to mouth                              | 12.35 | Miles |
| 17060305            | South Fork Clearwater                                        |       |       |
| ID17060305CL015_02  | Gospel Creek - source to mouth                               | 18.84 | Miles |
| ID17060305CL015_02L | Moores and Middle Knob Lakes                                 | 63.11 | Acres |
| ID17060305CL016_02  | West Fork Gospel Creek - source to mouth                     | 5.94  | Miles |
| ID17060305CL016_02L | Gospel Lakes                                                 | 10.47 | Acres |
| ID17060305CL018_02  | Johns Creek - source to Moores Creek                         | 17.65 | Miles |
| ID17060305CL018_03  | Johns Creek - source to Moores Creek                         | 3.6   | Miles |
| ID17060305CL019_02  | Moores Creek - source to mouth                               | 8.76  | Miles |
| ID17060305CL020_02  | Square Mountain Creek - source to mouth                      | 5.04  | Miles |
| ID17060305CL021_02  | Hagen Creek - source to mouth                                | 11.26 | Miles |
| 17060307            | Upper North Fork Clearwater                                  |       |       |
| ID17060307CL024_02  | Kelly Creek - confluence of North and Middle Fork Kelly Cree | 42.22 | Miles |
| ID17060307CL024 03  | Kelly Creek - confluence of North and Middle Fork Kelly Cree | 8.36  | Miles |

| ID17060307CL024_04                                                                 | Kelly Creek - confluence of North and Middle Fork Kelly Cree                                                                    | 3.16                  | Miles                   |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| ID17060307CL025_02                                                                 | South Fork Kelly Creek - source to mouth                                                                                        | 12.99                 | Miles                   |
| ID17060307CL026_02                                                                 | Middle Fork Kelly Creek - source to mouth                                                                                       | 15.36                 | Miles                   |
| ID17060307CL027_02                                                                 | North Fork Kelly Creek - source to mouth                                                                                        | 9.27                  | Miles                   |
| ID17060307CL048_02                                                                 | Collins Creek - source to mouth                                                                                                 | 33.62                 | Miles                   |
|                                                                                    |                                                                                                                                 |                       |                         |
| 17060308                                                                           | Lower North Fork Clearwater                                                                                                     |                       |                         |
| <b>17060308</b><br>ID17060308CL010_02                                              | Lower North Fork Clearwater<br>Isabella Creek - headwaters to Elmer/Jug Creek                                                   | 3.14                  | Miles                   |
| <b>17060308</b><br>ID17060308CL010_02<br>ID17060308CL012_02L                       | Lower North Fork Clearwater<br>Isabella Creek - headwaters to Elmer/Jug Creek<br>Larkins Lakes                                  | 3.14<br>7.74          | Miles                   |
| <b>17060308</b><br>ID17060308CL010_02<br>ID17060308CL012_02L<br>ID17060308CL013_02 | Lower North Fork Clearwater   Isabella Creek - headwaters to Elmer/Jug Creek   Larkins Lakes   Sawtooth Creek - source to mouth | 3.14<br>7.74<br>25.89 | Miles<br>Acres<br>Miles |

# Panhandle

| 17010104            | Lower Kootenai               |       |       |
|---------------------|------------------------------|-------|-------|
| ID17010104PN008_02L | Smith Lake                   | 4.33  | Acres |
| ID17010104PN011_02L | Myrtle Lake                  | 19.74 | Acres |
| 17010214            | Pend Oreille Lake            |       |       |
| ID17010214PN041_01L | Beehive Lakes                | 16.28 | Acres |
| 17010304            | St. Joe                      |       |       |
| ID17010304PN041_02g | Bean Creek 1st and 2nd order | 13.72 | Miles |

| 17060101            | Hells Canyon                                                |        |       |
|---------------------|-------------------------------------------------------------|--------|-------|
| ID17060101SL004_02L | Unnamed lakes in Six Lake Basin                             | 22.84  | Acres |
| ID17060101SL006_02  | Granite and Devils Farm Creeks - 1st and 2nd order          | 18.45  | Miles |
| ID17060101SL006_02L | Emerald Lake                                                | 30.47  | Acres |
| ID17060101SL007_02L | Little Granite Creek Lakes                                  | 77.85  | Acres |
| ID17060101SL009_02  | Sheep Creek - confluence of West and East Fork Sheep Creeks | 11.77  | Miles |
| ID17060101SL010_02  | West Fork Sheep Creek - source to mouth                     | 6.15   | Miles |
| ID17060101SL010_02L | Sheep Creek Lakes                                           | 80.03  | Acres |
| ID17060101SL011_02  | East Fork Sheep Creek - source to mouth                     | 5.24   | Miles |
| ID17060101SL012_02  | Clarks Fork - source to mouth                               | 13.39  | Miles |
| 17060201            | Upper Salmon                                                |        |       |
| ID17060201SL031_02L | Elk Lake                                                    | 4.1    | Acres |
| ID17060201SL046_02L | Crimson Lake (Cabin Creek)                                  | 17.49  | Acres |
| ID17060201SL058_01L | Hanson Lakes                                                | 27.12  | Acres |
| ID17060201SL058_0L  | McGown Lakes                                                | 9.11   | Acres |
| ID17060201SL060_01L | Alpine Lake                                                 | 21.48  | Acres |
| ID17060201SL060_02L | Sawtooth Lake                                               | 169.91 | Acres |
| ID17060201SL061_02L | Goat Lakes                                                  | 50.17  | Acres |
| ID17060201SL062_02L | Marshall Lake                                               | 4.15   | Acres |
| ID17060201SL065_01L | Stephens Lakes                                              | 14.94  | Acres |
| ID17060201SL065_02L | Unamed Lake to Fish Hook Creek Tributary                    | 18.03  | Acres |
| ID17060201SL066_02L | Bench Lakes                                                 | 61.01  | Acres |
| ID17060201SL067_01L | Saddleback Lakes (Upper and Lower)                          | 24.1   | Acres |
| ID17060201SL067_02  | Redfish Lake Creek - source to Redfish Lake                 | 14.41  | Miles |
| ID17060201SL067_02L | Kathryn - Cramer-Alpine Lakes                               | 101.75 | Acres |
| ID17060201SL070_02L | Decker Creek Lakes                                          | 6.06   | Acres |
| ID17060201SL074_02L | Hell Roaring Creek Lakes                                    | 188.32 | Acres |
| ID17060201SL075_01L | Cabin Creek Lakes                                           | 17.14  | Acres |
| ID17060201SL076_02L | Toxaway Lakes                                               | 142.63 | Acres |
| ID17060201SL076_0L  | Farley Lake                                                 | 48.9   | Acres |
| ID17060201SL077_03L | Twin Lakes                                                  | 49.35  | Acres |

| ID17060201SL077_0L  | Alice Lakes                                                  | 79.13  | Acres |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17060201SL080_02  | Alpine Creek - source to mouth                               | 9.73   | Miles |
| ID17060201SL080_02L | Unnamed Lakes - Alpine Creek                                 | 106.67 | Acres |
| ID17060201SL094_02L | Unnamed Lake - Trib to Warm Springs Creek                    | 3.85   | Acres |
| ID17060201SL097_02  | Warm Springs Creek - source to Pigtail Creek                 | 16.56  | Miles |
| ID17060201SL098_02  | Swimm Creek - source to mouth                                | 3.54   | Miles |
| ID17060201SL098_02L | Swimm Lake                                                   | 17.6   | Acres |
| ID17060201SL099_01L | Crater Lake                                                  | 17.31  | Acres |
| ID17060201SL099_02L | Ocalkens Lakes                                               | 15.84  | Acres |
| ID17060201SL099_0L  | Hoodoo Lake                                                  | 4.94   | Acres |
| ID17060201SL105_02L | Big Boulder Lakes                                            | 142.24 | Acres |
| ID17060201SL105_0L  | Island Lake and Upper Goat Lake                              | 22.64  | Acres |
| ID17060201SL106_02L | Quiet Lakes                                                  | 58.14  | Acres |
| ID17060201SL106_0L  | Frog Lakes-Spring Basin                                      | 12.98  | Acres |
| ID17060201SL108_02L | Chamberlain Basin Lakes                                      | 30.46  | Acres |
| ID17060201SL109_02L | Deer Lakes                                                   | 12.29  | Acres |
| ID17060201SL112_02  | South Fork East Fork Salmon River - source to mouth          | 24.85  | Miles |
| ID17060201SL112_03  | South Fork East Fork Salmon River - source to mouth          | 2.04   | Miles |
| ID17060201SL113_02  | Ibex Creek - source to mouth                                 | 3.79   | Miles |
| ID17060201SL115_02  | Bowery Creek - source to mouth                               | 24.41  | Miles |
| ID17060201SL119_02  | East Pass Creek - source to mouth                            | 38.64  | Miles |
| ID17060201SL119_03  | East Pass Creek - source to mouth                            | 3.43   | Miles |
| ID17060201SL120_02  | Taylor Creek - source to mouth                               | 7.95   | Miles |
| ID17060201SL121_02  | West Fork Herd Creek - source to mouth                       | 20.42  | Miles |
| ID17060201SL121_03  | West Fork Herd Creek - source to mouth                       | 3.93   | Miles |
| ID17060201SL121_04  | West Fork Herd Creek-East Fork Herd Creek to East Pass Creek | 1.42   | Miles |
| ID17060201SL122_02  | East Fork Herd Creek - source to mouth                       | 17.59  | Miles |
| ID17060201SL122_03  | East Fork Herd Creek - source to mouth                       | 2.29   | Miles |
| 17060202            | Pahsimeroi                                                   |        |       |
| ID17060202SL022_02L | East Fork Pahsimeroi River Lakes                             | 11.49  | Acres |
|                     |                                                              |        |       |

| 17060203            | Middle Salmon-Panther                                    |       |       |
|---------------------|----------------------------------------------------------|-------|-------|
| ID17060203SL001_02L | Dome Lake                                                | 17.29 | Acres |
| ID17060203SL004_02L | Big Clear Creek Lakes                                    | 29.72 | Acres |
| ID17060203SL006_02L | Cathedral and Golden Trout Lakes                         | 25.84 | Acres |
| 17060205            | Upper Middle Fork Salmon                                 |       |       |
| ID17060205SL001_01L | Iris Lakes                                               | 6.27  | Acres |
| ID17060205SL001_02L | Finger Lakes                                             | 7.51  | Acres |
| ID17060205SL001_03  | Cougar and Fall Creeks - 3rd order sections              | 5.5   | Miles |
| ID17060205SL002_03  | Marble and Little Cottonwood Creeks - 3rd order          | 4.16  | Miles |
| ID17060205SL003_02  | Trail Creek - 1st and 2nd order                          | 28.29 | Miles |
| ID17060205SL003 03  | Trail and Poee Creeks - 3rd order                        | 6.6   | Miles |
| ID17060205SL004_02  | Big Cottonwood Creek - entire drainage                   | 9.08  | Miles |
| ID17060205SL005_02  | Dynamite Creek - 1st and 2nd order                       | 19.43 | Miles |
| ID17060205SL005_03  | Dynamite Creek - 3rd order                               | 2.26  | Miles |
| ID17060205SL006_02  | Indian Creek - 1st and 2nd order                         | 91.66 | Miles |
| ID17060205SL006_02L | Cultens Creek - unnamed headwater lake                   | 7.1   | Acres |
| ID17060205SL006_03  | Indian Creek - 3rd order (Big Chief Creek to mouth)      | 14.41 | Miles |
| ID17060205SL007_03  | Pistol, Forty-five, and Little Pistol Creeks - 3rd order | 21.35 | Miles |
| ID17060205SL007_04  | Pistol Creek - 4th order (Forty-five Creek to mouth)     | 4.87  | Miles |
| ID17060205SL008_03  | Elkhorn Creek - 3rd order (NF Elkhorn Creek to mouth)    | 1.48  | Miles |
| ID17060205SL009_03  | Sulphur and Honeymoon Creeks - 3rd order                 | 1.81  | Miles |
| ID17060205SL013_04a | Elk Creek - Wilderness Area                              | 3.93  | Miles |
| ID17060205SL016_02L | Upper Lost Lakes                                         | 4.49  | Acres |
| ID17060205SL025_02L | Knapp Lakes                                              | 16.56 | Acres |
| ID17060205SL028_01L | Mabie Lakes                                              | 12.8  | Acres |
| ID17060205SL032_02L | Ruffneck Lakes                                           | 19.87 | Acres |
| ID17060205SL033_01L | Soldier Lakes                                            | 5.1   | Acres |
| ID17060205SL033_02  | Soldier Creek - source to mouth                          | 20.27 | Miles |
| ID17060205SL033_02L | Cutthroat Lake                                           | 6.77  | Acres |
| ID17060205SL033_03  | Soldier Creek - source to mouth                          | 5.42  | Miles |
| ID17060205SL034_03  | Greyhound Creek - source to mouth                        | 1.97  | Miles |

| ID17060205SL035_02  | Rapid River - Bell Creek to mouth                          | 14.04 | Miles |
|---------------------|------------------------------------------------------------|-------|-------|
| ID17060205SL035_04  | Rapid River - Bell Creek to mouth                          | 5.71  | Miles |
| ID17060205SL036_02  | Bell Creek - source to mouth                               | 5.07  | Miles |
| ID17060205SL037_04  | Rapid River - Lucinda Creek to Bell Creek                  | 2.22  | Miles |
| ID17060205SL039_01L | Josephus Lake                                              | 10.89 | Acres |
| ID17060205SL041_02L | Vanity Lakes                                               | 11.73 | Acres |
| ID17060205SL044_02  | Sheep Creek-confluence of North and South Fork Sheep Creek | 1.01  | Miles |
| ID17060205SL044_03  | Sheep Creek-confluence of North and South Fork Sheep Creek | 2.02  | Miles |
| ID17060205SL045_02  | South Fork Sheep Creek - source to mouth                   | 6.56  | Miles |
| ID17060205SL046_02  | North Fork Sheep Creek - source to mouth                   | 4.36  | Miles |
| ID17060205SL047_02  | Little Loon Creek - source to mouth                        | 53.55 | Miles |
| ID17060205SL047_03  | Little Loon Creek - source to mouth                        | 7.03  | Miles |
| ID17060205SL048_05  | Loon Creek - Cabin Creek to mouth                          | 11.19 | Miles |
| ID17060205SL049_02  | Loon Creek - Warm Springs Creek to Cabin Creek             | 18.07 | Miles |
| ID17060205SL049_05  | Loon Creek - Warm Springs Creek to Cabin Creek             | 3.42  | Miles |
| ID17060205SL050_02  | Loon Creek - Cottonwood Creek to Warm Springs Creek        | 4.51  | Miles |
| ID17060205SL050_04  | Loon Creek - Cottonwood Creek to Warm Springs Creek        | 2.61  | Miles |
| ID17060205SL051_02  | Loon Creek - Shell Creek to Cottonwood Creek               | 1.07  | Miles |
| ID17060205SL051_04  | Loon Creek - Shell Creek to Cottonwood Creek               | 1.68  | Miles |
| ID17060205SL052_02  | Shell Creek - source to mouth                              | 4.43  | Miles |
| ID17060205SL058_02  | Trail Creek - source to mouth                              | 15.27 | Miles |
| ID17060205SL059_02  | Loon Creek - source to Pioneer Creek                       | 18.41 | Miles |
| ID17060205SL059_02L | Horseshoe Lake (Loon Creek)                                | 22.43 | Acres |
| ID17060205SL059_03  | Loon Creek - source to Pioneer Creek                       | 2.63  | Miles |
| ID17060205SL060_02L | Unnamed Lakes - Tango Creek                                | 5.56  | Acres |
| ID17060205SL060_03  | Pioneer Creek - source to mouth                            | 2.32  | Miles |
| ID17060205SL063_02L | Mystery Lakes                                              | 26.04 | Acres |
| ID17060205SL064_02  | East Fork Mayfield Creek - source to mouth                 | 31.49 | Miles |
| ID17060205SL065_02  | Cottonwood Creek - source to mouth                         | 18.4  | Miles |
| ID17060205SL065_03  | Cottonwood Creek - source to mouth                         | 1.82  | Miles |
| ID17060205SL066_02  | South Fork Cottonwood Creek - source to mouth              | 7.29  | Miles |
| ID17060205SL068_02  | Trapper Creek - source to mouth                            | 28.45 | Miles |

| ID17060205SL068_03  | Trapper Creek - source to mouth                              | 1.49  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060205SL069_03  | Warm Springs Creek - source to Trapper Creek                 | 3.2   | Miles |
| ID17060205SL070_02  | Cabin Creek - source to mouth                                | 18.01 | Miles |
| 17060206            | Lower Middle Fork Salmon                                     |       |       |
| ID17060206SL001_03  | Norton and Stoddard Creeks - 3rd order                       | 6.81  | Miles |
| ID17060206SL002_02  | Papoose Creek - 1st and 2nd order                            | 28.94 | Miles |
| ID17060206SL002_03  | Papoose Creek - 3rd order                                    | 2.99  | Miles |
| ID17060206SL003_02L | Jacobs Ladder and Belvidere Creeks - unnamed headwater lakes | 10.32 | Acres |
| ID17060206SL004_02  | Cabin Creek - 1st and 2nd order                              | 26.54 | Miles |
| ID17060206SL004_03  | Cabin Creek - 3rd order (Cow Creek to mouth)                 | 1.28  | Miles |
| ID17060206SL005_02  | Cave Creek - 1st and 2nd order                               | 14.99 | Miles |
| ID17060206SL005_03  | Cave Creek - 3rd order (West Fork Cave Creek to mouth)       | 2.9   | Miles |
| ID17060206SL006_02  | Crooked Creek - 1st and 2nd order                            | 31.24 | Miles |
| ID17060206SL006_03  | Crooked Creek - 3rd order (West Fork Crooked Creek to mouth) | 6.88  | Miles |
| ID17060206SL007_02  | Big Ramey Creek - 1st and 2nd order                          | 33.95 | Miles |
| ID17060206SL007_03  | Big Ramey Creek - 3rd order (West Fork to mouth)             | 3.36  | Miles |
| ID17060206SL008_02  | Beaver Creek - 1st and 2nd order                             | 35.54 | Miles |
| ID17060206SL008 03  | Beaver Creek - 3rd order (West Fork to Big Creek)            | 8.25  | Miles |
| ID17060206SL011_02  | Little Marble Creek - entire watershed                       | 13.92 | Miles |
| ID17060206SL012_03L | Roosevelt Lake                                               | 7.01  | Acres |
| ID17060206SL012_04  | Monumental Creek - 4th order (West Fork to mouth)            | 14.87 | Miles |
| ID17060206SL013_02  | Snowslide Creek - 1st and 2nd order                          | 19.67 | Miles |
| ID17060206SL013_02L | Beehive Creek - unnamed headwater lake                       | 7.68  | Acres |
| ID17060206SL013_03  | Snowslide Creek - 3rd order (Beehive Creek to mouth)         | 3.01  | Miles |
| ID17060206SL014_02  | West Fork Monumental Creek - 1st and 2nd order               | 20.28 | Miles |
| ID17060206SL014_03  | West Fork Monumental Creek - 3rd order                       | 6.49  | Miles |
| ID17060206SL015_02  | Rush Creek - 1st and 2nd order except Two Point Creek        | 81.22 | Miles |
| ID17060206SL015_03  | Rush and Corner Creeks - 3rd order                           | 3.02  | Miles |
| ID17060206SL016_02  | Two Point Creek - entire drainage                            | 4.91  | Miles |
| ID17060206SL017_02  | Soldier Creek - entire drainage                              | 19.73 | Miles |
| ID17060206SL019_02  | Sheep Creek - 1st and 2nd order                              | 25    | Miles |
| ID17060206SL019_03  | Sheep Creek - 3rd order                                      | 7.96  | Miles |

| ID17060206SL020_02  | Camas Creek - Yellowjacket Creek to mouth       | 16.56 | Miles |
|---------------------|-------------------------------------------------|-------|-------|
| ID17060206SL021_02  | Camas Creek - Forge Creek to Yellowjacket Creek | 25.12 | Miles |
| ID17060206SL021_02L | Woodtick Lake                                   | 4.56  | Acres |
| ID17060206SL024_01L | West Fork Lakes                                 | 14.33 | Acres |
| ID17060206SL024_02L | Liberty Lakes                                   | 6.44  | Acres |
| ID17060206SL029_02  | South Fork Camas Creek - source to mouth        | 21.61 | Miles |
| ID17060206SL029_03  | South Fork Camas Creek - source to mouth        | 2.18  | Miles |
| ID17060206SL030_03  | Camas Creek - source to South Fork Camas Creek  | 3.77  | Miles |
| ID17060206SL037_02  | Yellowjacket Creek - Jenny Creek to mouth       | 6.56  | Miles |
| ID17060206SL037_03  | Yellowjacket Creek - Jenny Creek to mouth       | 4.32  | Miles |
| ID17060206SL038_02L | Lake Creek                                      | 5.44  | Acres |
| ID17060206SL045_02  | Jenny Creek - source to mouth                   | 2.01  | Miles |
| ID17060206SL046_01L | Paragon Lakes                                   | 12.5  | Acres |
| ID17060206SL046_02  | Wilson Creek - source to mouth                  | 29.62 | Miles |
| ID17060206SL046_02L | Sky High Lakes                                  | 28.99 | Acres |
| ID17060206SL046_03  | Wilson Creek - source to mouth                  | 11.23 | Miles |
| ID17060206SL046_0L  | Wilson Creek Lakes                              | 22.04 | Acres |
| ID17060206SL047_02  | Waterfall Creek - source to mouth               | 22.85 | Miles |
| ID17060206SL047_02L | Terrace Lakes                                   | 7.95  | Acres |
| ID17060206SL047_03  | Waterfall Creek - source to mouth               | 1.3   | Miles |
| ID17060206SL048_01L | Airplane, Shoban and Sheepeater Lakes           | 23.72 | Acres |
| ID17060206SL048_02  | Ship Island Creek - source to mouth             | 8.82  | Miles |
| ID17060206SL048_02L | Ship Island Lake                                | 85.63 | Acres |
| ID17060206SL049_02  | Roaring Creek - source to mouth                 | 8.75  | Miles |
| ID17060206SL049_02L | Roaring Creek Lakes                             | 11.22 | Acres |
| ID17060206SL049_03  | Roaring Creek - source to mouth                 | 4.35  | Miles |
| ID17060206SL050_02  | Goat Creek - source to mouth                    | 9.23  | Miles |
| 17060207            | Middle Salmon-Chamberlain                       |       |       |
| ID17060207SL009_02  | Fivemile Creek - source to mouth                | 27.61 | Miles |
|                     | Lembi Creek - source to mouth                   | 16.04 | Miles |
| ID17060207SL014_02 | Richardson Creek - source to mouth                           | 14.5  | Miles |
|--------------------|--------------------------------------------------------------|-------|-------|
| ID17060207SL014_03 | Richardson Creek - source to mouth                           | 3.93  | Miles |
| ID17060207SL015_02 | Dillinger Creek - source to mouth                            | 14.69 | Miles |
| ID17060207SL016_02 | Hot Springs Creek - source to mouth                          | 9.62  | Miles |
| ID17060207SL017_02 | Big Bear Creek - source to mouth                             | 12.54 | Miles |
| ID17060207SL018_02 | Salmon River - Horse Creek to Chamberlain Creek              | 43.65 | Miles |
| ID17060207SL018_07 | Salmon River - Horse Creek to Chamberlain Creek              | 11.89 | Miles |
| ID17060207SL019_02 | Chamberlain Creek - McCalla Creek to mouth                   | 4.27  | Miles |
| ID17060207SL019 05 | Chamberlain Creek - McCalla Creek to mouth                   | 4.18  | Miles |
| ID17060207SL020_02 | Chamberlain Creek - Game Creek to McCalla Creek              | 35.22 | Miles |
| ID17060207SL020_04 | Chamberlain Creek - Game Creek to McCalla Creek              | 11.94 | Miles |
| ID17060207SL021_02 | Queen Creek - source to mouth                                | 8.93  | Miles |
| ID17060207SL022_02 | Game Creek - source to mouth                                 | 11.06 | Miles |
| ID17060207SL023_02 | West Fork Game Creek - source to mouth                       | 11.84 | Miles |
| ID17060207SL024_03 | Chamberlain Creek - confluence of Rim and South Fork Chamber | 5.55  | Miles |
| ID17060207SL025_02 | Flossie Creek - source to mouth                              | 7.75  | Miles |
| ID17060207SL026_02 | Rim Creek - source to mouth                                  | 5.25  | Miles |
| ID17060207SL027_02 | South Fork Chamberlain Creek - source to mouth               | 5.75  | Miles |
| ID17060207SL028_02 | Moose Creek - source to mouth                                | 12.68 | Miles |
| ID17060207SL028_03 | Moose Creek - source to mouth                                | 1.86  | Miles |
| ID17060207SL029_02 | Lodgepole Creek - source to mouth                            | 19.39 | Miles |
| ID17060207SL029_03 | Lodgepole Creek - source to mouth                            | 3.56  | Miles |
| ID17060207SL030_02 | McCalla Creek - source to mouth                              | 35.91 | Miles |
| ID17060207SL030_03 | McCalla Creek - source to mouth                              | 8.79  | Miles |
| ID17060207SL030_04 | McCalla Creek - source to mouth                              | 2.79  | Miles |
| ID17060207SL032_02 | Disappointment Creek - source to mouth                       | 11.47 | Miles |
| ID17060207SL032_03 | Disappointment Creek - source to mouth                       | 4.17  | Miles |
| ID17060207SL033_02 | Starvation Creek - source to mouth                           | 7.25  | Miles |
| ID17060207SL034_02 | Hungry Creek - source to mouth                               | 3.83  | Miles |
| ID17060207SL035_02 | Cottonwood Creek - source to mouth                           | 44.1  | Miles |
| ID17060207SL035_03 | Cottonwood Creek - source to mouth                           | 11.91 | Miles |
| ID17060207SL036_02 | Peak Creek - source to mouth                                 | 9.17  | Miles |

| ID17060207SL038_02 | Butts Creek - source to mouth              | 8.88  | Miles |
|--------------------|--------------------------------------------|-------|-------|
| ID17060207SL039_02 | Kitchen Creek - source to mouth            | 21.29 | Miles |
| ID17060207SL041_02 | Horse Creek - Little Horse Creek to mouth  | 19.97 | Miles |
| ID17060207SL041_04 | Horse Creek - Little Horse Creek to mouth  | 9.3   | Miles |
| ID17060207SL045_03 | East Fork Reynolds Creek - source to mouth | 1.48  | Miles |
| ID17060207SL046_02 | Reynolds Creek - source to mouth           | 4.49  | Miles |
| ID17060207SL047_02 | West Horse Creek - source to mouth         | 19.1  | Miles |
| ID17060207SL048_02 | Little Squaw Creek - source to mouth       | 6.92  | Miles |
| ID17060207SL049_02 | Harrington Creek - source to mouth         | 16.86 | Miles |
| ID17060207SL049_03 | Harrington Creek - source to mouth         | 2.21  | Miles |
| ID17060207SL050_02 | Sabe Creek - Hamilton Creek to mouth       | 18.3  | Miles |
| ID17060207SL050_04 | Sabe Creek - Hamilton Creek to mouth       | 6.05  | Miles |
| ID17060207SL051_03 | Hamilton Creek - source to mouth           | 7.18  | Miles |
| ID17060207SL052_03 | Sabe Creek - source to Hamilton Creek      | 5.17  | Miles |
| ID17060207SL053_02 | Center Creek - source to mouth             | 3.8   | Miles |
| ID17060207SL054_02 | Rattlesnake Creek - source to mouth        | 13.5  | Miles |
| ID17060207SL057_02 | Prospector Creek - source to mouth         | 3.78  | Miles |
| ID17060207SL058_02 | Cache Creek - source to mouth              | 9.73  | Miles |
| ID17060207SL059_02 | Salt Creek - source to mouth               | 8.18  | Miles |
| ID17060207SL060_02 | Rainey Creek - source to mouth             | 6.85  | Miles |
| ID17060207SL067_02 | Crooked Creek - Lake Creek to mouth        | 22.11 | Miles |
| ID17060207SL068_04 | Crooked Creek - Big Creek to Lake Creek    | 1.55  | Miles |
| ID17060207SL070_03 | Lake Creek - source to mouth               | 3.43  | Miles |
| ID17060207SL070_04 | Lake Creek - source to mouth               | 5.9   | Miles |
| ID17060207SL071_02 | Arlington Creek - source to mouth          | 3.69  | Miles |
| ID17060207SL072_02 | Bull Creek - 1st and 2nd order tribs       | 12.69 | Miles |
| ID17060207SL074_03 | Sheep Creek - source to mouth              | 8.43  | Miles |
| ID17060207SL075_02 | Long Meadow Creek - source to mouth        | 8.76  | Miles |
| ID17060207SL076_03 | Wind River - source to mouth               | 6.69  | Miles |
| 17060208           | South Fork Salmon                          |       |       |
| ID17060208SL035_02 | Porphyry Creek - 1st and 2nd order         | 34.17 | Miles |
| ID17060208SL035_03 | Porphyry and Wolf Fang Creeks - 3rd order  | 4.09  | Miles |

| 17060209            | Lower Salmon                                                 |       |       |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060209SL041_02a | Slate Creek                                                  | 9.41  | Miles |
| ID17060209SL041_02L | Slate Lakes                                                  | 9.73  | Acres |
| 17060210            | Little Salmon                                                |       |       |
| ID17060210SL002_01L | Satan Lake                                                   | 4.96  | Acres |
| ID17060210SL002_02L | Twin Lakes                                                   | 6.37  | Acres |
| ID17060210SL003_02L | Hanson, Lower Cannon, Dog, Slide Rock and Horse Heaven Lakes | 41.84 | Acres |
| ID17060210SL003_0L  | Mirror Lake                                                  | 8.11  | Acres |

## Southwest

| 17050102            | Bruneau                                                      |        |       |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17050102SW027_03  | Sheepshead Draw - 3rd order                                  | 2.63   | Miles |
| 17050105            | South Fork Owyhee                                            |        |       |
| ID17050105SW001_03  | Unnamed 3rd order tributary to SF Owyhee River               | 1.25   | Miles |
| 17050106            | East Little Owyhee                                           |        |       |
| ID17050106SW001_03  | Unnamed third order tributary to Little Owyhee River         | 2.21   | Miles |
| 17050107            | Middle Owyhee                                                |        |       |
| ID17050107SW001_03  | Dukes Creek - 3rd order                                      | 1.21   | Miles |
| ID17050107SW001_07  | Owyhee River - South Fork Owyhee River to ID/OR border       | 9.03   | Miles |
| 17050111            | North and Middle Forks Boise                                 |        |       |
| ID17050111SW001_01L | Spangle Lakes                                                | 56.9   | Acres |
| ID17050111SW001_02L | Leggit Lake                                                  | 18.91  | Acres |
| ID17050111SW001_03L | Lynx Creek Lakes                                             | 8.94   | Acres |
| ID17050111SW001_0L  | Little Spangle Lake and Flytrip Creek headwater lakes        | 43.74  | Acres |
| ID17050111SW001_LL  | Suprise Lakes                                                | 6.71   | Acres |
| ID17050111SW006_01L | Queens River - unnamed headwater lake                        | 7.4    | Acres |
| ID17050111SW007_01L | Scenic Lake                                                  | 15.06  | Acres |
| ID17050111SW007_02L | Browns Lake                                                  | 22.73  | Acres |
| ID17050111SW010_02L | McKay Creek Lake                                             | 2.03   | Acres |
| ID17050111SW011_01L | Alidade Lake                                                 | 6.05   | Acres |
| ID17050111SW011_02L | Johnson, Pats, Azure, Rock Island and Arrowhead Lakes        | 45.56  | Acres |
| ID17050111SW012_02L | Jennie Lake                                                  | 4.77   | Acres |
| 17050120            | South Fork Payette                                           |        |       |
| ID17050120SW005_00L | Benedict, Everly and Three Island Lakes                      | 39.92  | Acres |
| ID17050120SW005_02L | Edna, Vernon, and Virginia Lakes                             | 124.58 | Acres |
| ID17050120SW005_03  | SF Payette River - 3rd order (Benedict Creek to Baron Creek) | 13.23  | Miles |
| ID17050120SW005_03L | Elk Lake                                                     | 21.21  | Acres |
| ID17050120SW005_04L | Trail Creek Lakes                                            | 14.39  | Acres |
| ID17050120SW005_0L  | Ardeth Lake                                                  | 79.6   | Acres |
| ID17050120SW005_LL  | Pinchot Creek unnamed headwater lakes                        | 24.36  | Acres |

## Southwest

| ID17050120SW006_02  | Goat Creek - entire drainage                              | 12.96 | Miles |
|---------------------|-----------------------------------------------------------|-------|-------|
| ID17050120SW006_02L | Blue Rock, Packrat, and Oreamnos Lakes                    | 36.45 | Acres |
| ID17050120SW007_01L | North Fork Baron Creek - unnamed headwater lakes          | 26.62 | Acres |
| ID17050120SW007_02  | Baron and NF Baron Creeks - 1st and 2nd order             | 19.12 | Miles |
| ID17050120SW007_02L | Baron Lakes                                               | 50.96 | Acres |
| ID17050120SW007_03  | Baron Creek - 3rd order (North Fork Baron Creek to mouth) | 2.64  | Miles |
| ID17050120SW010_01L | Cat Lakes                                                 | 7.08  | Acres |
| ID17050120SW011_02L | Red Mountain Lakes                                        | 6.12  | Acres |
| ID17050120SW013_02L | Unnamed lakes on south side of Red Mountain               | 13.15 | Acres |
| 17050123            | North Fork Payette                                        |       |       |
| ID17050123SW020_02L | Twentymile Lakes                                          | 16.22 | Acres |

# Upper Snake

| 17040104            | Palisades                    |       |       |
|---------------------|------------------------------|-------|-------|
| ID17040104SK021_02  | Fish Creek - source to mouth | 16.84 | Miles |
| 17040217            | Little Lost                  |       |       |
| ID17040217SK021_02L | Shadow Lakes                 | 9.24  | Acres |
| ID17040217SK024_02L | Unnamed Lake - Big Creek     | 3.34  | Acres |
| 17040218            | Big Lost                     |       |       |
| ID17040218SK027_02L | North Fork Lakes             | 9.89  | Acres |
| ID17040218SK032_02L | Moose Lake                   | 12.43 | Acres |
| ID17040218SK036_02L | Broad Canyon Lakes           | 41.18 | Acres |
| 170/0221            | Little Weed                  |       |       |
| 17040221            |                              |       |       |

### Category 2: Waters are fully supporting those beneficial uses that have been assessed. The use attainment of the remaining beneficial uses has not been determined due to insufficient (or no) data and information.

#### 2018/2020 Integrated Report - Category 2

**Bear River** 

| 16010102            | Central Bear                                               |       |       |
|---------------------|------------------------------------------------------------|-------|-------|
| ID16010102BR007_02  | Salt Creek - source to Idaho/Wyoming border                | 3.56  | Miles |
| 16010201            | Bear Lake                                                  |       |       |
| ID16010201BR004_03  | Eightmile Creek - 1 mile below FS boundary to mouth        | 4.82  | Miles |
| ID16010201BR005_02b | Pearl Creek - upper                                        | 6.34  | Miles |
| ID16010201BR006_02a | Beaver Creek                                               | 3.75  | Miles |
| ID16010201BR006_02b | Fern Creek                                                 | 2.14  | Miles |
| ID16010201BR006_02c | N and S Stauffer Cr and Stauffer Cr to Beaver Cr           | 7.33  | Miles |
| ID16010201BR007_02a | Skinner Creek - above USFS boundary includes N and S Forks | 6.59  | Miles |
| ID16010201BR008_02a | upper Co-Op Creek                                          | 5.47  | Miles |
| ID16010201BR010_02c | Meadow Creek                                               | 3.14  | Miles |
| ID16010201BR010_02d | upper North Creek - HW to Snyder Cr confluence             | 17.08 | Miles |
| ID16010201BR010_03  | North Creek - Emigration Creek to Liberty Creek            | 6.1   | Miles |
| ID16010201BR011_02a | Mill Creek - HW to Liberty Creek                           | 6.03  | Miles |
| ID16010201BR014_02a | Bloomington Creek - North, South and Middle Forks          | 17.22 | Miles |
| ID16010201BR019 02a | Fish Haven Creek                                           | 13.31 | Miles |
| ID16010201BR020_02c | Telephone Draw                                             | 2.76  | Miles |
| ID16010201BR022_02a | Right Hand Fork Georgetown Creek                           | 5.43  | Miles |
| ID16010201BR022_03  | Georgetown Creek - source to mouth                         | 3.62  | Miles |
| 16010202            | Middle Bear                                                |       |       |
| ID16010202BR003_02a | Maple Creek - Left Fk Maple Creek to Cub River             | 8.33  | Miles |
| ID16010202BR003_02c | Sugar Creek                                                | 6.75  | Miles |
| ID16010202BR004_02  | Cub River - source to Sugar Creek                          | 38.68 | Miles |
| ID16010202BR004_02a | Foster Creek                                               | 5.54  | Miles |
| ID16010202BR004_03  | Cub River - 2 order source to Sugar Creek                  | 7.36  | Miles |
| ID16010202BR005_02a | Worm Creek (upper)                                         | 11.26 | Miles |

## Bear River

| ID16010202BR007_02  | Mink and Strawberry Creek - 2nd order tributaries      | 41.36 | Miles |
|---------------------|--------------------------------------------------------|-------|-------|
| ID16010202BR007_02b | Mink Creek                                             | 1.76  | Miles |
| ID16010202BR014_02a | Divide Creek                                           | 4.33  | Miles |
| ID16010202BR014_02b | Cottonwood Creek Tributaries - source to Shingle Creek | 27    | Miles |
| ID16010202BR014_02d | Jacobson Creek                                         | 7.61  | Miles |
| ID16010202BR014_03  | Cottonwood Creek - source to Oneida Narrows Reservoir  | 5.84  | Miles |
| ID16010202BR017_02a | Oxford Creek                                           | 3.51  | Miles |
| ID16010202BR018_02a | Gooseberry Creek                                       | 14.45 | Miles |
| ID16010202BR018_03a | Stockton Creek                                         | 6.07  | Miles |
| ID16010202BR020_02b | Dry Canyon                                             | 14.17 | Miles |
| 16010203            | Little Bear-Logan                                      |       |       |
| ID16010203BR001_02  | Beaver Creek - source to Idaho/Utah border             | 13.91 | Miles |
| ID16010203BR002_02b | Hodge Nibley Creek                                     | 2.92  | Miles |
| ID16010203BR002_02c | Boss Canyon                                            | 3.16  | Miles |
| ID16010203BR002_03  | Logan River - source to Idaho/Utah border              | 1.2   | Miles |
| 16010204            | Lower Bear-Malad                                       |       |       |
| ID16010204BR001_02a | Two Mile Canyon                                        | 7.31  | Miles |
| ID16010204BR002_02b | New Canyon Creek                                       | 12.94 | Miles |
| ID16010204BR002_02d | Devil Creek                                            | 26.42 | Miles |
| ID16010204BR006_02b |                                                        |       |       |
| 101001020401000_020 | Second Creek                                           | 5.2   | Miles |

| 17060108            | Palouse                                                      |       |       |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060108CL004a_02 | Gnat Creek - source to T40N, R05W, Sec. 26                   | 5.82  | Miles |
| ID17060108CL004b_02 | Gnat Creek - T40N, R05W, Sec. 26 to mouth                    | 1.87  | Miles |
| ID17060108CL006a_02 | Missouri Flat Creek - source to T40N, R5W, Sec. 17           | 1.26  | Miles |
| ID17060108CL006b_02 | Missouri Flat Creek - T40N, R5W, Sec. 17 to ID/WA border     | 7.42  | Miles |
| ID17060108CL007a_02 | Fourmile Creek - source to T40N, R5W, Sec. 5                 | 2.64  | Miles |
| ID17060108CL007b_02 | Fourmile Creek - T40N, R5W, Sec. 5 to ID/WA border           | 11.45 | Miles |
| ID17060108CL008a_02 | Silver Creek - source to T43, R5W, Sec. 29                   | 0.81  | Miles |
| ID17060108CL009_02  | Palouse River - Deep Creek to ID/WA border; tribs            | 29.58 | Miles |
| ID17060108CL009_04  | Palouse River - Deep Creek to Idaho/Washington border        | 9.14  | Miles |
| ID17060108CL016_02  | Palouse River - Strychnine Creek to Hatter Creek             | 43.79 | Miles |
| ID17060108CL016_04  | Palouse River - Strychnine Creek to Hatter Creek             | 16.52 | Miles |
| ID17060108CL017_02  | Flat Creek - source to mouth                                 | 21.54 | Miles |
| ID17060108CL018_02  | Palouse River - source to Strychnine Creek                   | 26.24 | Miles |
| ID17060108CL018_03  | Palouse River - source to Strychnine Creek                   | 4.52  | Miles |
| ID17060108CL019_02  | Little Sand Creek - source to mouth                          | 10.52 | Miles |
| ID17060108CL019_03  | Little Sand Creek - source to mouth                          | 2.21  | Miles |
| ID17060108CL022 02  | Strychnine Creek - source to mouth                           | 12.56 | Miles |
| ID17060108CL022_03  | Strychnine Creek - source to mouth                           | 2.04  | Miles |
| ID17060108CL023_03  | Meadow Creek - East Fork Meadow Creek to mouth               | 2.76  | Miles |
| ID17060108CL024_02  | East Fork Meadow Creek - source to mouth                     | 19.84 | Miles |
| ID17060108CL025_02  | Meadow Creek - source to East Fork Meadow Creek              | 16.21 | Miles |
| ID17060108CL026_02  | White Pine Creek - source to mouth                           | 3.86  | Miles |
| ID17060108CL028_02  | Jerome Creek - source to mouth                               | 6.55  | Miles |
| ID17060108CL033a_02 | Cedar Creek - source to T43N, R05W, Sec. 28                  | 0.22  | Miles |
| 17060301            | Upper Selway                                                 |       |       |
| ID17060301CL008_03  | Running Creek - Lynx Creek to mouth                          | 10.49 | Miles |
| 17060302            | l ower Selway                                                |       |       |
|                     | Selway River - O'Hara Creek to mouth                         | 21.84 | Miles |
| ID17060302CI 002_02 | Goddard Creek - source to mouth                              | 16.53 | Miles |
| ID17060302CI 003_02 | O'Hara Creek - confluence of West and East Fork O'Hara Creek | 43.52 | Miles |
|                     |                                                              |       |       |

| ID17060302CL003_03  | O'Hara Creek - confluence of West and East Fork O'Hara Creek | 6.36  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060302CL003_04  | O'Hara Creek - confluence of Hamby Fork to mouth             | 4.42  | Miles |
| ID17060302CL004_02  | West Fork O'Hara Creek - source to mouth                     | 11.14 | Miles |
| ID17060302CL006_02  | Twentythree, Nineteen Mile Creeks and tribs.                 | 27.14 | Miles |
| ID17060302CL006_02a | Island Creek - source to mouth                               | 6.5   | Miles |
| ID17060302CL006_02b | Slide Creek - source to mouth                                | 4.16  | Miles |
| ID17060302CL007_03  | Falls Creek - source to mouth                                | 4.35  | Miles |
| ID17060302CL008_02  | Meadow Creek - Buck Lake Creek to mouth                      | 29.66 | Miles |
| ID17060302CL008_04  | Meadow Creek - Buck Lake Creek to mouth                      | 10.31 | Miles |
| ID17060302CL012_04  | Meadow Creek - East Fork Meadow Creek to Buck Lake Creek     | 11.62 | Miles |
| ID17060302CL013_02  | Butte Creek - source to mouth                                | 9.98  | Miles |
| ID17060302CL014_03  | Sable Creek - source to mouth                                | 3.55  | Miles |
| ID17060302CL015_02  | Simmons Creek - source to mouth                              | 10.91 | Miles |
| ID17060302CL016_02  | Meadow Creek - source to East Fork Meadow Creek              | 41.23 | Miles |
| ID17060302CL022_02  | Selway River - Moose Creek to Meadow Creek                   | 98.23 | Miles |
| ID17060302CL050_04  | Gedney Creek - West Fork Gedney Creek to mouth               | 3.48  | Miles |
| ID17060302CL053_02  | Glover Creek - source to mouth                               | 11.69 | Miles |
| ID17060302CL054_02  | Boyd Creek - source to mouth                                 | 8.83  | Miles |
| ID17060302CL055_02  | Rackliff Creek - source to mouth                             | 9.4   | Miles |
| 17060303            | Lochsa                                                       |       |       |
| ID17060303CL003_02  | Lochsa River - Old Man Creek to Deadman Creek                | 10.84 | Miles |
| ID17060303CL004_03  | Coolwater Creek - source to mouth                            | 2.4   | Miles |
| ID17060303CL005_02  | Fire Creek - source to mouth                                 | 21.85 | Miles |
| ID17060303CL006_03  | Split Creek - source to mouth                                | 1.08  | Miles |
| ID17060303CL008_02  | Lochsa River - Fish Creek to Old Man Creek                   | 23.59 | Miles |
| ID17060303CL009_02  | Holly Creek - and tributaries                                | 65.99 | Miles |
| ID17060303CL010_02  | Boulder Creek - source to mouth                              | 41.18 | Miles |
| ID17060303CL010_04  | Boulder Creek - source to mouth                              | 4     | Miles |
| ID17060303CL011_02  | Stanley Creek - source to mouth                              | 14.69 | Miles |
| ID17060303CL012_02  | Eagle Mountain Creek - source to mouth                       | 7.11  | Miles |
| ID17060303CL017_03  | Warm Springs Creek - Wind Lakes Creek to mouth               | 6.15  | Miles |
| ID17060303CL020 02  | Robin Creek - and tributaries                                | 13.56 | Miles |
|                     |                                                              |       |       |

| ID17060303CL020_02a | Un-named Tributaries                         | 4.45  | Miles |
|---------------------|----------------------------------------------|-------|-------|
| ID17060303CL023_02  | Walton Creek - source to mouth               | 12.57 | Miles |
| ID17060303CL026_02  | Colt Creek - source to mouth                 | 23.61 | Miles |
| ID17060303CL027_02  | Hoodoo, Muleshoe, Bridge Creeks              | 20.59 | Miles |
| ID17060303CL027_03  | Big Sand Creek - Hidden Creek to mouth       | 7.77  | Miles |
| ID17060303CL028_02  | Swamp Creek - source to mouth                | 13.9  | Miles |
| ID17060303CL032_03  | Storm Creek - source to mouth                | 4.81  | Miles |
| ID17060303CL033_02  | Beaver Creek - source to mouth               | 13.07 | Miles |
| ID17060303CL035_02  | Pack Creek and tributaries                   | 30.68 | Miles |
| ID17060303CL035_03  | Brushy Fork - Spruce Creek to mouth          | 5.75  | Miles |
| ID17060303CL036_02  | Spruce Creek - source to mouth               | 19.11 | Miles |
| ID17060303CL037_02  | Brushy Fork - source to Spruce Creek         | 12.5  | Miles |
| ID17060303CL038_02  | Haskell Creek - and tributaries              | 29.96 | Miles |
| ID17060303CL038_03  | Crooked Fork - source to Brushy Fork         | 4.97  | Miles |
| ID17060303CL039_03  | Hopeful Creek - source to mouth              | 2.18  | Miles |
| ID17060303CL040_02  | Fox Creek - source to mouth, and tributaries | 22.64 | Miles |
| ID17060303CL040_03  | Boulder Creek - source to mouth              | 3.31  | Miles |
| ID17060303CL041_02  | Papoose Creek - source to mouth              | 17.73 | Miles |
| ID17060303CL041_03  | Papoose Creek - source to mouth              | 1.89  | Miles |
| ID17060303CL042_02  | Parachute Creek - source to mouth            | 5.46  | Miles |
| ID17060303CL043_02  | Wendover Creek - source to mouth             | 5.67  | Miles |
| ID17060303CL044_02  | Badger Creek - source to mouth               | 5.18  | Miles |
| ID17060303CL045_02  | Waw'aalamnime Creek                          | 6.95  | Miles |
| ID17060303CL045_03  | Waw'aalamnime Creek - source to mouth        | 3.66  | Miles |
| ID17060303CL047_02  | Doe Creek - source to mouth                  | 8.99  | Miles |
| ID17060303CL048_02  | Post Office Creek - source to mouth          | 20.07 | Miles |
| ID17060303CL048_03  | Post Office Creek - 3rd order segment        | 0.69  | Miles |
| ID17060303CL049_03  | Weir Creek - 3rd order segment               | 1.86  | Miles |
| ID17060303CL050_02  | Indian Grave Creek - source to mouth         | 15.42 | Miles |
| ID17060303CL051_03  | Bald Mountain Creek - source to mouth        | 3.14  | Miles |
| ID17060303CL052_02  | Fish Creek - Hungery Creek to mouth          | 7.89  | Miles |
| ID17060303CL052_04  | Fish Creek - Hungery Creek to mouth          | 4.67  | Miles |

| ID17060303CL053_03  | Willow Creek - source to mouth                               | 1.07  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060303CL056_02  | Hungery Creek - source to Obia Creek                         | 8.66  | Miles |
| ID17060303CL057_02  | Fish Creek - headwaters and tributaries                      | 48.4  | Miles |
| ID17060303CL057_03  | Fish Creek - source to Hungery Creek                         | 8.41  | Miles |
| ID17060303CL058_02  | Bimerick Creek - source to mouth                             | 15.42 | Miles |
| ID17060303CL059_03  | Deadman Creek - East Fork Deadman Creek to mouth             | 2.18  | Miles |
| ID17060303CL060_03  | East Fork Deadman Creek - source to mouth                    | 0.64  | Miles |
| ID17060303CL062_02  | Canyon Creek - source to mouth                               | 26.45 | Miles |
| ID17060303CL065_02  | Pete King Creek - source to Walde Creek                      | 11.91 | Miles |
| 17060304            | Middle Fork Clearwater                                       |       |       |
| ID17060304CL001_02  | Middle Fork Clearwater River - confluence of Lochsa          | 81.97 | Miles |
| ID17060304CL001_03  | Middle Fork Clearwater River - confluence of Lochsa          | 0.96  | Miles |
| ID17060304CL002_02  | Clear Creek - South Fork Clear Creek to mouth                | 33.69 | Miles |
| ID17060304CL002_04  | Clear Creek - South Fork Clear Creek to mouth                | 7.75  | Miles |
| ID17060304CL003_02  | West Fork Clear Creek - source to mouth                      | 13.56 | Miles |
| ID17060304CL004_02  | South Fork Clear Creek - source to mouth                     | 25.73 | Miles |
| ID17060304CL006_02  | Clear Creek - source to South Fork Clear Creek               | 8.79  | Miles |
| ID17060304CL006 04  | Clear Creek - source to South Fork Clear Creek               | 2.11  | Miles |
| ID17060304CL007_02  | Middle Fork Clear Creek - source to mouth                    | 11.41 | Miles |
| ID17060304CL008_02  | Browns Spring Creek - source to mouth                        | 7.55  | Miles |
| ID17060304CL009_02  | Pine Knob Creek - source to mouth                            | 5.33  | Miles |
| ID17060304CL010_02  | Lodge Creek - source to mouth                                | 5.4   | Miles |
| ID17060304CL011_02  | Maggie Creek - source to mouth                               | 25.13 | Miles |
| 17060305            | South Fork Clearwater                                        |       |       |
| ID17060305CL052L_00 | Lucas Lake                                                   | 0.92  | Acres |
| 17060306            | Clearwater                                                   |       |       |
| ID17060306CL001 07  | Lower Granite Dam pool                                       | 5.16  | Miles |
| ID17060306CL002_07  | Clearwater River - Potlatch River to Lower Granite Dam Pool  | 3.75  | Miles |
| ID17060306CL022_02  | Clearwater River - confluence of South and Middle Fork Clear | 23.1  | Miles |
| ID17060306CL026_02  | Lolo Creek - Yakus Creek to mouth                            | 62.97 | Miles |
| ID17060306CL026 04  | Lolo Creek - Yakus Creek to mouth                            | 19.28 | Miles |

| ID17060306CL027_02  | Yakus Creek - source to mouth                                | 20.65  | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17060306CL028_02  | Lolo Creek - source to Yakus Creek                           | 37.71  | Miles |
| ID17060306CL028_03  | Lolo Creek - source to Yakus Creek                           | 5.08   | Miles |
| ID17060306CL028_04  | Lolo Creek - source to Yakus Creek                           | 14.04  | Miles |
| ID17060306CL030_02  | Yoosa Creek - source to mouth                                | 26.68  | Miles |
| ID17060306CL030_03  | Yoosa Creek - source to mouth                                | 2.78   | Miles |
| ID17060306CL034_02  | Jim Ford Creek                                               | 12.08  | Miles |
| ID17060306CL039_02  | Shanghai Creek and tributaries                               | 153.56 | Miles |
| ID17060306CL040_02  | Whiskey Creek - source to mouth                              | 16.83  | Miles |
| ID17060306CL040_03  | Whiskey Creek - source to mouth                              | 9.55   | Miles |
| ID17060306CL045_02  | Potlatch River - Corral Creek to Big Bear Creek              | 30.51  | Miles |
| ID17060306CL046_02  | Cedar Creek - headwaters                                     | 48.61  | Miles |
| ID17060306CL047_02  | Boulder Creek - headwaters                                   | 18.65  | Miles |
| ID17060306CL050_02  | Little Boulder Creek - source to mouth                       | 6.63   | Miles |
| ID17060306CL051_02  | East Fork Potlatch River - source to mouth                   | 51.56  | Miles |
| ID17060306CL051_03  | East Fork Potlatch River - Mallory Creek to Ruby Creek       | 11.06  | Miles |
| ID17060306CL052_02  | Ruby Creek - headwaters                                      | 17.2   | Miles |
| ID17060306CL057_02  | East Fork Big Bear Creek - source to mouth                   | 46.69  | Miles |
| ID17060306CL058_02  | West Fork Big Bear Creek - source to mouth                   | 15.44  | Miles |
| ID17060306CL059_03  | Dry Creek - source to mouth                                  | 2.75   | Miles |
| ID17060306CL060_02  | Little Bear Creek - source to mouth                          | 37.44  | Miles |
| ID17060306CL060_03  | Little Bear Creek - 3rd order main stem                      | 9.79   | Miles |
| ID17060306CL060_04  | Little Bear Creek - 4th order main stem                      | 4.67   | Miles |
| ID17060306CL064_03  | Little Potlatch Creek - source to mouth                      | 8.92   | Miles |
| 17060307            | Upper North Fork Clearwater                                  |        |       |
| ID17060307CL001_02  | North Fork Clearwater River-Skull Ck. to Aquarius Campground | 13.74  | Miles |
| ID17060307CL001_02b | Sheep Creek                                                  | 6.89   | Miles |
| ID17060307CL002_02  | Deadhorse, Dead Mule Creeks and tribs                        | 29.24  | Miles |
| ID17060307CL002_02a | Flat Creek                                                   | 9.72   | Miles |
| ID17060307CL003_02  | Moose, Lodge, Rettig, Tepee Creeks                           | 42.62  | Miles |
| ID17060307CL003_02a | Tumble Creek - source to mouth                               | 4.6    | Miles |
| ID17060307CL003_03  | Washington Creek - source to mouth                           | 8.87   | Miles |
|                     |                                                              |        |       |

| ID17060307CL004_02  | Siwash, Cave Creeks and tribs                                | 21.59 | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060307CL007_02  | French Creek - source to Sylvan Creek                        | 12.71 | Miles |
| ID17060307CL007_02b | Hem Creek - source to mouth                                  | 9.98  | Miles |
| ID17060307CL007_03  | French Creek - Sylvan Creek to mouth                         | 2.12  | Miles |
| ID17060307CL008_02  | North Fork Clearwater River - Weitas Creek to Orogrande Cr.  | 17.13 | Miles |
| ID17060307CL009_02  | Weitas Creek - Hemlock Creek to mouth                        | 29.85 | Miles |
| ID17060307CL009_03  | Weitas Creek - Hemlock Creek to mouth                        | 2.04  | Miles |
| ID17060307CL010_02  | Hemlock Creek - source to mouth                              | 39.51 | Miles |
| ID17060307CL011_02  | Weitas Creek - Windy Creek to Hemlock Creek                  | 38.31 | Miles |
| ID17060307CL011_04  | Weitas Creek - Windy Creek to Hemlock Creek                  | 10.31 | Miles |
| ID17060307CL016_02  | North Fork Clearwater River - Kelly Creek to Weitas Creek    | 28.55 | Miles |
| ID17060307CL017_03  | Fourth of July Creek - source to mouth                       | 9.96  | Miles |
| ID17060307CL018_02  | Kelly Creek - Cayuse Creek to mouth                          | 36.14 | Miles |
| ID17060307CL018_03  | Kelly Creek - Cayuse Creek to mouth                          | 1.05  | Miles |
| ID17060307CL020_02  | Lookout, Monroe Creek - source to mouth                      | 22.47 | Miles |
| ID17060307CL022_03  | Cayuse Creek - source to Gravey Creek                        | 15.31 | Miles |
| ID17060307CL023_02  | Toboggan Creek - source to mouth                             | 26.96 | Miles |
| ID17060307CL028_02  | Moose Creek - Osier Creek to mouth                           | 3.05  | Miles |
| ID17060307CL029_02  | Little Moose Creek - source to mouth                         | 21.22 | Miles |
| ID17060307CL031_02  | Moose Creek - source to Osier Creek                          | 21.72 | Miles |
| ID17060307CL032_02  | North Fork Clearwater River - Lake Creek to Kelly Creek      | 8.2   | Miles |
| ID17060307CL032_02b | Pete Ott, Hidden, Fix, Stolen Creeks                         | 22.4  | Miles |
| ID17060307CL033_02  | Lake Creek - source to mouth                                 | 31.36 | Miles |
| ID17060307CL034_02  | North Fork Clearwater River - Vanderbilt Gulch to Lake Creek | 8.44  | Miles |
| ID17060307CL035_02  | Long Creek - source to mouth                                 | 24.5  | Miles |
| ID17060307CL039_02  | Elizabeth Creek - source to mouth                            | 8.85  | Miles |
| ID17060307CL041_02  | Sprague Creek - source to mouth                              | 1.92  | Miles |
| ID17060307CL042_02  | Larson Creek - source to mouth                               | 9.01  | Miles |
| ID17060307CL043_02  | Rock Creek - source to mouth                                 | 15.88 | Miles |
| ID17060307CL044_02  | Quartz Creek - source to mouth                               | 5.7   | Miles |
| ID17060307CL044_02b | Upper Quartz Creek and Tributaries                           | 26.85 | Miles |
| ID17060307CL044_03  | Quartz Creek - Wolf Creek to mouth                           | 6.22  | Miles |

| ID17060307CL046_02  | Skull Creek - Collins Creek to mouth                         | 5.66  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060307CL046_04  | Skull Creek - Collins Creek to mouth                         | 3.91  | Miles |
| ID17060307CL047_02  | Snow Creek and tribs                                         | 41.59 | Miles |
| ID17060307CL047_04  | Skull Creek - source to Collins Creek                        | 5.06  | Miles |
| ID17060307CL048_03  | Collins Creek - 3rd order                                    | 5.83  | Miles |
| 17060308            | Lower North Fork Clearwater                                  |       |       |
| ID17060308CL006_02  | Silver Creek - source to Dworshak Reservoir                  | 31.53 | Miles |
| ID17060308CL006_03  | Silver Creek - source to Dworshak Reservoir                  | 3.65  | Miles |
| ID17060308CL007_02  | Benton Creek - source to Dworshak Reservoir                  | 16.61 | Miles |
| ID17060308CL008_02  | Marquette Creek - source to mouth                            | 1.91  | Miles |
| ID17060308CL009_02a | a South Fork Beaver Creek - source to mouth                  | 8.23  | Miles |
| ID17060308CL009_02  | Bertha Creek - source to mouth                               | 2.72  | Miles |
| ID17060308CL009_020 | d Sourdough Creek                                            | 5.68  | Miles |
| ID17060308CL010_02a | a Dog Creek - source to mouth                                | 3.87  | Miles |
| ID17060308CL010_02  | Goat Creek - and tributaries                                 | 15.13 | Miles |
| ID17060308CL010_020 | c Fern Creek - and tributaries                               | 8.44  | Miles |
| ID17060308CL017_02  | Little North Fork Clearwater River -source to Rutledge Creek | 11.42 | Miles |
| ID17060308CL018 03  | Little North Fork Clearwater River - source to Rutledge Cr.  | 5.17  | Miles |
| ID17060308CL022_03  | Glover Creek -source to mouth                                | 2.59  | Miles |
| ID17060308CL024_02  | Isabella Creek - source to mouth                             | 14.2  | Miles |
| ID17060308CL026_02  | Gold Creek - source to Dworshak Reservoir                    | 22.5  | Miles |
| ID17060308CL026_03  | Gold Creek - source to Dworshak Reservoir                    | 5.05  | Miles |
| ID17060308CL027_02  | Weitas Creek - source to Dworshak Reservoir                  | 9.77  | Miles |
| ID17060308CL030_02  | Elk Creek tributaries inc. Morris, Deer, Pete Cr             | 20.16 | Miles |
| ID17060308CL030_02a | a West Fork Elk Creek - source to Elk Creek                  | 3.5   | Miles |
| ID17060308CL030_02  | Elk Creek - headwaters                                       | 16.5  | Miles |
| ID17060308CL030_020 | c Johnson Creek - source to mouth                            | 3.27  | Miles |
| ID17060308CL030_03  | Elk Creek - source to Elk Creek Reservoir                    | 7.58  | Miles |
| ID17060308CL030_03I | _ Elk Creek Reservoir                                        | 75.67 | Acres |
| ID17060308CL035_02  | Dicks Creek - source to Dworshak Reservoir                   | 16.85 | Miles |
|                     |                                                              |       |       |

| 17010101            | Middle Kootenai                                              |       |       |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17010101PN001_02  | Star Creek - source to Idaho/Montana border                  | 13.99 | Miles |
| ID17010101PN002_02  | North Callahan Creek - source to Idaho/Montana border        | 28.36 | Miles |
| ID17010101PN002_03  | North Callahan Creek - source to Idaho/Montana border        | 6     | Miles |
| ID17010101PN003_03  | South Callahan Creek - Glad Creek to Idaho/Montana border    | 2.09  | Miles |
| ID17010101PN004_02  | South Callahan Creek - source to Glad Creek                  | 6.44  | Miles |
| ID17010101PN005_02  | Glad Creek - source to mouth                                 | 7.61  | Miles |
| ID17010101PN005_03  | Glad Creek - source to mouth                                 | 0.54  | Miles |
| ID17010101PN006_02  | Keeler Creek - source to Idaho/Montana border                | 2.18  | Miles |
| 17010104            | Lower Kootenai                                               |       |       |
| ID17010104PN005 02  | Tribs to Smith Creek - Cow Creek to Kootenai R.              | 4.61  | Miles |
| ID17010104PN006_02a | Beaver Creek - headwaters to Cow Creek                       | 7.07  | Miles |
| ID17010104PN007_02  | Smith Creek - source to Cow Creek                            | 26.39 | Miles |
| ID17010104PN009_02  | Parker Creek - upper portion, forested                       | 22.02 | Miles |
| ID17010104PN010_02  | Trout Creek - tribs to Trout Creek                           | 15.25 | Miles |
| ID17010104PN012_02  | Lost Creek and unnamed stream segments                       | 5.31  | Miles |
| ID17010104PN013_02  | Tributaries to Myrtle Creek                                  | 30.97 | Miles |
| ID17010104PN016_02  | Upper Snow Creek                                             | 12.27 | Miles |
| ID17010104PN020_02  | Ruby Creek - Upper, headwaters to Gold Creek                 | 11.98 | Miles |
| ID17010104PN021_02  | Fall Creek - upper, headwaters and tribs to Fall Creek       | 28.89 | Miles |
| ID17010104PN024_02  | Dodge Creek                                                  | 4.65  | Miles |
| ID17010104PN026_02  | 1st & 2nd order tribs to Trail Creek - including Cone Creek  | 19.64 | Miles |
| ID17010104PN028_02  | Twentymile Creek - source to mouth                           | 11.91 | Miles |
| ID17010104PN030_02  | Cow Creek - Headwaters including Cabin Creek and Brush Creek | 29.13 | Miles |
| ID17010104PN032_02  | Gable Creek - source to mouth                                | 10.77 | Miles |
| ID17010104PN033_02  | Boulder Creek - source to East Fork Boulder Creek            | 37.32 | Miles |
| ID17010104PN034_02  | East Fork Boulder Creek - source to mouth                    | 18.22 | Miles |
| ID17010104PN040_02  | Mission Creek - tributaries to Mission Creek                 | 9.95  | Miles |
| 17010105            | Моуіе                                                        |       |       |
| ID17010105PN005_02  | Moyie River-Tributaries btw Round Prairie Creek to Meadow Cr | 34.66 | Miles |
| ID17010105PN010 02  | Round Prairie Creek - source to Gillon Creek                 | 18.61 | Miles |

| 17010214            | Pend Oreille Lake                                            |         |       |
|---------------------|--------------------------------------------------------------|---------|-------|
| ID17010214PN009L_0L | Spirit Lake                                                  | 1542.31 | Acres |
| ID17010214PN010_02  | Brickel Creek - Idaho/Washington border to mouth             | 27.78   | Miles |
| ID17010214PN018_02a | Falls Creek                                                  | 13.14   | Miles |
| ID17010214PN029_02  | Strong Creek - source to mouth                               | 4.25    | Miles |
| ID17010214PN053_02  | Little Sand Creek - Headwaters to Sand Creek                 | 13.39   | Miles |
| ID17010214PN054_02  | Syringa Creek - Upper, 1st and 2nd order tribs               | 14.68   | Miles |
| ID17010214PN055_03  | Carr Creek - Lower                                           | 2.57    | Miles |
| ID17010214PN057_02  | Smith Creek - Headwaters to Pend Oreille River               | 8.64    | Miles |
| ID17010214PN059_02  | Riley Creek Tributaries                                      | 11.65   | Miles |
| ID17010214PN060_02  | Manley Creek -Headwaters to Riley Creek                      | 5.85    | Miles |
| 17010215            | Priest                                                       |         |       |
| ID17010215PN002_02  | Big Creek - source to mouth                                  | 16.65   | Miles |
| ID17010215PN006_02  | Priest Lake                                                  | 35.35   | Miles |
| ID17010215PN008_02  | Soldier Creek - source to mouth                              | 24.59   | Miles |
| ID17010215PN009_02  | Hunt Creek - source to mouth                                 | 18.52   | Miles |
| ID17010215PN011_02  | Bear Creek - source to mouth                                 | 11.34   | Miles |
| ID17010215PN015_02  | Caribou Creek - source to mouth                              | 27.42   | Miles |
| ID17010215PN015_03  | Caribou Creek - source to mouth                              | 7.66    | Miles |
| ID17010215PN016_02  | 01 & 02 Tribs to Upper Priest Lake                           | 6.41    | Miles |
| ID17010215PN018_03  | Upper Priest River - Idaho/Canadian border to mouth          | 18.69   | Miles |
| ID17010215PN019_03  | Hughes Fork - source to mouth                                | 6.6     | Miles |
| ID17010215PN019_04  | Hughes Fork - source to mouth                                | 3.33    | Miles |
| ID17010215PN020_02  | Beaver Creek - source to mouth                               | 12.68   | Miles |
| ID17010215PN021_02  | Tango Creek - source to mouth                                | 3.25    | Miles |
| ID17010215PN022_02  | Granite Creek - Idaho/Washington border to mouth             | 103.69  | Miles |
| ID17010215PN022_03  | Granite Creek - Idaho/Washington border to mouth             | 10.44   | Miles |
| 17010301            | Upper Coeur d Alene                                          |         |       |
| ID17010301PN001_02a | NF Coeur d'Alene R tributaries btw Yellowdog and Prichard Cr | 17.88   | Miles |
| ID17010301PN002_02  | Graham Creek, headwaters and tributaries                     | 13.11   | Miles |
| ID17010301PN002 03  | Graham Creek, below Deceitful Gulch                          | 1.06    | Miles |

| ID17010301PN009_02  | Lost Creek, headwaters and tributaries                      | 19.16 | Miles |
|---------------------|-------------------------------------------------------------|-------|-------|
| ID17010301PN010_02  | Shoshone Creek tributaries, below Falls Creek               | 7.5   | Miles |
| ID17010301PN014_02  | Jordan Creek - headwaters and tributaries                   | 15.31 | Miles |
| ID17010301PN014_02a | Cub Creek                                                   | 1.48  | Miles |
| ID17010301PN014_02b | Calamity Creek                                              | 3.8   | Miles |
| ID17010301PN017_02  | Tepee Creek tributaries below Trail Creek                   | 20.71 | Miles |
| ID17010301PN023_02  | Flat Creek headwaters and tributaries                       | 12.52 | Miles |
| ID17010301PN025_02  | Downey Creek - Headwaters to mainstem Downey Creek          | 10.21 | Miles |
| ID17010301PN025_03  | Downey Creek - lower                                        | 2.33  | Miles |
| ID17010301PN027_03  | Grizzly Creek between Dewey Creek and NFCDA River           | 1.12  | Miles |
| ID17010301PN029_02  | Cougar Gulch headwaters and tributaries                     | 18.57 | Miles |
| ID17010301PN030_02b | Hudlow Creek and tributaries                                | 8.68  | Miles |
| ID17010301PN038_02  | Skookum Creek headwaters and tributaries                    | 7.63  | Miles |
| 17010302            | South Fork Coeur d Alene                                    |       |       |
| ID17010302PN002_02  | Upper Little Pine Cr and Hauck Gulch                        | 4.25  | Miles |
| ID17010302PN003_02  | Pine Cr headwaters and tributaries above East Fork Pine Cr  | 31.48 | Miles |
| ID17010302PN005_02  | Hunter Creek and tributaries                                | 6.84  | Miles |
| ID17010302PN008b 02 | Shields Gulch from mining impact area to South Fork CdA R   | 0.73  | Miles |
| ID17010302PN011_02  | South Fork CDA R tribs btw Little North Fork and Canyon Cr  | 33.28 | Miles |
| ID17010302PN012_02  | Willow Creek and tributaries                                | 4.36  | Miles |
| ID17010302PN013_03  | South Fork Coeur d'Alene R - Little North Fork to Daisy Gul | 1.12  | Miles |
| ID17010302PN019_02  | West Fork Moon Creek and tributaries                        | 4.28  | Miles |
| 17010303            | Coeur d Alene Lake                                          |       |       |
| ID17010303PN006_03  | Lake Creek - Idaho/Washington border to mouth               | 3.48  | Miles |
| ID17010303PN006_04  | Lake Creek - Idaho/Washington border to mouth               | 0.07  | Miles |
| ID17010303PN025_02  | Thompson Creek                                              | 6.13  | Miles |
| ID17010303PN027_02  | Turner Creek - source to mouth                              | 5.12  | Miles |
| 17010304            | St. Joe                                                     |       |       |
| ID17010304PN005_06  | St. Joe River - St. Maries River to mouth                   | 0.82  | Miles |
| ID17010304PN007_03  | St. Maries River - Santa Creek to mouth                     | 0.2   | Miles |
| ID17010304PN020 02  | Merry Creek - source to mouth                               | 26.45 | Miles |

| ID17010304PN021_02  | Childs Creek - source to mouth                               | 8.52  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17010304PN025_02  | Beaver Creek - source to mouth                               | 11.98 | Miles |
| ID17010304PN027_02c | 1st and 2nd order to St Joe River between Slate Cr and NF    | 40.5  | Miles |
| ID17010304PN028_02  | Bond Creek - source to mouth                                 | 27.08 | Miles |
| ID17010304PN028_03  | Bond Creek - source to mouth                                 | 5.2   | Miles |
| ID17010304PN029_02  | Hugus Creek- source to mouth                                 | 15.19 | Miles |
| ID17010304PN031_03  | Marble Creek - Hobo Creek to mouth                           | 2.66  | Miles |
| ID17010304PN032_02  | Eagle Creek - source to mouth                                | 11.83 | Miles |
| ID17010304PN033 02a | Bussel Creek, Lines Creek, Norton Creek and Toles Creek      | 20.25 | Miles |
| ID17010304PN033_03  | Bussel Creek - source to mouth                               | 3.8   | Miles |
| ID17010304PN034_02  | Hobo Creek - source to mouth                                 | 9.46  | Miles |
| ID17010304PN035_03  | Marble Creek - source to Hobo Creek                          | 7.86  | Miles |
| ID17010304PN036_02  | Homestead Creek - source to mouth                            | 12.39 | Miles |
| ID17010304PN037_02  | Daveggio Creek - source to mouth                             | 10.3  | Miles |
| ID17010304PN037_03  | Daveggio Creek - source to mouth                             | 1.84  | Miles |
| ID17010304PN038_03  | Boulder Creek - source to mouth                              | 2.69  | Miles |
| ID17010304PN039_02  | Fishhook Creek - source to mouth                             | 51.3  | Miles |
| ID17010304PN040_02  | Siwash Creek - source to mouth                               | 9.31  | Miles |
| ID17010304PN041_02b | 2nd order tributaries to St Joe River from NF to Gold Creek  | 11.95 | Miles |
| ID17010304PN041_02c | 1st order tributaries to St Joe River from Gold to Copper Cr | 15.88 | Miles |
| ID17010304PN041_02h | Heller and Sherlock Creek 1st and 2nd order                  | 9.1   | Miles |
| ID17010304PN041_03  | St Joe River from Heller Creek to Yankee Bar                 | 1.87  | Miles |
| ID17010304PN041_04  | St. Joe River - source to North Fork St. Joe River           | 59.51 | Miles |
| ID17010304PN042_02  | Sisters Creek - source to mouth                              | 48.95 | Miles |
| ID17010304PN042_03  | Sisters Creek - source to mouth                              | 4.59  | Miles |
| ID17010304PN043_02  | Prospector Creek - source to mouth                           | 6.76  | Miles |
| ID17010304PN044_02  | Nugget Creek - source to mouth                               | 8.6   | Miles |
| ID17010304PN046_02  | Mosquito Creek - source to mouth                             | 10.48 | Miles |
| ID17010304PN047_02  | Fly Creek - source to mouth                                  | 7.42  | Miles |
| ID17010304PN049_02  | Copper Creek - source to mouth                               | 7.23  | Miles |
| ID17010304PN050_02  | Timber Creek - source to mouth                               | 6.55  | Miles |
| ID17010304PN051_02  | Red Ives Creek - source to mouth                             | 12.69 | Miles |

| ID17010304PN054_02 | Bruin Creek - source to mouth                   | 4.06  | Miles |
|--------------------|-------------------------------------------------|-------|-------|
| ID17010304PN055_02 | Quartz Creek - source to mouth                  | 18.25 | Miles |
| ID17010304PN055_03 | Quartz Creek - source to mouth                  | 2.5   | Miles |
| ID17010304PN056_02 | Eagle Creek - source to mouth                   | 12.91 | Miles |
| ID17010304PN057_02 | Bird Creek - source to mouth                    | 15.63 | Miles |
| ID17010304PN058_02 | Skookum Creek - source to mouth                 | 12.54 | Miles |
| ID17010304PN059_02 | North Fork St. Joe River - Loop Creek to mouth  | 27.8  | Miles |
| ID17010304PN061_02 | North Fork St. Joe River - source to Loop Creek | 31.99 | Miles |
| ID17010304PN061_03 | North Fork St. Joe River - source to Loop Creek | 7.23  | Miles |
| ID17010304PN062_02 | Slate Creek - headwaters and tributaries        | 57.63 | Miles |
| ID17010304PN064_03 | Trout Creek - source to mouth                   | 5.81  | Miles |
| ID17010304PN066_02 | Reeds Gulch Creek - source to mouth             | 4.72  | Miles |
| ID17010304PN067_02 | Rochat Creek - source to St. Joe River          | 8.54  | Miles |
| 17010305           | Upper Spokane                                   |       |       |
| ID17010305PN012_02 | Rathdrum Creek - Twin Lakes to mouth            | 7.36  | Miles |

| 17060101           | Hells Canyon                                                |       |       |
|--------------------|-------------------------------------------------------------|-------|-------|
| ID17060101SL004_02 | Deep Creek - 1st and 2nd order                              | 20.86 | Miles |
| ID17060101SL009_03 | Sheep Creek - confluence of West and East Fork Sheep Creeks | 5.96  | Miles |
| ID17060101SL014_03 | Kirkwood Creek - source to mouth                            | 1.98  | Miles |
| ID17060101SL023_02 | Getta Creek - source to mouth                               | 26.97 | Miles |
| 17060103           | Lower Snake-Asotin                                          |       |       |
| ID17060103SL005_03 | Cottonwood Creek - source to mouth                          | 1.66  | Miles |
| ID17060103SL007_02 | Corral Creek - source to mouth                              | 12.11 | Miles |
| ID17060103SL010_02 | Billy Creek - source to mouth                               | 6.61  | Miles |
| ID17060103SL012_02 | Redbird Creek - source to mouth                             | 10.89 | Miles |
| 17060201           | Upper Salmon                                                |       |       |
| ID17060201SL002_03 | Morgan Creek - West Creek to mouth                          | 7.21  | Miles |
| ID17060201SL003_02 | Morgan Creek - source to West Creek                         | 74.94 | Miles |
| ID17060201SL003_03 | Morgan Creek - source to West Creek                         | 7.68  | Miles |
| ID17060201SL004_02 | West Creek - Blowfly Creek to mouth                         | 8.31  | Miles |
| ID17060201SL005_02 | Blowfly Creek - source to mouth                             | 3.11  | Miles |
| ID17060201SL006_02 | West Fork Morgan Creek - source to Blowfly Creek            | 7.46  | Miles |
| ID17060201SL008_03 | Darling Creek - source to mouth                             | 4.45  | Miles |
| ID17060201SL009_02 | Challis Creek - Bear Creek to Darling Creek                 | 19.71 | Miles |
| ID17060201SL010_02 | Eddy Creek - source to mouth                                | 20.61 | Miles |
| ID17060201SL011_02 | Bear Creek - source to mouth                                | 18.14 | Miles |
| ID17060201SL012_02 | Challis Creek - source to Bear Creek                        | 27.53 | Miles |
| ID17060201SL012_03 | Challis Creek - source to Bear Creek                        | 3.29  | Miles |
| ID17060201SL013_02 | Mill Creek - source to mouth                                | 24.96 | Miles |
| ID17060201SL013_03 | Mill Creek - 3rd order                                      | 9.66  | Miles |
| ID17060201SL015_02 | Garden Creek - source to mouth                              | 43.65 | Miles |
| ID17060201SL016 02 | Salmon River - East Fork Salmon River to Garden Creek       | 91.42 | Miles |
| ID17060201SL017_02 | Bayhorse Creek - source to mouth                            | 24.86 | Miles |
| ID17060201SL017_03 | Bayhorse Creek - source to mouth                            | 5.02  | Miles |
| ID17060201SL019_02 | Salmon River - Squaw Creek to East Fork Salmon River        | 28.04 | Miles |
| ID17060201SL020 02 | Kinnikinic Creek - source to mouth                          | 18.46 | Miles |

| ID17060201SL021_02 | Squaw Creek - Cash Creek to mouth                   | 18.87 | Miles |
|--------------------|-----------------------------------------------------|-------|-------|
| ID17060201SL022_02 | Cash Creek - source to mouth                        | 11.55 | Miles |
| ID17060201SL025_02 | Cinnabar Creek - source to mouth                    | 12.66 | Miles |
| ID17060201SL028_02 | Thompson Creek - source to mouth                    | 24.63 | Miles |
| ID17060201SL028_03 | Thompson Creek - source to mouth                    | 8.97  | Miles |
| ID17060201SL030_02 | Buckskin Creek - source to mouth                    | 2.85  | Miles |
| ID17060201SL031_02 | Salmon River - Yankee Fork Creek to Thompson Creek  | 50.23 | Miles |
| ID17060201SL031_03 | Salmon River - Yankee Fork Creek to Thompson Creek  | 4.02  | Miles |
| ID17060201SL032_02 | Yankee Fork Creek - Jordan Creek to mouth           | 20.31 | Miles |
| ID17060201SL032_04 | Yankee Fork Creek - Jordan Creek to mouth           | 9     | Miles |
| ID17060201SL033_03 | Ramey Creek - source to mouth                       | 1.48  | Miles |
| ID17060201SL034_02 | Yankee Fork Creek - source to Jordan Creek          | 50.54 | Miles |
| ID17060201SL034_03 | Yankee Fork Creek - source to Jordan Creek          | 6.22  | Miles |
| ID17060201SL034_04 | Yankee Fork Creek - source to Jordan Creek          | 7.05  | Miles |
| ID17060201SL035_02 | Fivemile Creek - source to mouth                    | 11.38 | Miles |
| ID17060201SL036_02 | Elevenmile Creek - source to mouth                  | 4.19  | Miles |
| ID17060201SL037_02 | McKay Creek - source to mouth                       | 9.02  | Miles |
| ID17060201SL038_02 | Twentymile Creek - source to mouth                  | 3.59  | Miles |
| ID17060201SL039_02 | Tenmile Creek - source to mouth                     | 5.15  | Miles |
| ID17060201SL040_02 | Eightmile Creek - source to mouth                   | 19.12 | Miles |
| ID17060201SL040_03 | Eightmile Creek - source to mouth                   | 3.52  | Miles |
| ID17060201SL041_03 | Jordan Creek - from and including Unnamed Tributary | 1.36  | Miles |
| ID17060201SL042_03 | Jordan Creek - source to Unnamed Tributary          | 2.64  | Miles |
| ID17060201SL047_02 | Salmon River - Valley Creek to Yankee Fork Creek    | 39.95 | Miles |
| ID17060201SL049_02 | East Basin Creek - source to mouth                  | 11.4  | Miles |
| ID17060201SL050_02 | Basin Creek - source to East Basin Creek            | 54.01 | Miles |
| ID17060201SL050_03 | Basin Creek - source to East Basin Creek            | 6.86  | Miles |
| ID17060201SL051_02 | Valley Creek - Trap Creek to mouth                  | 30    | Miles |
| ID17060201SL051_04 | Valley Creek - Trap Creek to mouth                  | 6.85  | Miles |
| ID17060201SL053_03 | Valley Creek - source to Trap Creek                 | 10.29 | Miles |
| ID17060201SL055_02 | Trap Creek - source to Meadow Creek                 | 8.58  | Miles |
| ID17060201SL056_02 | Meadow Creek - source to mouth                      | 4.4   | Miles |

| ID17060201SL057_02 | Elk Creek - source to mouth                       | 24.92 | Miles |
|--------------------|---------------------------------------------------|-------|-------|
| ID17060201SL058_02 | Stanley Creek - source to mouth                   | 23.26 | Miles |
| ID17060201SL060_02 | Iron Creek - source to mouth                      | 10.06 | Miles |
| ID17060201SL065_02 | Fishhook Creek - source to mouth                  | 15.77 | Miles |
| ID17060201SL068_02 | Salmon River                                      | 23.44 | Miles |
| ID17060201SL068_05 | Salmon River                                      | 9.24  | Miles |
| ID17060201SL069_02 | Decker Creek - Huckleberry Creek to mouth         | 14.26 | Miles |
| ID17060201SL069_03 | Decker Creek - Huckleberry Creek to mouth         | 0.35  | Miles |
| ID17060201SL069_04 | Decker Creek - Huckleberry Creek to mouth         | 0.3   | Miles |
| ID17060201SL070_02 | Decker Creek - source to Huckleberry Creek        | 6.22  | Miles |
| ID17060201SL071_02 | Huckleberry Creek - source to mouth               | 6     | Miles |
| ID17060201SL073_05 | Salmon River - Alturas Lake Creek to Fisher Creek | 5.11  | Miles |
| ID17060201SL074_02 | Hell Roaring Creek - source to mouth              | 12.19 | Miles |
| ID17060201SL075_02 | Alturas Lake Creek - Alturas Lake to mouth        | 14.13 | Miles |
| ID17060201SL075_03 | Alturas Lake Creek - Alturas Lake to mouth        | 3.94  | Miles |
| ID17060201SL080_03 | Alpine Creek - source to mouth                    | 3.28  | Miles |
| ID17060201SL081_02 | Salmon River - source to Alturas Lake Creek       | 51.05 | Miles |
| ID17060201SL081_03 | Salmon River - source to Alturas Lake Creek       | 11.93 | Miles |
| ID17060201SL081_04 | Salmon River - source to Alturas Lake Creek       | 10.96 | Miles |
| ID17060201SL082_02 | Beaver Creek - source to mouth                    | 20.39 | Miles |
| ID17060201SL083_02 | Smiley Creek - source to mouth                    | 15.52 | Miles |
| ID17060201SL083_03 | Smiley Creek - source to mouth                    | 7.61  | Miles |
| ID17060201SL084_02 | Frenchman Creek - source to mouth                 | 9.42  | Miles |
| ID17060201SL085_02 | Pole Creek - source to mouth                      | 26.17 | Miles |
| ID17060201SL086_03 | Champion Creek - source to mouth                  | 5.63  | Miles |
| ID17060201SL087_02 | Fourth of July Creek - source to mouth            | 16.73 | Miles |
| ID17060201SL087_03 | Fourth of July Creek - source to mouth            | 8.78  | Miles |
| ID17060201SL088_02 | Fisher Creek - source to mouth                    | 19.39 | Miles |
| ID17060201SL090_02 | Gold Creek - source to mouth                      | 10.06 | Miles |
| ID17060201SL091_02 | Little Casino Creek - source to mouth             | 10.25 | Miles |
| ID17060201SL092_02 | Big Casino Creek - source to mouth                | 13.7  | Miles |
| ID17060201SL093_02 | Rough Creek - source to mouth                     | 8.8   | Miles |

| ID17060201SL094_03                                                                                                                                                                                                                                                                                                                                    | Warm Springs Creek - Swimm Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.19                                                                                               | Miles                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ID17060201SL099_03                                                                                                                                                                                                                                                                                                                                    | Slate Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.72                                                                                               | Miles                                                                                  |
| ID17060201SL100_02                                                                                                                                                                                                                                                                                                                                    | Holman Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.32                                                                                               | Miles                                                                                  |
| ID17060201SL104_03                                                                                                                                                                                                                                                                                                                                    | Big Lake Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.76                                                                                               | Miles                                                                                  |
| ID17060201SL105_02                                                                                                                                                                                                                                                                                                                                    | Big Boulder Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.46                                                                                              | Miles                                                                                  |
| ID17060201SL105_03                                                                                                                                                                                                                                                                                                                                    | Big Boulder Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.32                                                                                               | Miles                                                                                  |
| ID17060201SL106_02                                                                                                                                                                                                                                                                                                                                    | Little Boulder Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.43                                                                                              | Miles                                                                                  |
| ID17060201SL107_03                                                                                                                                                                                                                                                                                                                                    | Germania Creek - Chamberlain Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.68                                                                                               | Miles                                                                                  |
| ID17060201SL109_02                                                                                                                                                                                                                                                                                                                                    | Germania Creek - source to Chamberlain Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.93                                                                                              | Miles                                                                                  |
| ID17060201SL110_04                                                                                                                                                                                                                                                                                                                                    | East Fork Salmon River - confluence of South and West Fork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.46                                                                                               | Miles                                                                                  |
| ID17060201SL114_02                                                                                                                                                                                                                                                                                                                                    | West Pass Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.24                                                                                              | Miles                                                                                  |
| ID17060201SL114_03                                                                                                                                                                                                                                                                                                                                    | West Pass Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.91                                                                                               | Miles                                                                                  |
| ID17060201SL118_04                                                                                                                                                                                                                                                                                                                                    | Herd Creek-confluence of West Fork Herd Creek and East Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.47                                                                                               | Miles                                                                                  |
| ID17060201SL123_02                                                                                                                                                                                                                                                                                                                                    | Lake Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.37                                                                                              | Miles                                                                                  |
| ID17060201SL125_03                                                                                                                                                                                                                                                                                                                                    | Road Creek - source to Corral Basin Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9                                                                                                | Miles                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                       | Mosquito Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.41                                                                                              | Miles                                                                                  |
| ID170002013E120_02                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    |                                                                                        |
| 17060202                                                                                                                                                                                                                                                                                                                                              | Pahsimeroi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                                                                        |
| <b>17060202</b><br>ID17060202SL019 03                                                                                                                                                                                                                                                                                                                 | Pahsimeroi   Mahogany Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.96                                                                                               | Miles                                                                                  |
| <b>17060202</b><br><b>17060202</b><br>ID17060202SL019 03<br>ID17060202SL020_03                                                                                                                                                                                                                                                                        | Pahsimeroi   Mahogany Creek - source to mouth   Pahsimeroi River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.96                                                                                               | Miles                                                                                  |
| <b>17060202</b><br><b>17060202</b><br>ID17060202SL019 03<br>ID17060202SL020_03<br>ID17060202SL022_02                                                                                                                                                                                                                                                  | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.96<br>2.96<br>39.77                                                                              | Miles<br>Miles<br>Miles                                                                |
| <b>17060202</b><br><b>17060202</b><br>ID17060202SL019 03<br>ID17060202SL020_03<br>ID17060202SL022_02<br>ID17060202SL028_03                                                                                                                                                                                                                            | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                   | 2.96<br>2.96<br>39.77<br>9.39                                                                      | Miles<br>Miles<br>Miles<br>Miles                                                       |
| <b>17060201</b><br><b>17060202</b><br>ID17060202SL019 03<br>ID17060202SL020_03<br>ID17060202SL022_02<br>ID17060202SL028_03<br>ID17060202SL030_02                                                                                                                                                                                                      | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - source to Donkey Creek                                                                                                                                                                                                                                                                                                                                                       | 2.96<br>2.96<br>39.77<br>9.39<br>32.09                                                             | Miles<br>Miles<br>Miles<br>Miles<br>Miles                                              |
| <b>17060201</b><br><b>17060202</b><br>ID17060202SL019 03<br>ID17060202SL020_03<br>ID17060202SL022_02<br>ID17060202SL028_03<br>ID17060202SL030_02<br>ID17060202SL031_02                                                                                                                                                                                | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - source to Donkey Creek     Big Creek                                                                                                                                                                                                                                                                                                                                         | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32                                                    | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                     |
| ID170602013L120_02       ID17060202SL019_03       ID17060202SL020_03       ID17060202SL022_02       ID17060202SL028_03       ID17060202SL030_02       ID17060202SL031_02       ID17060202SL032_02                                                                                                                                                     | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - source to Donkey Creek     Big Creek     South Fork Big Creek - source to mouth                                                                                                                                                                                                                                                                                              | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32<br>27.89                                           | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                     |
| ID170602013L120_02       ID17060202SL019_03       ID17060202SL020_03       ID17060202SL022_02       ID17060202SL028_03       ID17060202SL030_02       ID17060202SL031_02       ID17060202SL032_02       ID17060202SL033_02                                                                                                                            | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - source to Donkey Creek     Big Creek     South Fork Big Creek - source to mouth     North Fork Big Creek - source to mouth                                                                                                                                                                                                                                                   | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32<br>27.89<br>30.01                                  | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| 170602013L120_02       17060202       ID17060202SL019_03       ID17060202SL020_03       ID17060202SL022_02       ID17060202SL028_03       ID17060202SL030_02       ID17060202SL031_02       ID17060202SL033_02       ID17060202SL033_02       ID17060202SL035_03                                                                                      | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - source to Donkey Creek     Big Creek     South Fork Big Creek - source to mouth     North Fork Big Creek - source to mouth     Patterson Creek - source to and including Inyo Creek                                                                                                                                                                                          | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32<br>27.89<br>30.01<br>1.26                          | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                   |
| ID170602013L120_02       ID17060202SL019_03       ID17060202SL020_03       ID17060202SL022_02       ID17060202SL028_03       ID17060202SL030_02       ID17060202SL031_02       ID17060202SL033_02       ID17060202SL033_02       ID17060202SL035_03       ID17060202SL035_03                                                                          | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - source to Donkey Creek     Big Creek     South Fork Big Creek - source to mouth     North Fork Big Creek - source to mouth     Patterson Creek - source to and including Inyo Creek     Falls Creek - source to mouth                                                                                                                                                        | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32<br>27.89<br>30.01<br>1.26<br>39.29                 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ITO60201SL120_02       ID17060202SL019_03       ID17060202SL020_03       ID17060202SL022_02       ID17060202SL022_02       ID17060202SL028_03       ID17060202SL030_02       ID17060202SL030_02       ID17060202SL031_02       ID17060202SL033_02       ID17060202SL033_02       ID17060202SL035_03       ID17060202SL036_02       ID17060202SL038_02 | Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - Source to Donkey Creek     Big Creek     South Fork Big Creek - source to mouth     North Fork Big Creek - source to mouth     Patterson Creek - source to and including Inyo Creek     Falls Creek - source to Irrigation junction (T15S, R23E)                                                                                                                             | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32<br>27.89<br>30.01<br>1.26<br>39.29<br>18.94        | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |
| ITO60201SL120_02       ID17060202SL019_03       ID17060202SL020_03       ID17060202SL022_02       ID17060202SL022_02       ID17060202SL028_03       ID17060202SL030_02       ID17060202SL030_02       ID17060202SL031_02       ID17060202SL033_02       ID17060202SL033_02       ID17060202SL035_03       ID17060202SL036_02       ID17060202SL038_03 | Material     Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - source to Donkey Creek     Big Creek     South Fork Big Creek - source to mouth     North Fork Big Creek - source to mouth     Patterson Creek - source to and including Inyo Creek     Falls Creek - source to Irrigation junction (T15S, R23E)     Morse Creek - source to Irrigation junction (T15S, R23E)                                                   | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32<br>27.89<br>30.01<br>1.26<br>39.29<br>18.94<br>3.8 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |
| 17060202     ID17060202SL019_03     ID17060202SL020_03     ID17060202SL022_02     ID17060202SL022_02     ID17060202SL028_03     ID17060202SL030_02     ID17060202SL031_02     ID17060202SL032_02     ID17060202SL033_02     ID17060202SL035_03     ID17060202SL036_02     ID17060202SL038_02     ID17060202SL038_03     ID17060202SL038_03            | Mosquite Creek - source to mouth     Pahsimeroi     Mahogany Creek - source to mouth     Pahsimeroi River     East Fork Pahsimeroi River - source to mouth     Goldburg Creek - Donkey Creek to mouth     Goldburg Creek - Source to Donkey Creek     Big Creek     South Fork Big Creek - source to mouth     North Fork Big Creek - source to mouth     Patterson Creek - source to and including Inyo Creek     Falls Creek - source to Irrigation junction (T15S, R23E)     Morse Creek - source to Irrigation junction (T15S, R23E)     Middle Salmon-Panther | 2.96<br>2.96<br>39.77<br>9.39<br>32.09<br>24.32<br>27.89<br>30.01<br>1.26<br>39.29<br>18.94<br>3.8 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |

| ID17060203SL003_02  | Garden Creek - source to mouth                               | 13.93 | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060203SL004_02  | Clear Creek - source to mouth                                | 40.75 | Miles |
| ID17060203SL006_03  | Big Deer Creek - source to South Fork Big Deer Creek         | 8.24  | Miles |
| ID17060203SL009_02  | Bucktail Creek - source to mouth                             | 1.82  | Miles |
| ID17060203SL010_02  | Panther Creek - Napias Creek to Big Deer Creek               | 21.16 | Miles |
| ID17060203SL011_02  | Panther Creek - Tributaries btw Blackbird Cr. to Napias Cr.  | 6.97  | Miles |
| ID17060203SL012a_02 | Blackbird Creek - source to Blackbird Reservoir Dam          | 2.93  | Miles |
| ID17060203SL012b_02 | Blackbird Creek - Blackbird Reservoir Dam to mouth           | 7.83  | Miles |
| ID17060203SL014_02  | Panther Creek - Porphyry Creek to Blackbird Creek            | 8.66  | Miles |
| ID17060203SL015_02  | Musgrove Creek - source to mouth                             | 17.7  | Miles |
| ID17060203SL016_02  | Porphyry Creek - source to mouth                             | 9.5   | Miles |
| ID17060203SL017_02  | Panther Creek - source to Porphyry Creek                     | 43.87 | Miles |
| ID17060203SL018_02  | Moyer Creek - source to mouth                                | 39.97 | Miles |
| ID17060203SL018_03  | Moyer Creek - source to mouth                                | 7.3   | Miles |
| ID17060203SL019_03  | Woodtick Creek - source to mouth                             | 5.14  | Miles |
| ID17060203SL020_03  | Deep Creek - Little Deep Creek to mouth                      | 2.31  | Miles |
| ID17060203SL022_02  | Deep Creek - source to Little Deep Creek                     | 17.35 | Miles |
| ID17060203SL023_04  | Napias Creek - Moccasin Creek to mouth                       | 2.68  | Miles |
| ID17060203SL024_02  | Napias Creek - Arnett Creek to and including Moccasin Creek  | 28.69 | Miles |
| ID17060203SL024_04  | Napias Creek - Arnett Creek to and including Moccasin Creek  | 1.37  | Miles |
| ID17060203SL025_02  | Napias Creek - source to Arnett Creek                        | 20.64 | Miles |
| ID17060203SL026_02  | Arnett Creek - source to mouth                               | 18.31 | Miles |
| ID17060203SL027_02  | Trail Creek - source to mouth                                | 9.49  | Miles |
| ID17060203SL028_02  | Beaver Creek - source to mouth                               | 17.52 | Miles |
| ID17060203SL030_02  | Pine Creek - source to mouth                                 | 24.39 | Miles |
| ID17060203SL031_02  | East Boulder Creek - source to mouth                         | 14.38 | Miles |
| ID17060203SL032_02  | Salmon River - North Fork Sheep Creek to Indian Creek        | 21.47 | Miles |
| ID17060203SL035_03  | Moose Creek - Dolly Creek to Little Moose Creek              | 1.43  | Miles |
| ID17060203SL036_02  | Moose Creek - source to Dolly Creek                          | 16.43 | Miles |
| ID17060203SL037_02  | Dolly Creek - source to mouth                                | 9.36  | Miles |
| ID17060203SL039_02  | Salmon River - Carmen Creek to North Fork Salmon River       | 57.75 | Miles |
| ID17060203SL043_03  | Williams Creek - confluence of North and South Fork Williams | 4.9   | Miles |

| ID17060203SL044_02 | North Fork Williams Creek - source to mouth                  | 6.42  | Miles |
|--------------------|--------------------------------------------------------------|-------|-------|
| ID17060203SL045_02 | South Fork Williams Creek - source to mouth                  | 7.05  | Miles |
| ID17060203SL047_02 | Salmon River - Iron Creek to Twelvemile Creek                | 67.53 | Miles |
| ID17060203SL048_02 | Iron Creek - North Fork Iron Creek to mouth                  | 29.15 | Miles |
| ID17060203SL048_03 | Iron Creek - North Fork Iron Creek to mouth                  | 11.15 | Miles |
| ID17060203SL049_02 | North Fork Iron Creek - source to mouth                      | 20.07 | Miles |
| ID17060203SL050_02 | Iron Creek - source to North Fork Iron Creek                 | 4.4   | Miles |
| ID17060203SL051_02 | West Fork Iron Creek - source to mouth                       | 5.69  | Miles |
| ID17060203SL052_02 | South Fork Iron Creek - source to mouth                      | 6.96  | Miles |
| ID17060203SL053_02 | Salmon River - Pahsimeroi River to Iron Creek                | 52.67 | Miles |
| ID17060203SL054_03 | Hot Creek - source to mouth                                  | 12.61 | Miles |
| ID17060203SL055_02 | Cow Creek - source to mouth                                  | 27.14 | Miles |
| ID17060203SL056_02 | Allison Creek - source to mouth                              | 10.21 | Miles |
| ID17060203SL057_03 | McKim Creek - source to mouth                                | 2.49  | Miles |
| ID17060203SL060_03 | Twelvemile Creek - source to mouth                           | 3.33  | Miles |
| ID17060203SL061_03 | Carmen Creek - Freeman Creek to mouth                        | 5.25  | Miles |
| ID17060203SL062_02 | Freeman Creek - source to mouth                              | 20.68 | Miles |
| ID17060203SL063_02 | Carmen Creek - source to Freeman Creek                       | 24.01 | Miles |
| ID17060203SL064_02 | Tower Creek - source to mouth                                | 19.78 | Miles |
| ID17060203SL064_03 | Tower Creek - source to mouth                                | 1.94  | Miles |
| ID17060203SL066_02 | Fourth of July Creek - source to Little Fourth of July Creek | 17.05 | Miles |
| ID17060203SL071_03 | Sheep Creek - source to mouth                                | 8.64  | Miles |
| ID17060203SL073_02 | Dahlonega Creek - Nez Perce Creek to mouth                   | 11.82 | Miles |
| ID17060203SL074_02 | Dahlonega Creek - source to Nez Perce Creek                  | 4.87  | Miles |
| ID17060203SL076_02 | Anderson Creek - source to mouth                             | 7.66  | Miles |
| ID17060203SL077_02 | North Fork Salmon River - Twin Creek to Dahlonega Creek      | 15.71 | Miles |
| ID17060203SL077_03 | North Fork Salmon River - Twin Creek to Dahlonega Creek      | 5.71  | Miles |
| ID17060203SL078_02 | North Fork Salmon River - source to Twin Creek               | 17.47 | Miles |
| ID17060203SL078_03 | North Fork Salmon River - source to Twin Creek               | 3.41  | Miles |
| ID17060203SL080_02 | Twin Creek - source to mouth                                 | 14.29 | Miles |
| ID17060203SL081_02 | Hughes Creek - source to mouth                               | 48.23 | Miles |
| ID17060203SL081_03 | Hughes Creek - source to mouth                               | 6.14  | Miles |

| ID17060203SL083_03  | Indian Creek - source to mouth                               | 11.37 | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060203SL084_02  | Squaw Creek - source to mouth                                | 15.89 | Miles |
| ID17060203SL085_02  | Spring Creek - source to mouth                               | 17.41 | Miles |
| ID17060203SL085_03  | Spring Creek - source to mouth                               | 2.28  | Miles |
| ID17060203SL086_02  | Boulder Creek - source to mouth                              | 13.38 | Miles |
| ID17060203SL087_03  | Owl Creek - East Fork Owl Creek to mouth                     | 1.99  | Miles |
| ID17060203SL090_02  | Colson Creek - source to mouth                               | 11.32 | Miles |
| 17060204            | Lemhi                                                        |       |       |
| ID17060204SL001_02  | Lemhi River - Kenney Creek to mouth                          | 44.45 | Miles |
| ID17060204SL002_02  | Mulkey Creek - source to mouth                               | 6.1   | Miles |
| ID17060204SL003a_03 | Withington Creek - diversion (T20N, R23E, Sec. 09) to mouth  | 2.25  | Miles |
| ID17060204SL003b_02 | Withington Creek - source to diversion (T20N, R23E, Sec. 09) | 21.25 | Miles |
| ID17060204SL003b_03 | Withington Creek - source to diversion (T20N, R23E, Sec. 09) | 3.19  | Miles |
| ID17060204SL004_02  | Haynes Creek - source to mouth                               | 19.82 | Miles |
| ID17060204SL009_05  | Hayden Creek - Basin Creek to mouth                          | 3.5   | Miles |
| ID17060204SL010_04  | Basin Creek - Lake Creek to mouth                            | 2.66  | Miles |
| ID17060204SL013_02  | McNutt Creek - source to mouth                               | 16.77 | Miles |
| ID17060204SL015 04  | Hayden Creek - Bear Valley Creek to Basin Creek              | 4.96  | Miles |
| ID17060204SL016_04  | Bear Valley Creek -Wright Creek to mouth                     | 2.78  | Miles |
| ID17060204SL017_02  | Bear Valley Creek - source to Wright Creek                   | 13.83 | Miles |
| ID17060204SL017_03  | Bear Valley Creek - source to Wright Creek                   | 3.64  | Miles |
| ID17060204SL018_03  | Wright Creek - source to mouth                               | 3.7   | Miles |
| ID17060204SL019_02  | Kadletz Creek - source to mouth                              | 4.95  | Miles |
| ID17060204SL020_02  | Hayden Creek -West Fork Hayden Creek to Bear Valley Creek    | 20.95 | Miles |
| ID17060204SL020_03  | Hayden Creek -West Fork Hayden Creek to Bear Valley Creek    | 6.52  | Miles |
| ID17060204SL023_02  | East Fork Hayden Creek - source to mouth                     | 11.34 | Miles |
| ID17060204SL026b_02 | Mill Creek - source to diversion (T16N, R24E, Sec. 22)       | 10.53 | Miles |
| ID17060204SL028_02  | Lee Creek - source to mouth                                  | 19.55 | Miles |
| ID17060204SL029a_03 | Big Eightmile Creek-diversion (T16N, R25E, Sec. 21) to mouth | 3.5   | Miles |
| ID17060204SL029b_03 | Big Eightmile Creek - source to diversion                    | 8.15  | Miles |
| ID17060204SL031_04  | Big Timber Creek - Little Timber Creek to mouth              | 4.85  | Miles |
| ID17060204SL032b_02 | Little Timber Creek - source to diversion                    | 13.38 | Miles |

| ID17060204SL032b_03                                                                                                                                                                                                                                                                                                | Little Timber Creek - source to diversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.64                                                                                                                            | Miles                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ID17060204SL033_02                                                                                                                                                                                                                                                                                                 | Big Timber Creek - Rocky Creek to Little Timber Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.1                                                                                                                            | Miles                                                                                                    |
| ID17060204SL033_03                                                                                                                                                                                                                                                                                                 | Big Timber Creek - Rocky Creek to Little Timber Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.6                                                                                                                             | Miles                                                                                                    |
| ID17060204SL039_02                                                                                                                                                                                                                                                                                                 | Meadow Lake Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.94                                                                                                                            | Miles                                                                                                    |
| ID17060204SL046_02                                                                                                                                                                                                                                                                                                 | Clear Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.25                                                                                                                           | Miles                                                                                                    |
| ID17060204SL047_02                                                                                                                                                                                                                                                                                                 | Tenmile Creek - Powderhorn Gulch to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.81                                                                                                                            | Miles                                                                                                    |
| ID17060204SL050b_02                                                                                                                                                                                                                                                                                                | Hawley Creek - source to diversion (T15N, R27E, Sec. 03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.51                                                                                                                           | Miles                                                                                                    |
| ID17060204SL050b_03                                                                                                                                                                                                                                                                                                | Hawley Creek - source to diversion (T15N, R27E, Sec. 03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.48                                                                                                                           | Miles                                                                                                    |
| ID17060204SL055b 03                                                                                                                                                                                                                                                                                                | Yearian Creek - source to diversion (T17N, R24E, Sec. 03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.23                                                                                                                            | Miles                                                                                                    |
| ID17060204SL057_03                                                                                                                                                                                                                                                                                                 | Cow Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.89                                                                                                                            | Miles                                                                                                    |
| ID17060204SL058_02                                                                                                                                                                                                                                                                                                 | Agency Creek - source to Cow Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.98                                                                                                                           | Miles                                                                                                    |
| ID17060204SL058_03                                                                                                                                                                                                                                                                                                 | Agency Creek - source to Cow Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.05                                                                                                                            | Miles                                                                                                    |
| ID17060204SL059b_02                                                                                                                                                                                                                                                                                                | Pattee Creek - source to diversion (T19N, R24E, Sec. 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.38                                                                                                                            | Miles                                                                                                    |
| ID17060204SL059b_03                                                                                                                                                                                                                                                                                                | Pattee Creek - source to diversion (T19N, R24E, Sec. 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.42                                                                                                                           | Miles                                                                                                    |
| ID17060204SL061_02                                                                                                                                                                                                                                                                                                 | Kenney Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.7                                                                                                                            | Miles                                                                                                    |
| 17060205                                                                                                                                                                                                                                                                                                           | Upper Middle Fork Salmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |                                                                                                          |
| ID17060205SL001_02                                                                                                                                                                                                                                                                                                 | MF Salmon River - 1st and 2nd order above Loon Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 194.31                                                                                                                          | Miles                                                                                                    |
| ID17060205SL001_02<br>ID17060205SL002_02                                                                                                                                                                                                                                                                           | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 194.31<br>88.87                                                                                                                 | Miles<br>Miles                                                                                           |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02                                                                                                                                                                                                                                                     | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 194.31<br>88.87<br>128.43                                                                                                       | Miles<br>Miles<br>Miles                                                                                  |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02<br>ID17060205SL008_02                                                                                                                                                                                                                               | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 194.31<br>88.87<br>128.43<br>29.01                                                                                              | Miles<br>Miles<br>Miles<br>Miles                                                                         |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02                                                                                                                                                                                                         | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 194.31<br>88.87<br>128.43<br>29.01<br>59.31                                                                                     | Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                                |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04                                                                                                                                                                                   | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 4th order (Honeymoon Creek to mouth)                                                                                                                                                                                                                                                                                                                                                                                          | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1                                                                             | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                       |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02                                                                                                                                                             | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 4th order (Honeymoon Creek to mouth)<br>Boundary Creek - entire drainage                                                                                                                                                                                                                                                                                                                                                      | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32                                                                     | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                       |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02<br>ID17060205SL011_02                                                                                                                                       | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 4th order (Honeymoon Creek to mouth)<br>Boundary Creek - entire drainage<br>Dagger Creek - entire drainage                                                                                                                                                                                                                                                                                                                    | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34                                                            | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                              |
| ID17060205SL001_02<br>ID17060205SL002 02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02<br>ID17060205SL011_02<br>ID17060205SL012_02                                                                                                                 | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 4th order (Honeymoon Creek to mouth)<br>Boundary Creek - entire drainage<br>Dagger Creek - entire drainage<br>Lower Bear Valley Creek - 1st and 2nd order tributaries                                                                                                                                                                                                                                                         | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34<br>53.27                                                   | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                     |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02<br>ID17060205SL011_02<br>ID17060205SL012_02<br>ID17060205SL012_03                                                                                           | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Boundary Creek - 4th order (Honeymoon Creek to mouth)<br>Boundary Creek - entire drainage<br>Dagger Creek - entire drainage<br>Lower Bear Valley Creek - 1st and 2nd order tributaries<br>Bear Valley Creek - 3rd order                                                                                                                                                                                  | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34<br>53.27<br>2.08                                           | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| ID17060205SL001_02<br>ID17060205SL002 02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02<br>ID17060205SL011_02<br>ID17060205SL012_03<br>ID17060205SL012_04                                                                                           | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Dagger Creek - entire drainage<br>Lower Bear Valley Creek - 1st and 2nd order tributaries<br>Bear Valley Creek - 3rd order<br>Bear Valley Creek - 4th order (Cache Creek to Elk Creek)                                                                                                                                                                                                                   | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34<br>53.27<br>2.08<br>7.36                                   | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                   |
| ID17060205SL001_02<br>ID17060205SL002 02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02<br>ID17060205SL011_02<br>ID17060205SL012_03<br>ID17060205SL012_04<br>ID17060205SL013_02                                                                     | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 4th order (Honeymoon Creek to mouth)<br>Boundary Creek - entire drainage<br>Dagger Creek - entire drainage<br>Lower Bear Valley Creek - 1st and 2nd order tributaries<br>Bear Valley Creek - 3rd order<br>Bear Valley Creek - 4th order (Cache Creek to Elk Creek)<br>Elk and Bearskin Creeks - 1st & 2nd order (non-wilderness)                                                         | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34<br>53.27<br>2.08<br>7.36<br>40.87                          | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                   |
| ID17060205SL001_02<br>ID17060205SL002 02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02<br>ID17060205SL012_02<br>ID17060205SL012_03<br>ID17060205SL012_04<br>ID17060205SL013_02<br>ID17060205SL013_02a                                              | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 4th order (Honeymoon Creek to mouth)<br>Boundary Creek - entire drainage<br>Dagger Creek - entire drainage<br>Lower Bear Valley Creek - 1st and 2nd order tributaries<br>Bear Valley Creek - 3rd order<br>Bear Valley Creek - 4th order (Cache Creek to Elk Creek)<br>Elk and Bearskin Creeks - 1st & 2nd order (mon-wilderness)<br>Elk and Porter Creeks - 1st & 2nd order (wilderness) | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34<br>53.27<br>2.08<br>7.36<br>40.87                          | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17060205SL001_02<br>ID17060205SL002 02<br>ID17060205SL007_02<br>ID17060205SL009_02<br>ID17060205SL009_02<br>ID17060205SL010_02<br>ID17060205SL010_02<br>ID17060205SL012_02<br>ID17060205SL012_03<br>ID17060205SL012_04<br>ID17060205SL013_02<br>ID17060205SL013_03a                                              | MF Salmon River - 1st and 2nd order above Loon Creek<br>Marble Creek and tributaries - 1st and 2nd order<br>Pistol and Little Pistol Creeks - 1st and 2nd order<br>Elkhorn Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 1st and 2nd order<br>Sulphur Creek - 4th order (Honeymoon Creek to mouth)<br>Boundary Creek - entire drainage<br>Dagger Creek - entire drainage<br>Lower Bear Valley Creek - 1st and 2nd order tributaries<br>Bear Valley Creek - 3rd order<br>Bear Valley Creek - 4th order (Cache Creek to Elk Creek)<br>Elk and Bearskin Creeks - 1st & 2nd order (non-wilderness)<br>Elk & Porter Creeks - 3rd order                      | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34<br>53.27<br>2.08<br>7.36<br>40.87<br>46.42<br>3.29         | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17060205SL001_02<br>ID17060205SL002_02<br>ID17060205SL007_02<br>ID17060205SL008_02<br>ID17060205SL009_02<br>ID17060205SL009_04<br>ID17060205SL010_02<br>ID17060205SL010_02<br>ID17060205SL012_02<br>ID17060205SL012_03<br>ID17060205SL012_04<br>ID17060205SL013_02a<br>ID17060205SL013_03a<br>ID17060205SL014_02 | MF Salmon River - 1st and 2nd order above Loon CreekMarble Creek and tributaries - 1st and 2nd orderPistol and Little Pistol Creeks - 1st and 2nd orderElkhorn Creek - 1st and 2nd orderSulphur Creek - 1st and 2nd orderSulphur Creek - 1st and 2nd orderSulphur Creek - 4th order (Honeymoon Creek to mouth)Boundary Creek - entire drainageDagger Creek - entire drainageLower Bear Valley Creek - 1st and 2nd order tributariesBear Valley Creek - 3rd orderBear Valley Creek - 1st & 2nd order (non-wilderness)Elk and Porter Creeks - 1st & 2nd order (wilderness)Elk & Porter Creeks - 3rd orderSheep Trail Creek - entire drainage                                                 | 194.31<br>88.87<br>128.43<br>29.01<br>59.31<br>11.1<br>9.32<br>16.34<br>53.27<br>2.08<br>7.36<br>40.87<br>46.42<br>3.29<br>8.18 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |

| ID17060205SL016_01L | Lower Lost Lake                                              | 6.49   | Acres |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17060205SL016_02  | Cache Creek and tributaries - 1st and 2nd order              | 15.85  | Miles |
| ID17060205SL016_03  | Cache Creek - 3rd order                                      | 4.37   | Miles |
| ID17060205SL017_02  | Fir Creek - 1st and 2nd order                                | 11.5   | Miles |
| ID17060205SL018_02  | Marsh Creek - Beaver Creek to mouth                          | 11.52  | Miles |
| ID17060205SL019_02  | Marsh Creek - Knapp Creek to Beaver Creek                    | 6.03   | Miles |
| ID17060205SL020_03  | Cape Horn Creek - Banner Creek to mouth                      | 4.11   | Miles |
| ID17060205SL021_02  | Cape Horn Creek - source to Banner Creek                     | 6.29   | Miles |
| ID17060205SL022_02  | Banner Creek - source to mouth                               | 16.41  | Miles |
| ID17060205SL023_02  | Swamp Creek - source to mouth                                | 7.38   | Miles |
| ID17060205SL028_02  | Beaver Creek - Bear Creek to mouth                           | 13.84  | Miles |
| ID17060205SL029_02  | Beaver Creek - Winnemucca Creek to Bear Creek                | 7.48   | Miles |
| ID17060205SL031_02  | Beaver Creek - source to Winnemucca Creek                    | 18.42  | Miles |
| ID17060205SL032_02  | Bear Creek - source to mouth                                 | 10.6   | Miles |
| ID17060205SL038_02  | Lime, Bruin, Garnet and Sulphur Creeks - 1st and 2nd order   | 20.13  | Miles |
| ID17060205SL038_03  | Sulphur Creek - 3rd order                                    | 2.1    | Miles |
| ID17060205SL039_02  | Float Creek - 1st and 2nd order                              | 11.21  | Miles |
| ID17060205SL039_03  | Float Creek - 3rd order (Harlan Creek to Rapid River)        | 2.61   | Miles |
| ID17060205SL041_02  | Vanity Creek - 1st and 2nd order                             | 22.04  | Miles |
| ID17060205SL041_03  | Vanity Creek - 3rd order (Seafoam Creek to Rapid River)      | 0.84   | Miles |
| ID17060205SL042_02  | Rapid River above Vanity Creek - 1st and 2nd order tribs     | 39.07  | Miles |
| ID17060205SL042_03  | Rapid River and Pinyon Creeks - 3rd order sections           | 4.09   | Miles |
| ID17060205SL062_02  | Mayfield Creek-confluence of East and West Fork Mayfield Cr. | 7.39   | Miles |
| ID17060205SL063_02  | West Fork Mayfield Creek - source to mouth                   | 21.38  | Miles |
| ID17060205SL064_03  | East Fork Mayfield Creek - source to mouth                   | 8.66   | Miles |
| ID17060205SL067_02  | Warm Springs Creek - Trapper Creek to mouth                  | 56.85  | Miles |
| 17060206            | Lower Middle Fork Salmon                                     |        |       |
| ID17060206SL001_02  | MF Salmon River - 1st and 2nd order below Loon Creek         | 172.92 | Miles |
| ID17060206SL003_02  | Big Creek - 1st and 2nd order tributaries                    | 131.58 | Miles |
| ID17060206SL003_03  | Big Creek - 3rd order (Belvidere Creek to Logan Creek)       | 4.97   | Miles |
| ID17060206SL003_04  | Big Creek - 4th order (Monumental Creek to Logan Creek)      | 12.73  | Miles |
| ID17060206SL009_02  | Smith Creek - 1st and 2nd order                              | 14.38  | Miles |

| ID17060206SL009_03  | Smith Creek - 3rd order, between NF Smith and Big Creeks     | 3.95   | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17060206SL010_02  | Logan and Government Creeks - 1st and 2nd order              | 22.7   | Miles |
| ID17060206SL010_03  | Logan Creek - 3rd order                                      | 0.41   | Miles |
| ID17060206SL012_02  | Monumental Creek - 1st & 2nd order mainstem tributaries      | 82.58  | Miles |
| ID17060206SL012_03  | Monumental Creek - 3rd order (Annie Creek to West Fork)      | 8.05   | Miles |
| ID17060206SL034_02a | Arrastra Creek                                               | 4.82   | Miles |
| ID17060206SL038_02  | Yellowjacket Creek - Hoodoo Creek to Jenny Creek             | 10.11  | Miles |
| ID17060206SL040_02  | Little Jacket Creek - source to mouth                        | 8.3    | Miles |
| ID17060206SL042_02  | Trail Creek - source to mouth                                | 11.1   | Miles |
| ID17060206SL044_02  | Hoodoo Creek - source to mouth                               | 18.7   | Miles |
| 17060207            | Middle Salmon-Chamberlain                                    |        |       |
| ID17060207SL001_07  | Salmon River - South Fork Salmon River to river mile 106     | 27.4   | Miles |
| ID17060207SL002_02  | Fall Creek - source to mouth                                 | 21.72  | Miles |
| ID17060207SL002_03  | Fall Creek - 3rd Order                                       | 1.33   | Miles |
| ID17060207SL003_02  | Carey Creek - source to mouth                                | 7.89   | Miles |
| ID17060207SL004_03  | California Creek - source to mouth                           | 2.03   | Miles |
| ID17060207SL006_02  | Rabbit Creek - source to mouth                               | 8.28   | Miles |
| ID17060207SL007 02  | Warren Creek - 1st and 2nd order tributaries                 | 76.98  | Miles |
| ID17060207SL007_03  | Warren Creek - 3rd order seg. within roadless and wilderness | 9.3    | Miles |
| ID17060207SL008_07  | Salmon River - Chamberlain Creek to South Fork Salmon River  | 41     | Miles |
| ID17060207SL037_02  | Salmon River - Middle Fork Salmon River to Horse Creek       | 27.53  | Miles |
| ID17060207SL037_07  | Salmon River - Middle Fork Salmon River to Horse Creek       | 11.56  | Miles |
| ID17060207SL040_02  | Corn Creek - source to mouth                                 | 8.53   | Miles |
| ID17060207SL044_03  | Horse Creek - source to Reynolds Creek                       | 5.28   | Miles |
| ID17060207SL055_02  | Bargamin Creek - source to mouth                             | 100.57 | Miles |
| ID17060207SL055_04  | Bargamin Creek - source to mouth                             | 15.97  | Miles |
| ID17060207SL056 02  | Porcupine Creek - source to mouth                            | 8.55   | Miles |
| ID17060207SL061_02  | Noble Creek - source to mouth                                | 46.86  | Miles |
| ID17060207SL061_02a | Big Mallard Creek - headwater to SF Big Mallard Creek        | 8.44   | Miles |
| ID17060207SL061_03  | Big Mallard Creek - SF Big Mallard Creek to mouth            | 13.4   | Miles |
| ID17060207SL062_02  | Little Mallard Creek - source to Fish Barrier                | 10.78  | Miles |
| ID17060207SL063_02  | Rhett Creek - source to Rabbit Creek                         | 22.08  | Miles |

| ID17060207SL063_03  | Rhett Creek - Rabbit Creek to mouth                         | 1.99   | Miles |
|---------------------|-------------------------------------------------------------|--------|-------|
| ID17060207SL065_02  | Jersey Creek - source to mouth                              | 16.14  | Miles |
| ID17060207SL066_02  | Indian Creek - source to mouth                              | 8.81   | Miles |
| ID17060207SL069_02  | Big Creek - source to mouth                                 | 10.49  | Miles |
| ID17060207SL069_02a | Eutopia Creek - and tributaries                             | 19.31  | Miles |
| ID17060207SL069_03  | Big Creek - source to mouth                                 | 8.92   | Miles |
| ID17060207SL070_02  | Lake Creek - source to mouth                                | 51.27  | Miles |
| ID17060207SL072_03  | Bull Creek - source to mouth                                | 4.53   | Miles |
| ID17060207SL073_02  | Elk Creek - source to mouth                                 | 9.43   | Miles |
| ID17060207SL076_04  | Wind River - Meadow Creek to Salmon River                   | 2.56   | Miles |
| ID17060207SL077_02  | Meadow Creek - source to mouth                              | 31.76  | Miles |
| ID17060207SL077_03  | Meadow Creek - source to mouth                              | 6.34   | Miles |
| 17060208            | South Fork Salmon                                           |        |       |
| ID17060208SL001_02  | SF Salmon R. below Secesh R: most 1st and 2nd order streams | 118.94 | Miles |
| ID17060208SL001_03  | Smith Creek - 3rd order (Big Buck Creek to SF Salmon River) | 1.08   | Miles |
| ID17060208SL003_02  | Pony Creek - entire drainage                                | 18.79  | Miles |
| ID17060208SL004_02  | Bear Creek - 1st and 2nd order                              | 13.86  | Miles |
| ID17060208SL005 04  | Secesh River - 4th order (Grouse Creek to mouth)            | 24.33  | Miles |
| ID17060208SL006_02  | Lake Creek - 1st and 2nd order                              | 43.64  | Miles |
| ID17060208SL006_03  | Lake Creek - 3rd order (Threemile Creek to Summit Creek)    | 4.05   | Miles |
| ID17060208SL007_02  | Summit Creek - entire watershed                             | 15.76  | Miles |
| ID17060208SL008_02  | Loon Creek - entire drainage                                | 17.84  | Miles |
| ID17060208SL011_02  | Fitsum Creek - 1st and 2nd order                            | 40.29  | Miles |
| ID17060208SL011_03  | Fitsum Creek - 3rd order                                    | 2.3    | Miles |
| ID17060208SL013_02  | Cougar Creek - 1st and 2nd order                            | 16     | Miles |
| ID17060208SL013_03  | Cougar Creek - 3rd order (South Fork Cougar Creek to mouth) | 2.79   | Miles |
| ID17060208SL014_02  | Blackmare Creek - 1st and 2nd order                         | 19.23  | Miles |
| ID17060208SL014_03  | Blackmare and SF Blackmare Creeks - 3rd order sections      | 4.82   | Miles |
| ID17060208SL016_02  | Six-bit Creek - entire watershed                            | 10.7   | Miles |
| ID17060208SL017_02  | Trail Creek & Curtis Creek - 1st and 2nd order              | 29.55  | Miles |
| ID17060208SL017_03  | Curtis Creek - 3rd order (Trail Creek to SF Salmon River)   | 1.42   | Miles |
| ID17060208SL020L_0L | Warm Lake                                                   | 411.96 | Acres |

| ID17060208SL021_02  | Fourmile Creek - 1st and 2nd order                           | 20.22 | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060208SL021_03  | Fourmile Creek - 3rd order (SF Fourmile Creek to mouth)      | 1.23  | Miles |
| ID17060208SL022_02  | Camp Creek - 1st and 2nd order                               | 34.21 | Miles |
| ID17060208SL022_03  | Camp and Phoebe Creeks - 3rd order sections                  | 5.33  | Miles |
| ID17060208SL023_02a | East Fork of the South Fork Salmon River - 1st and 2nd order | 79.24 | Miles |
| ID17060208SL023_04  | East Fork South Fork Salmon River - 4th order section        | 10.95 | Miles |
| ID17060208SL024_02  | Caton Creek and tributaries - 1st and 2nd order              | 37.38 | Miles |
| ID17060208SL024_03  | Reegan and Caton Creeks - 3rd order sections                 | 7.42  | Miles |
| ID17060208SL025_02a | Lower Johnson Creek - 1st and 2nd order tributaries          | 60.38 | Miles |
| ID17060208SL026_02  | Burntlog Creek and tributaries - 1st and 2nd order           | 48.54 | Miles |
| ID17060208SL026_03  | Burntlog Creek - 3rd order                                   | 10.35 | Miles |
| ID17060208SL027_02  | Trapper Creek & tributaries - 1st and 2nd order              | 13.88 | Miles |
| ID17060208SL027_03  | Trapper Creek - 3rd order                                    | 4.33  | Miles |
| ID17060208SL028_02  | Riordan and NF Riordan Creeks - 1st and 2nd order            | 21.9  | Miles |
| ID17060208SL028_03  | Riordan Creek - 3rd order (North Fork to mouth)              | 3.67  | Miles |
| ID17060208SL029_02  | Sugar Creek & tributaries - 1st and 2nd order                | 20.4  | Miles |
| ID17060208SL030_03  | Tamarack Creek - 3rd order (Bum Cr. to SF Salmon River)      | 4.62  | Miles |
| ID17060208SL032_02  | Quartz and Vein Creeks - 1st and 2nd order                   | 16.63 | Miles |
| ID17060208SL032_03  | Quartz Creek - 3rd order                                     | 3.33  | Miles |
| ID17060208SL033_02  | Sheep Creek - 1st and 2nd order                              | 25.72 | Miles |
| ID17060208SL033_03  | Sheep and South Fork Sheep Creeks - 3rd order                | 4.08  | Miles |
| 17060209            | Lower Salmon                                                 |       |       |
| ID17060209SL003_03  | Cottonwood Creek - unnamed trib to mouth                     | 5.91  | Miles |
| ID17060209SL008_02  | Salmon River - Slate Creek to Rice Creek                     | 96.91 | Miles |
| ID17060209SL009_02  | Sotin Creek - source to mouth                                | 4.33  | Miles |
| ID17060209SL010_02  | Deer Creek - source to EF Deer Creek                         | 21.41 | Miles |
| ID17060209SL010_03  | Deer Creek - EF Deer Creek to mouth                          | 3.17  | Miles |
| ID17060209SL012_02  | China Creek- source to Little China Creek                    | 7.45  | Miles |
| ID17060209SL012_03  | China Creek- Little China Creek to mouth                     | 1.36  | Miles |
| ID17060209SL013_02  | Cow Creek - source to mouth                                  | 15.16 | Miles |
| ID17060209SL014_03  | Race Creek - confluence West and SF Race Creek to mouth      | 1.67  | Miles |
| ID17060209SL015_02  | West Fork Race Creek - source to mouth                       | 10.3  | Miles |

| ID17060209SL015_03  | West Fork Race Creek - source to mouth                       | 1.37  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060209SL017_02  | Kessler Creek - source to South Fork Race Creek              | 4.43  | Miles |
| ID17060209SL020_03  | Lake Creek - source to mouth                                 | 6.2   | Miles |
| ID17060209SL023_03  | French Creek - Little French Creek to mouth                  | 12.43 | Miles |
| ID17060209SL026_02  | Kelly Creek - source to mouth                                | 14.71 | Miles |
| ID17060209SL029_02  | Allison Creek - roadless boundary to West Fork Allison Creek | 4.25  | Miles |
| ID17060209SL029_02a | Allison Creek - headwaters to roadless boundary              | 5.14  | Miles |
| ID17060209SL030_02  | West Fork Allison Creek - source to mouth                    | 10.72 | Miles |
| ID17060209SL032_02  | Fiddle Creek - source to mouth                               | 12.33 | Miles |
| ID17060209SL033_02  | John Day Creek - source to mouth                             | 25.08 | Miles |
| ID17060209SL033_03  | John Day Creek - source to mouth                             | 4.01  | Miles |
| ID17060209SL034_02  | Slate Creek - from and including Hurley Creek to mouth       | 12.54 | Miles |
| ID17060209SL034_04  | Slate Creek - from and including Hurley Creek to mouth       | 5.29  | Miles |
| ID17060209SL035_02  | Little Van Buren Creek - source to mouth                     | 5.95  | Miles |
| ID17060209SL036_02  | Slate Creek - Little Slate Creek to Hurley Creek             | 22.51 | Miles |
| ID17060209SL036_04  | Slate Creek - Little Slate Creek to Hurley Creek             | 7.35  | Miles |
| ID17060209SL037_02  | Little Slate Creek - headwaters and tributaries              | 40.25 | Miles |
| ID17060209SL037_02a | Little Boulder Creek - source to mouth                       | 7.6   | Miles |
| ID17060209SL037_02b | Big Boulder Creek - source to mouth                          | 7.34  | Miles |
| ID17060209SL037_03  | Little Slate Creek - unnamed trib to Van Buren Creek         | 9.5   | Miles |
| ID17060209SL037_04  | Little Slate Creek - Van Buren Cr to mouth                   | 8.07  | Miles |
| ID17060209SL038_02  | Deadhorse Creek - source to mouth                            | 8.36  | Miles |
| ID17060209SL039_02  | Van Buren Creek - source to NF Van Buren                     | 10.16 | Miles |
| ID17060209SL039_03  | Van Buren Creek - NF Van Buren Cr to mouth                   | 2     | Miles |
| ID17060209SL040_02  | Turnbull Creek - source to mouth                             | 4.97  | Miles |
| ID17060209SL041_02  | Slate Creek - Wilderness boundary to Little Slate Creek      | 7.72  | Miles |
| ID17060209SL042_02  | North Fork Slate Creek - source to mouth                     | 15.12 | Miles |
| ID17060209SL043_02  | McKinzie Creek - source to mouth                             | 16.07 | Miles |
| ID17060209SL044_03  | Skookumchuck Creek                                           | 3.36  | Miles |
| ID17060209SL045_02  | South Fork Skookumchuck Creek - source to mouth              | 13.37 | Miles |
| ID17060209SL047_04  | Whitebird Creek - 4th Order Segment                          | 5.75  | Miles |
| ID17060209SL048_03  | South Fork Whitebird Creek - Little Whitebird Creek to mouth | 4.38  | Miles |

| ID17060209SL049_02  | Little Whitebird Creek - source to mouth                     | 6.88  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060209SL050_02  | South Fork Whitebird Creek -source to Little Whitebird Creek | 9.28  | Miles |
| ID17060209SL050_03  | South Fork Whitebird Creek -source to Little Whitebird Creek | 6.63  | Miles |
| ID17060209SL051_02  | Jungle Creek - source to mouth                               | 2.16  | Miles |
| ID17060209SL052_02  | Asbestos Creek - source to mouth                             | 2.86  | Miles |
| ID17060209SL053_02  | Teepee Creek - source to mouth                               | 4.75  | Miles |
| ID17060209SL054_02  | Pinnacle Creek - source to mouth                             | 5.86  | Miles |
| ID17060209SL055_02  | North Fork Whitebird Creek - source to mouth                 | 33.12 | Miles |
| ID17060209SL055_03  | North Fork Whitebird Creek - 3rd order segment               | 6.05  | Miles |
| ID17060209SL060_03  | Deep Creek - source to mouth                                 | 1.42  | Miles |
| ID17060209SL061_02  | Maloney Creek - source to WF Maloney and tributaries         | 30.04 | Miles |
| ID17060209SL061_03  | Maloney Creek - source to mouth                              | 1.44  | Miles |
| ID17060209SL062_02  | Deer Creek - tributaries                                     | 20.87 | Miles |
| ID17060209SL062_02a | Deer Creek - source to WF Deer Creek                         | 26.9  | Miles |
| ID17060209SL062_03  | Deer Creek - downstream of waterfall to mouth                | 6.79  | Miles |
| ID17060209SL063_03  | Eagle Creek - source to mouth                                | 6.15  | Miles |
| ID17060209SL064_02  | China Creek - source to Banks Creek                          | 21.87 | Miles |
| ID17060209SL064_03  | China Creek - source to mouth                                | 1.83  | Miles |
| 17060210            | Little Salmon                                                |       |       |
| ID17060210SL001_02  | Little Salmon River - 1st and 2nd order below Round Valley   | 98.53 | Miles |
| ID17060210SL001_02a | Indian Creek - entire drainage                               | 2.45  | Miles |
| ID17060210SL001_03  | Squaw Creek - 3rd order                                      | 5.61  | Miles |
| ID17060210SL002_02  | Rapid River and tributaries - 1st and 2nd order              | 77.03 | Miles |
| ID17060210SL002_02a | Shingle Creek - mainstem 1st order headwaters                | 6.09  | Miles |
| ID17060210SL002_03  | Rapid River and Lake Fork - 3rd order                        | 12.52 | Miles |
| ID17060210SL002_03a | Shingle Creek - 3rd order (South Fork to mouth)              | 0.91  | Miles |
| ID17060210SL002_04  | Rapid River - 4th order                                      | 6.55  | Miles |
| ID17060210SL002_0L  | Black Lake                                                   | 25.82 | Acres |
| ID17060210SL003_02  | WF Rapid River and tributaries - 1st and 2nd order           | 32.79 | Miles |
| ID17060210SL003_03  | West Fork Rapid River - 3rd order (Bridge Creek to mouth)    | 2.47  | Miles |
| ID17060210SL004_02  | Paradise Creek - entire drainage                             | 6.86  | Miles |
| ID17060210SL005_02  | Boulder Creek - 1st and 2nd order                            | 45.28 | Miles |

| ID17060210SL005_03  | Boulder Creek - 3rd order                                    | 7.3    | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17060210SL006_02  | Round Valley Creek - 1st and 2nd order                       | 18.85  | Miles |
| ID17060210SL006_03  | Round Valley Creek - 3rd order (Brush Creek to mouth)        | 1.87   | Miles |
| ID17060210SL007_02  | Little Salmon River - Meadow Valley tributaries              | 53.62  | Miles |
| ID17060210SL007_02a | Little Salmon River, Vick and Mill Creeks- 1st and 2nd order | 18.86  | Miles |
| ID17060210SL007_03  | Little Salmon River - 3rd order                              | 1.18   | Miles |
| ID17060210SL008_02  | Mud and Little Mud Creeks - 1st and 2nd order                | 35.43  | Miles |
| ID17060210SL009_02  | Big Creek - upper 1st and 2nd order (forested)               | 30.66  | Miles |
| ID17060210SL010_02  | Goose Creek - 1st and 2nd order                              | 54.95  | Miles |
| ID17060210SL010_02L | Fish Lake                                                    | 12.32  | Acres |
| ID17060210SL010_03  | Goose and Little Goose Creeks - 3rd order sections           | 8.34   | Miles |
| ID17060210SL011_02  | Brundage Reservoir tributaries - 1st and 2nd order           | 3.79   | Miles |
| ID17060210SL011L_0L | Brundage Reservoir                                           | 216    | Acres |
| ID17060210SL012_02  | Goose Creek - 1st and 2nd order above Goose Lake             | 6.16   | Miles |
| ID17060210SL012L_0L | Goose Lake                                                   | 366.11 | Acres |
| ID17060210SL013_02  | Sixmile Creek - entire drainage                              | 10.48  | Miles |
| ID17060210SL014_02  | Hazard Creek and tributaries - 1st and 2nd order             | 42.89  | Miles |
| ID17060210SL014_02L | Hazard Lakes                                                 | 244.4  | Acres |
| ID17060210SL014_03  | Hazard Creek - 3rd order                                     | 7.21   | Miles |
| ID17060210SL014_04  | Hazard Creek - Hard Creek to mouth                           | 0.88   | Miles |
| ID17060210SL015_02  | Hard Creek and tributaries - 1st and 2nd order               | 33.69  | Miles |
| ID17060210SL015_03  | Hard Creek - 3rd order                                       | 10.01  | Miles |
| ID17060210SL016_02  | Elk and Little Elk Creeks - 1st and 2nd Order                | 13.29  | Miles |
| ID17060210SL016_02a | Elk Creek - roadless boundary to Little Elk Creek            | 3.18   | Miles |
| ID17060210SL016_03  | Elk Creek - Little Elk Creek to mouth                        | 0.98   | Miles |

## Southwest

| 17050101            | C. J. Strike Reservoir                                       |       |       |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17050101SW002_02  | Bruneau Sand Dunes Lake                                      | 0.06  | Miles |
| ID17050101SW002_0L  | Bruneau Sand Dunes Lake                                      | 37.47 | Acres |
| ID17050101SW003_02  | Browns Creek - lower 1st and 2nd order                       | 31.64 | Miles |
| ID17050101SW010_02  | King Hill Creek - 1st and 2nd order                          | 46.88 | Miles |
| ID17050101SW013_02  | Alkali Creek - 1st & 2nd order                               | 28.54 | Miles |
| ID17050101SW013_03  | Alkali Creek - 3rd order section                             | 4.96  | Miles |
| ID17050101SW014_02  | Cold Springs Creek - 1st and 2nd order                       | 24.96 | Miles |
| ID17050101SW015_02  | Ryegrass Creek - entire watershed                            | 28.28 | Miles |
| ID17050101SW016_02  | Bennett Creek - 1st and 2nd order                            | 53.05 | Miles |
| ID17050101SW016_03  | Bennett Creek - 3rd order                                    | 29.35 | Miles |
| ID17050101SW017_02  | Hot Springs Creek - 1st and 2nd order above reservoir        | 18.69 | Miles |
| ID17050101SW018_02  | Dive Creek - 1st and 2nd order                               | 4.3   | Miles |
| ID17050101SW019_02  | Rattlesnake Creek below Mountain Home Reservoir              | 38.36 | Miles |
| ID17050101SW020L_0L | Mountain Home Reservoir                                      | 405   | Acres |
| ID17050101SW021_02  | Canyon Creek-1st and 2nd order tribs below Fraiser Reservoir | 10.55 | Miles |
| ID17050101SW023_04  | Canyon Creek - 4th order (Syrup Creek to Fraiser Reservoir)  | 21.43 | Miles |
| ID17050101SW024 02  | Long Tom Creek - 1st and 2nd order                           | 37.88 | Miles |
| ID17050101SW025_02  | Syrup Creek and tributaries - 1st and 2nd order              | 32.35 | Miles |
| ID17050101SW025_03  | Syrup Creek - 3rd order (Cottonwood Creek to Long Tom Creek) | 5.77  | Miles |
| ID17050101SW026_03  | Squaw and Mud Springs Creeks - 3rd order                     | 10.26 | Miles |
| 17050102            | Bruneau                                                      |       |       |
| ID17050102SW003_04  | Little Jacks Creek - 4th order section                       | 22.37 | Miles |
| ID17050102SW004_03  | Big Jacks Creek -3rd order                                   | 21.13 | Miles |
| ID17050102SW004_04  | Big Jacks Creek - 4th order (Dry Canyon to Duncan Creek)     | 7.36  | Miles |
| ID17050102SW005_02  | Cottonwood Creek - entire drainage                           | 20.07 | Miles |
| ID17050102SW006_02  | Duncan Creek - 1st and 2nd order                             | 38.06 | Miles |
| ID17050102SW006_03  | Duncan Creek - 3rd order (Zeno Canyon to Big Jacks Creek)    | 5.42  | Miles |
| ID17050102SW007_02  | Wickahoney Creek - 1st and 2nd order                         | 87.93 | Miles |
| ID17050102SW007_03  | Wickahoney Creek - 3rd order                                 | 3.54  | Miles |
| ID17050102SW007_04  | Wickahoney Creek - 4th order                                 | 3.63  | Miles |
| ID17050104SW001_06 | Owyhee River - 6th order (Juniper Creek to SF Owyhee River) | 51.21  | Miles |
|--------------------|-------------------------------------------------------------|--------|-------|
| 17050104           | Upper Owyhee                                                |        |       |
| ID17050103SW025_03 | Corder Creek - 3rd order                                    | 9.07   | Miles |
| ID17050103SW024_04 | Shoofly Creek - 4th order (West Fork to Snake River)        | 19.99  | Miles |
| ID17050103SW024_02 | Shoofly & Poison Creeks - 1st and 2nd order                 | 130.13 | Miles |
| ID17050103SW012_03 | Sinker Creek - 3rd order                                    | 9.19   | Miles |
| ID17050103SW011_02 | Rabbit Creek (south side of Snake River)- 1st and 2nd order | 117.54 | Miles |
| ID17050103SW009_02 | Reynolds Creek - 1st and 2nd order                          | 172.97 | Miles |
| ID17050103SW007_03 | Squaw Creek - 3rd order                                     | 12.08  | Miles |
| ID17050103SW007_02 | Squaw Creek - 1st & 2nd order                               | 67.65  | Miles |
| ID17050103SW006_02 | Snake River - 1st & 2nd order between Corder Cr. & Marsing  | 187.66 | Miles |
| 17050103           | Middle Snake-Succor                                         |        |       |
| ID17050102SW034_02 | Deadwood Creek - 1st and 2nd order                          | 28.59  | Miles |
| ID17050102SW033_03 | Deer Creek - 3rd order                                      | 5.23   | Miles |
| ID17050102SW032_02 | Cherry Creek - Idaho/Nevada border to mouth                 | 13.84  | Miles |
| ID17050102SW030_03 | Big Flat Creek - 3rd order                                  | 11.48  | Miles |
| ID17050102SW024_03 | East Fork Jarbidge River - Idaho/Nevada border to mouth     | 4.93   | Miles |
| ID17050102SW021_04 | Jarbidge River - 4th order downstream of Buck Creek         | 32.79  | Miles |
| ID17050102SW021_03 | Jarbidge River and Buck Creek - 3rd order                   | 2.03   | Miles |
| ID17050102SW021_02 | Columbet and Rattlesnake Creeks - entire drainages          | 67.99  | Miles |
| ID17050102SW020_05 | Bruneau River - Idaho/Nevada border to Jarbidge River       | 28.37  | Miles |
| ID17050102SW017_03 | Bull Creek - 3rd order (West Fork Bull Creek to mouth)      | 11.43  | Miles |
| ID17050102SW016_02 | Marys Creek and Tributaries - 1st and 2nd order             | 105.84 | Miles |
| ID17050102SW015_03 | Louse and Crab Creeks - 3rd order sections                  | 24.08  | Miles |
| ID17050102SW014_05 | Sheep Creek - 5th order                                     | 22.23  | Miles |
| ID17050102SW014_03 | Sheep Creek - 3rd order                                     | 14.2   | Miles |
| ID17050102SW013_06 | Bruneau River - Sheep Creek to Clover Creek                 | 8.71   | Miles |
| ID17050102SW013_05 | Bruneau River - Jarbidge River to Sheep Creek               | 13.57  | Miles |
| ID17050102SW011_06 | Bruneau River - Clover Creek to Hot Creek                   | 18.22  | Miles |
| ID17050102SW010_03 | Hot Creek - 3rd order                                       | 12.82  | Miles |
| ID17050102SW010_02 | Hot Creek - 1st and 2nd order                               | 37.19  | Miles |
|                    |                                                             |        |       |

| ID17050104SW006_06  | Owyhee River - Blue Creek to Juniper Creek                | 7.86   | Miles |
|---------------------|-----------------------------------------------------------|--------|-------|
| ID17050104SW014_02  | Shoofly Creek & Tributaries - 1st & 2nd order             | 53.43  | Miles |
| ID17050104SW014_03  | Shoofly Creek - 3rd order                                 | 12.14  | Miles |
| ID17050104SW014_04  | Shoofly Creek - 4th order                                 | 13.9   | Miles |
| ID17050104SW025_02  | Big Springs Creek - 1st and 2nd                           | 36.91  | Miles |
| ID17050104SW026_02  | Deep Creek - 1st and 2nd order rangeland tributaries      | 158.22 | Miles |
| ID17050104SW026_03a | Deep Creek - 3rd order forested tributaries               | 8.59   | Miles |
| ID17050104SW027_02  | Dickshooter Creek - 1st and 2nd order                     | 107.86 | Miles |
| ID17050104SW027_04  | Dickshooter Creek - 4th order                             | 14.46  | Miles |
| 17050107            | Middle Owyhee                                             |        |       |
| ID17050107SW005_03  | Pole Creek - 3rd order                                    | 1.46   | Miles |
| ID17050107SW006_02  | Squaw Creek and tributaries - 1st and 2nd order           | 52.37  | Miles |
| ID17050107SW006_03  | Squaw Creek - 3rd order                                   | 8.58   | Miles |
| 17050108            | Jordan                                                    |        |       |
| ID17050108SW003_02  | Williams Creek - 1st and 2nd order                        | 20.33  | Miles |
| ID17050108SW003_03  | Williams Creek - 3rd order (Pole Bridge Creek to mouth)   | 2.23   | Miles |
| ID17050108SW005_02  | Old Man, Coyote, Howl and parts of South Mountain Creeks  | 44.56  | Miles |
| ID17050108SW005_03  | South Mountain Creek - 3rd order                          | 4.57   | Miles |
| ID17050108SW005_05  | Big Boulder Creek - South Boulder Creek to Jordan Creek   | 7.63   | Miles |
| ID17050108SW006_03  | South Boulder and Indian Creeks - 3rd order sections      | 8.42   | Miles |
| ID17050108SW006_04  | South Boulder Creek - 4th order (Indian Creek to mouth)   | 3.11   | Miles |
| ID17050108SW007_03  | North Boulder Creek - 3rd order (Mammoth Creek to mouth)  | 2.31   | Miles |
| ID17050108SW007_05  | Big Boulder Creek (North Boulder to South Boulder Creeks) | 3.86   | Miles |
| ID17050108SW009_02  | Combination Creek - entire drainage                       | 12.33  | Miles |
| ID17050108SW010_03  | Rock Creek - 3rd order below Triangle Reservoir           | 5.06   | Miles |
| ID17050108SW011_02  | Rose Creek - entire drainage                              | 13.61  | Miles |
| ID17050108SW012_04  | Josephine Creek - 4th order (Wickiup Creek to mouth)      | 8.35   | Miles |
| ID17050108SW017_02  | Flint and East Creeks - 1st and 2nd order                 | 18.63  | Miles |
| ID17050108SW017_03  | Flint Creek - 3rd order (East Creek to mouth)             | 4.35   | Miles |
| ID17050108SW018_02  | Louse Creek - 1st and 2nd order                           | 20.55  | Miles |
| ID17050108SW018_03  | Louse Creek - 3rd order (Sullivan Gulch to mouth)         | 5.49   | Miles |

| ID17050108SW019_03  | Trout Creek - 3rd order                                 | 7.77   | Miles |
|---------------------|---------------------------------------------------------|--------|-------|
| ID17050108SW021_04  | Cow Creek - 4th order                                   | 4.32   | Miles |
| 17050111            | North and Middle Forks Boise                            |        |       |
| ID17050111SW001_02  | MF Boise River - 1st and 2nd order forested tributaries | 198.97 | Miles |
| ID17050111SW001_02a | MF Boise River: 1st and 2nd order rangeland tributaries | 11.19  | Miles |
| ID17050111SW001_03  | MF Boise River, Swanholm and Lost Man Creeks: 3rd order | 18.52  | Miles |
| ID17050111SW001_04  | Middle Fork Boise River - 4th order                     | 34.12  | Miles |
| ID17050111SW002_02  | East Fork Roaring River - 1st and 2nd order             | 30.79  | Miles |
| ID17050111SW002_02L | Roaring River Lakes                                     | 16.98  | Acres |
| ID17050111SW002_03  | Roaring River and EF Roaring River - 3rd order sections | 8.29   | Miles |
| ID17050111SW003_02  | Hot Creek - entire drainage                             | 8.08   | Miles |
| ID17050111SW004_02  | Yuba River - 1st and 2nd order                          | 32.89  | Miles |
| ID17050111SW004_03  | Yuba River and Corbus Creek - 3rd order sections        | 3.45   | Miles |
| ID17050111SW004_04  | Yuba River - 4th order section                          | 2.86   | Miles |
| ID17050111SW005_02  | Decker Creek - 1st and 2nd order                        | 24.34  | Miles |
| ID17050111SW005_03  | Decker Creek - 3rd order                                | 1.15   | Miles |
| ID17050111SW006_02  | Queens River and China Fork - 1st and 2nd order         | 33.67  | Miles |
| ID17050111SW006 03  | Queens River - 3rd order section                        | 2.18   | Miles |
| ID17050111SW007_02  | Little Queens River & tributaries - 1st and 2nd order   | 23.21  | Miles |
| ID17050111SW007_03  | Little Queens River - 3rd order (Right Creek to mouth)  | 1.01   | Miles |
| ID17050111SW008_02  | Black Warrior Creek & tributaries - 1st and 2nd order   | 20.33  | Miles |
| ID17050111SW008_03  | Black Warrior Creek - 3rd order                         | 2.38   | Miles |
| ID17050111SW009_02  | Browns Creek - 1st and 2nd order                        | 11.48  | Miles |
| ID17050111SW009_03  | Browns Creek - 3rd order                                | 1.57   | Miles |
| ID17050111SW010_02  | NF Boise River and Trail Creek - 1st and 2nd order      | 149.02 | Miles |
| ID17050111SW010_03  | NF Boise River and Trail Creek - 3rd order sections     | 8.77   | Miles |
| ID17050111SW010_04  | North Fork Boise River - 4th order                      | 17.59  | Miles |
| ID17050111SW010_05  | North Fork Boise River - 5th order                      | 18.44  | Miles |
| ID17050111SW011_02  | Johnson Creek & tributaries - 1st and 2nd order         | 27.25  | Miles |
| ID17050111SW011_03  | Johnson Creek - 3rd order (Grouse Creek to mouth)       | 4.01   | Miles |
| ID17050111SW012_02  | Bear River and tributaries: 1st and 2nd order sections  | 39.19  | Miles |
| ID17050111SW012_03  | Bear River - 3rd order section                          | 8.18   | Miles |

| ID17050111SW013_02  | Big and Little Owl Creeks - entire drainage                  | 12.07   | Miles |
|---------------------|--------------------------------------------------------------|---------|-------|
| ID17050111SW014_02  | Crooked River, Pikes Fk, and Beaver Creek- 1st and 2nd order | 125.45  | Miles |
| ID17050111SW014_03  | Crooked River, Pikes Fork and Beaver Creek - 3rd order       | 3.86    | Miles |
| ID17050111SW014_04  | Crooked River - 4th order                                    | 12.91   | Miles |
| ID17050111SW015_02  | Rabbit Creek & tributaries - 1st and 2nd order               | 34.35   | Miles |
| ID17050111SW015_03  | Rabbit Creek - 3rd order                                     | 6.4     | Miles |
| ID17050111SW016_02  | Meadow Creek - 1st and 2nd order                             | 7.28    | Miles |
| ID17050111SW017_02  | French Creek - entire watershed                              | 10.84   | Miles |
| 17050112            | Boise-Mores                                                  |         |       |
| ID17050112SW001L_0L | Lucky Peak Reservoir                                         | 2765.19 | Acres |
| ID17050112SW002L_0L | Arrowrock Reservoir (not including SF Boise River arm)       | 2177.76 | Acres |
| ID17050112SW003_02  | Grouse Creek - 1st and 2nd order                             | 13.05   | Miles |
| ID17050112SW004_02  | Birch, Badger, Haga, and Alder Creeks                        | 38.09   | Miles |
| ID17050112SW005_02  | Sheep Creek - 1st and 2nd order                              | 41.58   | Miles |
| ID17050112SW005_03  | Sheep and SF Sheep Creeks - 3rd order                        | 6.95    | Miles |
| ID17050112SW005_04  | Sheep Creek - 4th order (South Fork Sheep Creek to mouth)    | 1.32    | Miles |
| ID17050112SW006_02  | Brown Creek - 1st and 2nd order                              | 4.21    | Miles |
| ID17050112SW007 02  | Cottonwood Creek and tributaries - 1st and 2nd order         | 27.7    | Miles |
| ID17050112SW007_03  | Cottonwood Creek - 3rd order (North Fork to mouth)           | 2.74    | Miles |
| ID17050112SW011_02  | Thorn Creek - 1st and 2nd order                              | 29.63   | Miles |
| ID17050112SW012_02  | Elk Creek and tributaries - 1st and 2nd order                | 44.55   | Miles |
| ID17050112SW012_03  | Elk Creek - 3rd order (Ross Fork to mouth)                   | 11.18   | Miles |
| ID17050112SW014_02  | Granite Creek - 1st and 2nd order                            | 65.8    | Miles |
| ID17050112SW014_03  | Granite, Woof, and Clear Creeks - 3rd order sections         | 3.23    | Miles |
| ID17050112SW016_02  | Daggett Creek and tributaries - 1st & 2nd order              | 13.8    | Miles |
| ID17050112SW017_02  | Robie Creek and tributaries - 1st and 2nd order              | 17.79   | Miles |
| ID17050112SW017_03  | Robie Creek - 3rd order (Karney Creek to mouth)              | 4.55    | Miles |
| 17050113            | South Fork Boise                                             |         |       |
| ID17050113SW001_03  | Rattlesnake Creek - 3rd order                                | 0.87    | Miles |

| ID17050113SW002a_03 | Willow Creek - 3rd order below Cottonwood Creek              | 7.43   | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17050113SW002a_04 | Willow Creek - 4th order                                     | 0.93   | Miles |
| ID17050113SW002b_02 | Willow Creek and tributaries - 1st and 2nd order             | 31.94  | Miles |
| ID17050113SW002b_03 | Willow Creek - 3rd order above Cottonwood Creek              | 5.28   | Miles |
| ID17050113SW003_02  | Wood Creek - 1st and 2nd order                               | 29.12  | Miles |
| ID17050113SW003_03  | Wood Creek - 3rd order (Deadman Creek to Willow Creek)       | 2.02   | Miles |
| ID17050113SW004_02  | SF Boise River (Anderson Dam to Arrowrock) - 1st & 2nd order | 153.36 | Miles |
| ID17050113SW004_06  | South Fork Boise River - Anderson Dam to Arrowrock Reservoir | 31.53  | Miles |
| ID17050113SW005_02  | Tributaries to Anderson Ranch Reservoir - 1st and 2nd order  | 81.32  | Miles |
| ID17050113SW005_03  | Castle Creek - 3rd order                                     | 1.39   | Miles |
| ID17050113SW007_02  | Cat Creek - 1st and 2nd order                                | 23.79  | Miles |
| ID17050113SW007_03  | Cat Creek - 3rd order (Buck Creek to mouth)                  | 3.1    | Miles |
| ID17050113SW008_02  | Little Camas Creek - 1st and 2nd order above Reservoir       | 25.78  | Miles |
| ID17050113SW008_03  | Little Camas Creek - 3rd order above Little Camas Reservoir  | 4.31   | Miles |
| ID17050113SW010_02  | Lime and North Fork Lime Creeks - 1st and 2nd order          | 99.17  | Miles |
| ID17050113SW010_02a | Moores Creek - 1st and 2nd order                             | 45.18  | Miles |
| ID17050113SW010_03  | North and Middle Fork Lime Creeks - 3rd order sections       | 9.62   | Miles |
| ID17050113SW010_04  | Lime Creek - 4th order (NF Lime Creek to Moores Creek)       | 7.13   | Miles |
| ID17050113SW010_04a | Moores Creek - 4th order (Big Springs Creek to mouth)        | 2.69   | Miles |
| ID17050113SW011_02  | South Fork Lime Creek - 1st and 2nd order                    | 70.94  | Miles |
| ID17050113SW011_03  | South Fork Lime Creek - 3rd order                            | 9.38   | Miles |
| ID17050113SW012_02  | Deer Creek - 1st and 2nd order                               | 24.83  | Miles |
| ID17050113SW012_03  | Deer Creek - 3rd order                                       | 1.28   | Miles |
| ID17050113SW013_02  | South Fork Boise River - 1st and 2nd order                   | 69.4   | Miles |
| ID17050113SW013_05  | SF Boise River - Willow Creek to Anderson Ranch Reservoir    | 22.03  | Miles |
| ID17050113SW014_02  | Grouse Creek - 1st and 2nd order                             | 17.63  | Miles |
| ID17050113SW015_02  | SF Boise River - 1st and 2nd order tribs,Willow to Big Smoky | 60.99  | Miles |
| ID17050113SW015_03  | Kelley Creek - 3rd order (EF Kelley Creek to SF Boise River) | 0.64   | Miles |
| ID17050113SW016_02  | Beaver Creek - entire drainage                               | 9.55   | Miles |
| ID17050113SW017_02  | Boardman Creek - 1st and 2nd order                           | 19.75  | Miles |
| ID17050113SW017_03  | Boardman Creek - 3rd order (Smoky Dome Canyon to mouth)      | 5      | Miles |
| ID17050113SW018_02  | Little Smoky Creek - 1st and 2nd order                       | 136.5  | Miles |

| ID17050113SW018_04  | Little Smoky Creek - 4th order (Grindstone to Big Smoky Cr.) | 9.56   | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17050113SW018_05  | Big Smoky Creek - 5th order (Little Smoky to SF Boise River) | 2.84   | Miles |
| ID17050113SW019_02  | Big Smoky Creek - 1st and 2nd order except Paradise Creek    | 117.57 | Miles |
| ID17050113SW019_04  | Big Smoky Creek - 4th order                                  | 15.79  | Miles |
| ID17050113SW020_02  | Paradise Creek - entire drainage                             | 14.39  | Miles |
| ID17050113SW021_02  | South Fork Boise River - 1st and 2nd order                   | 72.4   | Miles |
| ID17050113SW021_03  | South Fork Boise River - 3rd order                           | 2.95   | Miles |
| ID17050113SW021_04  | South Fork Boise River - 4th order                           | 15     | Miles |
| ID17050113SW022_03  | Johnson Creek - 3rd order                                    | 5.54   | Miles |
| ID17050113SW023_02  | Ross Fork - 1st and 2nd order                                | 31.3   | Miles |
| ID17050113SW023_03  | Ross Fork - 3rd order (SF Ross Creek to SF Boise River)      | 3.7    | Miles |
| ID17050113SW024_02  | Skeleton Creek - 1st and 2nd order                           | 27.18  | Miles |
| ID17050113SW024_03  | Skeleton Creek - 3rd order (East Fork to mouth)              | 6.01   | Miles |
| ID17050113SW025_02  | Willow Creek and tributaries - 1st and 2nd order             | 22.8   | Miles |
| ID17050113SW025_03  | Willow Creek - 3rd order (Haypress Creek to mouth)           | 5.62   | Miles |
| ID17050113SW026_02  | Shake Creek - entire drainage                                | 12.18  | Miles |
| ID17050113SW027_02  | Feather River - 1st and 2nd order                            | 80.45  | Miles |
| ID17050113SW027_03  | Elk Creek and Feather River - 3rd order sections             | 4.28   | Miles |
| ID17050113SW027_04  | Feather River - 4th order (Elk Creek to mouth)               | 6.01   | Miles |
| ID17050113SW028_02  | Trinity Creek and tributaries - 1st and 2nd order            | 50.02  | Miles |
| ID17050113SW028_02L | Big Trinity Lake                                             | 25.5   | Acres |
| ID17050113SW028_03  | Parks and Trinity Creeks - 3rd order                         | 0.8    | Miles |
| ID17050113SW028_04  | Trinity Creek - 4th order (Parks Creek to mouth)             | 4.76   | Miles |
| ID17050113SW029_02  | Green Creek - entire drainage                                | 7.27   | Miles |
| ID17050113SW030_02  | Dog Creek - entire drainage                                  | 11.13  | Miles |
| ID17050113SW031_02  | Fall Creek - 1st and 2nd order tributaries                   | 84.26  | Miles |
| ID17050113SW031_03  | Fall and Tally Creeks - 3rd order sections                   | 4.81   | Miles |
| ID17050113SW031_04  | Fall Creek - 4th order (Tally Creek to mouth)                | 4.99   | Miles |
| ID17050113SW033_02  | Rattlesnake Creek and tributaries - 1st and 2nd order        | 42.05  | Miles |
| ID17050113SW033_03  | Rattlesnake Creek - 3rd order                                | 10.88  | Miles |
| 17050114            | Lower Boise                                                  |        |       |

| ID17050114SW003b_04 | Indian Creek- Indian Creek Reservoir to New York Canal     | 20.64  | Miles |
|---------------------|------------------------------------------------------------|--------|-------|
| ID17050114SW013_02  | Dry Creek - 1st and 2nd order                              | 69.15  | Miles |
| ID17050114SW013_03  | Dry, Currant and Spring Valley Creeks - 3rd order sections | 10.09  | Miles |
| 17050115            | Middle Snake-Payette                                       |        |       |
| ID17050115SW003_02  | Ashlock Gulch - 1st and 2nd order                          | 13.19  | Miles |
| 17050120            | South Fork Payette                                         |        |       |
| ID17050120SW001_02a | SF Payette River - 1st and 2nd order - Lowman to Grandjean | 110.14 | Miles |
| ID17050120SW001_03  | South Fork Payette River - 3rd order                       | 5.19   | Miles |
| ID17050120SW001_04  | South Fork Payette River - 4th order                       | 36.9   | Miles |
| ID17050120SW002_02  | Rock Creek - 1st and 2nd order                             | 25.67  | Miles |
| ID17050120SW002 03  | Rock Creek - 3rd order                                     | 0.91   | Miles |
| ID17050120SW003_02  | Tenmile Creek - entire drainage                            | 35.76  | Miles |
| ID17050120SW004_02  | Wapiti Creek - entire drainage                             | 14.63  | Miles |
| ID17050120SW005_02  | SF Payette R - 1st and 2nd order above and inc. Trail Cr.  | 58.25  | Miles |
| ID17050120SW005_04  | South Fork Payette River - Baron Creek to Trail Creek      | 0.73   | Miles |
| ID17050120SW008_02  | Bear Creek - entire watershed                              | 5.47   | Miles |
| ID17050120SW009_02  | Canyon Creek - 1st and 2nd order                           | 28.79  | Miles |
| ID17050120SW009_03  | Canyon Creek - 3rd order                                   | 6.51   | Miles |
| ID17050120SW010_02  | Warm Spring Creek - 1st and 2nd order                      | 53.44  | Miles |
| ID17050120SW010_02L | Bull Trout Lakes                                           | 72.99  | Acres |
| ID17050120SW010_03  | Warm Spring and Gates Creeks - 3rd order                   | 12.95  | Miles |
| ID17050120SW011_02  | Eightmile and EF Eightmile Creeks - 1st and 2nd order      | 30.3   | Miles |
| ID17050120SW011_03  | Eightmile Creek - 3rd order (East Fork to mouth)           | 1.25   | Miles |
| ID17050120SW012_02  | Fivemile Creek - entire watershed                          | 13.61  | Miles |
| ID17050120SW013_02  | Clear Creek and tributaries - 1st and 2nd order            | 64.23  | Miles |
| ID17050120SW013_03  | Clear Creek - 3rd order (South Fork Clear Creek to mouth)  | 17.03  | Miles |
| ID17050120SW014_02  | Deadwood River - 1st and 2nd order below Deadwood Dam      | 76.14  | Miles |
| ID17050120SW014_04  | Deadwood River - Deadwood Reservoir Dam to mouth           | 23.02  | Miles |
| ID17050120SW015_02  | Whitehawk and NF Whitehawk Creeks - 1st and 2nd order      | 19.49  | Miles |
| ID17050120SW015_03  | Whitehawk Creek - 3rd order                                | 3.18   | Miles |
| ID17050120SW016_02  | Warm Springs Cr. and tributaries - 1st and 2nd order       | 20.46  | Miles |

| ID17050120SW016_03  | Warm Springs Creek - 3rd order                             | 1.23    | Miles |
|---------------------|------------------------------------------------------------|---------|-------|
| ID17050120SW017_02  | Wilson Creek - entire watershed                            | 11.85   | Miles |
| ID17050120SW018_02  | Deadwood Reservoir - 1st & 2nd order tributaries           | 51.07   | Miles |
| ID17050120SW018L_0L | Deadwood Reservoir                                         | 3014.93 | Acres |
| ID17050120SW019_02  | Deadwood River - 1st and 2nd order above the Reservoir     | 54.67   | Miles |
| ID17050120SW019_03  | Deadwood River above Deadwood Dam - 3rd order              | 16.75   | Miles |
| ID17050120SW020_02  | Scott Creek - entire drainage                              | 19.35   | Miles |
| ID17050120SW021_02  | Big Pine Creek - 1st and 2nd order tributaries             | 20.74   | Miles |
| ID17050120SW021_03  | Big Pine Creek - 3rd order (East Fork to mouth)            | 2.09    | Miles |
| 17050121            | Middle Fork Payette                                        |         |       |
| ID17050121SW001_02  | Middle Fork Payette River - 1st and 2nd order              | 48.64   | Miles |
| ID17050121SW002_02  | Anderson Creek and tributaries - 1st and 2nd order         | 38.36   | Miles |
| ID17050121SW002_03  | Anderson Creek - 3rd order section                         | 10      | Miles |
| ID17050121SW003_02  | Lightning Creek - 1st and 2nd order                        | 23.17   | Miles |
| ID17050121SW003_03  | Lightning Creek - 3rd order                                | 8.29    | Miles |
| ID17050121SW004_02  | Big Bulldog Creek - entire watershed                       | 19.64   | Miles |
| ID17050121SW005_02  | Upper MF Payette River - 1st and 2nd order                 | 122.02  | Miles |
| ID17050121SW006 02  | Rattlesnake Creek - entire drainage                        | 9.81    | Miles |
| ID17050121SW007_03  | Silver Creek - 3rd order (Peace Creek to mouth)            | 6.25    | Miles |
| ID17050121SW008_02  | Peace and Valley Creek - 1st and 2nd order sections        | 13.61   | Miles |
| ID17050121SW008_03  | Peace Creek - 3rd order (Valley Creek to mouth)            | 1.13    | Miles |
| ID17050121SW009_02  | Bull and Sixteen-to-One Creeks - 1st and 2nd order         | 41.6    | Miles |
| ID17050121SW010_02  | Scriver Creek and tributaries - 1st and 2nd order          | 35.36   | Miles |
| ID17050121SW010_03  | Scriver Creek - 3rd order (West Fork to mouth)             | 6.08    | Miles |
| 17050122            | Payette                                                    |         |       |
| ID17050122SW002_06  | Black Canyon Reservoir                                     | 1028.87 | Acres |
| ID17050122SW003_02  | Payette River - 1st and 2nd order rangeland tributaries    | 89.78   | Miles |
| ID17050122SW003_06  | Payette River - NF/SF Confluence to Black Canyon Reservoir | 38.11   | Miles |
| ID17050122SW004_03  | Shafer Creek - 3rd order (Bogus Creek to Harris Creek)     | 9.49    | Miles |
| ID17050122SW004_04  | Shafer Creek - 4th order (Harris Creek to mouth)           | 3.71    | Miles |
| ID17050122SW005_02  | Harris Creek - 1st and 2nd order                           | 33.95   | Miles |

| ID17050122SW005_03Harris Creek - 3rd order (Shoemaker Creek to Shafer Creek)ID17050122SW008_05Payette River - Middle Fork to North ForkID17050122SW009_02Deer Creek - entire drainageID17050122SW010_02Squaw Creek - 1st and 2nd order forestedID17050122SW010_02aSquaw Creek - 1st and 2nd order rangelandID17050122SW010_03Squaw, Third Fork Squaw and Coon Creeks - 3rd orderID17050122SW010_04Squaw Creek - 4th orderID17050122SW010_05Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                   | 6.32<br>7.59<br>20.42<br>47.62<br>137.58<br>19.09                                                                     | Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| ID17050122SW008_05Payette River - Middle Fork to North ForkID17050122SW009_02Deer Creek - entire drainageID17050122SW010_02Squaw Creek - 1st and 2nd order forestedID17050122SW010_02aSquaw Creek - 1st and 2nd order rangelandID17050122SW010_03Squaw, Third Fork Squaw and Coon Creeks - 3rd orderID17050122SW010_04Squaw Creek - 4th orderID17050122SW010_05Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.59         20.42         47.62         137.58         19.09                                                         | Miles<br>Miles<br>Miles<br>Miles                                                                                           |
| ID17050122SW009_02Deer Creek - entire drainageID17050122SW010_02Squaw Creek - 1st and 2nd order forestedID17050122SW010_02aSquaw Creek -1st and 2nd order rangelandID17050122SW010_03Squaw, Third Fork Squaw and Coon Creeks - 3rd orderID17050122SW010_04Squaw Creek - 4th orderID17050122SW010_05Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.42<br>47.62<br>137.58<br>19.09                                                                                     | Miles<br>Miles<br>Miles                                                                                                    |
| ID17050122SW010_02Squaw Creek - 1st and 2nd order forestedID17050122SW010_02aSquaw Creek -1st and 2nd order rangelandID17050122SW010_03Squaw, Third Fork Squaw and Coon Creeks - 3rd orderID17050122SW010_04Squaw Creek - 4th orderID17050122SW010_05Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47.62<br>137.58<br>19.09                                                                                              | Miles<br>Miles                                                                                                             |
| ID17050122SW010_02aSquaw Creek -1st and 2nd order rangelandID17050122SW010_03Squaw, Third Fork Squaw and Coon Creeks - 3rd orderID17050122SW010_04Squaw Creek - 4th orderID17050122SW010_05Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137.58<br>19.09                                                                                                       | Miles                                                                                                                      |
| ID17050122SW010_03Squaw, Third Fork Squaw and Coon Creeks - 3rd orderID17050122SW010_04Squaw Creek - 4th orderID17050122SW010_05Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.09                                                                                                                 |                                                                                                                            |
| ID17050122SW010_04         Squaw Creek - 4th order           ID17050122SW010_05         Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       | Miles                                                                                                                      |
| ID17050122SW010 05 Squaw Creek - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.61                                                                                                                 | Miles                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.24                                                                                                                 | Miles                                                                                                                      |
| ID17050122SW011_02 Little Squaw Creek - 1st and 2nd order, except Soldier Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.78                                                                                                                 | Miles                                                                                                                      |
| ID17050122SW011_04 Little Squaw Creek - 4th order (Soldier Creek to mouth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.71                                                                                                                  | Miles                                                                                                                      |
| ID17050122SW012_02 Soldier Creek - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.5                                                                                                                  | Miles                                                                                                                      |
| ID17050122SW013_02 Pine Creek - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.25                                                                                                                 | Miles                                                                                                                      |
| ID17050122SW013_03 Pine Creek - 3rd order (between Cottonwood and Squaw Creeks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.65                                                                                                                  | Miles                                                                                                                      |
| ID17050122SW014_02 Second Fork Squaw Creek - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42.46                                                                                                                 | Miles                                                                                                                      |
| ID17050122SW014_02L Sage Hen Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 176.79                                                                                                                | Acres                                                                                                                      |
| ID17050122SW014_03 Second Fork Squaw Creek - 3rd order section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.43                                                                                                                  | Miles                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       | IVIIIC3                                                                                                                    |
| ID17050122SW015_03 Bissel Creek - upper 3rd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.7                                                                                                                   | Miles                                                                                                                      |
| ID17050122SW015_03       Bissel Creek - upper 3rd order         ID17050122SW020L_0L       Paddock Valley Reservoir       12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.7<br>190.37                                                                                                         | Miles<br>Acres                                                                                                             |
| ID17050122SW015_03         Bissel Creek - upper 3rd order           ID17050122SW020L_0L         Paddock Valley Reservoir         1*           17050123         North Fork Payette                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.7<br>190.37                                                                                                         | Miles<br>Acres                                                                                                             |
| ID17050122SW015_03         Bissel Creek - upper 3rd order           ID17050122SW020L_0L         Paddock Valley Reservoir         11           17050123         North Fork Payette         ID17050123SW001_02         North Fork Payette River - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.7<br>190.37<br>141.06                                                                                               | Miles<br>Acres<br>Miles                                                                                                    |
| ID17050122SW015_03         Bissel Creek - upper 3rd order           ID17050122SW020L_0L         Paddock Valley Reservoir         1*           17050123         North Fork Payette         1*           ID17050123SW001_02         North Fork Payette River - 1st and 2nd order         *           ID17050123SW001_02         Blue Lake         Blue Lake         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.7<br>190.37<br>141.06<br>12.98                                                                                      | Miles<br>Acres<br>Miles<br>Acres                                                                                           |
| ID17050122SW015_03       Bissel Creek - upper 3rd order         ID17050122SW020L_0L       Paddock Valley Reservoir       1*         17050123       North Fork Payette         ID17050123SW001_02       North Fork Payette River - 1st and 2nd order         ID17050123SW001_02L       Blue Lake         ID17050123SW003_01L       East Mountain Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7<br>190.37<br>141.06<br>12.98<br>18.33                                                                             | Miles<br>Acres<br>Miles<br>Acres<br>Acres                                                                                  |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1*17050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7                                                                     | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres                                                                         |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1*17050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick ReservoirID17050123SW004_02Big Creek - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14                                                            | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Acres<br>Miles                                                       |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1717050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick ReservoirID17050123SW004_02Big Creek - 1st and 2nd orderID17050123SW004_03Big Creek - upper 3rd order (Snag Creek to Horsethief Creek)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14<br>8.72                                                    | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Acres<br>Miles                                                       |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1*17050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick ReservoirID17050123SW004_02Big Creek - 1st and 2nd orderID17050123SW004_02Big Creek - upper 3rd order (Snag Creek to Horsethief Creek)ID17050123SW005_02Horsethief Creek- entire drainage above Horsethief Reservoir                                                                                                                                                                                                                                                                                                                                                           | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14<br>8.72<br>3.47                                            | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Acres<br>Miles<br>Miles                                              |
| ID17050122SW015_03       Bissel Creek - upper 3rd order         ID17050122SW020L_0L       Paddock Valley Reservoir       1*         17050123       North Fork Payette       1*         ID17050123SW001_02       North Fork Payette River - 1st and 2nd order       *         ID17050123SW001_02L       Blue Lake       *         ID17050123SW001_02L       Blue Lake       *         ID17050123SW003_01L       East Mountain Reservoir       *         ID17050123SW003_02L       Herrick Reservoir       *         ID17050123SW004_02       Big Creek - 1st and 2nd order       *         ID17050123SW004_03       Big Creek - upper 3rd order (Snag Creek to Horsethief Creek)       *         ID17050123SW005_02       Horsethief Creek- entire drainage above Horsethief Reservoir       *         ID17050123SW005_02L       Horsethief Reservoir       *       * | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14<br>8.72<br>3.47<br>248.8                                   | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres                                     |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1*17050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick ReservoirID17050123SW004_02Big Creek - 1st and 2nd orderID17050123SW004_02Big Creek - 1st and 2nd orderID17050123SW005_02LHorsethief Creek- entire drainage above Horsethief ReservoirID17050123SW005_02LHorsethief ReservoirID17050123SW005_02LHorsethief ReservoirID17050123SW006_0LSmalley Reservoir                                                                                                                                                                                                                                                                        | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14<br>8.72<br>3.47<br>248.8<br>14.73                          | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Acres                            |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1117050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick ReservoirID17050123SW004_02Big Creek - 1st and 2nd orderID17050123SW004_03Big Creek - upper 3rd order (Snag Creek to Horsethief Creek)ID17050123SW005_02Horsethief Creek- entire drainage above Horsethief ReservoirID17050123SW006_0LSmalley ReservoirID17050123SW008_02Gold Fork - 1st and 2nd order                                                                                                                                                                                                                                                                         | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14<br>8.72<br>3.47<br>248.8<br>14.73<br>64.32                 | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Acres<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles                   |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1*17050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick ReservoirID17050123SW004_02Big Creek - 1st and 2nd orderID17050123SW004_03Big Creek - upper 3rd order (Snag Creek to Horsethief Creek)ID17050123SW005_02LHorsethief Creek- entire drainage above Horsethief ReservoirID17050123SW006_0LSmalley ReservoirID17050123SW008_02Gold Fork - 1st and 2nd orderID17050123SW008_03NF and SF Gold Fork - 3rd order sections                                                                                                                                                                                                              | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14<br>8.72<br>3.47<br>248.8<br>14.73<br>64.32<br>3.3          | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Miles<br>Miles<br>Acres<br>Acres<br>Acres<br>Miles<br>Acres          |
| ID17050122SW015_03Bissel Creek - upper 3rd orderID17050122SW020L_0LPaddock Valley Reservoir1*17050123North Fork PayetteID17050123SW001_02North Fork Payette River - 1st and 2nd orderID17050123SW001_02LBlue LakeID17050123SW003_01LEast Mountain ReservoirID17050123SW003_02LHerrick ReservoirID17050123SW004_02Big Creek - 1st and 2nd orderID17050123SW004_03Big Creek - upper 3rd order (Snag Creek to Horsethief Creek)ID17050123SW005_02Horsethief Creek- entire drainage above Horsethief ReservoirID17050123SW006_01Smalley ReservoirID17050123SW008_02Gold Fork - 1st and 2nd orderID17050123SW008_03NF and SF Gold Fork - 3rd order sectionsID17050123SW008_04Gold Fork - North Fork to Kenally Creek                                                                                                                                                      | 5.7<br>190.37<br>141.06<br>12.98<br>18.33<br>39.7<br>61.14<br>8.72<br>3.47<br>248.8<br>14.73<br>64.32<br>3.3<br>64.32 | Miles<br>Acres<br>Miles<br>Acres<br>Acres<br>Acres<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Acres<br>Miles<br>Acres |

| ID17050123SW010_02L | Rapid Creek Lakes                                            | 21.79   | Acres |
|---------------------|--------------------------------------------------------------|---------|-------|
| ID17050123SW010_03  | Kennally and Rapid Creeks - 3rd order                        | 9.25    | Miles |
| ID17050123SW011_01L | Boulder Meadows Reservoir                                    | 30.7    | Acres |
| ID17050123SW011_02a | Boulder/Willow Creeks - 1st and 2nd order forested sections  | 42.52   | Miles |
| ID17050123SW011_0L  | Louie Lake and Upper Jug Creek Reservoir                     | 51.3    | Acres |
| ID17050123SW013_02  | Little Payette Lake - 1st and 2nd order tributaries          | 3.58    | Miles |
| ID17050123SW013L_0L | Little Payette Lake                                          | 1439.35 | Acres |
| ID17050123SW014_02  | Lake Fork above Little Payette Lake - 1st & 2nd tributaries  | 63.55   | Miles |
| ID17050123SW014_03  | Lake Fork - Browns Pond to Little Payette Lake               | 2.16    | Miles |
| ID17050123SW014_03a | Lake Fork - 3rd order (South Fork to Browns Pond)            | 2.31    | Miles |
| ID17050123SW016_02  | Mill, Duffner, and Williams Creeks - 1st and 2nd order       | 38.48   | Miles |
| ID17050123SW017_02  | Payette Lake - Westside tributaries inc. Deadhorse & Landing | 15.22   | Miles |
| ID17050123SW018_01L | Pearl Lake                                                   | 8.83    | Acres |
| ID17050123SW018_03  | North Fork Payette River - 3rd order                         | 11.37   | Miles |
| ID17050123SW019_02  | Upper Payette Lake tributaries - Cougar and Camp Creeks      | 6.62    | Miles |
| ID17050123SW019L_0L | Upper Payette Lake                                           | 301.62  | Acres |
| ID17050123SW020_02  | Twentymile Creek - 1st and 2nd order                         | 10.74   | Miles |
| ID17050123SW020_03  | Twentymile Creek - 3rd order                                 | 3.14    | Miles |
| ID17050123SW021_02  | NF Payette River above Upper Payette Lake - entire drainage  | 18.35   | Miles |
| ID17050123SW022_01L | Granite Lake                                                 | 187.73  | Acres |
| ID17050123SW022_02  | Fisher Creek - 1st and 2nd order                             | 22.43   | Miles |
| 17050124            | Weiser                                                       |         |       |
| ID17050124SW004L_0L | Crane Creek Reservoir                                        | 2315.68 | Acres |
| ID17050124SW007_02  | Weiser River - 1st and 2nd order (upstream of Keithly Creek) | 210.22  | Miles |
| ID17050124SW007_03  | Weiser River - 3rd order (Price Valley to East Fork)         | 16.9    | Miles |
| ID17050124SW007_04  | Weiser River - East Fork to West Fork                        | 8.43    | Miles |
| ID17050124SW007_04a | Weiser River - West Fork to Hornet Creek                     | 7.87    | Miles |
| ID17050124SW008_02  | Little Weiser River tributaries - 1st and 2nd order          | 79.8    | Miles |
| ID17050124SW008_03a | Little Weiser River - upper 3rd order (forested)             | 6.53    | Miles |
| ID17050124SW009_02L | Ben Ross Reservoir                                           | 291.57  | Acres |
| ID17050124SW011_02  | Anderson Creek - entire drainage                             | 16.22   | Miles |
| ID17050124SW014_02  | Middle Fork Weiser River - 1st and 2nd order                 | 79.94   | Miles |
|                     |                                                              |         |       |

| ID17050124SW014_03a | Middle Fork Weiser River - upper 3rd order (forested)        | 11.98  | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17050124SW015_02  | Cottonwood Creek - 1st and 2nd order                         | 18.18  | Miles |
| ID17050124SW015_03  | Cottonwood Creek - 3rd order (North Fork to mouth)           | 7.36   | Miles |
| ID17050124SW016_02  | East Fork Weiser River - 1st and 2nd order                   | 32.08  | Miles |
| ID17050124SW016_03  | East Fork Weiser River - Fourth Gulch to Weiser River        | 2.29   | Miles |
| ID17050124SW017_02  | West Fork Weiser River - 1st and 2nd order except Lost Creek | 37.36  | Miles |
| ID17050124SW017_03  | West Fork Weiser River - 3rd order (Corral Creek to mouth)   | 12.76  | Miles |
| ID17050124SW018_02  | Lost Creek - Lost Valley Reservoir Dam to mouth              | 14.94  | Miles |
| ID17050124SW019_02L | Lost Valley Reservoir                                        | 522.48 | Acres |
| ID17050124SW020_02  | Lost Creek - entire drainage above Lost Valley Reservoir     | 26.18  | Miles |
| ID17050124SW021_02  | Hornet Creek - 1st and 2nd order                             | 96.44  | Miles |
| ID17050124SW021_03  | Hornet and North Fork Hornet Creeks - 3rd order              | 10.94  | Miles |
| ID17050124SW021_04  | Hornet Creek - 4th order (North Fork to Weiser River)        | 7.88   | Miles |
| ID17050124SW022_02  | Johnson Creek - 1st & 2nd order                              | 16.53  | Miles |
| ID17050124SW022_03  | Johnson Creek - 3rd order (Orchid Canyon to mouth)           | 6.21   | Miles |
| ID17050124SW023_02  | Goodrich Creek - entire drainage                             | 20.26  | Miles |
| ID17050124SW024_02  | Cow Creek - entire drainage                                  | 14.46  | Miles |
| ID17050124SW025_02  | Rush Creek and Beaver Creeks - 1st and 2nd order             | 36.07  | Miles |
| ID17050124SW027_02  | Pine Creek - 1st and 2nd order                               | 81.99  | Miles |
| ID17050124SW027_03  | Pine Creek - 3rd order                                       | 14.67  | Miles |
| ID17050124SW027_04  | Pine Creek - 4th order (West Pine Creek to Weiser River)     | 3.77   | Miles |
| ID17050124SW028_02  | Keithly Creek & tributaries - 1st and 2nd order              | 61.87  | Miles |
| ID17050124SW031_03  | Mann Creek - lower 3rd order                                 | 0.62   | Miles |
| ID17050124SW031L_0L | Mann Creek Reservoir                                         | 269.34 | Acres |
| ID17050124SW032_02  | Mann Creek - 1st and 2nd order above Mann Creek Reservoir    | 57.21  | Miles |
| ID17050124SW032_03  | Mann Creek - 3rd order above Mann Creek Reservoir            | 10.13  | Miles |
| ID17050124SW033_02  | Monroe Creek - 1st and 2nd order                             | 58.37  | Miles |
| 17050201            | Brownlee Reservoir                                           |        |       |
| ID17050201SW001_02  | Tributaries to Snake River - 1st and 2nd order               | 33.62  | Miles |
| ID17050201SW009 02  | Grouse Creek - 1st and 2nd order                             | 14.5   | Miles |

| ID17050201SW013_02 | Sturgill Creek - entire watershed                  | 27.53 | Miles |
|--------------------|----------------------------------------------------|-------|-------|
| ID17050201SW014_02 | Brownlee Creek & tributaries - 1st & 2nd order     | 64.05 | Miles |
| ID17050201SW014_03 | West & Middle Brownlee Creeks - 3rd order sections | 4.33  | Miles |
| ID17050201SW014_04 | Brownlee Creek - 4th order                         | 2.06  | Miles |
| ID17050201SW017_02 | Indian Creek - 1st and 2nd order                   | 45.05 | Miles |
| ID17050201SW017_03 | Indian Creek - 3rd order (Huntley Gulch to mouth)  | 9.31  | Miles |

| 17040104            | Palisades                                                   |       |       |
|---------------------|-------------------------------------------------------------|-------|-------|
| ID17040104SK003_02  | Snake River - Fall Creek to Black Canyon Creek              | 76.05 | Miles |
| ID17040104SK004_02  | Pritchard Creek - source to mouth                           | 16.36 | Miles |
| ID17040104SK005_04  | Fall Creek - South Fork Fall Creek to mouth                 | 5.81  | Miles |
| ID17040104SK007_02  | South Fork Fall Creek - source to mouth                     | 17.48 | Miles |
| ID17040104SK007_03  | South Fork Fall Creek - source to mouth                     | 5.07  | Miles |
| ID17040104SK011_02  | 1st and 2nd order tributaries to Elk Creek and Bear Creek   | 35.58 | Miles |
| ID17040104SK011_03  | Elk Creek - 3rd order                                       | 2.26  | Miles |
| ID17040104SK014_03  | McCoy Creek - Fish Creek to Palisades Reservoir             | 1.54  | Miles |
| ID17040104SK014_04  | McCoy Creek - Fish Creek to Palisades Reservoir             | 4.91  | Miles |
| ID17040104SK015_04  | McCoy Creek - Iowa Creek to Fish Creek                      | 4.75  | Miles |
| ID17040104SK016_02  | McCoy Creek - Clear Creek to Iowa Creek                     | 20.69 | Miles |
| ID17040104SK017_03  | Wolverine Creek - source to mouth                           | 1.49  | Miles |
| ID17040104SK018_03  | Clear Creek - source to mouth                               | 3.94  | Miles |
| ID17040104SK019_02  | McCoy Creek - source to Clear Creek                         | 16.42 | Miles |
| ID17040104SK019_03  | McCoy Creek - source to Clear Creek                         | 3.66  | Miles |
| ID17040104SK020_03  | Iowa Creek - source to mouth                                | 2.32  | Miles |
| ID17040104SK021 03  | Fish Creek - source to mouth                                | 2.57  | Miles |
| ID17040104SK024_03  | Indian Creek - Idaho/Wyoming border to Palisades Reservoir  | 3.6   | Miles |
| ID17040104SK025_04  | Big Elk Creek - Idaho/Wyoming border to Palisades Reservoir | 4.74  | Miles |
| ID17040104SK027_03  | Palisades Creek - source to mouth                           | 16.47 | Miles |
| ID17040104SK028_02  | Rainey Creek - source to mouth                              | 89.55 | Miles |
| ID17040104SK029_02  | Pine Creek - source to mouth                                | 82.84 | Miles |
| ID17040104SK029_03  | Pine Creek - source to mouth                                | 16.17 | Miles |
| ID17040104SK030_02  | Black Canyon Creek - source to mouth                        | 7.08  | Miles |
| ID17040104SK031_02  | Burnt Canyon Creek - source to mouth                        | 21.13 | Miles |
| ID17040104SK031_03  | Burnt Canyon Creek - source to mouth                        | 2.96  | Miles |
| 17040105            | Salt                                                        |       |       |
| ID17040105SK001_02a | King Creek                                                  | 5.68  | Miles |
| ID17040105SK001_02c | Trout Creek - source to mouth                               | 8.34  | Miles |
| ID17040105SK002_02  | Jackknife Creek - source to Idaho/Wyoming border            | 28.21 | Miles |

| ID17040105SK002_02a | Deep Creek                                         | 9.57  | Miles |
|---------------------|----------------------------------------------------|-------|-------|
| ID17040105SK002_02b | Trail Creek                                        | 12.07 | Miles |
| ID17040105SK002_03  | Jackknife Creek - source to Idaho/Wyoming border   | 6.64  | Miles |
| ID17040105SK002_03a | Squaw Creek                                        | 3.1   | Miles |
| ID17040105SK002_04  | Jackknife Creek - source to Idaho/Wyoming border   | 4.73  | Miles |
| ID17040105SK003_02b | Whiskey Creek                                      | 1.55  | Miles |
| ID17040105SK003_02f | Corral Creek                                       | 3.7   | Miles |
| ID17040105SK003_02g | Chicken Creek                                      | 1.59  | Miles |
| ID17040105SK003_02h | Marshall Canyon                                    | 2.11  | Miles |
| ID17040105SK004_02  | South Fork Tincup Creek - source to mouth          | 12.92 | Miles |
| ID17040105SK004_02a | Brush Creek                                        | 3.59  | Miles |
| ID17040105SK004_02b | Crooked Creek                                      | 3.37  | Miles |
| ID17040105SK005_02a | Limekiln Creek                                     | 4.3   | Miles |
| ID17040105SK005_02b | Toms Canyon                                        | 7.19  | Miles |
| ID17040105SK006_02  | Stump Creek - 2nd order tribs and North Fork Stump | 56.04 | Miles |
| ID17040105SK006_02a | Flat Valley Creek                                  | 2.83  | Miles |
| ID17040105SK006_02b | Bechler Creek                                      | 5.4   | Miles |
| ID17040105SK006_02d | west fork Boulder Creek                            | 3.18  | Miles |
| ID17040105SK006_02h | Mill Canyon                                        | 3.81  | Miles |
| ID17040105SK006_03  | Stump Creek - above Diamond Boulder Creek          | 3.01  | Miles |
| ID17040105SK006_03a | lower Boulder Creek                                | 2.89  | Miles |
| ID17040105SK007_02d | Tygee Creek                                        | 18.63 | Miles |
| ID17040105SK007_02e | upper Webster Creek                                | 9.16  | Miles |
| ID17040105SK008_02  | Crow Creek - source to Idaho/Wyoming border        | 64.98 | Miles |
| ID17040105SK008_02b | Clear Creek                                        | 4.52  | Miles |
| ID17040105SK008_02d | Crow Creek                                         | 6.79  | Miles |
| ID17040105SK008_03a | Wells Canyon                                       | 1.16  | Miles |
| ID17040105SK008_03b | Crow Creek                                         | 7.47  | Miles |
| ID17040105SK009_02a | upper Sage Creek                                   | 5.18  | Miles |
| ID17040105SK010_02a | South Fork Deer Creek                              | 11.7  | Miles |
| ID17040105SK010_02b | North Fork Deer Creek                              | 3.19  | Miles |
| ID17040105SK010_03  | Deer Creek - source to mouth                       | 3.17  | Miles |

| 17040202            | Upper Henrys                                                 |       |       |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17040202SK003_02  | Moose Creek - source to confluence with Warm River           | 10.89 | Miles |
| ID17040202SK004_03  | Partridge Creek - source to mouth                            | 6.24  | Miles |
| ID17040202SK006_04  | Robinson Creek - Rock Creek to mouth                         | 4.41  | Miles |
| ID17040202SK007_02  | Porcupine Creek - source to mouth                            | 16.34 | Miles |
| ID17040202SK008_03  | Rock Creek - Wyoming Creek to mouth                          | 7.72  | Miles |
| ID17040202SK010_02  | Rock Creek - source to Wyoming Creek                         | 12.15 | Miles |
| ID17040202SK011_03  | Robinson Creek - Idaho/Wyoming border and sources west of bo | 13.65 | Miles |
| ID17040202SK012_02  | Snow Creek - source to mouth                                 | 16.54 | Miles |
| ID17040202SK013 02  | Fish Creek - source to mouth                                 | 24.39 | Miles |
| ID17040202SK014_05  | Henrys Fork - Thurman Creek to Warm River                    | 26.57 | Miles |
| ID17040202SK018 02a | Chick Creek                                                  | 15.94 | Miles |
| ID17040202SK021_02  | Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet | 18.4  | Miles |
| ID17040202SK022_02  | Moose Creek - source to confluence with Henrys Fork          | 18.98 | Miles |
| ID17040202SK024_02  | Thirsty Creek - Idaho/ Wyoming border to mouth               | 37.73 | Miles |
| ID17040202SK025_04  | Henrys Lake Outlet - Henrys Lake Dam to mouth                | 19.74 | Miles |
| ID17040202SK027_03  | Reas Pass Creek - source to sink                             | 1.99  | Miles |
| ID17040202SK028 02  | Jones Creek - source to mouth                                | 7.16  | Miles |
| ID17040202SK029_02  | Jesse Creek - source to mouth                                | 5.85  | Miles |
| ID17040202SK031_02  | Tygee Creek - source to sink                                 | 10.57 | Miles |
| ID17040202SK036_02  | Duck Creek - source to mouth                                 | 14.52 | Miles |
| ID17040202SK040_02  | Hotel Creek - source to mouth                                | 21.76 | Miles |
| ID17040202SK040_03  | Hotel Creek - source to mouth                                | 3.52  | Miles |
| ID17040202SK041_02  | Yale Creek - source to mouth                                 | 11.24 | Miles |
| ID17040202SK042_02  | Blue Creek - source to mouth                                 | 10.67 | Miles |
| ID17040202SK044_02  | Icehouse Creek - source to Island Park Reservoir             | 17.69 | Miles |
| ID17040202SK046_04  | Willow Creek - source to mouth                               | 9.98  | Miles |
| ID17040202SK047_02  | Myers Creek - source to mouth                                | 20.79 | Miles |
| ID17040202SK048_03  | Sheridan Creek -source to Kilgore Road (T13N, R41E, Sec. 07) | 3.88  | Miles |
| 17040203            | Lower Henrys                                                 |       |       |
| ID17040203SK005_05  | Falls River - Stream order 5 segments                        | 4.89  | Miles |

| ID17040203SK006_04  | Conant Creek - Idaho/Wyoming border to Squirrel Creek        | 6.21    | Miles |
|---------------------|--------------------------------------------------------------|---------|-------|
| ID17040203SK008_03  | Squirrel Creek - Idaho/Wyoming border to mouth               | 17.09   | Miles |
| ID17040203SK010_03  | Boone Creek - Idaho/Wyoming border to mouth                  | 4.87    | Miles |
| ID17040203SK012_06  | Henrys Fork - Ashton Reservoir Dam to Falls River            | 6.51    | Miles |
| 17040204            | Teton                                                        |         | _     |
| ID17040204SK001_05  | South Fork Teton River - Teton River Forks to Henrys Fork    | 32.15   | Miles |
| ID17040204SK008_02  | Canyon Creek - Warm Creek to mouth                           | 120.72  | Miles |
| ID17040204SK008_04  | Canyon Creek - Warm Creek to mouth                           | 11.25   | Miles |
| ID17040204SK013_02  | Milk Creek - source to mouth                                 | 42.93   | Miles |
| ID17040204SK022_02  | Horseshoe Creek - source to pipeline diversion               | 15.3    | Miles |
| ID17040204SK022_03  | Horseshoe Creek - source to pipeline diversion               | 2.23    | Miles |
| ID17040204SK023_02  | Twin Creek - source to mouth                                 | 9.93    | Miles |
| ID17040204SK024_03  | Mahogany Creek -pipeline diversion (NE ¼, Sec. 27, T4N, R44) | 7       | Miles |
| ID17040204SK027_02  | Henderson Creek - source to sink                             | 3.06    | Miles |
| ID17040204SK030_02  | Patterson Creek - source to pump diversion                   | 5.21    | Miles |
| ID17040204SK033_02  | Little Pine Creek - source to mouth                          | 11.6    | Miles |
| ID17040204SK035_02  | Trail Creek - Trail Creek pipeline diversion                 | 7.87    | Miles |
| ID17040204SK037 02  | Game Creek - source to diversion                             | 0.71    | Miles |
| ID17040204SK038_02  | Trail Creek - Idaho/Wyoming border to Trail Creek pipeline   | 7.44    | Miles |
| ID17040204SK038_03  | Trail Creek - Idaho/Wyoming border to Trail Creek pipeline   | 3       | Miles |
| ID17040204SK039_02  | Moose Creek - Idaho/Wyoming border to mouth                  | 1.28    | Miles |
| ID17040204SK047_02  | Teton Creek - Highway 33 bridge to mouth                     | 9.21    | Miles |
| ID17040204SK059_03  | Badger Creek - source to diversion                           | 2.18    | Miles |
| ID17040204SK063_04  | Bitch Creek - Swanner Creek to mouth                         | 7.41    | Miles |
| ID17040204SK065_03  | Bitch Creek - Idaho/Wyoming border to Swanner Creek          | 11.42   | Miles |
| 17040205            | Willow                                                       |         |       |
| ID17040205SK001_05  | Willow Creek - Ririe Reservoir Dam to Eagle Rock Canal       | 5.49    | Miles |
| ID17040205SK002_05L | Ririe Reservoir (Willow Creek)                               | 1414.58 | Acres |
| ID17040205SK009_03  | Mud Creek - source to mouth                                  | 1.09    | Miles |
| ID17040205SK023_02  | Gravel Creek - source to mouth                               | 21.54   | Miles |

| 17040206            | American Falls                                              |       |       |
|---------------------|-------------------------------------------------------------|-------|-------|
| ID17040206SK010_02a | Crystal Creek                                               | 6.41  | Miles |
| ID17040206SK012_02  | Midnight Creek - source to mouth                            | 11.46 | Miles |
| ID17040206SK013_02  | Michaud Creek - source to mouth                             | 7.94  | Miles |
| 17040207            | Blackfoot                                                   |       |       |
| ID17040207SK002_02a | Beaver Creek                                                | 1.04  | Miles |
| ID17040207SK002_02c | Trail Creek                                                 | 5.15  | Miles |
| ID17040207SK008_03  | Thompson Creek - source to mouth                            | 2.32  | Miles |
| ID17040207SK010_02  | Mill Canyon Creek and other Blackfoot River 2nd order tribs | 30.06 | Miles |
| ID17040207SK016_02c | Bear Canyon - headwaters to Diamond Creek                   | 2.44  | Miles |
| ID17040207SK017 02a | upper Timothy Creek                                         | 4.94  | Miles |
| ID17040207SK018_02a | Lanes Creek - headwaters to FS boundary                     | 3.6   | Miles |
| ID17040207SK020_02  | Browns Canyon                                               | 10.04 | Miles |
| ID17040207SK022_02  | Upper Sheep Creek - headwaters and unnamed tributaries      | 11.64 | Miles |
| ID17040207SK022_03a | Sheep Creek - above confluence of South Fork Sheep Creek    | 2.31  | Miles |
| ID17040207SK027_02a | Horse Creek                                                 | 11.08 | Miles |
| ID17040207SK027_02b | Poison Creek - source to Rawlins Creek                      | 12.08 | Miles |
| ID17040207SK028_02  | Miner Creek - source to mouth                               | 15.7  | Miles |
| ID17040207SK028_02a | Menassa Creek                                               | 2.4   | Miles |
| 17040208            | Portneuf                                                    |       |       |
| ID17040208SK001_02a | Cusick Creek                                                | 4.92  | Miles |
| ID17040208SK003_02a | Gibson Jack Creek - upper and middle                        | 14.66 | Miles |
| ID17040208SK004_02  | Mink Creek 2nd ord tribs - source to mouth                  | 29.04 | Miles |
| ID17040208SK004_02b | Mink Creek - West Fork (Portneuf tributary)                 | 8.71  | Miles |
| ID17040208SK006_02b | upper Yago Creek                                            | 4.51  | Miles |
| ID17040208SK006_02c | Yago Creek - lower                                          | 3.61  | Miles |
| ID17040208SK006 02d | upper Aspen Creek                                           | 5.06  | Miles |
| ID17040208SK006_02e | Marsh Creek - left hand fork                                | 6.87  | Miles |
| ID17040208SK006_02f | Potter Creek                                                | 5.2   | Miles |
| ID17040208SK007_02  | Walker Creek - lower                                        | 2.88  | Miles |
| ID17040208SK007 02a | Upper Walker Creek - headwaters to S. FK. Walker Creek      | 10.74 | Miles |

| ID17040208SK008_02a | Bell Marsh Creek (upper) - headwaters to USFS boundary | 6.73   | Miles |
|---------------------|--------------------------------------------------------|--------|-------|
| ID17040208SK009_02a | upper Goodenough Creek - headwaters to Mormon Canyon   | 7.68   | Miles |
| ID17040208SK015_02a | Mill Creek                                             | 13.07  | Miles |
| ID17040208SK016_02a | King Creek                                             | 21.95  | Miles |
| ID17040208SK016_02d | Harkness Creek                                         | 5.69   | Miles |
| ID17040208SK016_02e | Robbers Roost Creek - headwaters to Portneuf River     | 7.18   | Miles |
| ID17040208SK016_02f | Upper Rock Creek                                       | 4.61   | Miles |
| ID17040208SK016_02g | Lower Rock Creek                                       | 6.67   | Miles |
| ID17040208SK016_03a | Fish Creek                                             | 4.81   | Miles |
| ID17040208SK017_02a | East Creek                                             | 11.07  | Miles |
| ID17040208SK017_02b | Deer Creek - Dempsey/Portneuf River tributary          | 3.28   | Miles |
| ID17040208SK021_02b | North Fork Toponce Creek                               | 1.58   | Miles |
| ID17040208SK021_02c | Middle Fork Toponce Creek                              | 8.31   | Miles |
| ID17040208SK021_02d | Toponce Creek - South Fork                             | 18.24  | Miles |
| ID17040208SK021_03a | Toponce Creek - middle                                 | 4.22   | Miles |
| ID17040208SK022_02a | Pebble Creek - Big Canyon to North Fork Pebble Creek   | 9.23   | Miles |
| ID17040208SK022_02b | Clear Creek                                            | 2.85   | Miles |
| ID17040208SK022_02c | Pebble Creek - South Fork (Portneuf tributary)         | 6.48   | Miles |
| ID17040208SK022_02d | Pebble Creek - North Fork                              | 12.87  | Miles |
| ID17040208SK022_03  | Pebble Creek - lower                                   | 6.31   | Miles |
| ID17040208SK023_02c | Webb Creek                                             | 10.18  | Miles |
| ID17040208SK023_02h | Inman Creek - North and South Fork                     | 4.69   | Miles |
| ID17040208SK023_03  | Lower Rapid Creek                                      | 5.62   | Miles |
| ID17040208SK023_03b | Inman Creek-Confluence of Forks to USFS boundary       | 2.32   | Miles |
| ID17040208SK026_02  | North Fork Pocatello Creek - source to mouth           | 6.35   | Miles |
| 17040209            | Lake Walcott                                           |        |       |
| ID17040209SK003_02  | Marsh Creek - source to mouth                          | 170.67 | Miles |
| ID17040209SK005_07  | Snake River - Raft River to Lake Walcott               | 4.57   | Miles |
| ID17040209SK006_07  | Snake River - Rock Creek to Raft River                 | 13.14  | Miles |
| 17040210            | Raft                                                   |        |       |
| ID17040210SK004 02  | Conner Creek - source to mouth                         | 23.69  | Miles |

| ID17040210SK011_02 | Grape Creek - source to mouth                            | 62.16  | Miles |
|--------------------|----------------------------------------------------------|--------|-------|
| ID17040210SK012_02 | Edwards Creek - source to mouth                          | 68.19  | Miles |
| ID17040210SK016_02 | Clear Creek - Idaho/Utah border to mouth                 | 327.75 | Miles |
| 17040211           | Goose                                                    |        |       |
| ID17040211SK005_02 | Goose Creek - Beaverdam Cr. to Lower Goose Cr. Reservoir | 88.68  | Miles |
| ID17040211SK008_03 | Goose Creek - source to Idaho/Utah border                | 3.13   | Miles |
| ID17040211SK008_04 | Goose Creek - source to Idaho/Utah border                | 6.33   | Miles |
| ID17040211SK013_02 | Mill Creek - source to mouth                             | 53.52  | Miles |
| ID17040211SK013_03 | Mill Creek - source to mouth                             | 5.49   | Miles |
| 17040212           | Upper Snake-Rock                                         |        |       |
| ID17040211SK001 02 | Big Cottonwood Creek - source to mouth                   | 66.2   | Miles |
| ID17040211SK001_03 | Big Cottonwood Creek - source to mouth                   | 17.24  | Miles |
| ID17040212SK004_03 | Tuana Gulch - source to mouth                            | 14.1   | Miles |
| ID17040212SK017_02 | Fifth Fork Rock Creek - source to mouth                  | 26.23  | Miles |
| ID17040212SK018_02 | Rock Creek - source to Fifth Fork Rock Creek             | 54.36  | Miles |
| ID17040212SK018_03 | Rock Creek - source to Fifth Fork Rock Creek             | 6.64   | Miles |
| ID17040212SK018_04 | Rock Creek - source to Fifth Fork Rock Creek             | 8.12   | Miles |
| ID17040212SK022_02 | Dry Creek - source to mouth                              | 45.88  | Miles |
| ID17040212SK024_02 | East Fork Dry Creek - source to mouth                    | 14.75  | Miles |
| ID17040212SK039_03 | Deer Creek - source to mouth trib to Clover Creek        | 0.87   | Miles |
| 17040214           | Beaver-Camas                                             |        |       |
| ID17040214SK001_06 | Camas Creek - Beaver Creek to Mud Lake                   | 16.12  | Miles |
| ID17040214SK006_02 | Ching Creek - source to mouth                            | 87.8   | Miles |
| ID17040214SK012_02 | West Camas Creek - Targhee National Forest Boundary      | 12.85  | Miles |
| ID17040214SK022_02 | Idaho Creek - source to mouth                            | 8.67   | Miles |
| 17040215           | Medicine Lodge                                           |        |       |
| ID17040215SK020_02 | Warm Springs Creek - source to mouth                     | 85.31  | Miles |
| 17040216           | Birch                                                    |        |       |
| ID17040216SK009_02 | Willow Creek - source to mouth                           | 25.34  | Miles |
| ID17040216SK015 03 | Pass Creek - source to mouth                             | 5.99   | Miles |

| 17040217           | Little Lost                                                 |        |       |
|--------------------|-------------------------------------------------------------|--------|-------|
| ID17040217SK001_02 | Little Lost River - canal (T06N, R28E) to playas            | 160.27 | Miles |
| ID17040217SK004_02 | North Creek - source to mouth                               | 23.76  | Miles |
| ID17040217SK005_02 | Uncle Ike Creek - source to mouth                           | 30.6   | Miles |
| ID17040217SK008_02 | Badger Creek - source to mouth                              | 14.51  | Miles |
| ID17040217SK008_03 | Badger Creek - source to mouth                              | 6.55   | Miles |
| ID17040217SK012_02 | Sawmill Creek - Warm Creek to mouth                         | 34.76  | Miles |
| ID17040217SK013_02 | Warm Creek - source to mouth                                | 4.97   | Miles |
| ID17040217SK016_02 | Bear Creek - source to mouth                                | 4.67   | Miles |
| ID17040217SK018_02 | Timber Creek - source to mouth                              | 10.8   | Miles |
| ID17040217SK019_02 | Summit Creek - source to mouth                              | 50.45  | Miles |
| 17040218           | Big Lost                                                    |        |       |
| ID17040218SK019_02 | Rock Creek - source to mouth                                | 16.78  | Miles |
| ID17040218SK023_05 | Parsons Creek                                               | 11.25  | Miles |
| ID17040218SK025_04 | Big Lost River - Summit Creek to and including Burnt Creek  | 4.96   | Miles |
| ID17040218SK027_02 | North Fork Big Lost River - source to mouth                 | 67.67  | Miles |
| ID17040218SK028_03 | Summit Creek - source to mouth                              | 0.55   | Miles |
| ID17040218SK029_02 | Kane Creek - source to mouth                                | 18.06  | Miles |
| ID17040218SK030_02 | Wildhorse Creek - Fall Creek to mouth                       | 7.56   | Miles |
| ID17040218SK031_02 | Wildhorse Creek - source to Fall Creek                      | 26.81  | Miles |
| ID17040218SK038_02 | Lake Creek - source to mouth                                | 13.69  | Miles |
| ID17040218SK040_02 | Cabin Creek - source to mouth                               | 13.82  | Miles |
| ID17040218SK044_02 | Navarre Creek - source to mouth                             | 20.86  | Miles |
| ID17040218SK044_03 | Navarre Creek - source to mouth                             | 3.19   | Miles |
| ID17040218SK045_02 | Alder Creek - source to mouth                               | 64.48  | Miles |
| ID17040218SK045_03 | Alder Creek - source to mouth                               | 9.37   | Miles |
| ID17040218SK050_04 | Lupine Creek - source to mouth                              | 4.72   | Miles |
| ID17040218SK051_02 | Left Fork Cherry Creek - source to mouth                    | 16.19  | Miles |
| ID17040218SK052_02 | Antelope Creek - Iron Bog Creek to Dry Fork Creek           | 24.2   | Miles |
| ID17040218SK053_02 | Bear Creek - source to mouth                                | 23.56  | Miles |
| ID17040218SK054_03 | Iron Bog Creek - confluence of Left and Right Fork Iron Bog | 2.15   | Miles |

| ID17040218SK056_02 | Left Fork Iron Bog Creek - source to mouth                  | 6.78   | Miles |
|--------------------|-------------------------------------------------------------|--------|-------|
| 17040219           | Big Wood                                                    |        |       |
| ID17040219SK007_02 | Big Wood River - North Fork Big Wood River to Seamans Creek | 82.7   | Miles |
| ID17040219SK007_04 | Big Wood River - North Fork Big Wood River to Seamans Creek | 8.75   | Miles |
| ID17040219SK010_04 | East Fork Wood River - Hyndman Creek to mouth               | 6.22   | Miles |
| ID17040219SK011_03 | East Fork Wood River - source to Hyndman Creek              | 9.66   | Miles |
| ID17040219SK012_02 | Hyndman Creek - source Creek to mouth                       | 35.52  | Miles |
| ID17040219SK012_03 | Hyndman Creek - source Creek to mouth                       | 8.1    | Miles |
| ID17040219SK013_04 | Trail Creek - Corral Creek to mouth                         | 9.95   | Miles |
| ID17040219SK014_02 | Trail Creek - source to and including Corral Creek          | 60.07  | Miles |
| ID17040219SK014_03 | Trail Creek - source to and including Corral Creek          | 6.26   | Miles |
| ID17040219SK017_02 | North Fork Big Wood River - source to mouth                 | 38.7   | Miles |
| ID17040219SK017_03 | North Fork Big Wood River - source to mouth                 | 5.67   | Miles |
| ID17040219SK018_02 | Big Wood River - source to North Fork Big Wood River        | 115.28 | Miles |
| ID17040219SK018_03 | Big Wood River - source to North Fork Big Wood River        | 6.84   | Miles |
| ID17040219SK018_04 | Big Wood River - source to North Fork Big Wood River        | 13.06  | Miles |
| ID17040219SK019_02 | Boulder Creek - source to mouth                             | 11.12  | Miles |
| ID17040219SK020 02 | Prairie Creek - source to mouth                             | 17.95  | Miles |
| ID17040219SK020_03 | Prairie Creek - source to mouth                             | 2.64   | Miles |
| ID17040219SK021_02 | Baker Creek - source to mouth                               | 50.55  | Miles |
| ID17040219SK021_03 | Baker Creek - source to mouth                               | 7.75   | Miles |
| ID17040219SK022_02 | Fox Creek - source to mouth                                 | 9.67   | Miles |
| ID17040219SK023_02 | Warm Springs Creek - Thompson Creek to mouth                | 40.43  | Miles |
| ID17040219SK023_04 | Warm Springs Creek - Thompson Creek to mouth                | 13.5   | Miles |
| ID17040219SK024_04 | Warm Springs Creek - source to and including Thompson Creek | 5.12   | Miles |
| ID17040219SK026_02 | North Fork Deer Creek - source to mouth                     | 61.66  | Miles |
| ID17040219SK026_03 | Deer Creek - source to mouth                                | 12.85  | Miles |
| 17040220           | Camas                                                       |        |       |
| ID17040220SK011_02 | Sampson Creek - Source to Wardrop Creek                     | 4.95   | Miles |
| ID17040220SK012_02 | Soldier Creek - source to and including Wardrop Creek       | 55.93  | Miles |
| ID17040220SK016 02 | East Fork Corral Creek - source to mouth                    | 14.59  | Miles |

| ID17040220SK017_02 | West Fork Corral Creek - source to mouth                     | 10.3  | Miles |
|--------------------|--------------------------------------------------------------|-------|-------|
| ID17040220SK019_02 | Chimney Creek - source to mouth                              | 31.99 | Miles |
| ID17040220SK020_02 | Negro Creek - 1st and 2nd order                              | 21.25 | Miles |
| ID17040220SK021_02 | Wildhorse Creek - 1st and 2nd order                          | 35.56 | Miles |
| ID17040220SK022_02 | Malad River - 1st and 2nd order                              | 36.34 | Miles |
| ID17040220SK022_03 | Malad River - 3rd order                                      | 8.75  | Miles |
| 17040221           | Little Wood                                                  |       |       |
| ID17040221SK013_05 | Little Wood River-Muldoon Cr. to Little Wood River Reservoir | 2.47  | Miles |
| ID17040221SK017_03 | Friedman Creek - Trail Creek to mouth                        | 5.93  | Miles |
| ID17040221SK018_02 | Trail Creek - source to mouth                                | 16.21 | Miles |
| ID17040221SK019_02 | Friedman Creek - source to Trail Creek                       | 11.13 | Miles |
| ID17040221SK020_02 | Little Wood River - source to Muldoon Creek                  | 96.37 | Miles |
| ID17040221SK020_03 | Little Wood River - source to Muldoon Creek                  | 7.36  | Miles |
| ID17040221SK020_04 | Little Wood River - source to Muldoon Creek                  | 12.79 | Miles |
| ID17040221SK020_05 | Little Wood River - source to Muldoon Creek                  | 1.1   | Miles |
| ID17040221SK021_02 | Baugh Creek - source to mouth                                | 49.02 | Miles |
| ID17040221SK021_04 | Baugh Creek - source to mouth                                | 3.79  | Miles |

# Category 3: Waters have insufficient (or no) data and information to determine if beneficial uses are being attained or impaired.

#### 2018/2020 Integrated Report - Category 3

**Bear River** 

| 16010102             | Central Bear                                             |         |       |
|----------------------|----------------------------------------------------------|---------|-------|
| ID16010102BR001_02   | Intermittent tributaries of Central Bear Subbasin        | 45.06   | Miles |
| ID16010102BR002_02   | Pegram Creek - source to mouth                           | 53.77   | Miles |
| ID16010102BR003_02   | Thomas Fork - Idaho/Wyoming border to mouth              | 31.84   | Miles |
| ID16010102BR003_02L  | Upper Gardiner Reservoir (dam)                           | 4.39    | Acres |
| ID16010102BR004_03   | Raymond Creek - Idaho/Wyoming border to mouth            | 0.21    | Miles |
| ID16010102BR008_02L  | Sheep Creek Reservoir                                    | 23.55   | Acres |
| 16010201             | Bear Lake                                                |         |       |
| ID16010201BR001_02   | Unnamed tributary to Alexander Reservoir                 | 1.23    | Miles |
| ID16010201BR002_02L  | Per Reservoir                                            | 40.57   | Acres |
| ID16010201BR002_03   | Bear River                                               | 2.55    | Miles |
| ID16010201BR002 0L   | Welling Number Two Dam                                   | 11.98   | Acres |
| ID16010201BR006_02   | Stauffer Creek - source to mouth                         | 6.33    | Miles |
| ID16010201BR006_03a  | Spring Creek                                             | 1.12    | Miles |
| ID16010201BR009_02   | Ovid Creek - confluence of North and Mill Creek to mouth | 35.39   | Miles |
| ID16010201BR009_02L  | Little Valley Reservoir                                  | 33.6    | Acres |
| ID16010201BR010_02   | North Creek - source to mouth                            | 19.33   | Miles |
| ID16010201BR011_02   | Mill Creek - source to mouth                             | 17.73   | Miles |
| ID16010201BR011_03   | Lower Mill Creek                                         | 3.87    | Miles |
| ID16010201BR012_02   | Upper Bear Lake Outlet intermittent streams              | 9.06    | Miles |
| ID16010201BR012_05   | Bear Lake Outlet - Lifton Station to Bear River          | 11.21   | Miles |
| ID16010201BR012_05L  | Mud Lake                                                 | 3.12    | Acres |
| ID16010201BR012_0L   | Lifton Station to Bear River                             | 3265.23 | Acres |
| ID16010201BR013_02   | Lower Paris Creek                                        | 27.6    | Miles |
| ID16010201BR013_02L  | Unnamed Waterbody to Paris Creek                         | 10.44   | Acres |
| ID16010201BR014_02   | Bloomington Creek - source to mouth                      | 32.41   | Miles |
| ID16010201BR014_02aL | Bloomington Lake                                         | 10.03   | Acres |

# Bear River

| ID16010201BR014_02L | Bloomington Creek - Source to Mouth                          | 157.18   | Acres |
|---------------------|--------------------------------------------------------------|----------|-------|
| ID16010201BR015_02  | Spring Creek - source to mouth                               | 2.54     | Miles |
| ID16010201BR015_03  | Spring Creek - St. Charles Cr to Mud Lake                    | 2.69     | Miles |
| ID16010201BR016_02  | Little and St. Charles Creeks - source to Bear Lake          | 7.44     | Miles |
| ID16010201BR017_02  | Dry Canyon Creek - source to mouth                           | 16.76    | Miles |
| ID16010201BR018_02  | Bear Lake                                                    | 62.89    | Miles |
| ID16010201BR018_02a | Mud Lake - Dingle Swamp system                               | 42.06    | Miles |
| ID16010201BR018_0L  | Bear Lake                                                    | 34453.92 | Acres |
| ID16010201BR019_02  | Fish Haven Creek - source to Bear Lake                       | 3.1      | Miles |
| ID16010201BR019_02b | Fish Haven Creek                                             | 2.02     | Miles |
| ID16010201BR022_02  | Georgetown Creek - source to mouth                           | 35.77    | Miles |
| ID16010201BR023_02  | Soda Creek - Soda Creek Reservoir Dam to Alexander Reservoir | 13.05    | Miles |
| 16010202            | Middle Bear                                                  |          |       |
| ID16010202BR001_02  | Spring Creek - source to Idaho/Utah border                   | 15.41    | Miles |
| ID16010202BR001_03  | Spring Creek - source to Idaho/Utah border                   | 4.51     | Miles |
| ID16010202BR002_02  | Cub River                                                    | 3.81     | Miles |
| ID16010202BR005_03L | Johnson Reservoir (Lamont Reservoir)                         | 43.2     | Acres |
| ID16010202BR005_0L  | Lamont Reservoir                                             | 84.54    | Acres |
| ID16010202BR005_0La | Hinkley Reservoir                                            | 26.84    | Acres |
| ID16010202BR006_00L | Nielson Reservoir (dam)                                      | 15.91    | Acres |
| ID16010202BR006_01L | Nash Reservoir (Dam)                                         | 16.04    | Acres |
| ID16010202BR006_02L | Tingey Dam (Reservoir)                                       | 20.48    | Acres |
| ID16010202BR007_02c | Mink Creek                                                   | 3.58     | Miles |
| ID16010202BR008_02  | Oneida Narrows Reservoir                                     | 12.11    | Miles |
| ID16010202BR014_02  | Cottonwood Creek - source to Oneida Narrows Reservoir        | 21.23    | Miles |
| ID16010202BR014_02L | Stock Valley Reservoir (dam)                                 | 18.67    | Acres |
| ID16010202BR015_02L | Condie Reservoir                                             | 86       | Acres |
| ID16010202BR015_03L | Casperson Reservoir (dam)                                    | 19.33    | Acres |
| ID16010202BR015_04L | Strongarm Reservoir #1                                       | 151.94   | Acres |
| ID16010202BR015_0L  | Winder Reservoir                                             | 75.86    | Acres |
| ID16010202BR016_01L | Twin Lakes Reservoir                                         | 437.28   | Acres |
| ID16010202BR017_02  | Oxford Slough                                                | 24.49    | Miles |
| ID16010202BR018_02  | Swan Lake Creek Complex                                      | 18.98    | Miles |

# Bear River

| ID16010202BR018_02c | Stockton Creek                                        | 19.7   | Miles |
|---------------------|-------------------------------------------------------|--------|-------|
| ID16010202BR018_02L | Stockton Creek Reservoir                              | 31.72  | Acres |
| ID16010202BR018_03  | Swan Lake Creek Complex                               | 2.52   | Miles |
| ID16010202BR018_03L | Swan Lake                                             | 61.7   | Acres |
| ID16010202BR020_02e | Weston Creek                                          | 5.3    | Miles |
| 16010203            | Little Bear-Logan                                     |        | -     |
| ID16010203BR002_02  | Logan River - source to Idaho/Utah border             | 3.98   | Miles |
| ID16010203BR002_02a | Logan River                                           | 8.11   | Miles |
| 16010204            | Lower Bear-Malad                                      |        |       |
| ID16010204BR001_02  | Malad River - Little Malad River to Idaho/Utah border | 59.36  | Miles |
| ID16010204BR002_03L | Saint Johns Reservoir                                 | 10.01  | Acres |
| ID16010204BR003_02L | Devil Creek Reservoir                                 | 85.1   | Acres |
| ID16010204BR005_02  | Deep Creek - Deep Creek Reservoir Dam to mouth        | 16.06  | Miles |
| ID16010204BR006L_0L | Deep Creek Reservoir                                  | 63.37  | Acres |
| ID16010204BR007_02L | Upper Deep Creek Reservoir                            | 25.69  | Acres |
| ID16010204BR008_04L | Billy Snipe Reservoir                                 | 4.3    | Acres |
| ID16010204BR009L_0L | Daniels Reservoir                                     | 361.49 | Acres |
| ID16010204BR010_02  | Wright Creek - source to Daniels Reservoir            | 32.21  | Miles |
| ID16010204BR011_02  | Dairy Creek - source to mouth                         | 42.13  | Miles |
| ID16010204BR013_02  | Samaria Creek - source to mouth                       | 30.31  | Miles |
| ID16010204BR013_03  | Samaria Creek - source to mouth                       | 4.58   | Miles |
| 16020309            | Curlew Valley                                         |        |       |
| ID16020309BR001_02  | Deep Creek - Rock Creek to Idaho/Utah border          | 381.75 | Miles |
| ID16020309BR001_02L | Sweeten Reservoir                                     | 18.32  | Acres |
| ID16020309BR001_03b | Deep Creek - Rock Creek to Idaho/Utah border          | 38.83  | Miles |
| ID16020309BR001_03L | Stone Reservoir                                       | 123.92 | Acres |
| ID16020309BR002_02  | Deep Creek - source to Rock Creek                     | 87.16  | Miles |
| ID16020309BR002_03  | Deep Creek - source to Rock Creek                     | 18.9   | Miles |
| ID16020309BR003_03  | Rock Creek - source to mouth                          | 6.96   | Miles |

| 17060108            | Palouse                                                      |       |       |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060108CL002_02  | South Fork Palouse River - Gnat Creek to ID/WA border        | 21.97 | Miles |
| ID17060108CL008b_02 | Silver Creek - T43, R5W, Sec. 29 to Idaho/Washington border  | 5.86  | Miles |
| ID17060108CL010_04  | Palouse River - Hatter Creek to Deep Creek                   | 6.17  | Miles |
| ID17060108CL017_03  | Flat Creek - source to mouth                                 | 0.2   | Miles |
| ID17060108CL023 02  | Meadow Creek - East Fork Meadow Creek to mouth               | 1.08  | Miles |
| ID17060108CL033b_02 | Cedar Creek - T43N, R05W, Sec. 28 to Idaho/Washington border | 11.8  | Miles |
| 17060109            | Rock                                                         |       |       |
| ID17060109CL001_02  | South Fork Pine Creek - source to Idaho/Washington border    | 8.4   | Miles |
| ID17060109CL002_02  | North Fork Pine Creek - source to Idaho/Washington border    | 7.88  | Miles |
| ID17060109CL003_02  | Unnamed Tribsource to ID/WA border (T44N, R05W,Sec18)        | 2.78  | Miles |
| 17060301            | Upper Selway                                                 |       |       |
| ID17060301CL008_02  | Running Creek - Lynx Creek to mouth                          | 33.07 | Miles |
| ID17060301CL009_02  | Running Creek - source to Lynx Creek                         | 22.07 | Miles |
| ID17060301CL009_03  | Running Creek - source to Lynx Creek                         | 3.68  | Miles |
| ID17060301CL010_02  | South Fork Running Creek - source to mouth                   | 9.6   | Miles |
| ID17060301CL011_02  | Lynx Creek - source to mouth                                 | 13.9  | Miles |
| ID17060301CL014_02  | Selway River - Deep Creek to White Cap Creek                 | 44.32 | Miles |
| ID17060301CL014_04  | Selway River - Deep Creek to White Cap Creek                 | 5.55  | Miles |
| ID17060301CL019_02  | Salamander Creek - source to mouth                           | 18.73 | Miles |
| ID17060301CL020_02  | Flat Creek - source to mouth                                 | 14.62 | Miles |
| ID17060301CL021_02  | Magruder Creek - source to mouth                             | 12.17 | Miles |
| ID17060301CL022_02  | Selway River - confluence of Hidden and Surprise Creeks      | 67.38 | Miles |
| ID17060301CL022_04  | Selway River - confluence of Hidden and Surprise Creeks      | 7.74  | Miles |
| ID17060301CL031_02  | Deep Creek - source to mouth                                 | 24    | Miles |
| ID17060301CL031_03  | Deep Creek - source to mouth                                 | 9.68  | Miles |
| ID17060301CL032_02  | Vance Creek - source to mouth                                | 6.16  | Miles |
| ID17060301CL033_03  | Lazy Creek - source to mouth                                 | 1.37  | Miles |
| ID17060301CL034_02  | Pete Creek - source to mouth                                 | 5.13  | Miles |
| ID17060301CL035_02  | Cayuse Creek - source to mouth                               | 14.81 | Miles |
| ID17060301CL036_03  | Indian Creek - source to mouth                               | 7.49  | Miles |
| ID17060301CL038_02  | Snake Creek - source to mouth                                | 10.55 | Miles |

| ID17060301CL039_02 | White Cap Creek - Canyon Creek to mouth                  | 36.57 | Miles |
|--------------------|----------------------------------------------------------|-------|-------|
| ID17060301CL039_04 | White Cap Creek - Canyon Creek to mouth                  | 7.69  | Miles |
| ID17060301CL047_04 | Bear Creek - Cub Creek to mouth                          | 4.92  | Miles |
| ID17060301CL053_02 | Bear Creek - source to Wahoo Creek                       | 18.37 | Miles |
| 17060302           | Lower Selway                                             |       |       |
| ID17060302CL001 06 | Selway River - O'Hara Creek to mouth                     | 6.89  | Miles |
| ID17060302CL005_02 | East Fork O'Hara Creek - source to mouth                 | 6.54  | Miles |
| ID17060302CL006_06 | Selway River - Meadow Creek to O'Hara Creek              | 12.26 | Miles |
| ID17060302CL007_02 | Falls Creek - source to mouth                            | 9.6   | Miles |
| ID17060302CL008_03 | Meadow Creek - Buck Lake Creek to mouth                  | 0.37  | Miles |
| ID17060302CL009_02 | Horse Creek - source to mouth                            | 17.47 | Miles |
| ID17060302CL010_02 | Fivemile Creek - source to mouth                         | 17.44 | Miles |
| ID17060302CL011_02 | Little Boulder Creek - source to mouth                   | 9.83  | Miles |
| ID17060302CL012_02 | Meadow Creek - East Fork Meadow Creek to Buck Lake Creek | 31.7  | Miles |
| ID17060302CL014_02 | Sable Creek - source to mouth                            | 15.2  | Miles |
| ID17060302CL016_03 | Meadow Creek - source to East Fork Meadow Creek          | 12.18 | Miles |
| ID17060302CL016_04 | Meadow Creek - source to East Fork Meadow Creek          | 5.15  | Miles |
| ID17060302CL017_02 | Butter Creek - source to mouth                           | 5.86  | Miles |
| ID17060302CL018_02 | Three Prong Creek - source to mouth                      | 14.51 | Miles |
| ID17060302CL018_03 | Three Prong Creek - source to mouth                      | 2.89  | Miles |
| ID17060302CL019_02 | East Fork Meadow Creek - source to mouth                 | 17.25 | Miles |
| ID17060302CL019_03 | East Fork Meadow Creek - source to mouth                 | 1.63  | Miles |
| ID17060302CL020_02 | Schwar Creek - source to mouth                           | 22.67 | Miles |
| ID17060302CL021_02 | Buck Lake Creek - source to mouth                        | 27.66 | Miles |
| ID17060302CL021_03 | Buck Lake Creek - source to mouth                        | 10.73 | Miles |
| ID17060302CL022_06 | Selway River - Moose Creek to Meadow Creek               | 20.97 | Miles |
| ID17060302CL050_02 | Gedney Creek - West Fork Gedney Creek to mouth           | 4.27  | Miles |
| ID17060302CL051_02 | Gedney Creek - source to West Fork Gedney Creek          | 18.93 | Miles |
| ID17060302CL051_03 | Gedney Creek - source to West Fork Gedney Creek          | 1.5   | Miles |
| ID17060302CL052_02 | West Fork Gedney Creek - source to mouth                 | 28.66 | Miles |
| ID17060302CL052_03 | West Fork Gedney Creek - source to mouth                 | 4.13  | Miles |

| ID17060303CL002         02         Kerr Creek - source to mouth         7.33         N           ID17060303CL004         02         Coolwater Creek - source to mouth         11.08         N           ID17060303CL006         02         Split Creek - source to mouth         16.34         N           ID17060303CL007_03         Old Man Creek - source to mouth         9.55         N           ID17060303CL014         02         Sponge Creek - Fish Lake Creek to Indian Grave Creek         30.21         N           ID17060303CL017         02         Warm Springs Creek to mouth         5.37         N           ID17060303CL019         02         Wind Lakes Creek to mouth         5.39         N           ID17060303CL021_02         Jay Creek - source to mouth         17.01         N           ID17060303CL024_02         Wink Lakes Creek to mouth         6.22         N           ID17060303CL024_02         White Sand Creek - source to mouth         13.93         N           ID17060303CL024_04         White Sand Creek - source to storm Creek         4.26         N           ID17060303CL026_03         Coll Creek - source to mouth         4.47         N           ID17060303CL026_03         Coll Creek - source to mouth         4.47         N           ID17060303CL026_03                                                                                                                                                             | 17060303            | Lochsa                                                 |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|-------|-------|
| ID17060303CL004         02         Coolwater Creek - source to mouth         11.08         N           ID17060303CL006         02         Split Creek - source to mouth         9.55         N           ID17060303CL013         02         Lochsa River- Warm Springs Creek to Indian Grave Creek         30.21         N           ID17060303CL014         02         Sponge Creek - Fish Lake Creek to mouth         3.4         N           ID17060303CL014         03         Sponge Creek - Fish Lake Creek to mouth         5.37         N           ID17060303CL014         03         Sponge Creek - Fish Lake Creek to mouth         5.37         N           ID17060303CL014         02         Wind Lakes Creek - source to mouth         7.01         N           ID17060303CL021         02         Warm Springs Creek - Source to mouth         6.22         N           ID17060303CL022         02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024         04         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL025_04         White Sand Creek - source to Storm Creek         4.26         N           ID17060303CL026         03         Colt Creek - source to mouth         4.47         N           ID17060303CL026                                                                                                                                                         | ID17060303CL002_02  | Kerr Creek - source to mouth                           | 7.33  | Miles |
| ID17060303CL006_02         Split Creek - source to mouth         16.34         N           ID17060303CL007_03         Old Man Creek - source to mouth         9.55         N           ID17060303CL013_02         Lochsa River- Warm Springs Creek to Indian Grave Creek         30.21         N           ID17060303CL014_02         Sponge Creek - Fish Lake Creek to mouth         3.4         N           ID17060303CL014_03         Sponge Creek - Fish Lake Creek to mouth         5.37         N           ID17060303CL014_02         Warm Springs Creek - Wind Lakes Creek to mouth         28.93         N           ID17060303CL010_02         Warm Springs Creek - source to mouth         5.89         N           ID17060303CL021_02         Jay Creek - source to mouth         6.22         N           ID17060303CL024_02         White Sand Creek - Storm Creek to mouth         13.93         N           ID17060303CL025_04         White Sand Creek - source to Storm Creek         4.26         N           ID17060303CL026_03         Cott Creek - source to mouth         4.47         N           ID17060303CL026_03         Cott Creek - source to mouth         4.47         N           ID17060303CL026_03         Cott Creek - source to mouth         4.47         N           ID17060303CL026_03         Cott Creek - source to mouth                                                                                                                 | ID17060303CL004_02  | Coolwater Creek - source to mouth                      | 11.08 | Miles |
| ID17060303CL007 03         Old Man Creek - source to mouth         9.55         N           ID17060303CL013 02         Lochsa River- Warm Springs Creek to Indian Grave Creek         30.21         N           ID17060303CL014 02         Sponge Creek - Fish Lake Creek to mouth         3.4         N           ID17060303CL014 03         Sponge Creek - Fish Lake Creek to mouth         5.37         N           ID17060303CL017 02         Warm Springs Creek - Wind Lakes Creek to mouth         28.93         N           ID17060303CL019 02         Wind Lakes Creek - source to mouth         17.01         N           ID17060303CL021 02         Jay Creek - source to mouth         6.22         N           ID17060303CL022 02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024 02         White Sand Creek - Storm Creek to mouth         13.93         N           ID17060303CL025 04         White Sand Creek - source to Storm Creek         4.26         N           ID17060303CL026 03         Colt Creek - source to mouth         4.47         N           ID17060303CL026 03         Colt Creek - source to mouth         4.67         N           ID17060303CL026 03         Colt Creek - source to mouth         4.67         N           ID17060303CL036 04         Cort Creek - source to mouth                                                                                                                   | ID17060303CL006_02  | Split Creek - source to mouth                          | 16.34 | Miles |
| ID17060303CL013         02         Lochsa River- Warm Springs Creek to Indian Grave Creek         30.21         N           ID17060303CL014_02         Sponge Creek - Fish Lake Creek to mouth         3.4         N           ID17060303CL014_03         Sponge Creek - Fish Lake Creek to mouth         5.37         N           ID17060303CL017_02         Warm Springs Creek - Wind Lakes Creek to mouth         28.93         N           ID17060303CL019_02         Wind Lakes Creek - source to mouth         17.01         N           ID17060303CL021_02         Jay Creek - source to mouth         5.89         N           ID17060303CL024_02         White Sand Creek - Storm Creek to mouth         6.22         N           ID17060303CL024_04         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL025_04         White Sand Creek - source to Storm Creek         4.26         N           ID17060303CL026_03         Colt Creek - source to mouth         4.47         N           ID17060303CL026_03         Storm Creek - source to mouth         4.47         N           ID17060303CL023_02         Storm Creek - source to mouth         4.62         N           ID17060303CL034_02         Croeked Fork - Brushy Fork to mouth         13.98         N           ID17060303CL034_02         Croeked                                                                                                                | ID17060303CL007_03  | Old Man Creek - source to mouth                        | 9.55  | Miles |
| ID17060303CL014_02         Sponge Creek - Fish Lake Creek to mouth         3.4         N           ID17060303CL014_03         Sponge Creek - Fish Lake Creek to mouth         5.37         N           ID17060303CL017_02         Warm Springs Creek - Wind Lakes Creek to mouth         28.93         N           ID17060303CL019_02         Wind Lakes Creek - source to mouth         17.01         N           ID17060303CL021_02         Jay Creek - source to mouth         5.89         N           ID17060303CL022_02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024_02         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL024_04         White Sand Creek - source to Storm Creek         4.26         N           ID17060303CL026_03         Colt Creek - source to Storm Creek         4.26         N           ID17060303CL026_03         Colt Creek - source to mouth         4.47         N           ID17060303CL030_03         Beaver Creek - source to mouth         4.47         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         13.98         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         6.89         N           ID17060303CL035_04         Brushy Fork - Spruce Creek to mouth                                                                                                                    | ID17060303CL013 02  | Lochsa River- Warm Springs Creek to Indian Grave Creek | 30.21 | Miles |
| ID17060303CL014 03         Sponge Creek - Fish Lake Creek to mouth         5.37         N           ID17060303CL017 02         Warm Springs Creek - Wind Lakes Creek to mouth         28.93         N           ID17060303CL019 02         Wind Lakes Creek - source to mouth         17.01         N           ID17060303CL021 02         Jay Creek - source to mouth         5.89         N           ID17060303CL022 02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024 02         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL024 04         White Sand Creek - source to Storm Creek to mouth         9.91         N           ID17060303CL025 04         White Sand Creek - source to Storm Creek to mouth         4.26         N           ID17060303CL026 03         Colt Creek - source to mouth         4.47         N           ID17060303CL032 02         Storm Creek - source to mouth         4.2.03         N           ID17060303CL034 02         Crooked Fork - Brushy Fork to mouth         13.98         N           ID17060303CL034 02         Crooked Fork - Brushy Fork to mouth         6.89         N           ID17060303CL035 04         Brushy Fork - Spruce Creek to mouth         6.47         N           ID17060303CL048 02L         Indian Postoffice Lake <td>ID17060303CL014_02</td> <td>Sponge Creek - Fish Lake Creek to mouth</td> <td>3.4</td> <td>Miles</td> | ID17060303CL014_02  | Sponge Creek - Fish Lake Creek to mouth                | 3.4   | Miles |
| ID17060303CL017 02         Warm Springs Creek - Wind Lakes Creek to mouth         28.93         N           ID17060303CL019 02         Wind Lakes Creek - source to mouth         17.01         N           ID17060303CL021 02         Jay Creek - source to mouth         5.89         N           ID17060303CL022 02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024 02         White Sand Creek - Storm Creek to mouth         13.93         N           ID17060303CL026 04         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL026 04         White Sand Creek - source to storm Creek         4.26         N           ID17060303CL026 03         Colt Creek - source to mouth         4.47         N           ID17060303CL026 03         Colt Creek - source to mouth         4.47         N           ID17060303CL032 02         Storm Creek - source to mouth         4.203         N           ID17060303CL033 03         Beaver Creek - source to mouth         0.62         N           ID17060303CL034 02         Crooked Fork - Brushy Fork to mouth         6.89         N           ID17060303CL035 04         Brushy Fork - Spruce Creek to mouth         4.67         N           ID17060303CL046 02         West Fork Waw'aalamnime Creek - source to mouth         <                                                                                                            | ID17060303CL014_03  | Sponge Creek - Fish Lake Creek to mouth                | 5.37  | Miles |
| ID17060303CL019 02         Wind Lakes Creek - source to mouth         17.01         N           ID17060303CL021_02         Jay Creek - source to mouth         5.89         N           ID17060303CL022_02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024_02         White Sand Creek - Storm Creek to mouth         13.93         N           ID17060303CL024_04         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL025_04         White Sand Creek - source to Storm Creek         4.26         N           ID17060303CL026_03         Colt Creek - source to mouth         4.47         N           ID17060303CL032_02         Storm Creek - source to mouth         42.03         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         0.62         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         13.98         N           ID17060303CL034_05         Crooked Fork - Spruce Creek to mouth         6.89         N           ID17060303CL034_05         Crooked Fork - Source to Brushy Fork         6.59         N           ID17060303CL038_04         Crooked Fork - source to Brushy Fork         6.59         N           ID17060303CL038_02         Weir Creek - source to mouth         6.41                                                                                                                        | ID17060303CL017_02  | Warm Springs Creek - Wind Lakes Creek to mouth         | 28.93 | Miles |
| ID17060303CL021_02         Jay Creek - source to mouth         5.89         N           ID17060303CL022_02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024_02         White Sand Creek - Storm Creek to mouth         13.93         N           ID17060303CL024_04         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL025_04         White Sand Creek - source to Storm Creek         4.26         N           ID17060303CL026_03         Colt Creek - source to mouth         4.47         N           ID17060303CL026_03         Colt Creek - source to mouth         4.203         N           ID17060303CL032_02         Storm Creek - source to mouth         0.62         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         0.62         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         13.98         N           ID17060303CL034_05         Crooked Fork - Surce Creek to mouth         6.89         N           ID17060303CL036_04         Brushy Fork - Spruce Creek to mouth         4.67         N           ID17060303CL046_02         West Fork Waw'aalamnime Creek - source to mouth         6.41         N           ID17060303CL048_02L         Indian Postoffice Lake         4.6                                                                                                                            | ID17060303CL019_02  | Wind Lakes Creek - source to mouth                     | 17.01 | Miles |
| ID17060303CL022_02         Cliff Creek - source to mouth         6.22         N           ID17060303CL024_02         White Sand Creek - Storm Creek to mouth         13.93         N           ID17060303CL024_04         White Sand Creek - Storm Creek to mouth         9.91         N           ID17060303CL025_04         White Sand Creek - source to storm Creek to mouth         4.26         N           ID17060303CL026_03         Colt Creek - source to mouth         4.47         N           ID17060303CL032_02         Storm Creek - source to mouth         42.03         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         0.62         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         13.98         N           ID17060303CL034_02         Crooked Fork - Brushy Fork to mouth         4.67         N           ID17060303CL034_02         Crooked Fork - Spruce Creek to mouth         4.67         N           ID17060303CL038_04         Crooked Fork - source to Brushy Fork         6.59         N           ID17060303CL046_02         West Fork Waw'aalamnime Creek - source to mouth         4.61         N           ID17060303CL049_02         Weir Creek - source to mouth         15.11         N           ID17060303CL049_02         Weir Creek - source to mouth                                                                                                               | ID17060303CL021_02  | Jay Creek - source to mouth                            | 5.89  | Miles |
| ID17060303CL02402White Sand Creek - Storm Creek to mouth13.93NID17060303CL02404White Sand Creek - Storm Creek to mouth9.91NID17060303CL02504White Sand Creek - source to Storm Creek4.26NID17060303CL02603Colt Creek - source to storm Creek4.27NID17060303CL03202Storm Creek - source to mouth4.47NID17060303CL03303Beaver Creek - source to mouth0.62NID17060303CL03402Crooked Fork - Brushy Fork to mouth13.98NID17060303CL03405Crooked Fork - Brushy Fork to mouth6.89NID17060303CL03504Brushy Fork - Spruce Creek to mouth4.67NID17060303CL03804Crooked Fork - source to Brushy Fork6.59NID17060303CL04602West Fork Waw'aalamnime Creek - source to mouth6.41NID17060303CL04602Indian Postoffice Lake4.6AID17060303CL04802LIndian Postoffice Lake4.6NID17060303CL04902Weir Creek - source to mouth14.56NID17060303CL05102Bald Mountain Creek - source to mouth14.56NID17060303CL05403Hungery Creek - Obia Creek to mouth7.78NID17060303CL05403Hungery Creek - Obia Creek to mouth7.78NID17060303CL05502Obia Creek - source to mouth12.13NID17060303CL05502Deadman Creek - E                                                                                                                                                                                                                                                                                                                                                                                                    | ID17060303CL022_02  | Cliff Creek - source to mouth                          | 6.22  | Miles |
| ID17060303CL02404White Sand Creek - Storm Creek to mouth9.91NID17060303CL02504White Sand Creek - source to Storm Creek4.26NID17060303CL02603Colt Creek - source to mouth4.47NID17060303CL03202Storm Creek - source to mouth42.03NID17060303CL03303Beaver Creek - source to mouth0.62NID17060303CL03402Crooked Fork - Brushy Fork to mouth0.62NID17060303CL03402Crooked Fork - Brushy Fork to mouth6.89NID17060303CL03504Brushy Fork - Spruce Creek to mouth4.67NID17060303CL03804Crooked Fork - source to Brushy Fork6.59NID17060303CL03804Crooked Fork - source to Brushy Fork6.59NID17060303CL04602West Fork Waw'aalamnime Creek - source to mouth6.41NID17060303CL04802LIndian Postoffice Lake4.6AID17060303CL05402Weir Creek - source to mouth15.11NID17060303CL05402Willow Creek - source to mouth14.56NID17060303CL05402Hungery Creek - Obia Creek to mouth7.78NID17060303CL05403Hungery Creek - Obia Creek to mouth7.78NID17060303CL05502Obia Creek - Source to mouth12.13NID17060303CL05502Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL05902Deadman                                                                                                                                                                                                                                                                                                                                                                                                    | ID17060303CL024_02  | White Sand Creek - Storm Creek to mouth                | 13.93 | Miles |
| ID17060303CL025White Sand Creek - source to Storm Creek4.26MID17060303CL02603Colt Creek - source to mouth4.47MID17060303CL03202Storm Creek - source to mouth42.03MID17060303CL03303Beaver Creek - source to mouth0.62MID17060303CL03402Crooked Fork - Brushy Fork to mouth13.98MID17060303CL03405Crooked Fork - Brushy Fork to mouth6.89MID17060303CL03504Brushy Fork - Spruce Creek to mouth4.67MID17060303CL03804Crooked Fork - source to Brushy Fork6.59MID17060303CL04602West Fork Waw'aalamnime Creek - source to mouth6.41MID17060303CL04802LIndian Postoffice Lake4.6AID17060303CL05102Bald Mountain Creek - source to mouth15.11MID17060303CL05302Willow Creek - source to mouth14.56MID17060303CL05402Hungery Creek - Obia Creek to mouth17.78MID17060303CL05403Hungery Creek - Obia Creek to mouth7.78MID17060303CL05502Obia Creek - source to mouth12.13MID17060303CL05502Deadman Creek - source to mouth0.98MID17060303CL05502Deadman Creek - source to mouth17.02M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID17060303CL024_04  | White Sand Creek - Storm Creek to mouth                | 9.91  | Miles |
| ID17060303CL026 03Colt Creek - source to mouth4.47NID17060303CL032 02Storm Creek - source to mouth42.03NID17060303CL033 03Beaver Creek - source to mouth0.62NID17060303CL034 02Crooked Fork - Brushy Fork to mouth13.98NID17060303CL034 05Crooked Fork - Brushy Fork to mouth6.89NID17060303CL035 04Brushy Fork - Spruce Creek to mouth4.67NID17060303CL038 04Crooked Fork - source to Brushy Fork6.59NID17060303CL046 02West Fork Waw'aalamnime Creek - source to mouth6.41NID17060303CL048 02LIndian Postoffice Lake4.6AID17060303CL051 02Bald Mountain Creek - source to mouth2.34NID17060303CL053 02Willow Creek - source to mouth14.56NID17060303CL054 02Hungery Creek - Obia Creek to mouth7.78NID17060303CL054 03Hungery Creek - Obia Creek to mouth12.13NID17060303CL055 02Obia Creek - source to mouth12.13NID17060303CL055 02Deadman Creek - source to mouth0.98NID17060303CL059 02Deadman Creek - source to mouth12.13NID17060303CL059 02Deadman Creek - source to mouth12.13NID17060303CL059 02Deadman Creek - source to mouth12.13NID17060303CL059 02Deadman Creek - source to mouth0.98NID17060303CL059 02Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                       | ID17060303CL025_04  | White Sand Creek - source to Storm Creek               | 4.26  | Miles |
| ID17060303CL032_02Storm Creek - source to mouth42.03MID17060303CL033_03Beaver Creek - source to mouth0.62MID17060303CL034_02Crooked Fork - Brushy Fork to mouth13.98MID17060303CL034_05Crooked Fork - Brushy Fork to mouth6.89MID17060303CL035_04Brushy Fork - Spruce Creek to mouth4.67MID17060303CL038_04Crooked Fork - source to Brushy Fork6.59MID17060303CL046_02West Fork Waw'aalamnime Creek - source to mouth6.41MID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11MID17060303CL051_02Bald Mountain Creek - source to mouth14.56MID17060303CL054_02Willow Creek - source to mouth17.78MID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78MID17060303CL054_03Hungery Creek - Source to mouth12.13MID17060303CL059_02Deadman Creek - source to mouth12.13MID17060303CL059_02Deadman Creek - source to mouth17.02M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID17060303CL026_03  | Colt Creek - source to mouth                           | 4.47  | Miles |
| ID17060303CL033_03Beaver Creek - source to mouth0.62MID17060303CL034_02Crooked Fork - Brushy Fork to mouth13.98MID17060303CL034_05Crooked Fork - Brushy Fork to mouth6.89MID17060303CL035_04Brushy Fork - Spruce Creek to mouth4.67MID17060303CL038_04Crooked Fork - source to Brushy Fork6.59MID17060303CL046_02West Fork Waw'aalamnime Creek - source to mouth6.41MID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11MID17060303CL051_02Bald Mountain Creek - source to mouth2.34MID17060303CL054_02Willow Creek - source to mouth14.56MID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78MID17060303CL055_02Obia Creek - source to mouth12.13MID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98MID17060303CL060_02East Fork Deadman Creek - source to mouth17.02M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID17060303CL032_02  | Storm Creek - source to mouth                          | 42.03 | Miles |
| ID17060303CL034_02Crooked Fork - Brushy Fork to mouth13.98NID17060303CL034_05Crooked Fork - Brushy Fork to mouth6.89NID17060303CL035_04Brushy Fork - Spruce Creek to mouth4.67NID17060303CL038_04Crooked Fork - source to Brushy Fork6.59NID17060303CL046_02West Fork Waw'aalamnime Creek - source to mouth6.41NID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11NID17060303CL051_02Bald Mountain Creek - source to mouth2.34NID17060303CL053_02Willow Creek - source to mouth14.56NID17060303CL054_02Hungery Creek - Obia Creek to mouth7.78NID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth0.98N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID17060303CL033_03  | Beaver Creek - source to mouth                         | 0.62  | Miles |
| ID17060303CL034_05Crooked Fork - Brushy Fork to mouth6.89MID17060303CL035_04Brushy Fork - Spruce Creek to mouth4.67MID17060303CL038_04Crooked Fork - source to Brushy Fork6.59MID17060303CL046_02West Fork Waw'aalamnime Creek - source to mouth6.41MID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11MID17060303CL051_02Bald Mountain Creek - source to mouth2.34MID17060303CL053_02Willow Creek - source to mouth14.56MID17060303CL054_02Hungery Creek - Obia Creek to mouth7.78MID17060303CL055_02Obia Creek - source to mouth12.13MID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID17060303CL034_02  | Crooked Fork - Brushy Fork to mouth                    | 13.98 | Miles |
| ID17060303CL035_04Brushy Fork - Spruce Creek to mouth4.67NID17060303CL038_04Crooked Fork - source to Brushy Fork6.59NID17060303CL046_02West Fork Waw'aalamnime Creek - source to mouth6.41NID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11NID17060303CL051_02Bald Mountain Creek - source to mouth2.34NID17060303CL053_02Willow Creek - source to mouth14.56NID17060303CL054_02Hungery Creek - Obia Creek to mouth7.78NID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID17060303CL034_05  | Crooked Fork - Brushy Fork to mouth                    | 6.89  | Miles |
| ID17060303CL038_04Crooked Fork - source to Brushy Fork6.59NID17060303CL046_02West Fork Waw'aalamnime Creek - source to mouth6.41NID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11NID17060303CL051_02Bald Mountain Creek - source to mouth2.34NID17060303CL053_02Willow Creek - source to mouth14.56NID17060303CL054_02Hungery Creek - Obia Creek to mouth17.78NID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78NID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ID17060303CL035_04  | Brushy Fork - Spruce Creek to mouth                    | 4.67  | Miles |
| ID17060303CL046_02West Fork Waw'aalamnime Creek - source to mouth6.41NID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11NID17060303CL051_02Bald Mountain Creek - source to mouth2.34NID17060303CL053_02Willow Creek - source to mouth14.56NID17060303CL054_02Hungery Creek - Obia Creek to mouth17.78NID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78NID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID17060303CL038_04  | Crooked Fork - source to Brushy Fork                   | 6.59  | Miles |
| ID17060303CL048_02LIndian Postoffice Lake4.6AID17060303CL049_02Weir Creek - source to mouth15.11NID17060303CL051_02Bald Mountain Creek - source to mouth2.34NID17060303CL053_02Willow Creek - source to mouth14.56NID17060303CL054_02Hungery Creek - Obia Creek to mouth17.78NID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78NID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID17060303CL046_02  | West Fork Waw'aalamnime Creek - source to mouth        | 6.41  | Miles |
| ID17060303CL049_02Weir Creek - source to mouth15.11NID17060303CL051_02Bald Mountain Creek - source to mouth2.34NID17060303CL053_02Willow Creek - source to mouth14.56NID17060303CL054_02Hungery Creek - Obia Creek to mouth17.78NID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78NID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID17060303CL048_02L | Indian Postoffice Lake                                 | 4.6   | Acres |
| ID17060303CL051_02Bald Mountain Creek - source to mouth2.34MID17060303CL053_02Willow Creek - source to mouth14.56MID17060303CL054_02Hungery Creek - Obia Creek to mouth17.78MID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78MID17060303CL055_02Obia Creek - source to mouth12.13MID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98MID17060303CL060_02East Fork Deadman Creek - source to mouth17.02M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ID17060303CL049_02  | Weir Creek - source to mouth                           | 15.11 | Miles |
| ID17060303CL053_02Willow Creek - source to mouth14.56MID17060303CL054_02Hungery Creek - Obia Creek to mouth17.78MID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78MID17060303CL055_02Obia Creek - source to mouth12.13MID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98MID17060303CL060_02East Fork Deadman Creek - source to mouth17.02M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID17060303CL051_02  | Bald Mountain Creek - source to mouth                  | 2.34  | Miles |
| ID17060303CL054_02Hungery Creek - Obia Creek to mouth17.78NID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78NID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ID17060303CL053_02  | Willow Creek - source to mouth                         | 14.56 | Miles |
| ID17060303CL054_03Hungery Creek - Obia Creek to mouth7.78MID17060303CL055_02Obia Creek - source to mouth12.13MID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98MID17060303CL060_02East Fork Deadman Creek - source to mouth17.02M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID17060303CL054_02  | Hungery Creek - Obia Creek to mouth                    | 17.78 | Miles |
| ID17060303CL055_02Obia Creek - source to mouth12.13NID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID17060303CL054_03  | Hungery Creek - Obia Creek to mouth                    | 7.78  | Miles |
| ID17060303CL059_02Deadman Creek - East Fork Deadman Creek to mouth0.98NID17060303CL060_02East Fork Deadman Creek - source to mouth17.02N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID17060303CL055_02  | Obia Creek - source to mouth                           | 12.13 | Miles |
| ID17060303CL060 02 East Fork Deadman Creek - source to mouth 17.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID17060303CL059_02  | Deadman Creek - East Fork Deadman Creek to mouth       | 0.98  | Miles |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID17060303CL060_02  | East Fork Deadman Creek - source to mouth              | 17.02 | Miles |

| 17060304            | Middle Fork Clearwater                                       |       |       |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060304CL001_05  | Middle Fork Clearwater River - confluence of Lochsa          | 16.9  | Miles |
| ID17060304CL004_03  | South Fork Clear Creek - source to mouth                     | 6.86  | Miles |
| ID17060304CL006_03  | Clear Creek - source to South Fork Clear Creek               | 3.37  | Miles |
| ID17060304CL007_03  | Middle Fork Clear Creek - source to mouth                    | 1.84  | Miles |
| ID17060304CL011 03  | Maggie Creek - source to mouth                               | 3.01  | Miles |
| 17060306            | Clearwater                                                   |       |       |
| ID17060306CL001_02  | Lower Granite Dam pool                                       | 20.79 | Miles |
| ID17060306CL001_03  | Lower Granite Dam pool                                       | 0.08  | Miles |
| ID17060306CL002_02  | Clearwater River - Potlatch River to Lower Granite Dam pool  | 9.21  | Miles |
| ID17060306CL006_02L | Lake Waha                                                    | 94.12 | Acres |
| ID17060306CL013_02  | Clearwater River - North Fork Clearwater River to mouth      | 0.37  | Miles |
| ID17060306CL021_02  | Clearwater River - Lolo Creek to North Fork Clearwater River | 0.13  | Miles |
| ID17060306CL026_03  | Lolo Creek - Yakus Creek to mouth                            | 2.6   | Miles |
| ID17060306CL033_02  | Big Creek - source to mouth                                  | 6.79  | Miles |
| ID17060306CL042_02  | Louse Creek - source to mouth                                | 5.89  | Miles |
| ID17060306CL044_02  | Potlatch River - Big Bear Creek to mouth                     | 12.58 | Miles |
| ID17060306CL046_03  | Cedar Creek - source to mouth                                | 2.67  | Miles |
| ID17060306CL048_02  | Potlatch River - Moose Creek to Corral Creek                 | 15.64 | Miles |
| ID17060306CL056_02  | Big Bear Creek                                               | 25.39 | Miles |
| ID17060306CL057_04  | East Fork Big Bear Creek - source to mouth                   | 0.34  | Miles |
| ID17060306CL059_02  | Dry Creek - source to mouth                                  | 16.51 | Miles |
| ID17060306CL063_02  | Bethel Canyon - source to mouth                              | 16.32 | Miles |
| ID17060306CL064_02  | Little Potlatch Creek - source to mouth                      | 62.33 | Miles |
| ID17060306CL065_02  | Howard Gulch - source to mouth                               | 3.35  | Miles |
| 17060307            | Upper North Fork Clearwater                                  |       |       |
| ID17060307CL001_05  | North Fork Clearwater River-Skull Ck. to Aquarius Campground | 7.11  | Miles |
| ID17060307CL002_05  | North Fork Clearwater River- Washington Creek to Skull Creek | 12.82 | Miles |
| ID17060307CL004_05  | North Fork Clearwater River - Orogrande Creek to Washington  | 6.74  | Miles |
| ID17060307CL008_05  | North Fork Clearwater River -Weitas Creek to Orogrande Creek | 4.24  | Miles |
| ID17060307CL009_04  | Weitas Creek - Hemlock Creek to mouth                        | 6.59  | Miles |
| ID17060307CL013_02  | Little Weitas Creek - source to mouth                        | 32.35 | Miles |

| ID17060307CL013_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Little Weitas Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.44                                                                                                                            | Miles                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ID17060307CL014_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weitas Creek - source to Windy Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.14                                                                                                                           | Miles                                                                                                             |
| ID17060307CL014_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weitas Creek - source to Windy Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.01                                                                                                                            | Miles                                                                                                             |
| ID17060307CL014_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weitas Creek - source to Windy Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.16                                                                                                                            | Miles                                                                                                             |
| ID17060307CL015_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Windy Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.63                                                                                                                           | Miles                                                                                                             |
| ID17060307CL016_05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | North Fork Clearwater River - Kelly Creek to Weitas Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.1                                                                                                                            | Miles                                                                                                             |
| ID17060307CL017_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fourth of July Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.06                                                                                                                           | Miles                                                                                                             |
| ID17060307CL018_05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kelly Creek - Cayuse Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.5                                                                                                                            | Miles                                                                                                             |
| ID17060307CL019_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cayuse Creek - Gravey Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.66                                                                                                                           | Miles                                                                                                             |
| ID17060307CL019_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cayuse Creek - Gravey Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.44                                                                                                                           | Miles                                                                                                             |
| ID17060307CL022_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cayuse Creek - source to Gravey Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.81                                                                                                                           | Miles                                                                                                             |
| ID17060307CL032_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | North Fork Clearwater River - Lake Creek to Kelly Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.63                                                                                                                           | Miles                                                                                                             |
| ID17060307CL034_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | North Fork Clearwater River - Vanderbilt Gulch to Lake Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.04                                                                                                                            | Miles                                                                                                             |
| ID17060307CL036_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | North Fork Clearwater River - source to Vanderbilt Gulch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.59                                                                                                                           | Miles                                                                                                             |
| ID17060307CL037_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vanderbilt Gulch - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.45                                                                                                                           | Miles                                                                                                             |
| ID17060307CL038_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Meadow Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.28                                                                                                                           | Miles                                                                                                             |
| ID17060307CI 047 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Skull Creek - source to Collins Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 16                                                                                                                            | Miles                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                 | Willoo                                                                                                            |
| 17060308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lower North Fork Clearwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 | NII CO                                                                                                            |
| <b>17060308</b><br>ID17060308CL002_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lower North Fork Clearwater         Dworshak Reservoir tributaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 251.34                                                                                                                          | Miles                                                                                                             |
| <b>17060308</b><br>ID17060308CL002_02<br>ID17060308CL002_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251.34<br>10.99                                                                                                                 | Miles                                                                                                             |
| 17060308<br>ID17060308CL002_02<br>ID17060308CL002_03<br>ID17060308CL002_05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 251.34<br>10.99<br>24.69                                                                                                        | Miles<br>Miles<br>Miles                                                                                           |
| 17060308<br>ID17060308CL002_02<br>ID17060308CL002_03<br>ID17060308CL002_05<br>ID17060308CL002_06L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 251.34<br>10.99<br>24.69<br>13972.85                                                                                            | Miles<br>Miles<br>Miles<br>Acres                                                                                  |
| 17060308<br>ID17060308CL002_02<br>ID17060308CL002_03<br>ID17060308CL002_05<br>ID17060308CL002_06L<br>ID17060308CL004_02L                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2                                                                                    | Miles<br>Miles<br>Miles<br>Acres<br>Acres                                                                         |
| 17060308<br>ID17060308CL002_02<br>ID17060308CL002_03<br>ID17060308CL002_05<br>ID17060308CL002_06L<br>ID17060308CL002_06L<br>ID17060308CL004_02L<br>ID17060308CL008_05                                                                                                                                                                                                                                                                                                                                                                                                                 | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87                                                                            | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles                                                                |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL008_05           ID17060308CL0011_02                                                                                                                                                                                                                                                                                                                                                                | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.         Little North Fork Clearwater River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22                                                                   | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles                                                       |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL008_05           ID17060308CL011_02                                                                                                                                                                                                                                                                                                                                                                 | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.         Little North Fork Clearwater River         Little North Fork Clearwater River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53                                                           | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles                                              |
| 17060308<br>ID17060308CL002_02<br>ID17060308CL002_03<br>ID17060308CL002_05<br>ID17060308CL002_06L<br>ID17060308CL004_02L<br>ID17060308CL008_05<br>ID17060308CL011_02<br>ID17060308CL011_03<br>ID17060308CL011_05                                                                                                                                                                                                                                                                                                                                                                      | Lower North Fork ClearwaterDworshak Reservoir tributariesDworshak Reservoir 3rd Order Tribs.Dworshak ReservoirDworshak ReservoirDeer Creek ReservoirDeer Creek ReservoirNorth Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.Little North Fork Clearwater RiverLittle North Fork Clearwater RiverLittle North Fork Clearwater River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53<br>13.63                                                  | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles                                     |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL008_05           ID17060308CL011_02           ID17060308CL011_02           ID17060308CL011_02           ID17060308CL011_02           ID17060308CL011_02           ID17060308CL011_02                                                                                                                                                                                  | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.         Little North Fork Clearwater River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53<br>13.63<br>10.15                                         | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL008_05           ID17060308CL011_02           ID17060308CL011_02           ID17060308CL011_02           ID17060308CL011_03           ID17060308CL012_02           ID17060308CL012_02                                                                                                                                                                                  | Lower North Fork ClearwaterDworshak Reservoir tributariesDworshak Reservoir 3rd Order Tribs.Dworshak ReservoirDworshak ReservoirDeer Creek ReservoirDeer Creek ReservoirNorth Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.Little North Fork Clearwater RiverLittle North Fork Clearwater RSpotted Louis to Foehl CreekLittle North Fork Clearwater RSpotted Louis to Foehl Creek                                                                                                                                                                                                                                                                                                                                                                                             | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53<br>13.63<br>10.15<br>4.33                                 | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL004_02L           ID17060308CL001_02           ID17060308CL011_02           ID17060308CL011_03           ID17060308CL012_02           ID17060308CL012_02           ID17060308CL012_02           ID17060308CL012_02           ID17060308CL012_02                                                                                         | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.         Little North Fork Clearwater River         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek                                                                                                                                                                                                                                                                           | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53<br>13.63<br>10.15<br>4.33<br>2.9                          | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                   |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL004_02L           ID17060308CL001_02           ID17060308CL011_02           ID17060308CL011_03           ID17060308CL012_02           ID17060308CL012_02           ID17060308CL012_02           ID17060308CL012_04           ID17060308CL012_05           ID17060308CL013_03                               | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.         Little North Fork Clearwater River         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis C. to Foehl C.         Sawtooth Creek - source to mouth | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53<br>13.63<br>10.15<br>4.33<br>2.9<br>5.43                  | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL004_02L           ID17060308CL001_02           ID17060308CL011_02           ID17060308CL011_03           ID17060308CL012_02           ID17060308CL012_02           ID17060308CL012_04           ID17060308CL012_05           ID17060308CL013_03           ID17060308CL014_02                               | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.         Little North Fork Clearwater River         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis C. to Foehl C.         Sawtooth Creek - source to mouth         Canyon Creek - source to mouth                                                                                                     | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53<br>13.63<br>10.15<br>4.33<br>2.9<br>5.43<br>42.39         | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| 17060308           ID17060308CL002_02           ID17060308CL002_03           ID17060308CL002_05           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL002_06L           ID17060308CL004_02L           ID17060308CL008_05           ID17060308CL011_02           ID17060308CL011_03           ID17060308CL012_02           ID17060308CL012_02           ID17060308CL012_04           ID17060308CL012_05           ID17060308CL013_03           ID17060308CL014_02           ID17060308CL014_03 | Lower North Fork Clearwater         Dworshak Reservoir tributaries         Dworshak Reservoir 3rd Order Tribs.         Dworshak Reservoir         Dworshak Reservoir         Deer Creek Reservoir         North Fork Clearwater River - Aquaruis Cmpgrd to Dworshak R.         Little North Fork Clearwater River         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis to Foehl Creek         Little North Fork Clearwater RSpotted Louis C. to Foehl C.         Sawtooth Creek - source to mouth         Canyon Creek - source to mouth                                                                                                                                                | 251.34<br>10.99<br>24.69<br>13972.85<br>55.2<br>2.87<br>47.22<br>1.53<br>13.63<br>10.15<br>4.33<br>2.9<br>5.43<br>42.39<br>3.31 | Miles<br>Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |

| ID17060308CL014_04  | Canyon Creek - source to mouth                              | 6.65  | Miles |
|---------------------|-------------------------------------------------------------|-------|-------|
| ID17060308CL015_02  | Spotted Louis Creek - source to mouth                       | 11.7  | Miles |
| ID17060308CL016_02  | Little North Fork Clearwater RRutledge Cr.to Spotted Louis  | 25.42 | Miles |
| ID17060308CL016_02L | Steamboat Lake                                              | 7.91  | Acres |
| ID17060308CL016_04  | Little North Fork Clearwater -Rutledge Cr. to Spotted Louis | 5.74  | Miles |
| ID17060308CL018_01L | Fish Lake                                                   | 5.89  | Acres |
| ID17060308CL018_02  | Little North Fork Clearwater R source to Rutledge Creek     | 50.18 | Miles |
| ID17060308CL018_02L | Lost Lake                                                   | 27.02 | Acres |
| ID17060308CL018_04  | Little North Fork Clearwater River - source to Rutledge Cr. | 2.78  | Miles |
| ID17060308CL019_02  | Foehl Creek - source to mouth                               | 28.42 | Miles |
| ID17060308CL019_03  | Foehl Creek - source to mouth                               | 4.03  | Miles |
| ID17060308CL022_02  | Glover Creek - source to mouth                              | 27.94 | Miles |
| ID17060308CL035_03  | Dicks Creek - source to Dworshak Reservoir                  | 0.65  | Miles |

| 17010101            | Middle Kootenai                                            |       |       |
|---------------------|------------------------------------------------------------|-------|-------|
| ID17010101PN003_02  | South Callahan Creek - Glad Creek to Idaho/Montana border  | 3.13  | Miles |
| 17010104            | Lower Kootenai                                             |       |       |
| ID17010104PN001_01L | Unnamed Waterbody near Watson Spur                         | 59.48 | Acres |
| ID17010104PN001 02  | 1st & 2nd order tribs Kootenai R- Shorty Isl ID/BC border  | 63.65 | Miles |
| ID17010104PN002_02L | Saddle Lake                                                | 1.68  | Acres |
| ID17010104PN003_02L | Marsh Lake                                                 | 4.07  | Acres |
| ID17010104PN006_02L | Joe and Hidden Lakes                                       | 44.29 | Acres |
| ID17010104PN011_01L | Ball Lakes- Spanish Creek                                  | 8.43  | Acres |
| ID17010104PN013_02L | Myrtle Creek Lakes                                         | 8.52  | Acres |
| ID17010104PN015_02  | Deep Creek - Snow Creek to mouth                           | 1.57  | Miles |
| ID17010104PN016_01L | Snow and Corner Lakes                                      | 10.55 | Acres |
| ID17010104PN016_02L | Bottleneck Lake                                            | 10.61 | Acres |
| ID17010104PN017_02L | Roman Nose Lakes                                           | 33.56 | Acres |
| ID17010104PN018_02  | Deep Creek - Brown Creek to Snow Creek                     | 6.1   | Miles |
| ID17010104PN020_02a | Gold Creek                                                 | 2.51  | Miles |
| ID17010104PN022_02  | Tributaries to Deep Creek - below McArthur Lake            | 5.05  | Miles |
| ID17010104PN023_02  | White Creek                                                | 1     | Miles |
| ID17010104PN024_04  | Dodge Creek - headwaters to Dodge Cr                       | 8.25  | Miles |
| ID17010104PN026_03a | Trail Creek - Highway to mouth                             | 0.88  | Miles |
| ID17010104PN027_02  | Brown Creek - upper, headwaters to Brown Creek             | 14.18 | Miles |
| ID17010104PN029_02  | Kootenai River Tributaries - Moyie River to Deep Creek     | 17.45 | Miles |
| ID17010104PN029_02a | Dobson Creek                                               | 15.64 | Miles |
| ID17010104PN029_02L | Dawson Lake                                                | 29.75 | Acres |
| ID17010104PN031_01L | Bonner Lake                                                | 21.49 | Acres |
| ID17010104PN031_02  | Kootenai River - tributaries, Idaho/Montana to Moyie River | 42.76 | Miles |
| ID17010104PN031_02L | Herman Lake                                                | 30.63 | Acres |
| ID17010104PN035_02  | Curley Creek - upper from Perkins Lake and unnamed tribs   | 9.61  | Miles |
| ID17010104PN035_02L | Perkins Lake (Curley Creek)                                | 53.11 | Acres |
| ID17010104PN036_02  | Fleming Creek - upper                                      | 27.66 | Miles |
| ID17010104PN037_02  | Rock Creek - upper                                         | 20.89 | Miles |
| ID17010104PN038_02  | Mission Creek - Brush Creek to mouth                       | 3.76  | Miles |

| 17010105            | Моуіе                                                        |        |       |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17010105PN002_05  | Moyie River - Meadow Creek to Moyie Falls Dam                | 7.88   | Miles |
| ID17010105PN005_05  | Moyie River - Round Prairie Creek to Meadow Creek            | 10.07  | Miles |
| ID17010105PN006 02L | Spruce Lake                                                  | 6.09   | Acres |
| ID17010105PN006_05  | Moyie River - Idaho/Canadian border to Round Prairie Creek   | 7.55   | Miles |
| ID17010105PN008 02  | Round Prairie Creek - Gillon Creek to mouth                  | 3.23   | Miles |
| ID17010105PN008_03  | Round Prairie Creek - Gillon Creek to mouth                  | 3.67   | Miles |
| ID17010105PN009_02L | Robinson Lake (Gillon Creek)                                 | 53.75  | Acres |
| 17010213            | Lower Clark Fork                                             |        |       |
| ID17010213PN001_02  | Clark Fork River Delta - Mosquito Creek to Pend Oreille Lake | 8.27   | Miles |
| ID17010213PN001_03  | Clark Fork River Delta - Mosquito Creek to Pend Oreille Lake | 1.19   | Miles |
| ID17010213PN001_04  | Clark Fork River Delta - Mosquito Creek to Pend Oreille Lake | 1.45   | Miles |
| ID17010213PN003_02  | Tributary to Clark Fork River                                | 6.53   | Miles |
| ID17010213PN006_02  | West Fork Elk Creek - source to Idaho/Montana border         | 5.19   | Miles |
| ID17010213PN007_02  | West Fork Blue Creek - source to Idaho/Montana border        | 6.02   | Miles |
| ID17010213PN008_02  | Gold Creek - source to Idaho/Montana border                  | 7.49   | Miles |
| ID17010213PN016_02L | Porcupine Lake                                               | 10.48  | Acres |
| ID17010213PN019_02L | Darling-Gem Lakes                                            | 16.35  | Acres |
| 17010214            | Pend Oreille Lake                                            |        |       |
| ID17010214PN001_02  | Pend Oreille River - tribs, Priest River to Albeni Falls Dam | 10.28  | Miles |
| ID17010214PN002_02  | Tribs to PDO River between Long Bridge and Priest River      | 17.7   | Miles |
| ID17010214PN002_02b | Unnamed Tributaries                                          | 5.81   | Miles |
| ID17010214PN002_02L | Morton Slough                                                | 124.22 | Acres |
| ID17010214PN002_03a | Syringa Creek and Tributaries                                | 1.7    | Miles |
| ID17010214PN003_02L | Hoodoo Lake                                                  | 92.62  | Acres |
| ID17010214PN003_03  | Hoodoo Creek - source to mouth                               | 3.53   | Miles |
| ID17010214PN004_02  | Kelso Lake outlet Creek                                      | 7.07   | Miles |
| ID17010214PN004_02L | Kelso - Round Lakes                                          | 60.76  | Acres |
| ID17010214PN005_02  | Granite Lake Tributaries                                     | 3.51   | Miles |
| ID17010214PN005L_0L | Granite Lake                                                 | 18.42  | Acres |
| ID17010214PN006_01L | Beaver Lake                                                  | 17.26  | Acres |
| ID17010214PN006_02  | Beaver Lake - Stream Order 1 & 2 Tribs                       | 9.67   | Miles |

| ID17010214PN006_02L | Lambertson Lake                                              | 21.47  | Acres |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17010214PN007_02  | Spirit Creek - source to mouth                               | 6.59   | Miles |
| ID17010214PN007_03  | Spirit Creek - source to mouth                               | 4.76   | Miles |
| ID17010214PN008_02  | Blanchard Lake Stream Order 01 & 02 Tribs                    | 20.17  | Miles |
| ID17010214PN008_02L | Blanchard Lake                                               | 134.69 | Acres |
| ID17010214PN009_02  | 01 & 02 Tribs to Spirit Lake                                 | 3.88   | Miles |
| ID17010214PN011_02  | Jewell Lake                                                  | 8.04   | Miles |
| ID17010214PN011_02L | Jewel Lake                                                   | 32.38  | Acres |
| ID17010214PN012_04L | Round Lake                                                   | 43.04  | Acres |
| ID17010214PN013_02  | Cocolalla Lake Tributaries                                   | 9.36   | Miles |
| ID17010214PN013_02a | Westmond Creek and Tributaries                               | 8.84   | Miles |
| ID17010214PN013_02L | Unnamed Lake Westmond Creek                                  | 7.78   | Acres |
| ID17010214PN016_02  | Fry Creek - source to mouth                                  | 11.24  | Miles |
| ID17010214PN018_02  | West side first and second order tribs. to Pend Oreille Lake | 28.91  | Miles |
| ID17010214PN019_02L | Gamble Lake                                                  | 102.62 | Acres |
| ID17010214PN020_0L  | Mirror Lake                                                  | 84.87  | Acres |
| ID17010214PN028_02  | Riser Creek - source to mouth                                | 3.23   | Miles |
| ID17010214PN028_02a | Cougar Creek - source to mouth                               | 3.2    | Miles |
| ID17010214PN037_02L | Beaver Lake                                                  | 4.16   | Acres |
| ID17010214PN040_0L  | Walsh Lake                                                   | 36.47  | Acres |
| ID17010214PN041_02L | Harrison Lake                                                | 28.85  | Acres |
| ID17010214PN045_02L | Caribou Lake                                                 | 5.88   | Acres |
| ID17010214PN055_02  | Carr Creek - tributaries                                     | 2.38   | Miles |
| ID17010214PN056_02  | Unnamed Tributary to Carr Creek                              | 9.39   | Miles |
| ID17010214PN061_02  | Unnamed tributary to Pend Oreille River                      | 8.56   | Miles |
| ID17010215PN001_02  | Lower Priest River - Upper West Branch Priest River to mouth | 77.64  | Miles |
| 17010215            | Priest                                                       |        |       |
| ID17010215PN001_02  | Lower Priest River - Upper West Branch Priest River to mouth | 77.64  | Miles |
| ID17010215PN001_02L | Mirror Lake                                                  | 6.45   | Acres |
| ID17010215PN001_03  | Lower Priest River - Upper West Branch Priest River to mouth | 3.39   | Miles |
| ID17010215PN001_03L | Blue Lake                                                    | 66.84  | Acres |
| ID17010215PN004_02L | Unnamed Lake - Lost Creek                                    | 4.06   | Acres |
| ID17010215PN005_02  | Lower Priest River - Priest Lake to Upper West Branch Priest | 2.78   | Miles |

| ID17010215PN006L 0L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Priest Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23341 56                                                                                        | Acres                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| ID17010215PN007_02                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chase Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.58                                                                                            | Miles                                                                                           |
| ID17010215PN007L_0L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chase Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 174.25                                                                                          | Acres                                                                                           |
| ID17010215PN009_02L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hunt Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.89                                                                                           | Acres                                                                                           |
| ID17010215PN012_01L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Two Mouth Lakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.74                                                                                           | Acres                                                                                           |
| ID17010215PN012 02L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Standard Lakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.88                                                                                           | Acres                                                                                           |
| ID17010215PN013 02L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Kent Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.95                                                                                           | Acres                                                                                           |
| ID17010215PN014 04                                                                                                                                                                                                                                                                                                                                                                                                                                    | Priest Lake Thorofare - Upper Priest Lake to Priest Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.75                                                                                            | Miles                                                                                           |
| ID17010215PN015 02L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Caribou Lakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.88                                                                                           | Acres                                                                                           |
| ID17010215PN016L 0L                                                                                                                                                                                                                                                                                                                                                                                                                                   | Upper Priest Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1340.77                                                                                         | Acres                                                                                           |
| ID17010215PN018 04                                                                                                                                                                                                                                                                                                                                                                                                                                    | Upper Priest River - Idaho/Canadian border to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37                                                                                            | Miles                                                                                           |
| ID17010215PN024_02                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kalispell Creek - Idaho/Washington border to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.73                                                                                           | Miles                                                                                           |
| ID17010215PN027_02                                                                                                                                                                                                                                                                                                                                                                                                                                    | Upper West Branch Priest River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.82                                                                                           | Miles                                                                                           |
| ID17010215PN028_02                                                                                                                                                                                                                                                                                                                                                                                                                                    | Goose Creek - Idaho/Washington border to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.41                                                                                           | Miles                                                                                           |
| ID17010215PN029_02                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quartz Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.64                                                                                           | Miles                                                                                           |
| ID17010215PN030_02                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lower West Branch Priest River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.09                                                                                           | Miles                                                                                           |
| ID17010215DN031_02                                                                                                                                                                                                                                                                                                                                                                                                                                    | Moores Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                              | Miles                                                                                           |
| ID 17010213F10031_02                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                              | IVIIIC3                                                                                         |
| 17010216                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pend Oreille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | Wilco                                                                                           |
| <b>17010215 17010216</b> ID17010216PN001_02                                                                                                                                                                                                                                                                                                                                                                                                           | Pend Oreille South Salmo River - headwaters to Idaho/Washington border                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.44                                                                                            | Miles                                                                                           |
| <b>17010216</b><br>ID17010216PN001_02<br>ID17010216PN002_02                                                                                                                                                                                                                                                                                                                                                                                           | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.44                                                                                            | Miles                                                                                           |
| <b>17010216</b><br>ID17010216PN001_02<br>ID17010216PN002_02<br>ID17010216PN002_02L                                                                                                                                                                                                                                                                                                                                                                    | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek                                                                                                                                                                                                                                                                                                                                                                                     | 4.44<br>11.19<br>52.87                                                                          | Miles<br>Miles<br>Acres                                                                         |
| 17010216<br>17010216PN001_02<br>1D17010216PN002_02<br>1D17010216PN002_02L<br>17010301                                                                                                                                                                                                                                                                                                                                                                 | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene                                                                                                                                                                                                                                                                                                                                                         | 4.44<br>11.19<br>52.87                                                                          | Miles<br>Miles<br>Acres                                                                         |
| 17010216         ID17010216PN001_02         ID17010216PN002_02         ID17010216PN002_02L         ID17010301PN005_02L                                                                                                                                                                                                                                                                                                                                | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake                                                                                                                                                                                                                                                                                                                                     | 4.44<br>11.19<br>52.87<br>16.25                                                                 | Miles<br>Miles<br>Acres                                                                         |
| 17010216         17010216         ID17010216PN001_02         ID17010216PN002_02         ID17010216PN002_02         17010301         ID17010301PN005_02L         ID17010301PN013_02a                                                                                                                                                                                                                                                                   | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr                                                                                                                                                                                                                                                                   | 4.44<br>11.19<br>52.87<br>16.25<br>7.46                                                         | Miles<br>Miles<br>Acres<br>Acres<br>Miles                                                       |
| 17010216           ID17010216PN001_02           ID17010216PN002_02           ID17010216PN002_02L           1D17010216PN002_02L           1D17010301PN005_02L           ID17010301PN013_02a           ID17010301PN018_03                                                                                                                                                                                                                               | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek                                                                                                                                                                                                   | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78                                                 | Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles                                              |
| 17010216         17010216PN001_02         ID17010216PN002_02         ID17010216PN002_02L         17010301         ID17010301PN005_02L         ID17010301PN013_02a         ID17010301PN018_03         17010302                                                                                                                                                                                                                                         | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek         South Fork Coeur d Alene                                                                                                                                                                  | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78                                                 | Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles                                              |
| 17010213F N031_02         17010216PN001_02         ID17010216PN002_02         ID17010216PN002_02         ID17010216PN002_02         ID17010301PN005_02L         ID17010301PN005_02L         ID17010301PN005_02L         ID17010301PN013_02a         ID17010301PN013_02a         ID17010301PN013_02a         ID17010302PN002_02a                                                                                                                       | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek         South Fork Coeur d Alene         Lower Little Pine Creek                                                                                                                                  | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78<br>1.46                                         | Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles                                              |
| ID17010213FN031_02           ID17010216PN001_02           ID17010216PN002_02           ID17010216PN002_02L           ID17010216PN002_02L           ID17010301PN005_02L           ID17010301PN013_02a           ID17010301PN018_03           ID17010302PN002_02a           ID17010302PN002_02a                                                                                                                                                         | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek         South Fork Coeur d Alene         Lower Little Pine Creek         Elsie Lake                                                                                                               | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78<br>1.46<br>14.3                                 | Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles                                     |
| ID17010213FN031_02           ID17010216PN001_02           ID17010216PN002_02           ID17010216PN002_02L           ID17010216PN002_02L           ID17010301PN005_02L           ID17010301PN013_02a           ID17010301PN013_02a           ID17010302PN002_02a           ID17010302PN002_02a           ID17010302PN007a_01L           ID17010302PN008a_02                                                                                           | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek         South Fork Coeur d Alene         Lower Little Pine Creek         Elsie Lake         Shields Gulch from headwaters to mining impact area                                                   | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78<br>1.46<br>14.3<br>1.2                          | Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles                   |
| ID17010213FN031_02           ID17010216PN001_02           ID17010216PN002_02           ID17010216PN002_02           ID17010216PN002_02L           ID17010216PN002_02L           ID17010301PN005_02L           ID17010301PN013_02a           ID17010301PN018_03           ID17010302PN002_02a           ID17010302PN002_02a           ID17010302PN008_02           ID17010302PN008a_02           ID17010302PN009a_02L                                  | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek         South Fork Coeur d Alene         Lower Little Pine Creek         Elsie Lake         Shields Gulch from headwaters to mining impact area         Lost Lake                                 | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78<br>0.78<br>1.46<br>14.3<br>1.2<br>4.45          | Miles<br>Miles<br>Acres<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Acres          |
| ID17010213FN031_02           ID17010216PN001_02           ID17010216PN002_02           ID17010216PN002_02           ID17010216PN002_02L           ID17010301PN005_02L           ID17010301PN005_02L           ID17010301PN013_02a           ID17010301PN013_02a           ID17010302PN002_02a           ID17010302PN002_02a           ID17010302PN008a_02           ID17010302PN009a_02L           ID17010302PN0011_02L                               | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek         South Fork Coeur d Alene         Lower Little Pine Creek         Elsie Lake         Shields Gulch from headwaters to mining impact area         Lost Lake         Unnamed Lake Gold Creek | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78<br>1.46<br>14.3<br>1.2<br>4.45<br>3.69          | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Acres          |
| ID17010213FN031_02           ID17010216PN001_02           ID17010216PN002_02           ID17010216PN002_02           ID17010216PN002_02L           ID17010301PN005_02L           ID17010301PN005_02L           ID17010301PN013_02a           ID17010301PN013_02a           ID17010301PN002_02a           ID17010302PN002_02a           ID17010302PN007a_01L           ID17010302PN009a_02L           ID17010302PN011_02L           ID17010302PN012_02L | Pend Oreille         South Salmo River - headwaters to Idaho/Washington border         Pend Oreille River tributaries, below Albeni Falls Dam         Freeman Lake - Freeman Creek         Upper Coeur d Alene         Revett Lake         NF Coeur d'Alene R tributaries btw Jordan Cr and Tepee Cr         Independence Creek, btw Ellis Cr. and Declaration Creek         South Fork Coeur d Alene         Lower Little Pine Creek         Elsie Lake         Shields Gulch from headwaters to mining impact area         Lost Lake         Unnamed Lake Gold Creek | 4.44<br>11.19<br>52.87<br>16.25<br>7.46<br>0.78<br>1.46<br>14.3<br>1.2<br>4.45<br>3.69<br>39.09 | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Acres<br>Acres |

| ID17010302PN015_02L | Upper and Lower Glidden Lakes                               | 34.87  | Acres |
|---------------------|-------------------------------------------------------------|--------|-------|
| 17010303            | Coeur d Alene Lake                                          |        |       |
| ID17010303PN001_02a | French Gulch                                                | 1.64   | Miles |
| ID17010303PN001_02b | Unnamed Tributary to Bennett Bay                            | 2.01   | Miles |
| ID17010303PN001_02c | Blue Creek                                                  | 8.49   | Miles |
| ID17010303PN001 02d | Neachen Creek, Unnamed Creek into Echo & Gotham Bay         | 6.67   | Miles |
| ID17010303PN001_02e | Unnamed Tribs to Powderhorn & Bell Bay                      | 4.78   | Miles |
| ID17010303PN001_02f | Delcaro Ck, Lyle Ck, Scott Ck, & Stinson Ck.                | 10.44  | Miles |
| ID17010303PN006_02  | Lake Creek - Idaho/Washington border to mouth               | 14.29  | Miles |
| ID17010303PN007_02  | Unnamed Tributary to Black Lake                             | 4.51   | Miles |
| ID17010303PN008_02  | 01 & 02 tribs to Anderson Lake                              | 4.38   | Miles |
| ID17010303PN009_02  | Black Lake - Stream order 1 & 2                             | 2.12   | Miles |
| ID17010303PN010_02  | Medicine Lake - Stream order 1 & 2                          | 8.17   | Miles |
| ID17010303PN010_03  | Evans Creek                                                 | 0.52   | Miles |
| ID17010303PN011_02  | Willow Creek - source to mouth                              | 0.98   | Miles |
| ID17010303PN012_02  | Evans Creek - source to mouth                               | 0.1    | Miles |
| ID17010303PN012_03  | Evans Creek - source to mouth                               | 1.17   | Miles |
| ID17010303PN013_02  | Robinson Creek - source to mouth                            | 12.15  | Miles |
| ID17010303PN014_02  | Bull Run Creek Stream Order 1 & 2                           | 4.54   | Miles |
| ID17010303PN014_02L | Bull Run Lake                                               | 78.89  | Acres |
| ID17010303PN015_02L | Crystal Lake                                                | 8.93   | Acres |
| ID17010303PN016_02  | Unnamed Tribs to CDA River between NF CDA River and Cataldo | 3.92   | Miles |
| ID17010303PN017_02  | Skeel and Cataldo Creeks - source to mouth                  | 11.75  | Miles |
| ID17010303PN018_02  | French Gulch - source to mouth                              | 10     | Miles |
| ID17010303PN019_02  | Hardy and Hayden Gulch and Whitman Draw Creeks Complex      | 11.16  | Miles |
| ID17010303PN021L_0L | Rose Lake                                                   | 317.13 | Acres |
| ID17010303PN022_03  | Tributary to Killarney Lake                                 | 1.58   | Miles |
| ID17010303PN023_02  | Tributaries to Swan Lake                                    | 6.49   | Miles |
| ID17010303PN024L_0L | Blue Lake                                                   | 227.25 | Acres |
| 17010304            | St. Joe                                                     |        |       |
| ID17010304PN005_02  | St. Joe River - St. Maries River to mouth                   | 0.38   | Miles |
| ID17010304PN007_02  | St. Maries River - Santa Creek to mouth                     | 14.37  | Miles |
## Panhandle

| ID17010304PN007_02a | Soldier Creek                                                | 5.74  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17010304PN007_02b | 1st and 2nd order tributaries to St. Maries River from Santa | 36.76 | Miles |
| ID17010304PN012_02  | St. Maries River - Carpenter Creek to Santa Creek            | 25.03 | Miles |
| ID17010304PN015_02  | St. Maries River - confluence of West Fork and Middle Fork   | 30.48 | Miles |
| ID17010304PN031_02  | Marble Creek - Hobo Creek to mouth                           | 21.88 | Miles |
| ID17010304PN035_02  | Marble Creek - source to Hobo Creek                          | 32.91 | Miles |
| ID17010304PN035_02L | Crater Lake                                                  | 3.84  | Acres |
| ID17010304PN038_02  | Boulder Creek - source to mouth                              | 20.67 | Miles |
| ID17010304PN039_02L | Crow Lake - Red Raven Creek                                  | 1.81  | Acres |
| ID17010304PN041_01L | Halo, Bacon and Forage Lakes                                 | 18.99 | Acres |
| ID17010304PN041_02  | 1st order tribs to St Joe River from NF to Gold Creek        | 27.4  | Miles |
| ID17010304PN041_02d | 1st order tributaries to St Joe River from Copper to Heller  | 15.86 | Miles |
| ID17010304PN041_02e | Ruby Creek and tributaries                                   | 10.69 | Miles |
| ID17010304PN041_02f | Bacon Creek 1st and 2nd order                                | 9.99  | Miles |
| ID17010304PN041_02L | Saint Joe and Frog Lakes                                     | 20.52 | Acres |
| ID17010304PN041_03b | Bean Creek 3rd order                                         | 1.95  | Miles |
| ID17010304PN041_03c | Bacon Creek 3rd order                                        | 1.7   | Miles |
| ID17010304PN045_02L | Dismal Lake                                                  | 5.96  | Acres |
| ID17010304PN059_04  | North Fork St. Joe River - Loop Creek to mouth               | 10.15 | Miles |
| ID17010304PN064_02  | Trout Creek - source to mouth                                | 15.4  | Miles |
| ID17010304PN065_02  | Falls Creek - source to mouth                                | 9.59  | Miles |
| ID17010304PN068_02  | Street Creek - source to mouth                               | 10.42 | Miles |
| 17010305            | Upper Spokane                                                |       |       |
| ID17010305PN001_02  | Liberty Creek - source to Idaho/Washington border            | 6.41  | Miles |
| ID17010305PN002_03  | Cable Creek - source to Idaho/Washington border              | 0.44  | Miles |
| ID17010305PN003_02  | Skalan Creek                                                 | 4.59  | Miles |
| ID17010305PN004_02  | Tributaries to Spokane River - CDA Lake to Post Falls Dam    | 6.15  | Miles |
| ID17010305PN004_02a | Blackwell Island Canal                                       | 0.95  | Miles |
| ID17010305PN005_01L | Avondale Lake                                                | 57.32 | Acres |
| ID17010305PN005_02  | Hayden Lake Tributaries to Lake and Rathdrum aquifer         | 22.34 | Miles |
| ID17010305PN005_02L | Alpine and Avondale Lakes                                    | 73.32 | Acres |
| ID17010305PN005_0L  | Chilco Lake                                                  | 33.5  | Acres |
| ID17010305PN006 02  | Yellowbanks Creek - source to mouth                          | 6.96  | Miles |
|                     |                                                              |       |       |

## Panhandle

| ID17010305PN007_02 | Jim Creek - source to mouth                              | 2.49 | Miles |
|--------------------|----------------------------------------------------------|------|-------|
| ID17010305PN013_02 | Twin Lakes                                               | 4.84 | Miles |
| ID17010305PN015_03 | Hauser Lake outlet - Hauser Lake to aquifer              | 2.94 | Miles |
| ID17010305PN016_02 | 01 & 02 tribs to Hauser Lake                             | 9.25 | Miles |
| 17010306           | Hangman                                                  |      |       |
| ID17010306PN002 02 | Little Hangman Creek - source to Idaho/Washington border | 0.63 | Miles |
| ID17010306PN004_02 | Rose Creek                                               | 1.06 | Miles |
| 17010308           | Little Spokane                                           |      |       |
|                    |                                                          |      |       |

| 17060101           | Hells Canyon                                           |       |       |
|--------------------|--------------------------------------------------------|-------|-------|
| ID17060101SL001_02 | Snake River - Wolf Creek to Salmon River               | 44.1  | Miles |
| ID17060101SL002_02 | Snake River - Sheep Creek to Wolf Creek                | 21.24 | Miles |
| ID17060101SL003_02 | Snake River - Hells Canyon Dam to Sheep Creek          | 6.11  | Miles |
| ID17060101SL005_02 | Brush Creek - source to mouth                          | 1.68  | Miles |
| ID17060101SL006 03 | Granite Creek - 3rd order (Devils Farm Creek to mouth) | 3.11  | Miles |
| ID17060101SL007_02 | Little Granite Creek - source to mouth                 | 6.76  | Miles |
| ID17060101SL008_02 | Bernard Creek - source to mouth                        | 4.51  | Miles |
| ID17060101SL013_02 | Caribou Creek - source to mouth                        | 3.47  | Miles |
| ID17060101SL014_02 | Kirkwood Creek - source to mouth                       | 20.49 | Miles |
| ID17060101SL015_02 | Kirby Creek - source to mouth                          | 4.27  | Miles |
| ID17060101SL016_02 | Corral Creek - source to mouth                         | 12.22 | Miles |
| ID17060101SL017_02 | Klopton Creek - source to mouth                        | 10.64 | Miles |
| ID17060101SL019_02 | West Creek - source to mouth                           | 6.05  | Miles |
| ID17060101SL020_02 | Big Canyon Creek - source to mouth                     | 12.3  | Miles |
| ID17060101SL021_02 | Jones Creek - source to mouth                          | 2.69  | Miles |
| ID17060101SL022_02 | Highrange Creek - source to mouth                      | 5.69  | Miles |
| ID17060101SL024_02 | Wolf Creek - Basin Creek to mouth                      | 11.63 | Miles |
| ID17060101SL026_02 | Basin Creek - source to mouth                          | 12.75 | Miles |
| ID17060101SL027_02 | Dry Creek - source to mouth                            | 1.72  | Miles |
| ID17060101SL027_03 | Dry Creek - source to mouth                            | 1.79  | Miles |
| 17060103           | Lower Snake-Asotin                                     |       |       |
| ID17060103SL001_02 | Snake River                                            | 3.76  | Miles |
| ID17060103SL002_02 | Snake River-Captain John Creek to Asotin Creek         | 16.57 | Miles |
| ID17060103SL002_08 | Snake River - Captain John Creek to Asotin Creek       | 17.02 | Miles |
| ID17060103SL003_02 | Snake River - Cottonwood Creek to Captain John Creek   | 34.8  | Miles |
| ID17060103SL003_08 | Snake River - Cottonwood Creek to Captain John Creek   | 19.83 | Miles |
| ID17060103SL004_02 | Snake River - Salmon River to Cottonwood Creek         | 17.37 | Miles |
| ID17060103SL005_02 | Cottonwood Creek - source to mouth                     | 15.04 | Miles |
| ID17060103SL006_02 | Cave Gulch - source to mouth                           | 7.16  | Miles |
| ID17060103SL008_02 | Middle Creek - source to mouth                         | 3.54  | Miles |
| ID17060103SL009_02 | Dough Creek - source to mouth                          | 4.16  | Miles |

| ID17060103SL011_02  | Captain John Creek - source to mouth                         | 32.5  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060103SL011_03  | Captain John Creek - source to mouth                         | 4.15  | Miles |
| ID17060103SL013_02  | Tenmile Canyon - source to mouth                             | 16.57 | Miles |
| ID17060103SL013_03  | Tenmile Canyon - source to mouth                             | 1.45  | Miles |
| ID17060103SL015_02  | Unnamed Tributary - source to mouth (T34N, R05W, Sec. 24)    | 6.22  | Miles |
| 17060201            | Upper Salmon                                                 |       |       |
| ID17060201SL001_03  | Salmon River - Pennal Gulch to Pahsimeroi River              | 15.1  | Miles |
| ID17060201SL002_02  | Morgan Creek - West Creek to mouth                           | 22.44 | Miles |
| ID17060201SL007_02  | Challis Creek - Darling Creek to mouth                       | 2.72  | Miles |
| ID17060201SL008_02  | Darling Creek - source to mouth                              | 20.08 | Miles |
| ID17060201SL011_02L | Spruce Gulch Lake                                            | 10.93 | Acres |
| ID17060201SL012_02L | Mosquito Flat Reservoir                                      | 40.1  | Acres |
| ID17060201SL014_02  | Salmon River - Garden Creek to Pennal Gulch                  | 48.82 | Miles |
| ID17060201SL014_03  | Salmon River - Garden Creek to Pennal Gulch                  | 6.3   | Miles |
| ID17060201SL014_04  | Salmon River - Garden Creek to Pennal Gulch                  | 2.72  | Miles |
| ID17060201SL015_02L | Buster Lake                                                  | 11.44 | Acres |
| ID17060201SL015_04  | Garden Creek - source to mouth                               | 8.82  | Miles |
| ID17060201SL016_02L | Unnamed Diversion - Tributary to Salmon River (Bradbury Flat | 7.17  | Acres |
| ID17060201SL016_03  | Salmon River - East Fork Salmon River to Garden Creek        | 2.33  | Miles |
| ID17060201SL016_04  | Salmon River - East Fork Salmon River to Garden Creek        | 2.25  | Miles |
| ID17060201SL017_01L | Little Bayhorse Lake                                         | 15.03 | Acres |
| ID17060201SL017_02L | Bayhorse Lake                                                | 25.15 | Acres |
| ID17060201SL018_02  | Lyon Creek - source to mouth                                 | 8.83  | Miles |
| ID17060201SL024_02L | Unnamed Lake - Trail Creek                                   | 3.68  | Acres |
| ID17060201SL027_02  | Salmon River - Thompson Creek to Squaw Creek                 | 21.15 | Miles |
| ID17060201SL027_03  | Salmon River - Thompson Creek to Squaw Creek                 | 3.11  | Miles |
| ID17060201SL029_02  | Pat Hughes Creek -source to mouth                            | 2.96  | Miles |
| ID17060201SL033_02  | Ramey Creek - source to mouth                                | 12.22 | Miles |
| ID17060201SL034_02L | Unnamed Lakes - Trib to Yankee Fork                          | 5.05  | Acres |
| ID17060201SL041_02  | Jordan Creek                                                 | 3.93  | Miles |
| ID17060201SL042_02  | Jordan Creek - source to Unnamed Tributary                   | 17.29 | Miles |
| ID17060201SL043_02  | West Fork Yankee Fork Creek - Lightning Creek to mouth       | 18.38 | Miles |
| ID17060201SL043_03  | West Fork Yankee Fork Creek - Lightning Creek to mouth       | 5.23  | Miles |

| ID17060201SL044_02  | Lightning Creek - source to mouth                       | 18.17   | Miles |
|---------------------|---------------------------------------------------------|---------|-------|
| ID17060201SL045_02  | West Fork Yankee Fork Creek - source to Lightning Creek | 21.26   | Miles |
| ID17060201SL045_02L | West Fork Yankee Fork Lakes                             | 16.67   | Acres |
| ID17060201SL045_03  | West Fork Yankee Fork Creek - source to Lightning Creek | 2.19    | Miles |
| ID17060201SL046_02  | Cabin Creek - source to mouth                           | 9.52    | Miles |
| ID17060201SL048_02  | Basin Creek - East Basin Creek to mouth                 | 3.15    | Miles |
| ID17060201SL049_02L | East Basin Lakes                                        | 13.39   | Acres |
| ID17060201SL051_03  | Valley Creek - Trap Creek to mouth                      | 6.37    | Miles |
| ID17060201SL052_02  | Stanley Creek - source to mouth                         | 16.99   | Miles |
| ID17060201SL052_03  | Stanley Creek - source to mouth                         | 1.86    | Miles |
| ID17060201SL053_02  | Valley Creek - source to Trap Creek                     | 29.65   | Miles |
| ID17060201SL053_02L | Valley Creek Lakes                                      | 25.32   | Acres |
| ID17060201SL054_02  | Trap Creek - Meadow Creek to mouth                      | 4.65    | Miles |
| ID17060201SL055_02L | Kelly and Martin Lakes                                  | 9.08    | Acres |
| ID17060201SL058_02L | Stanley Lake                                            | 176.13  | Acres |
| ID17060201SL059_02  | Crooked Creek - source to mouth                         | 6.65    | Miles |
| ID17060201SL061_02  | Goat Creek - source to mouth                            | 9.92    | Miles |
| ID17060201SL061_03  | Goat Creek - source to mouth                            | 0.03    | Miles |
| ID17060201SL062_02  | Meadow Creek - source to mouth                          | 8.18    | Miles |
| ID17060201SL062_03  | Meadow Creek - source to mouth                          | 2.49    | Miles |
| ID17060201SL063_02  | Salmon River - Redfish Lake Creek to Valley Creek       | 6.12    | Miles |
| ID17060201SL064_03  | Redfish Lake Creek - Redfish Lake to mouth              | 2.58    | Miles |
| ID17060201SL064_03L | Little Redfish Lake                                     | 64.08   | Acres |
| ID17060201SL066_02  | Fishhook Creek                                          | 8.88    | Miles |
| ID17060201SL066L_0L | Redfish Lake                                            | 1511.25 | Acres |
| ID17060201SL067_03  | Redfish Lake Creek - source to Redfish Lake             | 3.93    | Miles |
| ID17060201SL072_02  | Salmon River - Fisher Creek to Decker Creek             | 2.51    | Miles |
| ID17060201SL072_05  | Salmon River - Fisher Creek to Decker Creek             | 8.26    | Miles |
| ID17060201SL073_02  | Salmon River - Alturas Lake Creek to Fisher Creek       | 5.15    | Miles |
| ID17060201SL075_02L | Yellow Belly Lake                                       | 195.27  | Acres |
| ID17060201SL075_04  | Alturas Lake Creek - Alturas Lake to mouth              | 7.03    | Miles |
| ID17060201SL075_04L | Perkins Lake                                            | 48.1    | Acres |
| ID17060201SL076_01L | McDonald Lake                                           | 13.91   | Acres |

| ID17060201SL076_02  | Toxaway/Farley Lake - source to mouth                 | 10.74  | Miles |
|---------------------|-------------------------------------------------------|--------|-------|
| ID17060201SL077_02  | Unnamed Tributaries to Petit Lake                     | 9.72   | Miles |
| ID17060201SL077_02L | Pettit Lake                                           | 390.8  | Acres |
| ID17060201SL078_02  | Unnamed Tributaries to Alturas Lake                   | 1.28   | Miles |
| ID17060201SL078L_0L | Alturas Lake                                          | 824.51 | Acres |
| ID17060201SL079_02  | Alturas Lake Creek - source to Alturas Lake           | 13.42  | Miles |
| ID17060201SL079_03  | Alturas Lake Creek - source to Alturas Lake           | 2.61   | Miles |
| ID17060201SL086_02  | Champion Creek - source to mouth                      | 19.67  | Miles |
| ID17060201SL086_02L | Champion Lakes                                        | 40.07  | Acres |
| ID17060201SL087_01L | Fourth of July Lake                                   | 7.15   | Acres |
| ID17060201SL087_02L | Heart and Six Lakes                                   | 10.04  | Acres |
| ID17060201SL088_03  | Fisher Creek - source to mouth                        | 0.71   | Miles |
| ID17060201SL089_03  | Williams Creek - source to mouth                      | 1.46   | Miles |
| ID17060201SL093_02L | Rough Lake                                            | 10.46  | Acres |
| ID17060201SL094_02  | Warm Springs Creek - Swimm Creek to mouth             | 25.83  | Miles |
| ID17060201SL095_02  | Warm Springs Creek - Pigtail Creek to Swimm Creek     | 36.41  | Miles |
| ID17060201SL095_02L | Garland Lakes                                         | 4.56   | Acres |
| ID17060201SL095_03  | Warm Springs Creek - Pigtail Creek to Swimm Creek     | 4.83   | Miles |
| ID17060201SL096_02  | Pigtail Creek - source to mouth                       | 16.12  | Miles |
| ID17060201SL097_03  | Warm Springs Creek - source to Pigtail Creek          | 3.75   | Miles |
| ID17060201SL101_02  | Sullivan Creek - source to mouth                      | 14.54  | Miles |
| ID17060201SL101_03  | Sullivan Creek - source to mouth                      | 3.48   | Miles |
| ID17060201SL101_03L | Sulivan Lake                                          | 42     | Acres |
| ID17060201SL102_02  | East Fork Salmon River - Herd Creek to mouth          | 28.24  | Miles |
| ID17060201SL102_05  | East Fork Salmon River - Herd Creek to mouth          | 10.38  | Miles |
| ID17060201SL103_04  | East Fork Salmon River - Germania Creek to Herd Creek | 15.65  | Miles |
| ID17060201SL104_02  | Big Lake Creek - source to mouth                      | 33.48  | Miles |
| ID17060201SL104_03L | Jimmy Smith Lake                                      | 64.26  | Acres |
| ID17060201SL105_01L | Unnamed Lake - Trib to Big Boulder Creek              | 3.08   | Acres |
| ID17060201SL106_01L | Boulder Chain Lakes                                   | 102.5  | Acres |
| ID17060201SL107_02  | Germania Creek - Chamberlain Creek to mouth           | 7.17   | Miles |
| ID17060201SL108_02  | Chamberlain Creek - source to mouth                   | 8.12   | Miles |
| ID17060201SL109_03  | Germania Creek - source to Chamberlain Creek          | 5.6    | Miles |

| ID17060201SL110         East Fork Salmon River - confluence of South and West Fork         20.41         Mill           ID17060201SL110         03         East Fork Salmon River - confluence of South and West Fork         5.88         Mill           ID17060201SL116         02         West Fork East Fork Salmon River - source to mouth         9.95         Mill           ID17060201SL116         02         Pine Creek - source to mouth         13.15         Mill           ID17060201SL118         02         Med Donald Creek - source to mouth         10.13         Mill           ID17060201SL124         02         Road Creek - corral Basin Creek to mouth         17.02         Mill           ID17060201SL127         02         Corral Basin Creek - source to mouth         1.57         Mill           ID17060201SL122         02         Corral Basin Creek - source to mouth         1.57         Mill           ID17060201SL128         03         Horse Basin Creek - source to mouth         4.43         Mill           ID17060201SL128         03         Horse Basin Creek - source to mouth         7.22         Mill           ID17060201SL128         03         Spar Canyon Creek - source to mouth         7.22         Mill           ID17060201SL130         Bardshaw Gulch - source to mouth         14.33         Mill                                                                                                                                    |                     |                                                              |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060201SL110         Gast Fork Salmon River - confluence of South and West Fork         5.88         Mill           ID17060201SL111         West Fork East Fork Salmon River - source to mouth         9.95         Mill           ID17060201SL116         Gast Fork East Fork Salmon River - source to mouth         1.7         Mill           ID17060201SL116         Den Creek - source to mouth         13.15         Mill           ID17060201SL117         OZ         McDonald Creek - source to mouth         10.13         Mill           ID17060201SL124         Road Creek - corral Basin Creek to mouth         17.02         Mill           ID17060201SL127         OZ         Corral Basin Creek - source to mouth         1.493         Mill           ID17060201SL128         OZ         Corral Basin Creek - source to mouth         1.57         Mill           ID17060201SL128         OZ         Horse Basin Creek - source to mouth         4.47         Mill           ID17060201SL129         OZ         Spar Canyon Creek - source to mouth         4.47         Mill           ID17060201SL129         OZ         Spar Canyon Creek - source to mouth         14.75         Mill           ID17060201SL130         Bradshaw Gulch - source to mouth         14.75         Mill           ID17060201SL131         OZ         Warm Spring                                                                                                                                  | ID17060201SL110_02  | East Fork Salmon River - confluence of South and West Fork   | 20.41 | Miles |
| ID17060201SL111         02         West Fork East Fork Salmon River - source to mouth         9.95         Mill           ID17060201SL115         03         Bowery Creek - source to mouth         1.7         Mill           ID17060201SL116         02         Pine Creek - source to mouth         10.13         Mill           ID17060201SL117         02         McDonald Creek - conral basin Creek to mouth         10.13         Mill           ID17060201SL124         02         Road Creek - Corral Basin Creek to mouth         17.02         Mill           ID17060201SL127         03         Corral Basin Creek - source to mouth         1.57         Mill           ID17060201SL128         02         Horse Basin Creek - source to mouth         1.18         Mill           ID17060201SL129         02         Spar Canyon Creek - source to mouth         4.4.7         Mill           ID17060201SL129         02         Spar Canyon Creek - source to mouth         7.22         Mill           ID17060201SL130         02         Bradshaw Gulch - source to mouth         4.4.32         Mill           ID17060201SL131         02         Spar Canyon Creek - source to mouth         7.22         Mill           ID17060201SL131         02         Warm Spring Creek - Hole-In-Rock Creek to mouth         3.3         Mill<                                                                                                                                            | ID17060201SL110_03  | East Fork Salmon River - confluence of South and West Fork   | 5.88  | Miles |
| ID17060201SL115_03         Bowery Creek - source to mouth         1.7         Mill           ID17060201SL116_02         Pine Creek - source to mouth         10.13         Mill           ID17060201SL117_02         McDonald Creek - source to mouth         10.13         Mill           ID17060201SL118_02         Herd Creek - corral Basin Creek to mouth         17.02         Mill           ID17060201SL124_02         Road Creek - Corral Basin Creek to mouth         14.93         Mill           ID17060201SL127_03         Corral Basin Creek - source to mouth         14.93         Mill           ID17060201SL128_02         Horse Basin Creek - source to mouth         1.57         Mill           ID17060201SL128_03         Horse Basin Creek - source to mouth         4.47         Mill           ID17060201SL129_03         Spar Canyon Creek - source to mouth         4.432         Mill           ID17060201SL129_03         Spar Canyon Creek - source to mouth         14.75         Mill           ID17060201SL130_02         Bradshaw Gulch - source to mouth         14.75         Mill           ID17060201SL131_02         Warm Spring Creek - Hole-In-Rock Creek to mouth         3.3         Mill           ID17060201SL131_03         Warm Spring Creek Pond         35.39         Acr           ID17060202SL011_02         Pahsimeroi Ri                                                                                                                        | ID17060201SL111_02  | West Fork East Fork Salmon River - source to mouth           | 9.95  | Miles |
| ID17060201SL116         Pine Creek - source to mouth         13.15         Mill           ID17060201SL117         02         McDonald Creek - source to mouth         10.13         Mill           ID17060201SL118         02         Herd Creek - confluence of West Fork Herd Creek and East Pass         23.74         Mill           ID17060201SL124         02         Road Creek - Corral Basin Creek to mouth         11.02         Mill           ID17060201SL127         02         Corral Basin Creek - source to mouth         14.93         Mill           ID17060201SL127         03         Corral Basin Creek - source to mouth         14.77         Mill           ID17060201SL128         02         Horse Basin Creek - source to mouth         4.47         Mill           ID17060201SL129         03         Spar Canyon Creek - source to mouth         4.43         Mill           ID17060201SL129         03         Spar Canyon Creek - source to mouth         7.22         Mill           ID17060201SL130         02         Bradshaw Gulch - source to mouth         14.75         Mill           ID17060201SL131         04         Warm Spring Creek - Hole-In-Rock Creek to mouth         3.3         Mill           ID17060201SL131         04         Warm Spring Creek - source to mouth         10.11         Mill <td>ID17060201SL115_03</td> <td>Bowery Creek - source to mouth</td> <td>1.7</td> <td>Miles</td>                                                | ID17060201SL115_03  | Bowery Creek - source to mouth                               | 1.7   | Miles |
| ID17060201SL117         02         McDonald Creek - source to mouth         10.13         Mill           ID17060201SL118         02         Herd Creek - confluence of West Fork Herd Creek and East Pass         23.74         Mill           ID17060201SL124         02         Road Creek - corral Basin Creek to mouth         14.93         Mill           ID17060201SL127         02         Corral Basin Creek - source to mouth         14.93         Mill           ID17060201SL128         02         Horse Basin Creek - source to mouth         1.57         Mill           ID17060201SL128         03         Horse Basin Creek - source to mouth         4.47         Mill           ID17060201SL129         02         Spar Canyon Creek - source to mouth         4.4.32         Mill           ID17060201SL130         02         Bradshaw Gulch - source to mouth         14.75         Mill           ID17060201SL131         02         Bradshaw Gulch - source to mouth         39.29         Mill           ID17060201SL131         02         Warm Spring Creek - source to mouth         39.29         Mill           ID17060201SL131         04         Warm Spring Creek Pond         35.39         Acr           ID17060201SL134         02         Hole-in-Rock Creek to mouth         10.11         Mill                                                                                                                                                                | ID17060201SL116_02  | Pine Creek - source to mouth                                 | 13.15 | Miles |
| ID17060201SL118         Q2         Herd Creek - confluence of West Fork Herd Creek and East Pass         23.74         Mill           ID17060201SL124         Q2         Road Creek - corral Basin Creek to mouth         17.02         Mill           ID17060201SL127         Q2         Corral Basin Creek - source to mouth         14.93         Mill           ID17060201SL127         Q3         Corral Basin Creek - source to mouth         1.57         Mill           ID17060201SL128         Q2         Horse Basin Creek - source to mouth         4.47         Mill           ID17060201SL128         Q3         Horse Basin Creek - source to mouth         4.47         Mill           ID17060201SL129         Q2         Spar Canyon Creek - source to mouth         7.22         Mill           ID17060201SL130         Spar Canyon Creek - source to mouth         14.75         Mill           ID17060201SL130         Bradshaw Gulch - source to mouth         14.75         Mill           ID17060201SL131         Q4         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mill           ID17060201SL131         Q4         Warm Spring Creek Pond         35.39         Acr           ID17060201SL134         Q2         Pennal Gulch - source to mouth         10.11         Mill           ID17                                                                                                                                                    | ID17060201SL117_02  | McDonald Creek - source to mouth                             | 10.13 | Miles |
| ID17060201SL124_02         Road Creek - Corral Basin Creek to mouth         17.02         Mill           ID17060201SL127_02         Corral Basin Creek - source to mouth         14.93         Mill           ID17060201SL127_03         Corral Basin Creek - source to mouth         1.57         Mill           ID17060201SL128_02         Horse Basin Creek - source to mouth         21.18         Mill           ID17060201SL128_03         Horse Basin Creek - source to mouth         4.47         Mill           ID17060201SL129_02         Spar Canyon Creek - source to mouth         44.32         Mill           ID17060201SL129_03         Spar Canyon Creek - source to mouth         7.22         Mill           ID17060201SL130_02         Bradshaw Gulch - source to mouth         14.75         Mill           ID17060201SL131_02         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mill           ID17060201SL131_03         Warm Spring Creek Pond         35.39         Acr           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         10.11         Mill           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         10.11         Mill           ID17060202SL001_02         Pahsimeroi River - Patterson Creek to mouth         52.33         Mill           ID17060202SL001_03                                                                                                                        | ID17060201SL118_02  | Herd Creek -confluence of West Fork Herd Creek and East Pass | 23.74 | Miles |
| ID17060201SL127_02         Corral Basin Creek - source to mouth         14.93         Mili           ID17060201SL127_03         Corral Basin Creek - source to mouth         1.57         Mili           ID17060201SL128_02         Horse Basin Creek - source to mouth         21.18         Mili           ID17060201SL128_03         Horse Basin Creek - source to mouth         4.47         Mili           ID17060201SL129_02         Spar Canyon Creek - source to mouth         44.32         Mili           ID17060201SL129_03         Spar Canyon Creek - source to mouth         7.22         Mili           ID17060201SL130_02         Bradshaw Gulch - source to mouth         14.75         Mili           ID17060201SL131_02         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mili           ID17060201SL131_03         Warm Spring Creek Pond         35.39         Acr           ID17060201SL131_04L         Warm Springs Creek Pond         35.39         Acr           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         10.11         Mili           ID17060202SL001_02         Pahsimeroi         Niver - Patterson Creek to mouth         10.11         Mili           ID17060202SL001_03         Pahsimeroi River - Patterson Creek to mouth         4.06         Mili           ID17060202SL001_03 <td>ID17060201SL124_02</td> <td>Road Creek - Corral Basin Creek to mouth</td> <td>17.02</td> <td>Miles</td>               | ID17060201SL124_02  | Road Creek - Corral Basin Creek to mouth                     | 17.02 | Miles |
| ID17060201SL127_03         Corral Basin Creek - source to mouth         1.57         Mill           ID17060201SL128_02         Horse Basin Creek - source to mouth         21.18         Mill           ID17060201SL128_03         Horse Basin Creek - source to mouth         44.47         Mill           ID17060201SL129_02         Spar Canyon Creek - source to mouth         44.32         Mill           ID17060201SL129_03         Spar Canyon Creek - source to mouth         7.22         Mill           ID17060201SL130_02         Bradshaw Gulch - source to mouth         14.75         Mill           ID17060201SL131_02         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mill           ID17060201SL131_03         Warm Springs Creek - Hole-in-Rock Creek to mouth         3.3         Mill           ID17060201SL131_04L         Warm Springs Creek - source to mouth         18.83         Mill           ID17060201SL131_02         Hole-in-Rock Creek - source to mouth         10.11         Mill           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         10.11         Mill           ID17060201SL135_02         Pennal Gulch - source to mouth         10.11         Mill           ID17060202SL001_02         Pahsimeroi River - Patterson Creek to mouth         52.33         Mill           ID170602                                                                                                               | ID17060201SL127_02  | Corral Basin Creek - source to mouth                         | 14.93 | Miles |
| ID17060201SL128         Horse Basin Creek - source to mouth         21.18         Mil           ID17060201SL128         03         Horse Basin Creek - source to mouth         4.47         Mil           ID17060201SL129         02         Spar Canyon Creek - source to mouth         44.32         Mil           ID17060201SL129         03         Spar Canyon Creek - source to mouth         7.22         Mil           ID17060201SL130         02         Bradshaw Gulch - source to mouth         14.75         Mil           ID17060201SL131         02         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mil           ID17060201SL131         03         Warm Spring Creek Pond         35.39         Acr           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         10.11         Mil           ID17060201SL135_02         Pennal Gulch - source to mouth         10.11         Mil           ID17060201SL135_02         Pennal Gulch - source to mouth         10.11         Mil           ID17060201SL135_02         Pahsimeroi         10.11         Mil           ID17060202SL001_02         Pahsimeroi River - Patterson Creek to mouth         4.06         Mil           ID17060202SL004_03         North Fork Lawson Creek - source to mouth         1.9         Mil <td>ID17060201SL127_03</td> <td>Corral Basin Creek - source to mouth</td> <td>1.57</td> <td>Miles</td>                                                  | ID17060201SL127_03  | Corral Basin Creek - source to mouth                         | 1.57  | Miles |
| ID17060201SL128 03         Horse Basin Creek - source to mouth         4.47         Mili           ID17060201SL129 02         Spar Canyon Creek - source to mouth         44.32         Mili           ID17060201SL129 03         Spar Canyon Creek - source to mouth         7.22         Mili           ID17060201SL130 02         Bradshaw Gulch - source to mouth         14.75         Mili           ID17060201SL131 02         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mili           ID17060201SL131 03         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mili           ID17060201SL131 04         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mili           ID17060201SL131 04L         Warm Spring Creek - source to mouth         18.83         Mili           ID17060201SL134 02         Hole-in-Rock Creek - source to mouth         10.11         Mili           ID17060201SL135 02         Pennal Gulch - source to mouth         10.11         Mili           ID17060202SL001 02         Pahsimeroi         River - Patterson Creek to mouth         52.33         Mili           ID17060202SL002 03         Pahsimeroi River - Patterson Creek to mouth         4.06         Mili           ID17060202SL003 03         Pahsimeroi River - Meadow Creek to Patterson Creek         1.11         Mili<                                                                                              | ID17060201SL128_02  | Horse Basin Creek - source to mouth                          | 21.18 | Miles |
| ID17060201SL129         Spar Canyon Creek - source to mouth         44.32         Mil           ID17060201SL129         03         Spar Canyon Creek - source to mouth         7.22         Mil           ID17060201SL130         02         Bradshaw Gulch - source to mouth         14.75         Mil           ID17060201SL131         02         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mil           ID17060201SL131         03         Warm Spring Creek - Hole-in-Rock Creek to mouth         33.3         Mil           ID17060201SL131         04         Warm Spring Creek - Hole-in-Rock Creek to mouth         35.39         Acr           ID17060201SL134         02         Hole-in-Rock Creek - source to mouth         10.11         Mil           ID17060201SL135         02         Pennal Gulch - source to mouth         10.11         Mil           ID17060202SL001         02         Pahsimeroi         River - Patterson Creek to mouth         52.33         Mil           ID17060202SL001         02         Pahsimeroi River - Patterson Creek to mouth         4.06         Mil           ID17060202SL002         03         Pahsimeroi River - Meadow Creek to Patterson Creek         1.11         Mil           ID17060202SL004         3         North Fork Lawson Creek - source to mouth                                                                                                                                            | ID17060201SL128_03  | Horse Basin Creek - source to mouth                          | 4.47  | Miles |
| ID17060201SL129_03         Spar Canyon Creek - source to mouth         7.22         Mil           ID17060201SL130_02         Bradshaw Gulch - source to mouth         14.75         Mil           ID17060201SL131_02         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mil           ID17060201SL131_03         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mil           ID17060201SL131_04         Warm Spring Creek Pond         35.39         Acr           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         18.83         Mil           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         10.11         Mil           ID17060201SL135_02         Pennal Gulch - source to mouth         10.11         Mil           ID17060202SL001_02         Pahsimeroi         River - Patterson Creek to mouth         4.06         Mil           ID17060202SL001_03         Pahsimeroi River - Patterson Creek to mouth         4.06         Mil           ID17060202SL002_03         Pahsimeroi River - Meadow Creek to Patterson Creek         1.11         Mil           ID17060202SL004_03         North Fork Lawson Creek - source to mouth         1.9         Mil           ID17060202SL008_02         Pahsimeroi River - Goldburg Creek to Big Creek         55.52         Mil <t< td=""><td>ID17060201SL129_02</td><td>Spar Canyon Creek - source to mouth</td><td>44.32</td><td>Miles</td></t<> | ID17060201SL129_02  | Spar Canyon Creek - source to mouth                          | 44.32 | Miles |
| ID17060201SL130_02         Bradshaw Gulch - source to mouth         14.75         Mil           ID17060201SL131_02         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mil           ID17060201SL131_03         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mil           ID17060201SL131_04         Warm Spring Creek Pond         35.39         Acr           ID17060201SL131_02         Hole-in-Rock Creek - source to mouth         18.83         Mil           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         10.11         Mil           ID17060201SL135_02         Pennal Gulch - source to mouth         10.11         Mil           ID17060202SL001_02         Pahsimeroi         River - Patterson Creek to mouth         4.06           ID17060202SL001_03         Pahsimeroi River - Patterson Creek to mouth         4.06         Mil           ID17060202SL001_03         Pahsimeroi River - Meadow Creek to Patterson Creek         1.11         Mil           ID17060202SL004_03         North Fork Lawson Creek - source to mouth         1.9         Mil           ID17060202SL008_02         Pahsimeroi River - Goldburg Creek to Furey Lane (T15S, R22E)         3.94         Mil           ID17060202SL010_02         Pahsimeroi River - Goldburg Creek to Big Creek         55.52         Mil                                                                                                       | ID17060201SL129_03  | Spar Canyon Creek - source to mouth                          | 7.22  | Miles |
| ID17060201SL131         02         Warm Spring Creek - Hole-in-Rock Creek to mouth         39.29         Mill           ID17060201SL131         03         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mill           ID17060201SL131         04L         Warm Springs Creek Pond         35.39         Acr           ID17060201SL131         04L         Warm Springs Creek Pond         35.39         Acr           ID17060201SL134         02         Hole-in-Rock Creek - source to mouth         18.83         Mill           ID17060201SL135         02         Pennal Gulch - source to mouth         10.11         Mill           ID17060202SL001         02         Pahsimeroi         10.11         Mill           ID17060202SL001         02         Pahsimeroi River - Patterson Creek to mouth         4.06         Mill           ID17060202SL002         03         Pahsimeroi River - Meadow Creek to Patterson Creek         1.11         Mill           ID17060202SL004         03         North Fork Lawson Creek - source to mouth         1.9         Mill           ID17060202SL004         03         North Fork Lawson Creek - source to mouth         1.9         Mill           ID17060202SL008         02         Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)         3.94         Mill <td>ID17060201SL130_02</td> <td>Bradshaw Gulch - source to mouth</td> <td>14.75</td> <td>Miles</td>                                           | ID17060201SL130_02  | Bradshaw Gulch - source to mouth                             | 14.75 | Miles |
| ID17060201SL131_03         Warm Spring Creek - Hole-in-Rock Creek to mouth         3.3         Mili           ID17060201SL131_04L         Warm Springs Creek Pond         35.39         Acr           ID17060201SL134_02         Hole-in-Rock Creek - source to mouth         18.83         Mili           ID17060201SL135_02         Pennal Gulch - source to mouth         10.11         Mili           ID17060202         Pahsimeroi         10.11         Mili           ID17060202         Pahsimeroi River - Patterson Creek to mouth         52.33         Mili           ID17060202SL001_02         Pahsimeroi River - Patterson Creek to mouth         4.06         Mili           ID17060202SL001_03         Pahsimeroi River - Patterson Creek to mouth         4.06         Mili           ID17060202SL002_03         Pahsimeroi River - Meadow Creek to Patterson Creek         1.11         Mili           ID17060202SL004_03         North Fork Lawson Creek - source to mouth         1.9         Mili           ID17060202SL008_02         Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)         3.94         Mili           ID17060202SL010_02         Pahsimeroi River - Goldburg Creek to Big Creek         55.52         Mili           ID17060202SL010_02         Pahsimeroi River - Source to mouth (T12N, R23E, Sec. 22)         13.52         Mili                                                                                                                | ID17060201SL131_02  | Warm Spring Creek - Hole-in-Rock Creek to mouth              | 39.29 | Miles |
| ID17060201SL131         04L         Warm Springs Creek Pond         35.39         Acr           ID17060201SL134         02         Hole-in-Rock Creek - source to mouth         18.83         Mil           ID17060201SL135         02         Pennal Gulch - source to mouth         10.11         Mil           ID17060202         Pahsimeroi         Pahsimeroi         10.11         Mil           ID17060202         Pahsimeroi River - Patterson Creek to mouth         52.33         Mil           ID17060202SL001         02         Pahsimeroi River - Patterson Creek to mouth         4.06         Mil           ID17060202SL002         03         Pahsimeroi River - Patterson Creek to mouth         4.06         Mil           ID17060202SL002         03         Pahsimeroi River - Meadow Creek to Patterson Creek         1.11         Mil           ID17060202SL004         03         North Fork Lawson Creek - source to mouth         1.9         Mil           ID17060202SL004         03         North Fork Lawson Creek - Source to mouth         1.9         Mil           ID17060202SL008         02         Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)         3.94         Mil           ID17060202SL010         02         Pahsimeroi River - Goldburg Creek to Big Creek         55.52         Mil                                                                                                                                                       | ID17060201SL131_03  | Warm Spring Creek - Hole-in-Rock Creek to mouth              | 3.3   | Miles |
| ID17060201SL134_02       Hole-in-Rock Creek - source to mouth       18.83       Mil         ID17060201SL135_02       Pennal Gulch - source to mouth       10.11       Mil <b>17060202 Pahsimeroi</b> 10.11       Mil         ID17060202SL001_02       Pahsimeroi River - Patterson Creek to mouth       52.33       Mil         ID17060202SL001_03       Pahsimeroi River - Patterson Creek to mouth       4.06       Mil         ID17060202SL001_03       Pahsimeroi River - Patterson Creek to mouth       4.06       Mil         ID17060202SL002_03       Pahsimeroi River - Meadow Creek to Patterson Creek       1.11       Mil         ID17060202SL004_03       North Fork Lawson Creek - source to mouth       1.9       Mil         ID17060202SL008_02       Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)       3.94       Mil         ID17060202SL009_02L       Grouse Creek Lakes       10.9       Acr         ID17060202SL010_02       Pahsimeroi River - Goldburg Creek to Big Creek       55.52       Mil         ID17060202SL012_02       Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)       13.52       Mil         ID17060202SL012_03       Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)       17.44       Mil         ID17060202SL013_03       Doublespring Creek - Christian Gulch to mouth </td <td>ID17060201SL131_04L</td> <td>Warm Springs Creek Pond</td> <td>35.39</td> <td>Acres</td>                                                  | ID17060201SL131_04L | Warm Springs Creek Pond                                      | 35.39 | Acres |
| ID17060201SL135_02Pennal Gulch - source to mouth10.11Mill17060202PahsimeroiID17060202SL001_02Pahsimeroi River - Patterson Creek to mouth52.33MillID17060202SL001_03Pahsimeroi River - Patterson Creek to mouth4.06MillID17060202SL002_03Pahsimeroi River - Patterson Creek to Patterson Creek1.11MillID17060202SL004_03North Fork Lawson Creek - source to mouth1.9MillID17060202SL008_02Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)3.94MillID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MillID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MillID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MillID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MillID17060202SL014_02Christian Gulch - source to mouth17.87Mill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID17060201SL134_02  | Hole-in-Rock Creek - source to mouth                         | 18.83 | Miles |
| 17060202PahsimeroiID17060202SL001_02Pahsimeroi River - Patterson Creek to mouth52.33ID17060202SL001_03Pahsimeroi River - Patterson Creek to mouth4.06ID17060202SL002_03Pahsimeroi River - Meadow Creek to Patterson Creek1.11ID17060202SL004_03North Fork Lawson Creek - source to mouth1.9ID17060202SL008_02Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)3.94ID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52ID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52ID17060202SL013_03Doublespring Creek - Christian Gulch to mouth3.32ID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45ID17060202SL014_02Christian Gulch - source to mouth17.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID17060201SL135_02  | Pennal Gulch - source to mouth                               | 10.11 | Miles |
| ID17060202SL001_02Pahsimeroi River - Patterson Creek to mouth52.33MilID17060202SL001_03Pahsimeroi River - Patterson Creek to mouth4.06MilID17060202SL002_03Pahsimeroi River - Meadow Creek to Patterson Creek1.11MilID17060202SL004_03North Fork Lawson Creek - source to mouth1.9MilID17060202SL008_02Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)3.94MilID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MilID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17060202            | Pahsimeroi                                                   |       |       |
| ID17060202SL001_03Pahsimeroi River - Patterson Creek to mouth4.06MilID17060202SL002_03Pahsimeroi River - Meadow Creek to Patterson Creek1.11MilID17060202SL004_03North Fork Lawson Creek - source to mouth1.9MilID17060202SL008_02Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)3.94MilID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MilID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID17060202SL001_02  | Pahsimeroi River - Patterson Creek to mouth                  | 52.33 | Miles |
| ID17060202SL002_03Pahsimeroi River - Meadow Creek to Patterson Creek1.11MilID17060202SL004_03North Fork Lawson Creek - source to mouth1.9MilID17060202SL008_02Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)3.94MilID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MilID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL012_03Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)17.44MilID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID17060202SL001_03  | Pahsimeroi River - Patterson Creek to mouth                  | 4.06  | Miles |
| ID17060202SL004_03North Fork Lawson Creek - source to mouth1.9MilID17060202SL008_02Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)3.94MilID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MilID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL012_03Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)17.44MilID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ID17060202SL002_03  | Pahsimeroi River - Meadow Creek to Patterson Creek           | 1.11  | Miles |
| ID17060202SL008_02Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)3.94MilID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MilID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL012_03Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)17.44MilID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID17060202SL004_03  | North Fork Lawson Creek - source to mouth                    | 1.9   | Miles |
| ID17060202SL009_02LGrouse Creek Lakes10.9AcrID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MilID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL012_03Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)17.44MilID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID17060202SL008_02  | Pahsimeroi River - Big Creek to Furey Lane (T15S, R22E)      | 3.94  | Miles |
| ID17060202SL010_02Pahsimeroi River - Goldburg Creek to Big Creek55.52MilID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL012_03Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)17.44MilID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID17060202SL009_02L | Grouse Creek Lakes                                           | 10.9  | Acres |
| ID17060202SL012_02Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)13.52MilID17060202SL012_03Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)17.44MilID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID17060202SL010_02  | Pahsimeroi River - Goldburg Creek to Big Creek               | 55.52 | Miles |
| ID17060202SL012_03Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)17.44MilID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ID17060202SL012_02  | Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)    | 13.52 | Miles |
| ID17060202SL013_02Doublespring Creek - Christian Gulch to mouth3.32MilID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID17060202SL012_03  | Unnamed Tributary - source to mouth (T12N, R23E, Sec. 22)    | 17.44 | Miles |
| ID17060202SL013_03Doublespring Creek - Christian Gulch to mouth5.45MilID17060202SL014_02Christian Gulch - source to mouth17.87Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID17060202SL013_02  | Doublespring Creek - Christian Gulch to mouth                | 3.32  | Miles |
| ID17060202SL014_02 Christian Gulch - source to mouth 17.87 Mil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID17060202SL013_03  | Doublespring Creek - Christian Gulch to mouth                | 5.45  | Miles |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ID17060202SL014_02  | Christian Gulch - source to mouth                            | 17.87 | Miles |

| ID17060202SL015_02  | Doublespring Creek - source to Christian Gulch               | 27.91 | Miles   |
|---------------------|--------------------------------------------------------------|-------|---------|
| ID17060202SL015_03  | Doublespring Creek - source to Christian Gulch               | 4.65  | Miles   |
| ID17060202SL016_02  | Mud Spring Canyon Complex                                    | 25.28 | Miles   |
| ID17060202SL017_02  | Pahsimeroi River - Burnt Creek to Unnamed Tributary          | 4.83  | Miles   |
| ID17060202SL019_02  | Mahogany Creek - source to mouth                             | 17.84 | Miles   |
| ID17060202SL020_02  | Pahsimeroi River-confluence of Rock Creek and East Fork Pass | 5.27  | Miles   |
| ID17060202SL021_02  | Rock Creek - source to mouth                                 | 5.51  | Miles   |
| ID17060202SL022_01L | Merriam Lakes                                                | 10.13 | Acres   |
| ID17060202SL023_02  | Burnt Creek - Long Creek to mouth                            | 10.89 | Miles   |
| ID17060202SL025_02  | Long Creek - Short Creek to mouth                            | 4.91  | Miles   |
| ID17060202SL025_03  | Long Creek - Short Creek to mouth                            | 1.69  | Miles   |
| ID17060202SL027_02  | Long Creek - source to Short Creek                           | 26.75 | Miles   |
| ID17060202SL027_03  | Long Creek - source to Short Creek                           | 1.11  | Miles   |
| ID17060202SL028_02  | Goldburg Creek - Donkey Creek to mouth                       | 23.56 | Miles   |
| ID17060202SL030_03  | Goldburg Creek - source to Donkey Creek                      | 2.36  | Miles   |
| ID17060202SL034_02  | Patterson Creek - Inyo Creek to mouth                        | 7.68  | Miles   |
| ID17060202SL034_03L | Patterson Creek Tailings Ponds                               | 33    | Acres   |
| ID17060202SL035_02L | Unnamed Lake - Patterson Creek                               | 3.16  | Acres   |
| ID17060202SL037_02  | Morse Creek - Irrigation junction to mouth                   | 3.02  | Miles   |
| ID17060202SL037_03  | Morse Creek - Irrigation junction to mouth                   | 9.15  | Miles   |
| ID17060202SL039_02  | Morgan Creek - source to mouth                               | 47.03 | Miles   |
| ID17060202SL039_04  | Morgan Creek - source to mouth                               | 0.8   | Miles   |
| 17060203            | Middle Salmon-Panther                                        |       |         |
| ID17060203SL002_02  | Panther Creek - Big Deer Creek to mouth                      | 27.11 | Miles   |
| ID17060203SL005_02  | Big Deer Creek - South Fork Big Deer Creek to mouth          | 3.45  | Miles   |
| ID17060203SL006_02  | Big Deer Creek - source to South Fork Big Deer Creek         | 21.06 | Miles   |
| ID17060203SL008_02  | South Fork Big Deer Creek -source to Bucktail Creek          | 2.93  | Miles   |
| ID17060203SL013a_02 | West Fork Blackbird Creek - source to concrete channel       | 7.87  | Miles   |
| ID17060203SL013b_02 | West Fork Blackbird Creek - concrete channel to mouth only   | 0.61  | Miles   |
| ID17060203SL017_02L | Opal Lake                                                    | 13.81 | Acres   |
| ID17060203SL018_02L | Unnamed Lake - SF Moyer Creek                                | 5.73  | Acres   |
| ID17060203SL019_02  | Woodtick Creek - source to mouth                             | 12.52 | Miles   |
| ID17060203SL021_02  | Little Deep Creek - source to mouth                          | 13.5  | Miles   |
| ID170002033L021_02  | Little Deep Creek - source to modifi                         | 15.5  | ivilies |

| ID17060203SL023_02  | Napias Creek - Moccasin Creek to mouth                       | 1.86  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060203SL028_03  | Beaver Creek - source to mouth                               | 1.97  | Miles |
| ID17060203SL029_02  | Salmon River - Indian Creek to Panther Creek                 | 26.1  | Miles |
| ID17060203SL032_03  | Salmon River - North Fork Sheep Creek to Indian Creek        | 2.65  | Miles |
| ID17060203SL033_02  | Moose Creek - Little Moose Creek to mouth                    | 5.15  | Miles |
| ID17060203SL033_03  | Moose Creek - Little Moose Creek to mouth                    | 2.09  | Miles |
| ID17060203SL034_02  | Little Moose Creek - source to mouth                         | 5.49  | Miles |
| ID17060203SL035_02  | Moose Creek - Dolly Creek to Little Moose Creek              | 7.95  | Miles |
| ID17060203SL038_02  | Dump Creek - Moose Creek to mouth                            | 3.2   | Miles |
| ID17060203SL040_02  | Wallace Creek - source to mouth                              | 7.93  | Miles |
| ID17060203SL041_02  | Salmon River - Pollard Creek to Carmen Creek                 | 30.67 | Miles |
| ID17060203SL041_02L | Up Lake                                                      | 3.88  | Acres |
| ID17060203SL041_06  | Salmon River - Pollard Creek to Carmen Creek                 | 3.28  | Miles |
| ID17060203SL042_02a | Chipps & Jesse Creek                                         | 23.84 | Miles |
| ID17060203SL042_03  | Salmon River - Williams Creek to Pollard Creek               | 1.24  | Miles |
| ID17060203SL046_02  | Salmon River - Twelvemile Creek to Williams Creek            | 21.02 | Miles |
| ID17060203SL050_02L | Iron Lake(s)                                                 | 23.14 | Acres |
| ID17060203SL050_03  | Iron Creek - source to North Fork Iron Creek                 | 0.22  | Miles |
| ID17060203SL051_03  | West Fork Iron Creek - source to mouth                       | 2.23  | Miles |
| ID17060203SL054_02  | Hot Creek - source to mouth                                  | 89.89 | Miles |
| ID17060203SL054_04  | Hot Creek - source to mouth                                  | 2.47  | Miles |
| ID17060203SL055_02L | Goat Lake                                                    | 4.7   | Acres |
| ID17060203SL055_03  | Cow Creek - source to mouth                                  | 4.19  | Miles |
| ID17060203SL057_02  | McKim Creek - source to mouth                                | 22.23 | Miles |
| ID17060203SL057_02L | Unnamed Lakes- Trib to McKim Creek                           | 3.42  | Acres |
| ID17060203SL058_02  | Poison Creek - source to mouth                               | 22.57 | Miles |
| ID17060203SL058_03  | Poison Creek - source to mouth                               | 2     | Miles |
| ID17060203SL059_02  | Warm Springs Creek - source to mouth                         | 20.25 | Miles |
| ID17060203SL060_02  | Twelvemile Creek - source to mouth                           | 17.02 | Miles |
| ID17060203SL061_02  | Carmen Creek - Freeman Creek to mouth                        | 14.34 | Miles |
| ID17060203SL065_03  | Fourth of July Creek - Little Fourth of July Creek to mouth  | 1.77  | Miles |
| ID17060203SL066_03  | Fourth of July Creek - source to Little Fourth of July Creek | 1.53  | Miles |
| ID17060203SL067_02  | Little Fourth of July Creek - source to mouth                | 4.95  | Miles |

| ID17060203SL068_02                                                                                                                                                                                                                                                     | North Fork Salmon River - Hughes Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.47                                                                                           | Miles                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ID17060203SL068_04                                                                                                                                                                                                                                                     | North Fork Salmon River - Hughes Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.71                                                                                           | Miles                                                                                  |
| ID17060203SL069_02                                                                                                                                                                                                                                                     | Big Silverlead Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.25                                                                                          | Miles                                                                                  |
| ID17060203SL070_02                                                                                                                                                                                                                                                     | North Fork Salmon River - Sheep Creek to Hughes Creek                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.76                                                                                           | Miles                                                                                  |
| ID17060203SL070_04                                                                                                                                                                                                                                                     | North Fork Salmon River - Sheep Creek to Hughes Creek                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.97                                                                                           | Miles                                                                                  |
| ID17060203SL071_02                                                                                                                                                                                                                                                     | Sheep Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.54                                                                                          | Miles                                                                                  |
| ID17060203SL072_02                                                                                                                                                                                                                                                     | North Fork Salmon River - Dahlonega Creek to Sheep Creek                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.94                                                                                           | Miles                                                                                  |
| ID17060203SL072_04                                                                                                                                                                                                                                                     | North Fork Salmon River - Dahlonega Creek to Sheep Creek                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3                                                                                            | Miles                                                                                  |
| ID17060203SL073_03                                                                                                                                                                                                                                                     | Dahlonega Creek - Nez Perce Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.67                                                                                           | Miles                                                                                  |
| ID17060203SL075_02                                                                                                                                                                                                                                                     | Nez Perce Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.29                                                                                           | Miles                                                                                  |
| ID17060203SL079_02                                                                                                                                                                                                                                                     | Pierce Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.35                                                                                          | Miles                                                                                  |
| ID17060203SL082_02                                                                                                                                                                                                                                                     | Hull Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.24                                                                                          | Miles                                                                                  |
| ID17060203SL082_02L                                                                                                                                                                                                                                                    | Cummings Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.28                                                                                           | Acres                                                                                  |
| ID17060203SL082_03                                                                                                                                                                                                                                                     | Hull Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.65                                                                                           | Miles                                                                                  |
| ID17060203SL083_02                                                                                                                                                                                                                                                     | Indian Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.91                                                                                          | Miles                                                                                  |
| ID17060203SL087_02                                                                                                                                                                                                                                                     | Owl Creek - East Fork Owl Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.92                                                                                           | Miles                                                                                  |
| ID17060203SL088_02                                                                                                                                                                                                                                                     | East Fork Owl Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.22                                                                                          | Miles                                                                                  |
| ID17060203SL089_02                                                                                                                                                                                                                                                     | Owl Creek - source to East Fork Owl Creek                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.64                                                                                          | Miles                                                                                  |
| ID17060203SL089_03                                                                                                                                                                                                                                                     | Owl Creek - source to East Fork Owl Creek                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.38                                                                                           | Miles                                                                                  |
| 17060204                                                                                                                                                                                                                                                               | Lemhi                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                        |
| 11000204                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |                                                                                        |
| ID17060204SL003a_06                                                                                                                                                                                                                                                    | Lemhi River (West Branch) - Haynes Creek to Withington Creek                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.59                                                                                           | Miles                                                                                  |
| ID17060204SL003a_06                                                                                                                                                                                                                                                    | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek                                                                                                                                                                                                                                                                                                                                                            | 3.59<br>2.63                                                                                   | Miles<br>Miles                                                                         |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02                                                                                                                                                                                                        | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek                                                                                                                                                                                                                                                                                                              | 3.59<br>2.63<br>27.25                                                                          | Miles<br>Miles<br>Miles                                                                |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02                                                                                                                                                                                  | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth                                                                                                                                                                                                                                                                             | 3.59<br>2.63<br>27.25<br>9.71                                                                  | Miles<br>Miles<br>Miles<br>Miles                                                       |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02                                                                                                                                                           | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth                                                                                                                                                                                                                | 3.59<br>2.63<br>27.25<br>9.71<br>2.12                                                          | Miles<br>Miles<br>Miles<br>Miles<br>Miles                                              |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02<br>ID17060204SL008_02                                                                                                                                     | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth<br>Muddy Creek - source to mouth                                                                                                                                                                               | 3.59<br>2.63<br>27.25<br>9.71<br>2.12<br>10.86                                                 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                     |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02<br>ID17060204SL008_02<br>ID17060204SL009_02                                                                                                               | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth<br>Muddy Creek - source to mouth<br>Hayden Creek - Basin Creek to mouth                                                                                                                                        | 3.59<br>2.63<br>27.25<br>9.71<br>2.12<br>10.86<br>3.45                                         | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02<br>ID17060204SL008_02<br>ID17060204SL009_02<br>ID17060204SL010_02                                                                                         | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth<br>Muddy Creek - source to mouth<br>Hayden Creek - Basin Creek to mouth<br>Basin Creek - Lake Creek to mouth                                                                                                   | 3.59<br>2.63<br>27.25<br>9.71<br>2.12<br>10.86<br>3.45<br>3.55                                 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02<br>ID17060204SL008_02<br>ID17060204SL009_02<br>ID17060204SL010_02<br>ID17060204SL011_02                                                                   | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth<br>Muddy Creek - source to mouth<br>Hayden Creek - Basin Creek to mouth<br>Basin Creek - Lake Creek to mouth<br>Basin Creek                                                                                    | 3.59<br>2.63<br>27.25<br>9.71<br>2.12<br>10.86<br>3.45<br>3.55<br>9.12                         | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                   |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02<br>ID17060204SL008_02<br>ID17060204SL009_02<br>ID17060204SL010_02<br>ID17060204SL011_02<br>ID17060204SL012_02                                             | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth<br>Muddy Creek - source to mouth<br>Hayden Creek - Basin Creek to mouth<br>Basin Creek - Lake Creek to mouth<br>Basin Creek<br>Trail Creek - source mouth                                                      | 3.59<br>2.63<br>27.25<br>9.71<br>2.12<br>10.86<br>3.45<br>3.55<br>9.12<br>19.39                | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02<br>ID17060204SL008_02<br>ID17060204SL009_02<br>ID17060204SL010_02<br>ID17060204SL011_02<br>ID17060204SL012_02<br>ID17060204SL012_03                       | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth<br>Muddy Creek - source to mouth<br>Hayden Creek - Basin Creek to mouth<br>Basin Creek - Lake Creek to mouth<br>Basin Creek<br>Trail Creek - source mouth<br>Trail Creek - source mouth                        | 3.59<br>2.63<br>27.25<br>9.71<br>2.12<br>10.86<br>3.45<br>3.55<br>9.12<br>19.39<br>1.38        | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17060204SL003a_06<br>ID17060204SL004_06<br>ID17060204SL005_02<br>ID17060204SL006_02<br>ID17060204SL007a_02<br>ID17060204SL008_02<br>ID17060204SL009_02<br>ID17060204SL010_02<br>ID17060204SL011_02<br>ID17060204SL012_03<br>ID17060204SL012_03<br>ID17060204SL013_03 | Lemhi River (West Branch) - Haynes Creek to Withington Creek<br>Lemhi River (West Branch) - Kenney Creek to Haynes Creek<br>Lemhi River - Hayden Creek to Kenney Creek<br>Baldy Creek - source to mouth<br>McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth<br>Muddy Creek - source to mouth<br>Hayden Creek - Basin Creek to mouth<br>Basin Creek - Basin Creek to mouth<br>Basin Creek - Lake Creek to mouth<br>Trail Creek - source mouth<br>Trail Creek - source mouth | 3.59<br>2.63<br>27.25<br>9.71<br>2.12<br>10.86<br>3.45<br>3.55<br>9.12<br>19.39<br>1.38<br>1.4 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |

| ID17060204SL014_01L  | Lake Creek Reservoir                                         | 7.32  | Acres |
|----------------------|--------------------------------------------------------------|-------|-------|
| ID17060204SL014_02   | Lake Creek - source to mouth                                 | 6.94  | Miles |
| ID17060204SL015_02   | Hayden Creek - Bear Valley Creek to Basin Creek              | 8.67  | Miles |
| ID17060204SL016_02   | Bear Valley Creek -Wright Creek to mouth                     | 6.02  | Miles |
| ID17060204SL017_01L  | Bear Valley Lakes - Bear Valley Creek                        | 42.53 | Acres |
| ID17060204SL017_02L  | Buck Lakes                                                   | 11.98 | Acres |
| ID17060204SL018_02   | Wright Creek - source to mouth                               | 4.18  | Miles |
| ID17060204SL018_02L  | Wright Creek Lakes                                           | 9.26  | Acres |
| ID17060204SL021_02   | Hayden Creek - source to West Fork Hayden Creek              | 6.05  | Miles |
| ID17060204SL022_02   | West Fork Hayden Creek - source to mouth                     | 8.4   | Miles |
| ID17060204SL022_02L  | Unnamed Lakes - West Fork Hayden Creek and Bray Creek        | 10.23 | Acres |
| ID17060204SL022_03   | West Fork Hayden Creek - source to mouth                     | 0.62  | Miles |
| ID17060204SL023_02L  | Buffalo Skull Lake                                           | 4.11  | Acres |
| ID17060204SL024_02   | Lemhi River - Peterson Creek to Hayden Creek                 | 41.18 | Miles |
| ID17060204SL024_02L  | Bates Gulch Lake                                             | 4.01  | Acres |
| ID17060204SL024_03   | Lemhi River - Peterson Creek to Hayden Creek                 | 1.21  | Miles |
| ID17060204SL025_02   | Lemhi River - confluence of Big and Little Eightmile Creeks  | 10.16 | Miles |
| ID17060204SL026b_02L | Mill Creek Lakes                                             | 32.57 | Acres |
| ID17060204SL028_02L  | Unnamed Lake - Stroud Creek                                  | 3.33  | Acres |
| ID17060204SL028_03   | Lee Creek - source to mouth                                  | 4.29  | Miles |
| ID17060204SL029b_02  | Big Eightmile Creek - source to diversion                    | 18.1  | Miles |
| ID17060204SL030_02   | Lemhi River-confluence of Eighteenmile Creek and Texas Creek | 38.28 | Miles |
| ID17060204SL030_03   | Lemhi River-confluence of Eighteenmile Creek and Texas Creek | 6.88  | Miles |
| ID17060204SL031_02   | Big Timber Creek - Little Timber Creek to mouth              | 3.94  | Miles |
| ID17060204SL032a_03  | Little Timber Creek - diversion (T15N, R25E, Sec. 13)        | 2.54  | Miles |
| ID17060204SL032b_01L | Little Timber Creek Lakes                                    | 17.31 | Acres |
| ID17060204SL032b_02L | Stone Reservoir                                              | 20.25 | Acres |
| ID17060204SL034_02   | Rocky Creek - source to mouth                                | 3.95  | Miles |
| ID17060204SL035_02   | Big Timber Creek - source to Rocky Creek                     | 25.06 | Miles |
| ID17060204SL035_03   | Big Timber Creek - source to Rocky Creek                     | 2.73  | Miles |
| ID17060204SL036_02   | Texas Creek - Deer Creek to mouth                            | 35.07 | Miles |
| ID17060204SL037_02   | Deer Creek - source to mouth                                 | 6.94  | Miles |
| ID17060204SL037_02L  | Deer Creek Lake                                              | 6.27  | Acres |

| ID17060204SL038_02   | Texas Creek - Meadow Creek to Deer Creek                    | 14.3  | Miles |
|----------------------|-------------------------------------------------------------|-------|-------|
| ID17060204SL038_03   | Texas Creek - Meadow Creek to Deer Creek                    | 1.9   | Miles |
| ID17060204SL040_02   | Texas Creek - source to Meadow Lake Creek                   | 14.07 | Miles |
| ID17060204SL042_02   | Eighteenmile Creek - Clear Creek to Hawley Creek            | 5.53  | Miles |
| ID17060204SL044_02   | Divide Creek - source to mouth                              | 29.56 | Miles |
| ID17060204SL044_03   | Divide Creek - source to mouth                              | 2.73  | Miles |
| ID17060204SL048_02   | Tenmile Creek - source to Powderhorn Gulch                  | 6.36  | Miles |
| ID17060204SL049_02   | Powderhorn Gulch - source to mouth                          | 7.63  | Miles |
| ID17060204SL051a_03  | Canyon Creek - diversion (T16N, R26E, Sec.22) to mouth      | 1.45  | Miles |
| ID17060204SL052b_02L | Little Eightmile Diversion                                  | 10.19 | Acres |
| ID17060204SL053_02   | Peterson Creek - source to mouth                            | 14.16 | Miles |
| ID17060204SL054_02   | Reese Creek - source to mouth                               | 10.15 | Miles |
| ID17060204SL055a_03  | Yearian Creek - diversion (T17N, R24E, Sec. 03) to mouth    | 1.77  | Miles |
| ID17060204SL055b_02  | Yearian Creek - source to diversion (T17N, R24E, Sec. 03)   | 16.72 | Miles |
| ID17060204SL056a_04  | Agency Creek - diversion (T19N, R24E, Sec. 28) to mouth     | 1.98  | Miles |
| ID17060204SL056b_04  | Agency Creek - Cow Creek to diversion (T19N, R24E, Sec. 28) | 2.56  | Miles |
| ID17060204SL057_02   | Cow Creek - source to mouth                                 | 10.01 | Miles |
| ID17060204SL059a_03  | Pattee Creek - diversion (T19N, R24E, Sec. 16) to mouth     | 0.88  | Miles |
| ID17060204SL060a_02  | Pratt Creek - diversion (T20N, R23E, Sec. 11) to mouth      | 0.44  | Miles |
| ID17060204SL060b_02  | Pratt Creek - source to diversion (T20N, R23E, Sec. 11)     | 3.57  | Miles |
| ID17060204SL065a_03  | Geertson Creek - diversion (T21N, R23E, Sec. 20) to mouth   | 1.42  | Miles |
| ID17060204SL066a_02  | Kirtley Creek - diversion (T21N, R22E, Sec. 02) to mouth    | 3.73  | Miles |
| 17060205             | Upper Middle Fork Salmon                                    |       |       |
| ID17060205SL001_06   | Middle Fork Salmon River - Marsh Creek to Loon Creek        | 59.35 | Miles |
| ID17060205SL002_04   | Marble Creek - 4th order (Little Cottonwood Creek to mouth) | 15.86 | Miles |
| ID17060205SL020_02   | Cape Horn Creek - Banner Creek to mouth                     | 8.32  | Miles |
| ID17060205SL022_02L  | Unnamed Wetlands near Bull Trout Lake                       | 80.49 | Acres |
| ID17060205SL028_02L  | Cape Horn Lakes                                             | 33.35 | Acres |
| ID17060205SL029_03   | Beaver Creek - Winnemucca Creek to Bear Creek               | 2.93  | Miles |
| ID17060205SL032_03   | Bear Creek - source to mouth                                | 1.18  | Miles |
| ID17060205SL034_02   | Greyhound Creek - source to mouth                           | 9.43  | Miles |
| ID17060205SL038_04   | Rapid River - Float Creek to Lucinda Creek                  | 4.65  | Miles |
| ID17060205SL039_02L  | Josephus Lake                                               | 4.02  | Acres |
|                      |                                                             |       |       |

| ID17060205SL040_02                                                                                                                                                                                                                                                                                             | Rapid River - Vanity Creek to Float Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37                                                                                                                        | Miles                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ID17060205SL040_04                                                                                                                                                                                                                                                                                             | Rapid River - Vanity Creek to Float Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.42                                                                                                                        | Miles                                                                                                    |
| ID17060205SL043_02                                                                                                                                                                                                                                                                                             | Lucinda Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.18                                                                                                                        | Miles                                                                                                    |
| ID17060205SL048_02                                                                                                                                                                                                                                                                                             | Loon Creek - Cabin Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69.83                                                                                                                       | Miles                                                                                                    |
| ID17060205SL053_02                                                                                                                                                                                                                                                                                             | Loon Creek - Grouse Creek to Shell Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.14                                                                                                                       | Miles                                                                                                    |
| ID17060205SL053_04                                                                                                                                                                                                                                                                                             | Loon Creek - Grouse Creek to Shell Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.98                                                                                                                        | Miles                                                                                                    |
| ID17060205SL054_02                                                                                                                                                                                                                                                                                             | Grouse Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.47                                                                                                                        | Miles                                                                                                    |
| ID17060205SL055_04                                                                                                                                                                                                                                                                                             | Loon Creek - Canyon Creek to Grouse Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.48                                                                                                                        | Miles                                                                                                    |
| ID17060205SL056_02                                                                                                                                                                                                                                                                                             | Canyon Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.93                                                                                                                        | Miles                                                                                                    |
| ID17060205SL057_02                                                                                                                                                                                                                                                                                             | Loon Creek - Pioneer Creek to Canyon Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.38                                                                                                                        | Miles                                                                                                    |
| ID17060205SL057_04                                                                                                                                                                                                                                                                                             | Loon Creek - Pioneer Creek to Canyon Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.57                                                                                                                        | Miles                                                                                                    |
| ID17060205SL058_03                                                                                                                                                                                                                                                                                             | Trail Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.22                                                                                                                        | Miles                                                                                                    |
| ID17060205SL060_02                                                                                                                                                                                                                                                                                             | Pioneer Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.75                                                                                                                       | Miles                                                                                                    |
| ID17060205SL061_02                                                                                                                                                                                                                                                                                             | No Name Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.38                                                                                                                        | Miles                                                                                                    |
| ID17060205SL062_03                                                                                                                                                                                                                                                                                             | Mayfield Creek-confluence of East and West Fork Mayfield Cr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.17                                                                                                                        | Miles                                                                                                    |
| ID17060205SL067_04                                                                                                                                                                                                                                                                                             | Warm Springs Creek - Trapper Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.02                                                                                                                       | Miles                                                                                                    |
|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                             |                                                                                                          |
| ID17060205SL069_02                                                                                                                                                                                                                                                                                             | Warm Springs Creek - source to Trapper Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.26                                                                                                                       | Miles                                                                                                    |
| ID17060205SL069_02<br>17060206                                                                                                                                                                                                                                                                                 | Warm Springs Creek - source to Trapper Creek Lower Middle Fork Salmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.26                                                                                                                       | Miles                                                                                                    |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06                                                                                                                                                                                                                                                    | Warm Springs Creek - source to Trapper Creek         Lower Middle Fork Salmon         Middle Fork Salmon River - Loon Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.26<br>45.25                                                                                                              | Miles<br>Miles                                                                                           |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05                                                                                                                                                                                                                              | Warm Springs Creek - source to Trapper Creek         Lower Middle Fork Salmon         Middle Fork Salmon River - Loon Creek to mouth         Big Creek - 5th order (Monumental Creek to mouth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.26<br>45.25<br>23.58                                                                                                     | Miles<br>Miles<br>Miles                                                                                  |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04                                                                                                                                                                                                        | Warm Springs Creek - source to Trapper Creek         Lower Middle Fork Salmon         Middle Fork Salmon River - Loon Creek to mouth         Big Creek - 5th order (Monumental Creek to mouth)         Rush Creek - 4th order (Corner Creek to mouth)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.26<br>45.25<br>23.58<br>12.65                                                                                            | Miles<br>Miles<br>Miles<br>Miles                                                                         |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02                                                                                                                                                                                  | Warm Springs Creek - source to Trapper Creek         Lower Middle Fork Salmon         Middle Fork Salmon River - Loon Creek to mouth         Big Creek - 5th order (Monumental Creek to mouth)         Rush Creek - 4th order (Corner Creek to mouth)         Brush Creek - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                | 18.26<br>45.25<br>23.58<br>12.65<br>31.72                                                                                   | Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                                |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL018_03                                                                                                                                                            | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)                                                                                                                                                                                                                                                                                                                                                                                                                | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64                                                                           | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                       |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL018_03<br>ID17060206SL022_02                                                                                                                                      | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge Creek                                                                                                                                                                                                                                                                                                                                                                         | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85                                                                  | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                       |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL018_03<br>ID17060206SL022_02<br>ID17060206SL023_02                                                                                                                | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck Creek                                                                                                                                                                                                                                                                                                                                 | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06                                                          | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                              |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL018_03<br>ID17060206SL022_02<br>ID17060206SL023_02<br>ID17060206SL024_02                                                                                          | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck CreekWest Fork Camas Creek - source to mouth                                                                                                                                                                                                                                                                                          | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06<br>44.49                                                 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                     |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL018_03<br>ID17060206SL022_02<br>ID17060206SL023_02<br>ID17060206SL024_02<br>ID17060206SL025_02                                                                    | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck CreekWest Fork Camas Creek - source to mouthCamas Creek - Castle Creek to Silver Creek                                                                                                                                                                                                                                                | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06<br>44.49<br>1.98                                         | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| ID17060205SL069_02<br>17060206<br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL022_02<br>ID17060206SL023_02<br>ID17060206SL024_02<br>ID17060206SL025_02<br>ID17060206SL026_02                                                                           | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck CreekWest Fork Camas Creek - source to mouthCamas Creek - Castle Creek to Silver CreekCamas Creek - Furnance Creek to Castle Creek                                                                                                                                                                                                    | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06<br>44.49<br>1.98<br>8.8                                  | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                            |
| ID17060205SL069_02<br>17060206<br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL022_02<br>ID17060206SL023_02<br>ID17060206SL024_02<br>ID17060206SL025_02<br>ID17060206SL026_02<br>ID17060206SL027_02                                                     | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck CreekWest Fork Camas Creek - source to mouthCamas Creek - Castle Creek to Silver CreekCamas Creek - Furnance Creek to Castle CreekCamas Creek - White Goat Creek to Furnance Creek                                                                                                                     | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06<br>44.49<br>1.98<br>8.8<br>8.8                           | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                   |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL022_02<br>ID17060206SL023_02<br>ID17060206SL024_02<br>ID17060206SL025_02<br>ID17060206SL025_02<br>ID17060206SL027_02<br>ID17060206SL031_02                        | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck CreekWest Fork Camas Creek - source to mouthCamas Creek - Castle Creek to Silver CreekCamas Creek - Furnance Creek to Castle CreekCamas Creek - White Goat Creek to Furnance CreekWhite Goat Creek - source to mouth                                                                                                                  | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06<br>44.49<br>1.98<br>8.8<br>8.8<br>4.79<br>5.48           | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL022_02<br>ID17060206SL023_02<br>ID17060206SL024_02<br>ID17060206SL025_02<br>ID17060206SL025_02<br>ID17060206SL027_02<br>ID17060206SL031_02<br>ID17060206SL032_02  | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck CreekWest Fork Camas Creek - source to mouthCamas Creek - Castle Creek to Silver CreekCamas Creek - Furnance Creek to Castle CreekCamas Creek - White Goat Creek to Furnance CreekWhite Goat Creek - source to mouthFurnace Creek - source to mouth                                                                                   | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06<br>44.49<br>1.98<br>8.8<br>8.8<br>4.79<br>5.48<br>19.12  | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17060205SL069_02<br><b>17060206</b><br>ID17060206SL001_06<br>ID17060206SL003_05<br>ID17060206SL015_04<br>ID17060206SL018_02<br>ID17060206SL018_03<br>ID17060206SL022_02<br>ID17060206SL024_02<br>ID17060206SL025_02<br>ID17060206SL025_02<br>ID17060206SL027_02<br>ID17060206SL031_02<br>ID17060206SL034_02L | Warm Springs Creek - source to Trapper CreekLower Middle Fork SalmonMiddle Fork Salmon River - Loon Creek to mouthBig Creek - 5th order (Monumental Creek to mouth)Rush Creek - 4th order (Corner Creek to mouth)Brush Creek - 1st and 2nd orderBrush Creek - 1st and 2nd orderBrush Creek - 3rd order (North Fork to mouth)Camas Creek - Duck Creek to Forge CreekCamas Creek - Silver Creek to Duck CreekWest Fork Camas Creek - source to mouthCamas Creek - Castle Creek to Silver CreekCamas Creek - Furnance Creek to Castle CreekCamas Creek - White Goat Creek to Furnance CreekWhite Goat Creek - source to mouthFurnace Creek - source to mouthFurnace Creek - source to mouthArrastra Creek Lakes | 18.26<br>45.25<br>23.58<br>12.65<br>31.72<br>6.64<br>10.85<br>5.06<br>44.49<br>1.98<br>8.8<br>4.79<br>5.48<br>19.12<br>6.84 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |

### Salmon

| ID17060206SL036_02 | Forge Creek - source to mouth                               | 6.15   | Miles |
|--------------------|-------------------------------------------------------------|--------|-------|
| ID17060206SL041_02 | Yellowjacket Creek - Trail Creek to Little Jacket Creek     | 2.88   | Miles |
| 17060207           | Middle Salmon-Chamberlain                                   |        |       |
| ID17060207SL001_02 | Salmon River - South Fork Salmon River to river mile 106    | 63.69  | Miles |
| ID17060207SL004_02 | California Creek - source to mouth                          | 28.33  | Miles |
| ID17060207SL005 02 | Cottontail Creek - source to mouth                          | 5.64   | Miles |
| ID17060207SL008_02 | Salmon River - Chamberlain Creek to South Fork Salmon River | 124.63 | Miles |
| ID17060207SL009_03 | Fivemile Creek - source to mouth                            | 7.47   | Miles |
| ID17060207SL010_02 | Little Fivemile Creek - source to mouth                     | 10.42  | Miles |
| ID17060207SL022_03 | West Fork Chamberlain Creek - 3rd Order                     | 2.19   | Miles |
| ID17060207SL024_02 | Chamberlain Creek - 1st and 2nd order tributaries           | 26.59  | Miles |
| ID17060207SL024_04 | Chamberlain Creek - 4th Order                               | 5.49   | Miles |
| ID17060207SL031_02 | Whimstick Creek - 1st and 2nd order tribs                   | 43.58  | Miles |
| ID17060207SL031_03 | Whimstick Creek - 3rd Order                                 | 7.46   | Miles |
| ID17060207SL042_02 | Little Horse Creek - source to mouth                        | 16.81  | Miles |
| ID17060207SL043_02 | Horse Creek - Reynolds Creek to Little Horse Creek          | 15.5   | Miles |
| ID17060207SL043_04 | Horse Creek - Reynolds Creek to Little Horse Creek          | 4.69   | Miles |
| ID17060207SL044_02 | Horse Creek - source to Reynolds Creek                      | 35.64  | Miles |
| ID17060207SL045_02 | East Fork Reynolds Creek - source to mouth                  | 14.07  | Miles |
| ID17060207SL046_03 | Reynolds Creek - source to mouth                            | 1.53   | Miles |
| ID17060207SL051_02 | Hamilton Creek - source to mouth                            | 36.33  | Miles |
| ID17060207SL052_02 | Sabe Creek - source to Hamilton Creek                       | 34.62  | Miles |
| ID17060207SL055_03 | Bargamin Creek - source to mouth                            | 5.25   | Miles |
| ID17060207SL064_02 | Big Blowout Creek - source to mouth                         | 7.55   | Miles |
| ID17060207SL074_02 | Sheep Creek - source to mouth                               | 56.11  | Miles |
| ID17060207SL076_02 | Wind River - source to mouth                                | 37.53  | Miles |
| 17060208           | South Fork Salmon                                           |        |       |
| ID17060208SL002_02 | Raines Creek - entire drainage                              | 12.13  | Miles |
| ID17060208SL030_02 | Tamarack Creek - 1st and 2nd order                          | 15.53  | Miles |
| 17060209           | Lower Salmon                                                |        |       |
| ID17060209SL001_02 | Salmon River - Rice Creek to mouth                          | 131.7  | Miles |
| ID17060209SL001_03 | Salmon River - Rice Creek to mouth                          | 1.37   | Miles |
|                    |                                                             |        |       |

| ID17060209SL001_07  | Salmon River - Rice Creek to mouth                           | 37.45 | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17060209SL002_02  | Flynn Creek - source to mouth                                | 11.51 | Miles |
| ID17060209SL005_02  | Burnt Creek - source to mouth                                | 4.18  | Miles |
| ID17060209SL006_02  | Round Spring Creek - source to mouth                         | 9.17  | Miles |
| ID17060209SL011_02  | Salmon River - tributaries; Little Salmon R. to Slate Creek  | 60.43 | Miles |
| ID17060209SL011_07  | Salmon River - Little Salmon River to Slate Creek            | 19.81 | Miles |
| ID17060209SL014_02  | Race Creek - 1st order tributary                             | 1.06  | Miles |
| ID17060209SL016_02  | South Fork Race Creek - source to mouth                      | 8.31  | Miles |
| ID17060209SL018_02  | Grave Creek - source to mouth                                | 4.88  | Miles |
| ID17060209SL019_02  | Salmon River                                                 | 43.69 | Miles |
| ID17060209SL019_07  | Salmon River                                                 | 19.12 | Miles |
| ID17060209SL020_02  | Lake Creek - source to mouth                                 | 17.08 | Miles |
| ID17060209SL020_02L | Piper Lakes, Mary Lake, John Lake                            | 10.04 | Acres |
| ID17060209SL021_01L | Upper Twin Lake, Partridge Creek Lake                        | 9.8   | Acres |
| ID17060209SL021_02  | Partridge Creek - source to mouth                            | 27.71 | Miles |
| ID17060209SL021_03  | Partridge Creek - source to mouth                            | 8.19  | Miles |
| ID17060209SL021_0L  | Paradise Lake                                                | 6.26  | Acres |
| ID17060209SL022_02  | Elkhorn Creek - source to mouth                              | 26.63 | Miles |
| ID17060209SL022_02L | Lava Butte Lakes                                             | 11.94 | Acres |
| ID17060209SL023_02  | French Creek - Little French Creek to mouth                  | 26    | Miles |
| ID17060209SL024_01L | French Creek Lakes, Mac Han Lakes                            | 13.52 | Acres |
| ID17060209SL024_02  | Little French Creek - source to mouth                        | 27.69 | Miles |
| ID17060209SL024_02L | Scribner Lake                                                | 11.54 | Acres |
| ID17060209SL025_02  | French Creek - source to Little French Creek                 | 26.22 | Miles |
| ID17060209SL025_03  | French Creek - source to Little French Creek                 | 2.79  | Miles |
| ID17060209SL027_02  | Van Creek - source to mouth                                  | 4.66  | Miles |
| ID17060209SL028_02  | Allison Creek - West Fork Allison Creek to mouth             | 2.83  | Miles |
| ID17060209SL031_02  | Berg Creek - source to mouth                                 | 7.21  | Miles |
| ID17060209SL045_03  | South Fork Skookumchuck Creek - source to mouth              | 3.19  | Miles |
| ID17060209SL046_02  | North Fork Skookumchuck Creek - source to mouth              | 21.3  | Miles |
| ID17060209SL047_02  | Whitebird Creek - confluence of N&SF Whitebird Cr to mouth   | 46.21 | Miles |
| ID17060209SL047_03  | Whitebird Creek-confluence of North and South Fork Whitebird | 1.93  | Miles |
| ID17060209SL048_02  | South Fork Whitebird Creek - Little Whitebird Creek to mouth | 3.92  | Miles |

| ID17060209SL056_02  | Rock Creek - tributaries          | 8.39  | Miles |
|---------------------|-----------------------------------|-------|-------|
| ID17060209SL059_02  | Telcher Creek - source to mouth   | 17.3  | Miles |
| ID17060209SL063_02  | Eagle Creek - source to mouth     | 29.92 | Miles |
| ID17060209SL065_02  | Wapshilla Creek - source to mouth | 11.85 | Miles |
| ID17060209SL065_03  | Wapshilla Creek - source to mouth | 1.06  | Miles |
| 17060210            | Little Salmon                     |       |       |
| ID17060210SL012_02L | Twin Lakes                        | 40.53 | Acres |
| ID17060210SL015_02L | Corral Creek Lakes                | 44.63 | Acres |
| ID17060210SL016_02L | Buck and Elk Lakes                | 23.33 | Acres |

| 17050101            | C. J. Strike Reservoir                                       |        |       |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17050101SW001_01L | Bruneau Duck Ponds                                           | 15.26  | Acres |
| ID17050101SW001_02L | Flying H Canal Diversion Pond                                | 88.07  | Acres |
| ID17050101SW001_03  | Dry Creek - 3rd order                                        | 6.2    | Miles |
| ID17050101SW005_02  | Snake River - 1st and 2nd order tribs near Glenns Ferry      | 16.67  | Miles |
| ID17050101SW007 02  | Pot Hole Creek - 1st and 2nd order                           | 102.23 | Miles |
| ID17050101SW007_03  | Pot Hole Creek - 3rd order                                   | 21.24  | Miles |
| ID17050101SW009_02  | Rosevear Gulch - 1st and 2nd order                           | 63.1   | Miles |
| ID17050101SW009_03  | Rosevear Gulch - 3rd order                                   | 11.08  | Miles |
| ID17050101SW012_01L | Morrow Reservoir                                             | 47.76  | Acres |
| ID17050101SW012_03L | Trail Diversion Dam                                          | 10.19  | Acres |
| ID17050101SW013_02L | Blair Trail Reservoir                                        | 146.53 | Acres |
| ID17050101SW017L_0L | Hot Springs Creek Reservoirs                                 | 275.2  | Acres |
| ID17050101SW019_02L | Rattlesnake Springs Ponds                                    | 43.58  | Acres |
| ID17050101SW019_0L  | John Hoffman Reservoir                                       | 7.19   | Acres |
| ID17050101SW021_04  | Canyon Creek - 4th order (Fraiser Reservoir to Squaw Creek)  | 6.5    | Miles |
| ID17050101SW021_05  | Canyon Creek - 5th order (Squaw Creek to CJ Strike)          | 10.69  | Miles |
| ID17050101SW022_04  | Fraiser Reservoir                                            | 2.93   | Miles |
| ID17050101SW023_02  | Canyon Creek - 1st and 2nd order above Fraiser Reservoir     | 44.34  | Miles |
| ID17050101SW023_05  | West Side Canal (half mile segment)                          | 0.55   | Miles |
| ID17050101SW024_03L | Long Tom Reservoir                                           | 156.44 | Acres |
| ID17050101SW026_02  | Squaw Creek - 1st and 2nd order                              | 101.71 | Miles |
| ID17050101SW026_04  | Squaw Creek - 4th order (Mud Springs to Canyon Creek)        | 17.21  | Miles |
| 17050102            | Bruneau                                                      |        |       |
| ID17050102SW001_02  | Wilkins Gulch and unnamed tributaries to CJ Strike Reservoir | 6.36   | Miles |
| ID17050102SW002_02  | Deadman Gulch and Black Rocks - 1st and 2nd order            | 173.05 | Miles |
| ID17050102SW002_02L | Unnamed Pond near Black Rocks                                | 5.13   | Acres |
| ID17050102SW002_03  | Deadman Gulch and Black Rocks - 3rd order                    | 11.92  | Miles |
| ID17050102SW002_04  | Deadman Gulch and Black Rocks - 4th order                    | 8.39   | Miles |
| ID17050102SW003_01L | Unnamed Intermittent Lake in Little Jacks Creek Basin        | 5.23   | Acres |
| ID17050102SW003_02  | Little Jacks Creek - 1st and 2nd order                       | 142.67 | Miles |
| ID17050102SW003_03  | Little Jacks Creek and O X Prong - 3rd order                 | 13.7   | Miles |

| ID17050102SW004_02   | Big Jacks Creek - 1st and 2nd order                        | 214.04 | Miles |
|----------------------|------------------------------------------------------------|--------|-------|
| ID17050102SW004_03L  | Jacks Creek Reservoir                                      | 19.84  | Acres |
| ID17050102SW008_02   | Sugar Creek - 1st and 2nd order tributaries                | 122.12 | Miles |
| ID17050102SW008_03   | Sugar Creek - 3rd order                                    | 21.35  | Miles |
| ID17050102SW008_04a  | Sugar Creek - 4th order                                    | 7.55   | Miles |
| ID17050102SW009_02   | Loveridge and Seventyone Gulches - 1st and 2nd order       | 58.92  | Miles |
| ID17050102SW009_03   | Seventyone Gulch - 3rd order                               | 0.54   | Miles |
| ID17050102SW010_03L  | Broken Wagon Flat Reservoir                                | 8.65   | Acres |
| ID17050102SW011_02   | Bruneau River (Hot Cr. to Clover Cr.) - 1st and 2nd order  | 103.26 | Miles |
| ID17050102SW011_02L  | White Lake                                                 | 9.81   | Acres |
| ID17050102SW011_03   | Big Draw                                                   | 13.59  | Miles |
| ID17050102SW012_02   | Miller Water - 1st and 2nd order                           | 81.39  | Miles |
| ID17050102SW012_03   | Miller Water - 3rd order                                   | 2.44   | Miles |
| ID17050102SW012_04   | Miller Water - 4th order                                   | 11.4   | Miles |
| ID17050102SW013_02   | Bruneau River - 1st and 2nd order                          | 35.4   | Miles |
| ID17050102SW014_02   | Sheep Creek - 1st and 2nd order                            | 112.97 | Miles |
| ID17050102SW015_02   | Louse and Crab Creeks - 1st and 2nd order                  | 100.78 | Miles |
| ID17050102SW015_03L  | Blackstone Reservoir                                       | 34.27  | Acres |
| ID17050102SW016_01L  | Otter Reservoir                                            | 1.72   | Acres |
| ID17050102SW016_02aL | Buckhorn Reservoir                                         | 113.23 | Acres |
| ID17050102SW016_02L  | Rattlesnake Reservoir                                      | 6.65   | Acres |
| ID17050102SW016_03   | Marys Creek - 3rd order                                    | 5.56   | Miles |
| ID17050102SW018_03   | Pole Creek - 3rd order                                     | 4.17   | Miles |
| ID17050102SW019_03   | Cat Creek - 3rd order                                      | 7.07   | Miles |
| ID17050102SW020_02   | Bruneau River - 1st and 2nd order above Jarbidge River     | 94.47  | Miles |
| ID17050102SW020_03   | Deep Creek and Triplet Canyon - 3rd order                  | 5.23   | Miles |
| ID17050102SW023_03   | Dorsey Creek - 3rd order                                   | 4.87   | Miles |
| ID17050102SW024_02   | East Fork Jarbidge River - 1st and 2nd order tributaries   | 3.18   | Miles |
| ID17050102SW026_02   | Unnamed draw in Inside Desert - 1st and 2nd order          | 101.41 | Miles |
| ID17050102SW026_03   | Unnamed draw in Inside Desert - 3rd order                  | 14.73  | Miles |
| ID17050102SW027_02   | Sheepshead Draw - 2nd order                                | 43.56  | Miles |
| ID17050102SW028_02   | Clover Creek (East Fork Bruneau River) - 1st and 2nd order | 88.59  | Miles |
| ID17050102SW028_03   | Clover Creek (East Fork Bruneau River) - 3rd order         | 2.47   | Miles |

| ID17050102SW029_02  | Juniper Draw - 1st and 2nd order                            | 78.21  | Miles |
|---------------------|-------------------------------------------------------------|--------|-------|
| ID17050102SW029_03  | Juniper Draw - 3rd order                                    | 3.9    | Miles |
| ID17050102SW035_02  | Buck Flat Draw - 1st and 2nd order                          | 89.37  | Miles |
| ID17050102SW035_03  | Buck Flat Draw - 3rd order                                  | 14.93  | Miles |
| ID17050102SW035_04  | Buck Flat Draw - 4th order                                  | 10.21  | Miles |
| 17050103            | Middle Snake-Succor                                         |        |       |
| ID17050103SW001_02  | Snake River - 1st and 2nd order                             | 8.48   | Miles |
| ID17050103SW002_02  | Sage Creek and tributaries - 1st and 2nd order              | 22.61  | Miles |
| ID17050103SW002_02L | Unnamed Lake in Strode Basin                                | 2.4    | Acres |
| ID17050103SW003_02L | Johnston Lakes                                              | 4.27   | Acres |
| ID17050103SW003_03L | Succor Creek Reservoir                                      | 180.43 | Acres |
| ID17050103SW005 02L | Unnamed Lake on Pole Creek Top                              | 5.37   | Acres |
| ID17050103SW006_03  | Snake River - 3rd order unnamed tributaries near Sinker Cr. | 7.11   | Miles |
| ID17050103SW006_03L | Pacific Land Company Dam                                    | 15.99  | Acres |
| ID17050103SW010_02  | West Rabbit Creek - 1st and 2nd order                       | 30.6   | Miles |
| ID17050103SW010_03  | West Rabbit Creek - 3rd order                               | 5.84   | Miles |
| ID17050103SW011_03  | Rabbit Creek (south side of Snake River)- 3rd order         | 7.65   | Miles |
| ID17050103SW011_04  | Rabbit Creek (south side of Snake River)- 4th order         | 7.9    | Miles |
| ID17050103SW012_02  | Sinker Creek - 1st and 2nd order rangeland tributaries      | 63.08  | Miles |
| ID17050103SW012_02a | Sinker Creek - 1st and 2nd order forested tributaries       | 36.63  | Miles |
| ID17050103SW012_04L | Hulet-Sinker Creek Reservoir                                | 54.13  | Acres |
| ID17050103SW013_02  | Fossil Creek - 1st and 2nd order                            | 65.22  | Miles |
| ID17050103SW013_03  | Fossil Creek - 3rd order                                    | 10.13  | Miles |
| ID17050103SW014_02L | Foremans Reservoir                                          | 29.7   | Acres |
| ID17050103SW015_02  | Unnamed stream near Oreana                                  | 6.57   | Miles |
| ID17050103SW015_05  | Catherine Creek - 5th order (Browns Creek to Castle Creek)  | 5.73   | Miles |
| ID17050103SW017_02  | Bates Creek - 1st and 2nd order                             | 19.08  | Miles |
| ID17050103SW017_03  | Bates Creek - 3rd order                                     | 1.74   | Miles |
| ID17050103SW018_02  | Hart and Little Hart Creeks - 1st and 2nd order             | 46.19  | Miles |
| ID17050103SW018_03  | Hart Creek - 3rd order                                      | 5.15   | Miles |
| ID17050103SW022_02  | McKeeth Wash - 1st and 2nd order                            | 44.08  | Miles |
| ID17050103SW022_03  | McKeeth Wash - 3rd order                                    | 10.08  | Miles |
| ID17050103SW023_02  | Vinson Wash - 1st and 2nd order                             | 60.74  | Miles |

| 17050104            | Upper Owyhee                                                 |        |       |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17050104SW001_02  | Owyhee River - 1st and 2nd order                             | 115.67 | Miles |
| ID17050104SW001_03  | Owyhee River - 3rd order tributaries                         | 8.85   | Miles |
| ID17050104SW002_02  | Unnamed streams in YP Desert                                 | 13.79  | Miles |
| ID17050104SW003_02  | Piute Creek - 1st and 2nd order                              | 102.48 | Miles |
| ID17050104SW003 03  | Piute Creek - 3rd order                                      | 8.65   | Miles |
| ID17050104SW003_04  | Piute Creek - 4th order                                      | 6.06   | Miles |
| ID17050104SW003_04L | Piute Basin Reservoir                                        | 8.4    | Acres |
| ID17050104SW004_02  | Juniper Creek - 1st and 2nd order                            | 58.86  | Miles |
| ID17050104SW004_02L | Little Juniper Basin Reservoir                               | 3.91   | Acres |
| ID17050104SW004_03  | Juniper Creek - 3rd order                                    | 4.53   | Miles |
| ID17050104SW004_04  | Juniper Creek - 4th order                                    | 9.37   | Miles |
| ID17050104SW005_02  | Juniper Creek - 1st and 2nd order                            | 28.62  | Miles |
| ID17050104SW005_03  | Juniper Creek - 3rd order                                    | 5.25   | Miles |
| ID17050104SW006_02  | Thacker and Ross Sloughs - 1st and 2nd order                 | 19.25  | Miles |
| ID17050104SW006_02L | Mud Flat                                                     | 121.03 | Acres |
| ID17050104SW007_02  | Blue Creek: 1st and 2nd order tribs above Blue Cr. Reservoir | 40.58  | Miles |
| ID17050104SW007_03  | Blue Creek - Blue Creek Reservoir to Little Blue Creek       | 4.72   | Miles |
| ID17050104SW007_04  | Blue Creek - Little Blue Creek to Shoofly Creek              | 10.63  | Miles |
| ID17050104SW007_05  | Blue Creek - Shoofly Creek to Owyhee River                   | 1.45   | Miles |
| ID17050104SW010_02  | Payne Creek - 1st and 2nd order                              | 42.77  | Miles |
| ID17050104SW010_02L | Payne Creek Reservoir                                        | 74.27  | Acres |
| ID17050104SW010_03  | Payne Creek - 3rd order                                      | 5.96   | Miles |
| ID17050104SW010_04  | Payne Creek - 4th order                                      | 0.71   | Miles |
| ID17050104SW011_02  | Squaw Creek - 1st and 2nd order                              | 35.8   | Miles |
| ID17050104SW011_02L | Squaw Creek Reservoir                                        | 41.63  | Acres |
| ID17050104SW011_03  | Squaw Creek - 3rd order                                      | 1.11   | Miles |
| ID17050104SW011_0L  | Indian Creek Reservoir                                       | 18.49  | Acres |
| ID17050104SW012_02  | Little Blue Creek - 1st and 2nd order                        | 49.85  | Miles |
| ID17050104SW012_02L | Sewell Reservoir                                             | 5.6    | Acres |
| ID17050104SW012_03L | Little Blue Creek Reservoir                                  | 139.9  | Acres |
| ID17050104SW013_02  | Blue Creek - 1st and 2nd order above Blue Creek Reservoir    | 80.05  | Miles |
| ID17050104SW013_02L | Unnamed lake on Turner Table                                 | 101.97 | Acres |

## Southwest

| ID17050104SW014_03L | Bybee Reservoir                                  | 68.16  | Acres |
|---------------------|--------------------------------------------------|--------|-------|
| ID17050104SW014_05  | Shoofly Creek ditch - half mile section          | 0.21   | Miles |
| ID17050104SW015_02  | Harris Creek - 1st and 2nd order                 | 46.13  | Miles |
| ID17050104SW015_03  | Harris Creek - 3rd order                         | 8.48   | Miles |
| ID17050104SW015_03L | Unnamed Reservoir on Harris Creek                | 36.3   | Acres |
| ID17050104SW017_02L | Rough Lake                                       | 160.74 | Acres |
| ID17050104SW018_02L | Ross Lake                                        | 308.84 | Acres |
| ID17050104SW019_02L | Juniper Lake                                     | 388.99 | Acres |
| ID17050104SW020_02L | Henry Lake                                       | 171.8  | Acres |
| ID17050104SW021_02  | Unnamed tributary to Owyhee River near Ross Lake | 5.98   | Miles |
| ID17050104SW022_02  | Yatahoney Creek - 1st and 2nd order              | 44.23  | Miles |
| ID17050104SW022_03  | Yatahoney Creek - 3rd order                      | 7.22   | Miles |
| ID17050104SW023_01L | Unnamed Pond near Hutch Springs                  | 7.23   | Acres |
| ID17050104SW023_02L | Battle Creek Spring Pond                         | 12.38  | Acres |
| ID17050104SW023_03L | Battle Creek Reservoir                           | 8.47   | Acres |
| ID17050104SW024_02L | Dry Creek Reservoir                              | 72.57  | Acres |
| ID17050104SW026_01L | Bennett Reservoir                                | 4.62   | Acres |
| ID17050104SW026_02L | Hackberry Reservoir                              | 15.48  | Acres |
| ID17050104SW026_03  | Deep Creek - 3rd order rangeland tributaries     | 12.93  | Miles |
| ID17050104SW027_03  | Dickshooter Creek - 3rd order                    | 6.07   | Miles |
| ID17050104SW028_02L | Johnson Reservoir                                | 5.63   | Acres |
| ID17050104SW029_02  | Camas Creek - 1st and 2nd order                  | 40.16  | Miles |
| ID17050104SW031_02L | Unnamed Reservoir on Wilson Creek                | 2.18   | Acres |
| ID17050104SW032_02L | Star Reservoir                                   | 38.73  | Acres |
| ID17050104SW032_03L | Unnamed Reservoir near Castro Ranch              | 4.97   | Acres |

#### 17050105 South Fork Owyhee

| ID17050105SW001_02 | Unnamed 1st and 2nd order tributaries to SF Owyhee River | 129.09 | Miles |
|--------------------|----------------------------------------------------------|--------|-------|
| ID17050105SW002_02 | Spring Creek - 1st and 2nd order                         | 46.56  | Miles |
| ID17050105SW002_03 | Spring Creek - 3rd order                                 | 6.12   | Miles |
| ID17050105SW003_02 | Bull Camp Reservoir - 1st and 2nd order                  | 16.33  | Miles |
| ID17050105SW003_03 | Bull Camp Reservoir - 3rd order                          | 1.62   | Miles |
| ID17050105SW003_04 | Bull Camp Reservoir - 4th order                          | 4.61   | Miles |
| ID17050105SW004_02 | Homer Wells Reservoir - 1st and 2nd order                | 85.99  | Miles |

| ID17050105SW004_03  | Homer Wells Reservoir - 3rd order                          | 12.06 | Miles |
|---------------------|------------------------------------------------------------|-------|-------|
| ID17050105SW004_03L | Horse Basin Reservoirs and Homer Wells Reservoir           | 12.84 | Acres |
| ID17050105SW004_04  | Homer Wells Reservoir - 4th order                          | 5.77  | Miles |
| ID17050105SW004_04L | Homer Wells Reservoir                                      | 35.85 | Acres |
| ID17050105SW005_02  | Coyote Flat - 1st and 2nd order                            | 30.33 | Miles |
| ID17050105SW005_03  | Coyote Flat - 3rd order                                    | 4.72  | Miles |
| 17050106            | East Little Owyhee                                         |       |       |
| ID17050106SW001_02  | Little Owyhee River - 1st and 2nd order tributaries        | 76.16 | Miles |
| ID17050106SW001_06  | Little Owyhee River - State Line to South Fork Owyhee      | 15.76 | Miles |
| ID17050106SW002_02  | Tent Creek- 1st and 2nd order                              | 32.81 | Miles |
| ID17050106SW002_03  | Tent Creek- 3rd order                                      | 12.94 | Miles |
| ID17050106SW002_04  | Tent Creek- 4th order                                      | 4.01  | Miles |
| ID17050106SW002_04L | Tent Creek Reservoir                                       | 21.05 | Acres |
| 17050107            | Middle Owyhee                                              |       |       |
| ID17050107SW001_02  | Dukes Creek and Bald Mountain Canyon - 1st and 2nd order   | 34.93 | Miles |
| ID17050107SW002_02  | Oregon Lake Creek - 1st and 2nd order                      | 7.41  | Miles |
| ID17050107SW003_02  | Field Creek - 1st and 2nd order                            | 11.28 | Miles |
| ID17050107SW005_02  | Pole Creek - 1st and 2nd order                             | 17.93 | Miles |
| ID17050107SW007_02  | Cottonwood Creek - 1st and 2nd order                       | 22.34 | Miles |
| ID17050107SW013_02  | Cherry Creek - 1st and 2nd order                           | 52.07 | Miles |
| ID17050107SW013_03  | Cherry Creek - 3rd order                                   | 3.83  | Miles |
| ID17050107SW014_02  | Soldier, Stove and Sheep Creeks - 1st and 2nd order        | 31.9  | Miles |
| 17050108            | Jordan                                                     |       |       |
| ID17050108SW001_02  | Jordan Creek, Lower - 1st and 2nd order tributaries        | 34.36 | Miles |
| ID17050108SW002_02L | Unnamed Reservoir on Lone Tree Creek                       | 6.74  | Acres |
| ID17050108SW002_03  | Lone Tree Creek - 3rd order                                | 6.08  | Miles |
| ID17050108SW004_02L | Pershall Reservoir                                         | 9.8   | Acres |
| ID17050108SW006_02  | South Boulder, Indian and Bogus Creeks - 1st and 2nd order | 53.63 | Miles |
| ID17050108SW007_02  | North Boulder Creek - 1st and 2nd order                    | 30.96 | Miles |
| ID17050108SW008_02  | Mammoth Creek - entire drainage                            | 12.8  | Miles |
| ID17050108SW010_02  | Triangle Creek and unnamed tributaries to Rock Creek       | 28.67 | Miles |
| ID17050108SW010_05  | Rock Creek -Triangle Reservoir Dam to mouth                | 5.16  | Miles |

| ID17050108SW012_02   | Josephine and Wickiup Creeks - 1st and 2nd order     | 45.45  | Miles |
|----------------------|------------------------------------------------------|--------|-------|
| ID17050108SW012_03   | Josephine and Wickiup Creeks - 3rd order             | 4.79   | Miles |
| ID17050108SW013_03L  | Triangle Reservoir                                   | 82.94  | Acres |
| ID17050108SW015_02L  | Unnamed Reservoir near Meadow Creek                  | 125.72 | Acres |
| ID17050108SW015_03L  | Spencer Reservoir                                    | 28.8   | Acres |
| ID17050108SW016_02   | Deer Creek - entire drainage                         | 13.66  | Miles |
| ID17050108SW019_02   | Trout Creek - 1st and 2nd order                      | 33.78  | Miles |
| ID17050108SW020_02   | Hooker Creek - entire drainage                       | 7.56   | Miles |
| ID17050108SW023_02   | Baxter Creek - 1st and 2nd order                     | 6.94   | Miles |
| 17050111             | North and Middle Forks Boise                         |        |       |
| ID17050111SW001_00L  | Lake Creek - unnamed headwater lake                  | 8.26   | Acres |
| 17050112             | Boise-Mores                                          |        |       |
| ID17050112SW001_02   | Sheep, Charcoal, Birch, Macks and Deer Creeks        | 39.93  | Miles |
| ID17050112SW002_02   | 1st and 2nd order tributaries to Arrowrock Reservoir | 35.23  | Miles |
| ID17050112SW008_02   | Deer Creek - entire drainage                         | 5.52   | Miles |
| ID17050112SW010_02   | Smith Creek - entire drainage                        | 8.53   | Miles |
| 17050113             | South Fork Boise                                     |        |       |
| ID17050113SW001_02   | Arrowrock Reservoir (1st and 2nd order tributaries)  | 16.7   | Miles |
| ID17050113SW002a_02  | Willow Creek - 1st and 2nd order                     | 29.29  | Miles |
| ID17050113SW006_02   | Little Camas Creek - unnamed tributary near aqueduct | 3.77   | Miles |
| ID17050113SW006_04   | Little Camas Creek - Little Camas Reservoir to mouth | 1.96   | Miles |
| ID17050113SW009_02   | Wood and Little Wood Creeks - 1st and 2nd order      | 17.06  | Miles |
| ID17050113SW009_03   | Wood Creek - 3rd order                               | 0.41   | Miles |
| ID17050113SW015_05   | South Fork Boise River - 5th order                   | 16.31  | Miles |
| ID17050113SW019_03   | Big Smoky Creek - 3rd order                          | 9.44   | Miles |
| ID17050113SW022_02   | Johnson Creek - 1st and 2nd order                    | 18.09  | Miles |
| ID17050113SW023_02L  | Perkins Lake                                         | 10.11  | Acres |
| ID17050113SW028_01L  | Rainbow Lakes, Heart Lake, Big Lookout Lake          | 33.14  | Acres |
| 17050114             | Lower Boise                                          |        |       |
| ID17050114SW003c_03L | Indian Creek Reservoir                               | 126.28 | Acres |
| ID17050114SW003d_02L | Caldwell Draw Reservoir                              | 4.96   | Acres |

| ID17050114SW003c_03L | Indian Creek Reservoir  | 126.28 |  |
|----------------------|-------------------------|--------|--|
| ID17050114SW003d_02L | Caldwell Draw Reservoir | 4.96   |  |

| ID17050114SW005_03   | West Hartley Gulch                                      | 8.22   | Miles |
|----------------------|---------------------------------------------------------|--------|-------|
| ID17050114SW007_02   | Unnamed 1st order tributary to Fifteenmile Creek        | 1.25   | Miles |
| ID17050114SW008_02   | Tenmile Creek - 1st and 2nd order                       | 36.24  | Miles |
| ID17050114SW009_03L  | Blacks Creek Reservoir                                  | 82.5   | Acres |
| ID17050114SW010_03L  | Unnamed Ponds on Fivemile Creek                         | 10.94  | Acres |
| ID17050114SW011a_02  | Warm Springs and Squaw Creeks, and Maynard Gulch        | 19.48  | Miles |
| ID17050114SW011a_02L | Warm Springs Golf Course Lake                           | 4.33   | Acres |
| ID17050114SW011b_02  | Lydle Gulch and two nearby unnamed intermittent streams | 7.29   | Miles |
| ID17050114SW013_04   | Dry Creek - 4th order (Spring Valley Creek to mouth)    | 4.9    | Miles |
| ID17050114SW014_02   | Big Gulch and Little Gulch Creeks, and Woods Gulch      | 36.2   | Miles |
| ID17050114SW015_02   | Willow Creek - 1st and 2nd order                        | 77.74  | Miles |
| ID17050114SW016_02   | Tributaries to West Hartley Gulch and Sand Hollow Creek | 45.64  | Miles |
| ID17050114SW017_02   | Sand Hollow Creek - 1st and 2nd order tributaries       | 33.35  | Miles |
| 17050115             | Middle Snake-Payette                                    |        |       |
| ID17050115SW001_02   | Cherry Gulch and Buttermilk Slough                      | 34.69  | Miles |
| ID17050115SW002_08   | Snake River side channels near Homestead Gulch          | 0.42   | Miles |
| ID17050115SW005_02   | Sand Hollow                                             | 24.18  | Miles |
| 17050121             | Middle Fork Payette                                     |        |       |
| ID17050121SW009_03   | Bull Creek - 3rd order (Sixteen-to-One Creek to mouth)  | 0.74   | Miles |
| 17050122             | Payette                                                 |        |       |
| ID17050122SW001_02   | Graveyard and Langley Gulches, and Haw Creek            | 192.68 | Miles |
| ID17050122SW001_02L  | Unnamed Pond between Langley and Graveyard Gulches      | 4.06   | Acres |
| ID17050122SW003_03   | Fleming Creek - 3rd order                               | 2.09   | Miles |
| ID17050122SW004_02   | Shafer Creek - 1st and 2nd order                        | 76.5   | Miles |
| ID17050122SW006_02   | Porter Creek - 1st and 2nd order                        | 19.67  | Miles |
| ID17050122SW006_03   | Porter Creek - 3rd order (Shanks Creek to mouth)        | 4.72   | Miles |
| ID17050122SW007_02   | Hill Creek - 1st and 2nd order                          | 25.33  | Miles |
| ID17050122SW007_03   | Hill Creek - 3rd order                                  | 3.1    | Miles |
| ID17050122SW008_02   | Eddy Creek and unnamed tributaries to SF Payette River  | 12.23  | Miles |
| ID17050122SW011_01L  | Beal Reservoir Number 3                                 | 13.82  | Acres |
| ID17050122SW011_02L  | Unnamed reservoir on Padget Creek                       | 25.24  | Acres |
| ID17050122SW015_02L  | Little Lake                                             | 58.36  | Acres |
| ID1703012200013_02L  |                                                         |        |       |

## Southwest

| ID17050122SW016_02   | Sand Hollow - 1st and 2nd order                              | 23.3   | Miles |
|----------------------|--------------------------------------------------------------|--------|-------|
| ID17050122SW017_02L  | Unnamed Pond in Stone Quarry Gulch                           | 4.69   | Acres |
| ID17050122SW018_02   | Little Willow Creek below Paddock Valley - 1st and 2nd order | 87.08  | Miles |
| ID17050122SW019_02   | Indian, Hog Cove and Rattlesnake Creeks - 1st and 2nd order  | 19.37  | Miles |
| ID17050122SW019_03   | Indian Creek - 3rd order (Rattlesnake to Little Willow)      | 3.32   | Miles |
| ID17050122SW020_02   | Two unnamed tributaries to Paddock Valley Reservoir          | 7.7    | Miles |
| ID17050122SW021_02   | Little Willow Creek above Paddock - 1st and 2nd order        | 28.25  | Miles |
| ID17050122SW021_03   | Little Willow Creek above Paddock Valley Res 3rd order       | 4.12   | Miles |
| 17050123             | North Fork Payette                                           |        |       |
| ID17050123SW004_02L  | Corral Creek Reservoir                                       | 40.29  | Acres |
| ID17050123SW004_03L  | Warner Pond                                                  | 17.66  | Acres |
| ID17050123SW006_01L  | Calendar Reservoir                                           | 15.79  | Acres |
| ID17050123SW006_02L  | Davis Reservoir                                              | 30.39  | Acres |
| ID17050123SW010_01L  | Fogg Lake                                                    | 3.05   | Acres |
| ID17050123SW011_00L  | Boulder Lake                                                 | 78.2   | Acres |
| ID17050123SW011_02aL | Melton Reservoir                                             | 8.26   | Acres |
| ID17050123SW011_02L  | Jussila-Bow Lake and unnamed reservoir on Cold Creek         | 37.86  | Acres |
| ID17050123SW014_03L  | Browns Pond                                                  | 83.24  | Acres |
| ID17050123SW016_02L  | Hait Reservoir (Blackhawk Lake)                              | 63.32  | Acres |
| ID17050123SW017_01L  | Unamed Lake between Lemah and Fall Creeks                    | 15.61  | Acres |
| ID17050123SW017_02L  | Blackwell Lake                                               | 33.54  | Acres |
| ID17050123SW018_02L  | Brush Lake                                                   | 165.14 | Acres |
| ID17050123SW021_01L  | Deep and Trail Lakes                                         | 40.38  | Acres |
| ID17050123SW022_02L  | Horton Lake                                                  | 5.71   | Acres |
| 17050124             | Weiser                                                       |        |       |

| ID17050124SW001_02  | Weiser River - Keithly Creek to mouth          | 116.53 | Miles |
|---------------------|------------------------------------------------|--------|-------|
| ID17050124SW003_02  | Camp and Star Butte Creeks - 1st and 2nd order | 31.12  | Miles |
| ID17050124SW003_02L | Star Butte Pond                                | 23.18  | Acres |
| ID17050124SW003_03  | Camp Creek - 3rd order                         | 2.38   | Miles |
| ID17050124SW004_02  | Milk Creek - entire drainage                   | 24.23  | Miles |
| ID17050124SW005_02L | Soulen Reservoir                               | 117.61 | Acres |
| ID17050124SW006_01L | Groner Reservoir                               | 12.48  | Acres |

| ID17050124SW006_02L | Crane Springs Pond                                           | 15.97 | Acres |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17050124SW009_02  | Ben Ross Reservoir - all inlet and outlet streams            | 9.29  | Miles |
| ID17050124SW010_02  | Mill Creek - entire drainage                                 | 13.97 | Miles |
| ID17050124SW013_02  | Bacon Creek - entire drainage                                | 7.97  | Miles |
| ID17050124SW026_02  | Spring and Camp Creeks - 1st and 2nd order                   | 26.52 | Miles |
| ID17050124SW026_03  | Spring Creek - 3rd order (Camp Creek to mouth)               | 1.5   | Miles |
| ID17050124SW029_02  | Sage Creek - 1st and 2nd order                               | 40.35 | Miles |
| ID17050124SW029_03  | Sage Creek - 3rd order (Fairchild Reservoir outlet to mouth) | 6.04  | Miles |
| ID17050124SW030_02  | Mann Creek - 1st and 2nd order                               | 25.74 | Miles |
| ID17050124SW031_02  | Unnamed tributary to Mann Creek near Fairchild Reservoir     | 2.9   | Miles |
| ID17050124SW033_02L | Barton Reservoir                                             | 17.48 | Acres |
| 17050201            | Brownlee Reservoir                                           |       |       |
| ID17050201SW002_02  | Tributaries to Snake River - 1st and 2nd order               | 16.36 | Miles |
| ID17050201SW002_02a | Salt Creek - entire drainage                                 | 4.37  | Miles |
| ID17050201SW004_02  | Snake River - Weiser River to Scott Creek                    | 1.88  | Miles |
| ID17050201SW011_02  | Wolf Creek - 1st and 2nd order                               | 10.58 | Miles |
| ID17050201SW015_02L | Barber Flat Reservoir                                        | 4.95  | Acres |

| 17040104            | Palisades                                                   |          |       |
|---------------------|-------------------------------------------------------------|----------|-------|
| ID17040104SK005_02  | Fall Creek - South Fork Fall Creek to mouth                 | 20.53    | Miles |
| ID17040104SK009_02  | Indian Creek - source to mouth                              | 9.82     | Miles |
| ID17040104SK010 02  | 1st & 2nd Order Streams flowing into Palisades Reservoir    | 52.95    | Miles |
| ID17040104SK010L_0L | Palisades Reservoir                                         | 15432.53 | Acres |
| ID17040104SK012 02  | North Fork Bear Creek - source to mouth                     | 17.27    | Miles |
| ID17040104SK012_03  | North Fork Bear Creek - source to mouth                     | 2.66     | Miles |
| ID17040104SK014_02  | McCoy Creek - Fish Creek to Palisades Reservoir             | 30.37    | Miles |
| ID17040104SK015_02  | McCoy Creek - Iowa Creek to Fish Creek                      | 20.64    | Miles |
| ID17040104SK016_04  | McCoy Creek - Clear Creek to Iowa Creek                     | 2.8      | Miles |
| ID17040104SK017_02  | Wolverine Creek - source to mouth                           | 15.51    | Miles |
| ID17040104SK018_02  | Clear Creek - source to mouth                               | 28.93    | Miles |
| ID17040104SK020_02  | lowa Creek - source to mouth                                | 18.73    | Miles |
| ID17040104SK024_02  | Indian Creek - Idaho/Wyoming border to Palisades Reservoir  | 6.58     | Miles |
| ID17040104SK025_02  | Big Elk Creek - Idaho/Wyoming border to Palisades Reservoir | 28.66    | Miles |
| ID17040104SK027_02  | Palisades Creek - source to mouth                           | 110.26   | Miles |
| ID17040104SK028_03  | Rainey Creek - source to mouth                              | 4.46     | Miles |
| 17040105            | Salt                                                        |          |       |
| ID17040104SK010L_0L | Palisades Reservoir                                         | 15432.53 | Acres |
| ID17040105SK001_02  | Tributaries of Salt River - source to Idaho/Wyoming border  | 18.27    | Miles |
| ID17040105SK002_02c | Cabin Creek                                                 | 3.02     | Miles |
| ID17040105SK002_02d | Squaw Creek                                                 | 16.23    | Miles |
| ID17040105SK003_02a | Rich Creek                                                  | 1.5      | Miles |
| ID17040105SK003_02c | Lau Creek                                                   | 2.03     | Miles |
| ID17040105SK005_02  | Tributaries of Salt River - source to Idaho/Wyoming border  | 24.97    | Miles |
| ID17040105SK005_05  | Tributaries of Salt River - source to Idaho/Wyoming border  | 0.29     | Miles |
| ID17040105SK006_02f | White Canyon                                                | 3.2      | Miles |
| ID17040105SK006_02L | Unnamed Lake - Trib to Stump Creek                          | 4.06     | Acres |
| ID17040105SK007_02  | Tygee Creek - source to mouth                               | 16.54    | Miles |
| ID17040105SK007_02a | Webster Creek                                               | 2.48     | Miles |
| ID17040105SK007_02b | Draney Creek                                                | 3.42     | Miles |
| ID170401058K007 02a | Roberts Creek                                               | 5.6      | Miles |

| ID17040105SK010_02  | Deer Creek - source to mouth                     | 2.47   | Miles |
|---------------------|--------------------------------------------------|--------|-------|
| ID17040105SK011_02  | Rock Creek - source to mouth                     | 17.49  | Miles |
| ID17040105SK011_02a | Rock Creek                                       | 2.95   | Miles |
| ID17040105SK012_01L | Elk Valley Springs                               | 11.89  | Acres |
| ID17040105SK012_02  | Spring Creek - source to mouth                   | 4.23   | Miles |
| ID17040105SK012_02b | Spring Creek                                     | 2.99   | Miles |
| 17040201            | Idaho Falls                                      |        |       |
| ID17040201SK001_02  | Snake River - Dry Bed Creek to river mile 791    | 23.73  | Miles |
| ID17040201SK001_04  | Snake River - Dry Bed Creek to river mile 791    | 21.33  | Miles |
| ID17040201SK002_02  | South Fork Willow Creek - source to mouth        | 4.56   | Miles |
| ID17040201SK003_05  | North Fork Willow Creek - source to mouth        | 10.22  | Miles |
| ID17040201SK004_02  | Dry Bed Creek - source to mouth                  | 14.31  | Miles |
| ID17040201SK004_06  | Dry Bed Creek - source to mouth                  | 41.47  | Miles |
| ID17040201SK009_02  | Snake River - Annis Slough to Dry Bed Creek      | 21.38  | Miles |
| ID17040201SK009_06  | Snake River - Annis Slough to Dry Bed Creek      | 5.22   | Miles |
| ID17040201SK009_07  | Snake River - Annis Slough to Dry Bed Creek      | 24.95  | Miles |
| ID17040201SK010_02  | Spring Creek - canal (T05N, R38E) to mouth       | 5.49   | Miles |
| ID17040201SK011_02  | Spring Creek - source to canal (T05N, R38E)      | 4.26   | Miles |
| ID17040201SK012_02  | Snake River - Dry Bed to Annis Slough            | 53.63  | Miles |
| ID17040201SK012_06  | Snake River - Dry Bed to Annis Slough            | 63.59  | Miles |
| ID17040201SK012_07  | Snake River - Dry Bed to Annis Slough            | 1.5    | Miles |
| ID17040201SK014_02  | Lyons Creek - source to mouth                    | 57.97  | Miles |
| ID17040201SK014_03  | Lyons Creek - source to mouth                    | 5.23   | Miles |
| ID17040201SK016_02  | Market Lake - 1st and 2nd Order Tribs            | 0.46   | Miles |
| ID17040201SK016_02L | Market Lake                                      | 56.15  | Acres |
| ID17040201SK017_02  | Kettle Butte complex                             | 30.03  | Miles |
| 17040202            | Upper Henrys                                     |        |       |
| ID17040202SK001_01L | Blue Creek Reservoir - Cherry Dam                | 4.35   | Acres |
| ID17040202SK001_02  | Henrys Fork - Warm River to Ashton Reservoir Dam | 105.78 | Miles |
| ID17040202SK001_02L | Coleman Canyon Lake                              | 4.81   | Acres |
| ID17040202SK001_03  | Henrys Fork - Warm River to Ashton Reservoir Dam | 1.15   | Miles |
| ID17040202SK001_06  | Henrys Fork - Warm River to Ashton Reservoir Dam | 6.39   | Miles |

| ID17040202SK002 02         Warm River - Warm River Spring to mouth         15.57         Miles           ID17040202SK006 02         Partridge Creek - source to mouth         3.54         Miles           ID17040202SK006 02         Robinson Creek - Rock Creek to mouth         3.54         Miles           ID17040202SK007 02L         Long Meadows Lakes         27.41         Acres           ID17040202SK008 02         Rock Creek - Wyoming Creek to mouth         10.11         Miles           ID17040202SK009 02         Wyoming Creek - Idaho/Wyoming border to mouth         5.16         Miles           ID17040202SK010 02L         Robinson Creek - Idaho/Wyoming border         43.64         Miles           ID17040202SK010 02L         Robinson Creek - Idaho/Wyoming border         43.64         Miles           ID17040202SK014 02         Henrys Fork - Thurman Creek to Warm River         35.87         Miles           ID17040202SK015 02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         16.38         Miles           ID17040202SK015 02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID17040202SK015 02         Henrys Fork - Island Park Reservoir         7.11         Miles           ID17040202SK015 02         Elk Creek Nearre to mouth         1.1.73         Miles      <                                                                                         | ID17040202SK001_06L | Ashton Reservoir (Henrys Fork)                               | 358.33  | Acres |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------|---------|-------|
| ID17040202SK004_02Partridge Creek - source to mouth45.85MilesID17040202SK006_02Robinson Creek - Rock Creek to mouth3.54MilesID17040202SK006_02Rock Creek - Wyoming Creek to mouth10.11MilesID17040202SK006_02Wyoming Creek - Idaho/Wyoming border to mouth5.16MilesID17040202SK010_02LRobinson Creek - Idaho/Wyoming border to mouth5.16MilesID17040202SK010_02LRobinson Creek - Idaho/Wyoming border to mouth4.02MilesID17040202SK011_02Robinson Creek - Idaho/Wyoming border3.86AcresID17040202SK014_02Henrys Fork - Idaho/Wyoming border3.87MilesID17040202SK014_02Henrys Fork - Island Park Reservoir Dam to Thurman Creek64.75AcresID17040202SK015_05Henrys Fork - Island Park Reservoir Dam to Thurman Creek9.65MilesID17040202SK016_03Buffalo River - Elk Creek to mouth11.73MilesID17040202SK016_03Buffalo River - Source to Elk Creek17.81MilesID17040202SK016_03Buffalo River - Source to Elk Creek7.11MilesID17040202SK016_03Buffalo River - Source to Elk Creek7.24AcresID17040202SK016_04Elk Creek Reservoir7.24AcresID17040202SK016_02Elk Creek Reservoir7.24AcresID17040202SK020_01Unnamed Lake - Island Park Reservoir7.24AcresID17040202SK020_02Island Park Reservoir7.24AcresID17040202SK020_02Island Park Reservoir7.24 <td< td=""><td>ID17040202SK002_02</td><td>Warm River - Warm River Spring to mouth</td><td>15.57</td><td>Miles</td></td<>                                                                                                                        | ID17040202SK002_02  | Warm River - Warm River Spring to mouth                      | 15.57   | Miles |
| ID170402025K006 02         Robinson Creek - Rock Creek to mouth         3.54         Miles           ID170402025K007 02L         Long Meadows Lakes         27.41         Acres           ID170402025K009 02         Wyoming Creek to mouth         10.11         Miles           ID170402025K009 02         Wyoming Creek to mouth         5.16         Miles           ID170402025K010 02L         Robinson Creek - Idaho/Wyoming border to mouth         5.16         Miles           ID170402025K011 02         Robinson Creek - Idaho/Wyoming border         43.64         Miles           ID170402025K014 02         Henrys Fork - Thurman Creek to Warm River         35.87         Miles           ID170402025K014 02L         Fish Pond (Henry's Fork)         64.75         Acres           ID170402025K014 02L         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID170402025K015 02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID170402025K017 02         Tors Creek - source to mouth         11.73         Miles           ID170402025K019 02         Buffalo River - source to mouth         7.11         Miles           ID170402025K019 02         Ikk Creek Reservoir         20.44         Acres           ID170402025K020 01L         Innam                                                                                                              | ID17040202SK004_02  | Partridge Creek - source to mouth                            | 45.85   | Miles |
| ID17040202SK007 02L         Long Meadows Lakes         27.41         Acres           ID17040202SK008 02         Rock Creek - Wyoming Creek to mouth         10.11         Miles           ID17040202SK010 02L         Robinson Lake (Rock Creek)         33.86         Acres           ID17040202SK011 02         Robinson Creek - Idaho/Wyoming border to mouth         4.02         Miles           ID17040202SK011 02         Robinson Creek - Idaho/Wyoming border         43.64         Miles           ID17040202SK014 02L         Henrys Fork - Source to mouth         4.02         Miles           ID17040202SK014 02L         Henrys Fork - Thurman Creek to Warm River         35.87         Miles           ID17040202SK015 02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID17040202SK015 02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID17040202SK017 02         Toms Creek - source to mouth         11.73         Miles           ID17040202SK019 02         Elk Creek - source to mouth         7.11         Miles           ID17040202SK019 02         Elk Creek Reservoir         20.44         Acres           ID17040202SK020 02L         Island Park Reservoir         7.24         Acres           ID17040202SK020 02L         I                                                                                                              | ID17040202SK006_02  | Robinson Creek - Rock Creek to mouth                         | 3.54    | Miles |
| ID17040202SK008 02         Rock Creek - Wyoming Creek to mouth         10.11         Miles           ID17040202SK009 02         Wyoming Creek - Idaho/Wyoming border to mouth         5.16         Miles           ID17040202SK010 02L         Robinson Lake (Rock Creek)         33.86         Acress           ID17040202SK011 02         Robinson Creek - Idaho/Wyoming border         43.64         Miles           ID17040202SK012 03         Fish Creek - source to mouth         4.02         Miles           ID17040202SK014 02         Henrys Fork - Thurman Creek to Warm River         35.87         Miles           ID17040202SK014 02         Fish Pork (Henry's Fork)         64.75         Acres           ID17040202SK015 02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID17040202SK015 05         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID17040202SK015 02         Buffalo River - Surce to mouth         11.73         Miles           ID17040202SK019 02         Elk Creek - source to mouth         7.11         Miles           ID17040202SK019 02         Elk Creek Reservoir         20.44         Acres           ID17040202SK020 021         Island Park Reservoir         7.24         Acres           ID17040202SK020 021         <                                                                                                          | ID17040202SK007_02L | Long Meadows Lakes                                           | 27.41   | Acres |
| ID170402025K009_02         Wyoming Creek - Idaho/Wyoming border to mouth         5.16         Miles           ID170402025K010_02L         Robinson Lake (Rock Creek)         33.86         Acres           ID170402025K010_02         Robinson Creek - Idaho/Wyoming border         43.64         Miles           ID170402025K011_02         Robinson Creek - Idaho/Wyoming border         43.64         Miles           ID170402025K014_02         Henrys Fork - Thurman Creek to Warm River         35.87         Miles           ID170402025K014_02         Henrys Fork - Thurman Creek to Warm River         35.87         Miles           ID170402025K015_02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID170402025K015_03         Buffalo River - Elk Creek to mouth         2.33         Miles           ID170402025K016_03         Buffalo River - Elk Creek to mouth         11.73         Miles           ID170402025K019_02         Torms Creek - source to mouth         11.73         Miles           ID170402025K019_02         Elk Creek Reservoir         20.44         Acres           ID170402025K019_02         Elk Creek Reservoir         20.44         Acres           ID170402025K02_01_01         Unnamed Lake - Island Park Reservoir         7.24         Acres           ID170402025K02_02_02 <td>ID17040202SK008_02</td> <td>Rock Creek - Wyoming Creek to mouth</td> <td>10.11</td> <td>Miles</td> | ID17040202SK008_02  | Rock Creek - Wyoming Creek to mouth                          | 10.11   | Miles |
| ID17040202SK010_02LRobinson Lake (Rock Creek)33.86AcresID17040202SK011_02Robinson Creek - Idaho/Wyoming border43.64MilesID17040202SK011_02Robinson Creek - Idaho/Wyoming border4.02MilesID17040202SK014_02Henrys Fork - Thurman Creek to Warm River35.87MilesID17040202SK014_02Fish Pond (Henry's Fork)64.75AcresID17040202SK015_02Henrys Fork - Island Park Reservoir Dam to Thurman Creek9.65MilesID17040202SK016_03Buffalo River - Elk Creek to mouth2.33MilesID17040202SK017_02Torns Creek - source to mouth11.73MilesID17040202SK018_02Buffalo River - Source to mouth11.73MilesID17040202SK019_02Elk Creek - source to mouth7.11MilesID17040202SK019_02Elk Creek - source to mouth7.11MilesID17040202SK019_02Elk Creek Reservoir20.44AcresID17040202SK02_01LUnnamed Lake - Island Park Reservoir7.24AcresID17040202SK02_02Island Park Reservoir7.24AcresID17040202SK02_02Island Park Reservoir7.24AcresID17040202SK02_02Island Park Reservoir7.24AcresID17040202SK02_03Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92ID17040202SK02_04Island Park Reservoir7.24AcresID17040202SK02_02Meadows Creek - source to mouth5.28MilesID17040202SK02_03Henrys Lake Outlet - Henrys Lake Dam to mouth <td>ID17040202SK009_02</td> <td>Wyoming Creek - Idaho/Wyoming border to mouth</td> <td>5.16</td> <td>Miles</td>                                                                                                                                                        | ID17040202SK009_02  | Wyoming Creek - Idaho/Wyoming border to mouth                | 5.16    | Miles |
| ID17040202SK011 02Robinson Creek - Idaho/Wyoming border43.64MilesID17040202SK013_03Fish Creek - source to mouth4.02MilesID17040202SK014 02Henrys Fork - Thurman Creek to Warm River35.87MilesID17040202SK014 02LFish Pond (Henry's Fork)64.75AcresID17040202SK015 02Henrys Fork - Island Park Reservoir Dam to Thurman Creek16.38MilesID17040202SK015 05Henrys Fork - Island Park Reservoir Dam to Thurman Creek9.65MilesID17040202SK016_03Buffalo River - Elk Creek to mouth2.33MilesID17040202SK017 02Toms Creek - source to mouth11.73MilesID17040202SK018_02Buffalo River - source to Elk Creek17.81MilesID17040202SK019_02Elk Creek reservoir20.44AcresID17040202SK019_02Island Park Reservoir7.24AcresID17040202SK020_01LUnnamed Lake - Island Park Reservoir7.24AcresID17040202SK020_02LIsland Park Reservoir7647.44AcresID17040202SK020_02LIsland Park Reservoir7647.44AcresID17040202SK021_05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK026_02Meadows Creek - source to mouth1.32MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK026_02Meadows Creek - source to sink17.25MilesID17040202SK026_02Reas Pass Creek - source to sink17.25MilesID                                                                                                                                                                                                                                                                    | ID17040202SK010_02L | Robinson Lake (Rock Creek)                                   | 33.86   | Acres |
| ID17040202SK013 03Fish Creek - source to mouth4.02MilesID17040202SK014 02Henrys Fork - Thurman Creek to Warm River35.87MilesID17040202SK014 02LFish Pond (Henry's Fork)64.75AcresID17040202SK015 02Henrys Fork - Island Park Reservoir Dam to Thurman Creek16.38MilesID17040202SK015 05Henrys Fork - Island Park Reservoir Dam to Thurman Creek9.65MilesID17040202SK016 03Buffalo River - Elk Creek to mouth2.33MilesID17040202SK017 02Toms Creek - source to mouth11.73MilesID17040202SK018 02Buffalo River - source to Elk Creek17.81MilesID17040202SK019 02Elk Creek - source to mouth7.11MilesID17040202SK019 02Island Park Reservoir20.44AcresID17040202SK020 021Island Park Reservoir7.24AcresID17040202SK020 021Island Park Reservoir7647.44AcresID17040202SK020 021Island Park Reservoir7647.44AcresID17040202SK020 021Island Park Reservoir7647.44AcresID17040202SK020 021Island Park Reservoir7647.44AcresID17040202SK020 022Big Springs - source to mouth1.32MilesID17040202SK020 02Big Springs - source to mouth2.09MilesID17040202SK020 02Big Springs - source to mouth2.09MilesID17040202SK020 02Big Springs - source to mouth2.09MilesID17040202SK020 02Big Springs - source to mouth2                                                                                                                                                                                                                                                                                      | ID17040202SK011_02  | Robinson Creek - Idaho/Wyoming border                        | 43.64   | Miles |
| ID17040202SK014 02Henrys Fork - Thurman Creek to Warm River35.87MilesID17040202SK014_02LFish Pond (Henry's Fork)64.75AcresID17040202SK015_02Henrys Fork - Island Park Reservoir Dam to Thurman Creek16.38MilesID17040202SK015_05Henrys Fork - Island Park Reservoir Dam to Thurman Creek9.65MilesID17040202SK016_03Buffalo River - Elk Creek to mouth2.33MilesID17040202SK017_02Toms Creek - source to mouth11.73MilesID17040202SK018_02Buffalo River - source to Elk Creek17.81MilesID17040202SK019_02LElk Creek - source to mouth7.11MilesID17040202SK019_02LElk Creek Reservoir20.44AcresID17040202SK020_01LUnnamed Lake - Island Park Reservoir7.24AcresID17040202SK020_02Island Park Reservoir7647.44AcresID17040202SK020_02LBishop Lake17.19AcresID17040202SK020_02LBishop Lake17.19AcresID17040202SK020_02Big Springs - source to mouth1.32MilesID17040202SK020_02Big Springs - source to mouth1.32MilesID17040202SK026_03Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK026_02Meadows Creek - source to sink17.25MilesID17040202SK026_02Meadows Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake Outlet - Henrys Lake Dam to mouth5.28MilesID17040202SK032_02 <td>ID17040202SK013_03</td> <td>Fish Creek - source to mouth</td> <td>4.02</td> <td>Miles</td>                                                                                                                                                                        | ID17040202SK013_03  | Fish Creek - source to mouth                                 | 4.02    | Miles |
| ID17040202SK014_02L         Fish Pond (Henry's Fork)         64.75         Acres           ID17040202SK015_02         Henrys Fork - Island Park Reservoir Dam to Thurman Creek         9.65         Miles           ID17040202SK016_03         Buffalo River - Elk Creek to mouth         2.33         Miles           ID17040202SK016_03         Buffalo River - Elk Creek to mouth         11.73         Miles           ID17040202SK017_02         Toms Creek - source to mouth         11.73         Miles           ID17040202SK019_02         Elk Creek - source to Elk Creek         17.81         Miles           ID17040202SK019_02         Elk Creek - source to mouth         7.11         Miles           ID17040202SK019_02         Elk Creek Reservoir         20.44         Acres           ID17040202SK020_01L         Unnamed Lake - Island Park Reservoir         7.24         Acres           ID17040202SK020_02         Island Park Reservoir         7.24         Acres           ID17040202SK020_02         Island Park Reservoir         7.47         Acres           ID17040202SK020_02         Island Park Reservoir         7.44         Acres           ID17040202SK020_02         Island Park Reservoir         7.44         Acres           ID17040202SK021_05         Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet                                                                                                                           | ID17040202SK014_02  | Henrys Fork - Thurman Creek to Warm River                    | 35.87   | Miles |
| ID17040202SK015 02Henrys Fork - Island Park Reservoir Dam to Thurman Creek16.38MilesID17040202SK015 05Henrys Fork - Island Park Reservoir Dam to Thurman Creek9.65MilesID17040202SK016_03Buffalo River - Elk Creek to mouth2.33MilesID17040202SK017_02Toms Creek - source to mouth11.73MilesID17040202SK018_02Buffalo River - source to Elk Creek17.81MilesID17040202SK019_02Elk Creek - source to mouth7.11MilesID17040202SK019_02Elk Creek Reservoir20.44AcresID17040202SK020_01LUnnamed Lake - Island Park Reservoir7.24AcresID17040202SK020_02Island Park Reservoir83.21MilesID17040202SK020_02LBishop Lake17.19AcresID17040202SK020_02LIsland Park Reservoir7647.44AcresID17040202SK020_02LIsland Park Reservoir7647.44AcresID17040202SK020_02LIsland Park Reservoir7.92MilesID17040202SK020_02Big Springs - source to mouth1.32MilesID17040202SK021_05Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK034_02LEdwards and Clark Lakes24.98<                                                                                                                                                                                                                                                                                      | ID17040202SK014_02L | Fish Pond (Henry's Fork)                                     | 64.75   | Acres |
| ID17040202SK015_05Henrys Fork - Island Park Reservoir Dam to Thurman Creek9.65MilesID17040202SK016_03Buffalo River - Elk Creek to mouth2.33MilesID17040202SK017_02Toms Creek - source to mouth11.73MilesID17040202SK018_02Buffalo River - source to Elk Creek17.81MilesID17040202SK019_02Elk Creek - source to mouth7.11MilesID17040202SK019_02Elk Creek - source to mouth7.11MilesID17040202SK019_02Elk Creek Reservoir20.44AcresID17040202SK020_01Unnamed Lake - Island Park Reservoir7.24AcresID17040202SK020_02Island Park Reservoir83.21MilesID17040202SK020_02Island Park Reservoir7647.44AcresID17040202SK020_02Island Park Reservoir7647.44AcresID17040202SK020_02Big Springs - source to mouth1.32MilesID17040202SK021_05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK026_02Henrys Lake Outlet - Henrys Lake Dam to mouth5.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032_02Henrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - so                                                                                                                                                                                                                                                                             | ID17040202SK015_02  | Henrys Fork - Island Park Reservoir Dam to Thurman Creek     | 16.38   | Miles |
| ID17040202SK016_03         Buffalo River - Elk Creek to mouth         2.33         Miles           ID17040202SK017_02         Toms Creek - source to mouth         11.73         Miles           ID17040202SK018_02         Buffalo River - source to Elk Creek         17.81         Miles           ID17040202SK019_02         Elk Creek - source to mouth         7.11         Miles           ID17040202SK019_02L         Elk Creek Reservoir         20.44         Acres           ID17040202SK020_01L         Unnamed Lake - Island Park Reservoir         7.24         Acres           ID17040202SK020_02         Island Park Reservoir         7.24         Acres           ID17040202SK020_02L         Bishop Lake         17.19         Acres           ID17040202SK020_02L         Bishop Lake         17.19         Acres           ID17040202SK020_02L         Bishop Lake         17.19         Acres           ID17040202SK020_02L         Bishop Lake         17.32         Miles           ID17040202SK020_02L         Bishop Lake Outlet - Henrys Lake Outlet         7.92         Miles           ID17040202SK025_03         Henrys Lake Outlet - Henrys Lake Dam to mouth         2.09         Miles           ID17040202SK027_02         Reas Pass Creek - source to sink         17.25         Miles                                                                                                                                                                 | ID17040202SK015_05  | Henrys Fork - Island Park Reservoir Dam to Thurman Creek     | 9.65    | Miles |
| ID17040202SK017 02Toms Creek - source to mouth11.73MilesID17040202SK018 02Buffalo River - source to Elk Creek17.81MilesID17040202SK019 02Elk Creek - source to mouth7.11MilesID17040202SK019 02LElk Creek Reservoir20.44AcresID17040202SK020 01LUnnamed Lake - Island Park Reservoir7.24AcresID17040202SK020 02Island Park Reservoir83.21MilesID17040202SK020 02LBishop Lake17.19AcresID17040202SK020 02LBishop Lake7647.44AcresID17040202SK020 02LIsland Park Reservoir7647.44AcresID17040202SK020 02LBishop Lake7647.44AcresID17040202SK021 05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK022 02Big Springs - source to mouth1.32MilesID17040202SK026_02Meadows Creek - source to mouth2.09MilesID17040202SK027 02Reas Pass Creek - source to sink17.25MilesID17040202SK032 02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032 02Henrys Lake6078.47AcresID17040202SK032 02Kedwards and Clark Lakes24.98AcresID17040202SK037 02Rock Creek - source to mouth0.29MilesID17040202SK037 02Rock Creek - source to mouth0.29MilesID17040202SK037 02Rock Creek - source to mouth0.29MilesID17040202SK037 02Rock Creek                                                                                                                                                                                                                                                                                                                           | ID17040202SK016_03  | Buffalo River - Elk Creek to mouth                           | 2.33    | Miles |
| ID17040202SK018Buffalo River - source to Elk Creek17.81MilesID17040202SK019Elk Creek - source to mouth7.11MilesID17040202SK01902Elk Creek Reservoir20.44AcresID17040202SK020Unnamed Lake - Island Park Reservoir7.24AcresID17040202SK020Island Park Reservoir7.24AcresID17040202SK020Island Park Reservoir83.21MilesID17040202SK020Island Park Reservoir7647.44AcresID17040202SK020Island Park Reservoir7647.44AcresID17040202SK020Island Park Reservoir7647.44AcresID17040202SK021Island Park Reservoir7.92MilesID17040202SK023Big Springs - source to mouth1.32MilesID17040202SK026_02Meadows Creek - source to mouth2.09MilesID17040202SK026_02Meadows Creek - source to sink17.25MilesID17040202SK032Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to sink17.25MilesID17040202SK032Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK034O2LEdwards and Clark Lakes24.98AcresID17040202SK03702Rock Creek - source to mouth10.29MilesID17040202SK03702Lake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID17040202SK017_02  | Toms Creek - source to mouth                                 | 11.73   | Miles |
| ID17040202SK019Elk Creek - source to mouth7.11MilesID17040202SK01902LElk Creek Reservoir20.44AcresID17040202SK020Unnamed Lake - Island Park Reservoir7.24AcresID17040202SK020Island Park Reservoir83.21MilesID17040202SK020Bishop Lake17.19AcresID17040202SK020_0LIsland Park Reservoir7647.44AcresID17040202SK020_0LIsland Park Reservoir7647.44AcresID17040202SK021_0LIsland Park Reservoir7647.44AcresID17040202SK023_02Big Springs - source to mouth1.32MilesID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ID17040202SK018_02  | Buffalo River - source to Elk Creek                          | 17.81   | Miles |
| ID17040202SK019 02LElk Creek Reservoir20.44AcresID17040202SK020 01LUnnamed Lake - Island Park Reservoir83.21MilesID17040202SK020 02LIsland Park Reservoir83.21MilesID17040202SK020 02LBishop Lake17.19AcresID17040202SK020 02LIsland Park Reservoir7647.44AcresID17040202SK020 02LIsland Park Reservoir7647.44AcresID17040202SK020 02LIsland Park Reservoir7647.44AcresID17040202SK021 05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK025 03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK027 02Reas Pass Creek - source to sink17.25MilesID17040202SK032 02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032 02Henrys Lake6078.47AcresID17040202SK032 02Reak and Clark Lakes24.98AcresID17040202SK034 02LEdwards and Clark Lakes24.98AcresID17040202SK037 02Rock Creek - source to mouth10.29MilesID17040202SK037 02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID17040202SK019_02  | Elk Creek - source to mouth                                  | 7.11    | Miles |
| ID17040202SK020_01LUnnamed Lake - Island Park Reservoir7.24AcresID17040202SK020_02Island Park Reservoir83.21MilesID17040202SK020_02LBishop Lake17.19AcresID17040202SK020_02LIsland Park Reservoir7647.44AcresID17040202SK020L_01LIsland Park Reservoir7647.44AcresID17040202SK021_05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK023_02Big Springs - source to mouth1.32MilesID17040202SK026_02Meadows Creek - source to mouth2.09MilesID17040202SK026_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02Lake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID17040202SK019_02L | Elk Creek Reservoir                                          | 20.44   | Acres |
| ID17040202SK020_02Island Park Reservoir83.21MilesID17040202SK020_02LBishop Lake17.19AcresID17040202SK020L_0LIsland Park Reservoir7647.44AcresID17040202SK021_05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK023_02Big Springs - source to mouth1.32MilesID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to sink17.25MilesID17040202SK032_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032_02Edwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02Lake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID17040202SK020_01L | Unnamed Lake - Island Park Reservoir                         | 7.24    | Acres |
| ID17040202SK020_02LBishop Lake17.19AcresID17040202SK020L_0LIsland Park Reservoir7647.44AcresID17040202SK021_05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK023_02Big Springs - source to mouth1.32MilesID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK027_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032_02Henrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02Lake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID17040202SK020_02  | Island Park Reservoir                                        | 83.21   | Miles |
| ID17040202SK020L_0LIsland Park Reservoir7647.44AcresID17040202SK021_05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK023_02Big Springs - source to mouth1.32MilesID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK027_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032_01Henrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02Lake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ID17040202SK020_02L | Bishop Lake                                                  | 17.19   | Acres |
| ID17040202SK021_05Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet7.92MilesID17040202SK023_02Big Springs - source to mouth1.32MilesID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK027_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032_02Henrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID17040202SK020L_0L | Island Park Reservoir                                        | 7647.44 | Acres |
| ID17040202SK023_02Big Springs - source to mouth1.32MilesID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK027_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032L_0LHenrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID17040202SK021_05  | Henrys Fork-Confluence of Big Springs and Henrys Lake Outlet | 7.92    | Miles |
| ID17040202SK025_03Henrys Lake Outlet - Henrys Lake Dam to mouth2.09MilesID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK027_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032_01Henrys Lake 1st and 2nd order Tribs6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ID17040202SK023_02  | Big Springs - source to mouth                                | 1.32    | Miles |
| ID17040202SK026_02Meadows Creek - source to mouth5.28MilesID17040202SK027_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032L_0LHenrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ID17040202SK025_03  | Henrys Lake Outlet - Henrys Lake Dam to mouth                | 2.09    | Miles |
| ID17040202SK027_02Reas Pass Creek - source to sink17.25MilesID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032L_0LHenrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID17040202SK026_02  | Meadows Creek - source to mouth                              | 5.28    | Miles |
| ID17040202SK032_02Henrys Lake 1st and 2nd order Tribs25.52MilesID17040202SK032L_0LHenrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ID17040202SK027_02  | Reas Pass Creek - source to sink                             | 17.25   | Miles |
| ID17040202SK032L_0LHenrys Lake6078.47AcresID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ID17040202SK032_02  | Henrys Lake 1st and 2nd order Tribs                          | 25.52   | Miles |
| ID17040202SK034_02LEdwards and Clark Lakes24.98AcresID17040202SK037_02Rock Creek - source to mouth10.29MilesID17040202SK037_02LLake Marie3.15Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ID17040202SK032L_0L | Henrys Lake                                                  | 6078.47 | Acres |
| ID17040202SK037_02         Rock Creek - source to mouth         10.29         Miles           ID17040202SK037_02L         Lake Marie         3.15         Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID17040202SK034_02L | Edwards and Clark Lakes                                      | 24.98   | Acres |
| ID17040202SK037_02L Lake Marie 3.15 Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ID17040202SK037_02  | Rock Creek - source to mouth                                 | 10.29   | Miles |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID17040202SK037_02L | Lake Marie                                                   | 3.15    | Acres |

| ID17040202SK038_02  | Hope Creek - source to mouth                                 | 4.72   | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17040202SK039_02  | Crooked Creek - source to mouth                              | 17.74  | Miles |
| ID17040202SK039_04  | Crooked Creek - source to mouth                              | 12.93  | Miles |
| ID17040202SK043_02  | Sheep Creek - source to mouth                                | 24.72  | Miles |
| ID17040202SK043_03  | Sheep Creek - source to mouth                                | 1.16   | Miles |
| ID17040202SK043_03L | Sheep Creek Reservoir                                        | 20.13  | Acres |
| ID17040202SK044_02L | Icehouse Creek Reservoirs                                    | 83.28  | Acres |
| ID17040202SK045_02  | Sheridan Creek - Kilgore Road (T13N, R41E, Sec. 07) to mouth | 35.73  | Miles |
| ID17040202SK046_02  | Willow Creek - source to mouth                               | 18.92  | Miles |
| ID17040202SK046_03  | Willow Creek - source to mouth                               | 2.64   | Miles |
| ID17040202SK047_03  | Myers Creek - source to mouth                                | 3.76   | Miles |
| ID17040202SK048_02  | Sheridan Creek -source to Kilgore Road (T13N, R41E, Sec. 07) | 17.71  | Miles |
| ID17040202SK048_02L | Unnamed Lake - West Fork Sheridan Creek                      | 3.88   | Acres |
| ID17040202SK049_02  | Sheridan Reservoir - Tribs order 1 & 2                       | 8.17   | Miles |
| ID17040202SK049L_0L | Sheridan Reservoir                                           | 324.25 | Acres |
| ID17040202SK050_02  | Dry Creek - source to Sheridan Reservoir                     | 3.31   | Miles |
| ID17040202SK051_02  | Thurman Creek - source to mouth                              | 18.11  | Miles |
| ID17040202SK051_02L | Silver Lake                                                  | 164.77 | Acres |
| ID17040202SK051_0L  | Golden Lake                                                  | 39.7   | Acres |
| ID17040202SK052_02  | Rattlesnake Creek - source to mouth                          | 14.34  | Miles |
| 17040203            | Lower Henrys                                                 |        |       |
| ID17040201SK012_02  | Snake River - Dry Bed to Annis Slough                        | 53.63  | Miles |
| ID17040201SK012_06  | Snake River - Dry Bed to Annis Slough                        | 63.59  | Miles |
| ID17040201SK014_02  | Lyons Creek - source to mouth                                | 57.97  | Miles |
| ID17040203SK001_02  | Henrys Fork                                                  | 6.88   | Miles |
| ID17040203SK001_06  | Henrys Fork                                                  | 26.48  | Miles |
| ID17040203SK002_01L | Unnamed Lake                                                 | 18.69  | Acres |
| ID17040203SK002_02  | Henry's Fork-North Fork Teton R. to South Fork Teton River   | 20.8   | Miles |
| ID17040203SK002_02L | Egin Lakes                                                   | 32.05  | Acres |
| ID17040203SK002_06  | Henry's Fork - North Fork Teton River to South Fork Teton R. | 44.91  | Miles |
| ID17040203SK002_0L  | Mackerts Pond                                                | 5.51   | Acres |
| ID17040203SK003_02  | Henrys Fork - Falls River to North Fork Teton River          | 12.61  | Miles |
| ID17040203SK003_02L | Unnamed Lake - Henrys Fork                                   | 2.07   | Acres |
|                     |                                                              |        |       |

| ID17040203SK003_05  | Henrys Fork - Falls River to North Fork Teton River          | 8.73   | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17040203SK004_02  | Unnamed Tribs to Falls River                                 | 38.57  | Miles |
| ID17040203SK004_03  | Unnamed Tribs to Falls River                                 | 10.99  | Miles |
| ID17040203SK005_02  | Falls River - 02 Stream Order and tribs                      | 6.13   | Miles |
| ID17040203SK006_02  | Conant Creek - Idaho/Wyoming border to Squirrel Creek        | 8.63   | Miles |
| ID17040203SK007_02L | Ernest Lake                                                  | 12.02  | Acres |
| ID17040203SK008_02  | Squirrel Creek - Idaho/Wyoming border to mouth               | 19.91  | Miles |
| ID17040203SK009_02  | Falls River - Idaho/Wyoming border to Boone Creek            | 17.69  | Miles |
| ID17040203SK009_04  | Falls River - Idaho/Wyoming border to Boone Creek            | 17.23  | Miles |
| ID17040203SK011_02  | Boundary Creek - Idaho/Wyoming border (T12N, R46E, Sec. 06)  | 17.31  | Miles |
| ID17040203SK011_03  | Boundary Creek - Idaho/Wyoming border (T12N, R46E, Sec. 06)  | 3.47   | Miles |
| ID17040203SK011_04  | Boundary Creek - Idaho/Wyoming border (T12N, R46E, Sec. 06)  | 6.08   | Miles |
| ID17040203SK012_02  | Henrys Fork - Ashton Reservoir Dam to Falls River            | 60.79  | Miles |
| ID17040203SK012_02L | Mikesell Reservoirs #1 and #2                                | 31.37  | Acres |
| ID17040203SK013_04L | Lemon Lake - (Sand Creek)                                    | 42.56  | Acres |
| ID17040203SK014_02  | Pine Creek - source to mouth                                 | 21.29  | Miles |
| ID17040203SK014_03  | Pine Creek - source to mouth                                 | 1.9    | Miles |
| ID17040203SK014_03L | Lower Arcadia Reservoir (Pine Creek Source to Mouth)         | 71.59  | Acres |
| ID17040203SK015_02  | Sand Creek - source to Pine Creek                            | 79.19  | Miles |
| ID17040203SK015_02L | Sand Creek Reservoir                                         | 70.28  | Acres |
| ID17040203SK015_03  | Sand Creek - source to Pine Creek                            | 4.83   | Miles |
| ID17040203SK015_03L | Upper Arcadia Reservoir                                      | 53.62  | Acres |
| ID17040203SK015_04L | Blue Creek Reservoir(s) #'S 1, 2, 3                          | 81.12  | Acres |
| ID17040203SK016_06  | Warm Slough - source to mouth                                | 8.6    | Miles |
| 17040204            | Teton                                                        |        |       |
| ID17040204SK001_02  | South Fork Teton River - Teton River Forks to Henrys Fork    | 42.04  | Miles |
| ID17040204SK001_03  | South Fork Teton River - Teton River Forks to Henrys Fork    | 4.77   | Miles |
| ID17040204SK002_02  | North Fork Teton River - Teton River Forks to Henrys Fork    | 4.56   | Miles |
| ID17040204SK003_02  | Teton River - Teton Dam to Teton River Forks                 | 26     | Miles |
| ID17040204SK004_02  | Teton River - Canyon Creek to Teton Dam                      | 10.26  | Miles |
| ID17040204SK004_05  | Teton River - Canyon Creek to Teton Dam                      | 5.52   | Miles |
| ID17040204SK005_02  | Moody Creek - confluence of North and South Fork Moody Creek | 106.44 | Miles |
| ID17040204SK006_03  | South Fork Moody Creek - source to mouth                     | 0.74   | Miles |

| ID17040204SK007_03  | North Fork Moody Creek - source to mouth                     | 1.25  | Miles |
|---------------------|--------------------------------------------------------------|-------|-------|
| ID17040204SK009_02  | Canyon Creek - source to Warm Creek                          | 57.42 | Miles |
| ID17040204SK009_04  | Canyon Creek - source to Warm Creek                          | 0.36  | Miles |
| ID17040204SK010_02  | Calamity Creek - source to mouth                             | 19.63 | Miles |
| ID17040204SK012_02  | Teton River - Milk Creek to Canyon Creek                     | 17.48 | Miles |
| ID17040204SK012_05  | Teton River - Milk Creek to Canyon Creek                     | 5.03  | Miles |
| ID17040204SK013_03  | Milk Creek - source to mouth                                 | 7.1   | Miles |
| ID17040204SK014_02  | Teton River - Felt Dam outlet to Milk Creek                  | 22.42 | Miles |
| ID17040204SK014_05  | Teton River - Felt Dam outlet to Milk Creek                  | 7.64  | Miles |
| ID17040204SK015_02  | Teton River - Felt Dam pool                                  | 7.22  | Miles |
| ID17040204SK016_02  | Teton River - Highway 33 bridge to Felt Dam pool             | 12.11 | Miles |
| ID17040204SK017_02  | Teton River                                                  | 31.91 | Miles |
| ID17040204SK017_03  | Teton River                                                  | 5.37  | Miles |
| ID17040204SK019_02L | Packsaddle Lake                                              | 5     | Acres |
| ID17040204SK020_02  | Teton River                                                  | 35.07 | Miles |
| ID17040204SK020_03  | Teton River                                                  | 2.75  | Miles |
| ID17040204SK021_02  | Horseshoe Creek                                              | 2.48  | Miles |
| ID17040204SK024_02  | Mahogany Creek -pipeline diversion (NE ¼, Sec. 27, T4N, R44) | 8.61  | Miles |
| ID17040204SK028_02  | Teton River                                                  | 5.57  | Miles |
| ID17040204SK029_02  | Patterson Creek - pump diversion (SE ¼, Sec. 31, T4N, R44E)  | 1.55  | Miles |
| ID17040204SK031_02  | Grove Creek - source to sink                                 | 2.56  | Miles |
| ID17040204SK034_03  | Warm Creek - source to mouth                                 | 1.95  | Miles |
| ID17040204SK047_03  | Teton Creek                                                  | 4.37  | Miles |
| ID17040204SK051_02  | Dry Creek - Idaho/Wyoming border to sinks                    | 2.95  | Miles |
| ID17040204SK051_03  | Dry Creek - Idaho/Wyoming border to sinks                    | 7.85  | Miles |
| ID17040204SK053_02  | South Leigh Creek                                            | 3.42  | Miles |
| ID17040204SK054_02  | Spring Creek - North Leigh Creek to mouth                    | 4.06  | Miles |
| ID17040204SK055_02  | North Leigh Creek - Idaho/Wyoming border to mouth            | 4.99  | Miles |
| ID17040204SK057_02  | Badger Creek                                                 | 5.85  | Miles |
| ID17040204SK058_02  | Badger Creek                                                 | 29.1  | Miles |
| ID17040204SK059_02  | Badger Creek                                                 | 0.88  | Miles |
| ID17040204SK060_02  | South Fork Badger Creek                                      | 2.08  | Miles |
| ID17040204SK061_02  | South Fork Badger Creek - Idaho/Wyoming border to diversion  | 6.07  | Miles |

| ID17040204SK062_02  | North Fork Badger Creek - Idaho/Wyoming border to mouth | 13.51    | Miles |
|---------------------|---------------------------------------------------------|----------|-------|
| ID17040204SK062_03  | North Fork Badger Creek - Idaho/Wyoming border to mouth | 2.09     | Miles |
| ID17040204SK063_02  | Bitch Creek - Swanner Creek to mouth                    | 15.25    | Miles |
| ID17040204SK064_02  | Swanner Creek - Idaho/Wyoming border to mouth           | 35.4     | Miles |
| ID17040204SK064_03  | Swanner Creek - Idaho/Wyoming border to mouth           | 3.8      | Miles |
| ID17040204SK065_02  | Bitch Creek - Idaho/Wyoming border to Swanner Creek     | 30.01    | Miles |
| ID17040204SK065_02L | McRenolds Reservoir                                     | 4.15     | Acres |
| 17040205            | Willow                                                  |          |       |
| ID17040201SK001_04  | Snake River - Dry Bed Creek to river mile 791           | 21.33    | Miles |
| ID17040201SK001_05  | Snake River - Dry Bed Creek to river mile 791           | 2.9      | Miles |
| ID17040201SK002_05  | South Fork Willow Creek - source to mouth               | 6.87     | Miles |
| ID17040201SK003_05  | North Fork Willow Creek - source to mouth               | 10.22    | Miles |
| ID17040201SK007_02  | Crow Creek - source to Willow Creek                     | 37.71    | Miles |
| ID17040205SK001_02  | Willow Creek - Ririe Reservoir Dam to Eagle Rock Canal  | 15.3     | Miles |
| ID17040205SK002_02  | 01 & 02 Tribs to Ririe Reservoir                        | 21.76    | Miles |
| ID17040205SK003_02  | Blacktail Creek - source to Ririe Reservoir             | 23.55    | Miles |
| ID17040205SK003_03  | Blacktail Creek - source to Ririe Reservoir             | 2.96     | Miles |
| ID17040205SK004_02  | Willow Creek - Bulls Fork to Ririe Reservoir            | 5.67     | Miles |
| ID17040205SK005_03  | Willow Creek - Birch Creek to Bulls Fork                | 2.9      | Miles |
| ID17040205SK007_02  | Squaw Creek - source to mouth                           | 10.76    | Miles |
| ID17040205SK014_02L | Rat Lake                                                | 12.85    | Acres |
| ID17040205SK015_02L | Robinson Reservoir                                      | 17.81    | Acres |
| ID17040205SK016_02  | Grays Lake outlet - Hell Creek to mouth                 | 11.3     | Miles |
| ID17040205SK017_02  | Grays Lake outlet - Homer Creek to Hell Creek           | 11.6     | Miles |
| ID17040205SK018_02L | Unnamed Lake Trib to Homer Creek                        | 2.81     | Acres |
| ID17040205SK019_02  | Grays Lake outlet - Brockman Creek to Homer Creek       | 22.22    | Miles |
| ID17040205SK021_02L | Grays Lake                                              | 23678.06 | Acres |
| ID17040205SK022_02  | Little Valley Creek - source to mouth                   | 9.25     | Miles |
| ID17040205SK022_02L | Little Valley Reservoir                                 | 263.99   | Acres |
| ID17040205SK023_03  | Gravel Creek - source to mouth                          | 6.9      | Miles |
| ID17040205SK030_03  | Bulls Fork - source to mouth                            | 0.78     | Miles |

| 17040206             | American Falls                                              |          |       |
|----------------------|-------------------------------------------------------------|----------|-------|
| ID17040201SK001_04   | Snake River - Dry Bed Creek to river mile 791               | 21.33    | Miles |
| ID17040206SK004_02   | Blind Spring - source to mouth                              | 8.12     | Miles |
| ID17040206SK007_02   | Sawmill Creek - source to mouth                             | 8.39     | Miles |
| ID17040206SK011_02   | Clifton Creek - source to mouth                             | 14.92    | Miles |
| ID17040206SK022 02a  | Snake River-ephemeral streams btw RM 750 and RM 773         | 339.43   | Miles |
| ID17040206SK022_02L  | Jensens Lake                                                | 65.07    | Acres |
| ID17040206SK022_03   | Snake River                                                 | 30.2     | Miles |
| ID17040206SK023_02   | Jeff Cabin Creek - source to mouth                          | 0.06     | Miles |
| ID17040206SK025_02   | Little Hole Draw - source to American Falls Reservoir       | 298.4    | Miles |
| ID17040206SK025_02L  | Little Hole Draw-unnamed lakes west of American Falls Res   | 24.91    | Acres |
| ID17040206SK025_03   | Little Hole Draw-source to American Falls Reservoir         | 5.5      | Miles |
| ID17040207SK001_05   | Blackfoot River - Fort Hall Main Canal diversion to mouth   | 15.45    | Miles |
| 17040207             | Blackfoot                                                   |          |       |
| ID17040201SK005_02   | Sand Creek complex                                          | 118.01   | Miles |
| ID17040201SK005_03   | Sand Creek complex                                          | 12.28    | Miles |
| ID17040201SK005_04   | Sand Creek complex                                          | 3.8      | Miles |
| ID17040201SK006_05   | Crow Creek - Willow Creek to mouth                          | 25.28    | Miles |
| ID17040206SK022_03   | Snake River                                                 | 30.2     | Miles |
| ID17040207SK001_02   | Blackfoot River - Fort Hall Main Canal diversion to mouth   | 2.15     | Miles |
| ID17040207SK001_05   | Blackfoot River - Fort Hall Main Canal diversion to mouth   | 15.45    | Miles |
| ID17040207SK002_02   | Blackfoot River - Blackfoot Reservoir Dam to Fort Hall Main | 96.47    | Miles |
| ID17040207SK002_02L  | Equalizing Reservoir                                        | 225.22   | Acres |
| ID17040207SK002_03   | Blackfoot River - Blackfoot Reservoir Dam to Fort Hall Main | 0.06     | Miles |
| ID17040207SK006_02aL | Chicken Creek Reservoir                                     | 8.49     | Acres |
| ID17040207SK009_02   | Blackfoot Reservoir 1st and 2nd order tributaries           | 112.09   | Miles |
| ID17040207SK009_02L  | Enders Pond                                                 | 48.12    | Acres |
| ID17040207SK009L_0L  | Blackfoot Reservoir                                         | 17457.29 | Acres |
| ID17040207SK017_02   | Timothy Creek - source to mouth                             | 5.34     | Miles |
| ID17040207SK017_02b  | lower Timothy Creek                                         | 1.49     | Miles |
| ID17040207SK021_02   | Chippy Creek - source to mouth                              | 17.27    | Miles |
| ID17040207SK021_02b  | lower Olsen Creek                                           | 0.94     | Miles |

| ID17040207SK024_02                                                                                                                                                                                                                                                                                                               | Wooley Valley - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.17                                                                                                     | Miles                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ID17040207SK025_02b                                                                                                                                                                                                                                                                                                              | Sheep Creek and unnamed tributary to Clarks Cut                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.29                                                                                                      | Miles                                                                                                    |
| ID17040207SK025_03a                                                                                                                                                                                                                                                                                                              | lower Clark's Cut - Meadow Creek to Sheep Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.22                                                                                                      | Miles                                                                                                    |
| 17040208                                                                                                                                                                                                                                                                                                                         | Portneuf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           | -                                                                                                        |
| ID17040206SK015_02                                                                                                                                                                                                                                                                                                               | Ross Fork - Indian Creek to Gibson Canal                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.38                                                                                                     | Miles                                                                                                    |
| ID17040206SK016 02                                                                                                                                                                                                                                                                                                               | Indian Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6                                                                                                       | Miles                                                                                                    |
| ID17040206SK017_02                                                                                                                                                                                                                                                                                                               | South Fork Ross Fork - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.97                                                                                                      | Miles                                                                                                    |
| ID17040208SK001_02b                                                                                                                                                                                                                                                                                                              | Trail Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.6                                                                                                       | Miles                                                                                                    |
| ID17040208SK001_03                                                                                                                                                                                                                                                                                                               | Blackrock Canyon - lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                                                       | Miles                                                                                                    |
| ID17040208SK006_02L                                                                                                                                                                                                                                                                                                              | Wiregrass Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.13                                                                                                      | Acres                                                                                                    |
| ID17040208SK012_02                                                                                                                                                                                                                                                                                                               | Hawkins Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                                                                                                       | Miles                                                                                                    |
| ID17040208SK018_02L                                                                                                                                                                                                                                                                                                              | Twentyfour Mile Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34.01                                                                                                     | Acres                                                                                                    |
| ID17040208SK019_02                                                                                                                                                                                                                                                                                                               | 01 & 02 Tribs to Chesterfield Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.42                                                                                                     | Miles                                                                                                    |
| ID17040208SK019L_0L                                                                                                                                                                                                                                                                                                              | Chesterfield Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 959.04                                                                                                    | Acres                                                                                                    |
| ID17040208SK021_02L                                                                                                                                                                                                                                                                                                              | Blue Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5                                                                                                       | Acres                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                          |
| 17040209                                                                                                                                                                                                                                                                                                                         | Lake Walcott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |                                                                                                          |
| <b>17040209</b><br>ID17040209SK000_02                                                                                                                                                                                                                                                                                            | Lake Walcott Unclassified Waters                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 521.65                                                                                                    | Miles                                                                                                    |
| <b>17040209</b><br>ID17040209SK000_02<br>ID17040209SK000_02A                                                                                                                                                                                                                                                                     | Lake Walcott       Unclassified Waters       Dayley Creek                                                                                                                                                                                                                                                                                                                                                                                                                                      | 521.65<br>46.09                                                                                           | Miles<br>Miles                                                                                           |
| <b>17040209</b><br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L                                                                                                                                                                                                                                              | Lake Walcott         Unclassified Waters         Dayley Creek         Unclassified Farm Pond in 17040209                                                                                                                                                                                                                                                                                                                                                                                       | 521.65<br>46.09<br>9.39                                                                                   | Miles<br>Miles<br>Acres                                                                                  |
| <b>17040209</b><br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03                                                                                                                                                                                                                        | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209                                                                                                                                                                                                                                                                                                                                                                                | 521.65<br>46.09<br>9.39<br>19.55                                                                          | Miles<br>Miles<br>Acres<br>Miles                                                                         |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03                                                                                                                                                                                                         | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters to the Snake River                                                                                                                                                                                                                                                                                                                                          | 521.65<br>46.09<br>9.39<br>19.55<br>0.3                                                                   | Miles<br>Miles<br>Acres<br>Miles<br>Miles                                                                |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_02A                                                                                                                                                                                  | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Innamed 3rd order tributaries to the Snake RiverIntermittent streams of Marsh Creek - source to mouth                                                                                                                                                                                                                                         | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51                                                          | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles                                                       |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_02A<br>ID17040209SK003_04A                                                                                                                                                           | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Intermittent streams of Marsh Creek - source to mouthHowell Creek                                                                                                                                                                                                                                                                             | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04                                                  | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles                                                       |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_02A<br>ID17040209SK003_04A<br>ID17040209SK003_04L                                                                                                                                    | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Intermittent streams of Marsh Creek - source to mouthHowell CreekDewy Pond (Marsh Creek Source to Mouth)                                                                                                                                                                                                                                      | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04<br>79.07                                         | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Acres                                     |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_02A<br>ID17040209SK003_04A<br>ID17040209SK003_04L<br>ID17040209SK004_02                                                                                                              | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Innamed 3rd order tributaries to the Snake RiverIntermittent streams of Marsh Creek - source to mouthHowell CreekDewy Pond (Marsh Creek Source to Mouth)Lake Walcott (Snake River)                                                                                                                                                            | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04<br>79.07<br>6.27                                 | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles                                     |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_02A<br>ID17040209SK003_04A<br>ID17040209SK003_04L<br>ID17040209SK004_02<br>ID17040209SK006_02                                                                                                               | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Innamed 3rd order tributaries to the Snake RiverIntermittent streams of Marsh Creek - source to mouthHowell CreekDewy Pond (Marsh Creek Source to Mouth)Lake Walcott (Snake River)Snake River - Rock Creek to Raft River                                                                                                                      | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04<br>79.07<br>6.27<br>73.93                        | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Miles                            |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_02A<br>ID17040209SK003_04A<br>ID17040209SK003_04L<br>ID17040209SK004_02<br>ID17040209SK006_03                                                                                                               | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Unnamed 3rd order tributaries to the Snake RiverIntermittent streams of Marsh Creek - source to mouthHowell CreekDewy Pond (Marsh Creek Source to Mouth)Lake Walcott (Snake River)Snake River - Rock Creek to Raft RiverSnake River - Rock Creek to Raft River                                                                                | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04<br>79.07<br>6.27<br>73.93<br>7.94                | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles                   |
| 17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_02A<br>ID17040209SK003_04A<br>ID17040209SK003_04L<br>ID17040209SK004_02<br>ID17040209SK006_03<br>ID17040209SK006_03<br>ID17040209SK007_02                                                          | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Unnamed 3rd order tributaries to the Snake RiverIntermittent streams of Marsh Creek - source to mouthHowell CreekDewy Pond (Marsh Creek Source to Mouth)Lake Walcott (Snake River)Snake River - Rock Creek to Raft RiverSnake River - Rock Creek to Raft RiverFall Creek - source to mouth                                                    | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04<br>79.07<br>6.27<br>73.93<br>7.94<br>17.46       | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles          |
| 17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_04A<br>ID17040209SK003_04L<br>ID17040209SK004_02<br>ID17040209SK006_02<br>ID17040209SK006_03<br>ID17040209SK006_03<br>ID17040209SK006_02                                    | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Unnamed 3rd order tributaries to the Snake RiverIntermittent streams of Marsh Creek - source to mouthHowell CreekDewy Pond (Marsh Creek Source to Mouth)Lake Walcott (Snake River)Snake River - Rock Creek to Raft RiverSnake River - Rock Creek to Raft RiverFall Creek - source to mouthRock Creek                                          | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04<br>79.07<br>6.27<br>73.93<br>7.94<br>17.46       | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |
| 17040209<br>ID17040209SK000_02<br>ID17040209SK000_02A<br>ID17040209SK000_02L<br>ID17040209SK000_03<br>ID17040209SK001_03<br>ID17040209SK003_04A<br>ID17040209SK003_04L<br>ID17040209SK004_02<br>ID17040209SK006_03<br>ID17040209SK006_03<br>ID17040209SK006_03<br>ID17040209SK007_02<br>ID17040209SK008_02<br>ID17040210SK001_02 | Lake WalcottUnclassified WatersDayley CreekUnclassified Farm Pond in 17040209Unclassified Waters in CU 17040209Unclassified Waters in CU 17040209Unnamed 3rd order tributaries to the Snake RiverIntermittent streams of Marsh Creek - source to mouthHowell CreekDewy Pond (Marsh Creek Source to Mouth)Lake Walcott (Snake River)Snake River - Rock Creek to Raft RiverSnake River - Rock Creek to Raft RiverFall Creek - source to mouthRock CreekRaft River - Heglar Canyon Creek to mouth | 521.65<br>46.09<br>9.39<br>19.55<br>0.3<br>15.51<br>3.04<br>79.07<br>6.27<br>73.93<br>7.94<br>17.46<br>76 | Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |

| 17040210            | Raft                                             |        |       |
|---------------------|--------------------------------------------------|--------|-------|
| ID17040210SK001_02  | Raft River - Heglar Canyon Creek to mouth        | 68.37  | Miles |
| ID17040210SK001_03  | Raft River - Heglar Canyon Creek to mouth        | 5.77   | Miles |
| ID17040210SK002_02A | Coe Creek                                        | 53.94  | Miles |
| ID17040210SK002_03  | Raft River - Cassia Creek to Heglar Canyon Creek | 14.95  | Miles |
| ID17040210SK003 02  | Cassia Creek - Conner Creek to mouth             | 74.39  | Miles |
| ID17040210SK004_03  | Conner Creek - source to mouth                   | 2.45   | Miles |
| ID17040210SK005_02  | Cassia Creek - Clyde Creek to Conner Creek       | 72.11  | Miles |
| ID17040210SK005_03  | Cassia Creek - Clyde Creek to Conner Creek       | 3.38   | Miles |
| ID17040210SK007_02L | Independence Lakes                               | 24.11  | Acres |
| ID17040210SK008_02  | Raft River - Cottonwood Creek to Cassia Creek    | 135.41 | Miles |
| ID17040210SK008_03  | Raft River - Cottonwood Creek to Cassia Creek    | 0.33   | Miles |
| ID17040210SK009_02  | Cottonwood Creek - source to mouth               | 23.54  | Miles |
| ID17040210SK009_03  | Cottonwood Creek - source to mouth               | 0.17   | Miles |
| ID17040210SK010_02  | Raft River                                       | 167.88 | Miles |
| ID17040210SK010_03  | Raft River                                       | 10.3   | Miles |
| ID17040210SK010_03L | Unnamed Ponds- One Mile Creek                    | 4.46   | Acres |
| ID17040210SK012_03  | Edwards Creek - source to mouth                  | 7.36   | Miles |
| ID17040210SK013_02  | Raft River - Idaho/Utah border to Edwards Creek  | 61.22  | Miles |
| ID17040210SK013_03  | Raft River - Idaho/Utah border to Edwards Creek  | 17.19  | Miles |
| ID17040210SK014_02  | Junction Creek - source to Idaho/Utah border     | 26.42  | Miles |
| ID17040210SK015_02  | Cottonwood Creek - source to Idaho/Utah border   | 31.35  | Miles |
| ID17040210SK015_03  | Cottonwood Creek - source to Idaho/Utah border   | 1.06   | Miles |
| ID17040210SK016_03  | Clear Creek - Idaho/Utah border to mouth         | 25.33  | Miles |
| ID17040210SK016_04  | Clear Creek - Idaho/Utah border to mouth         | 12.37  | Miles |
| ID17040210SK017_02  | Kelsaw Canyon Creek - source to mouth            | 15.76  | Miles |
| ID17040210SK018_02  | Meadow Creek - source to mouth                   | 112.22 | Miles |
| ID17040210SK018_03  | Meadow Creek - source to mouth                   | 22.62  | Miles |
| ID17040210SK023_02  | Heglar Canyon Creek - source to mouth            | 74.32  | Miles |
| ID17040210SK023_03  | Heglar Canyon Creek - source to mouth            | 10.36  | Miles |
| ID17040210SK023_04  | Heglar Canyon Creek - source to mouth            | 8.44   | Miles |
| 17040211            | Goose                                                |        |       |
|---------------------|------------------------------------------------------|--------|-------|
| ID17040209SK000_02  | Unclassified Waters                                  | 521.65 | Miles |
| ID17040211SK000_02  | Unclassified Waters                                  | 126.31 | Miles |
| ID17040211SK000_03  | Unclassified Waters                                  | 11.04  | Miles |
| ID17040211SK002_02  | Lower Goose Creek                                    | 33.3   | Miles |
| ID17040211SK002 03  | Lower Goose Creek                                    | 1.62   | Miles |
| ID17040211SK010_02  | Blue Hill Creek and tribs. to Goose Creek            | 17.94  | Miles |
| ID17040211SK010_03  | Blue Hill Creek - source to mouth                    | 2.96   | Miles |
| ID17040211SK014_02  | Land-Willow-Smith Creek complex                      | 108.59 | Miles |
| ID17040211SK014_03  | Land/Willow/Smith Creek complex                      | 14.04  | Miles |
| 17040212            | Upper Snake-Rock                                     |        |       |
| ID17040209SK000_02  | Unclassified Waters                                  | 521.65 | Miles |
| ID17040212SK000_03  | Unclassified Waters                                  | 16.43  | Miles |
| ID17040212SK002_02  | Big Pilgrim Gulch - source to mouth                  | 30.72  | Miles |
| ID17040212SK003_02  | Cassia Gulch - source to mouth                       | 22.06  | Miles |
| ID17040212SK003_03  | Cassia Gulch - source to mouth                       | 0.48   | Miles |
| ID17040212SK004_02  | Tuana Gulch - source to mouth                        | 72.87  | Miles |
| ID17040212SK009_02  | Deep Creek - source to High Line Canal               | 13.29  | Miles |
| ID17040212SK014_03  | North Cottonwood Creek - source to mouth (3rd order) | 4.23   | Miles |
| ID17040212SK014_04L | McMullen Creek Reservoir                             | 79     | Acres |
| ID17040212SK016_02  | Rock Creek                                           | 23.63  | Miles |
| ID17040212SK016_03  | Rock Creek                                           | 0.36   | Miles |
| ID17040212SK021_0L  | Murtaugh Lake                                        | 835.69 | Acres |
| ID17040212SK025_02  | Big Cottonwood Creek - source to mouth               | 11.74  | Miles |
| ID17040212SK026_03L | Wilson Lake Reservoir                                | 514.56 | Acres |
| ID17040212SK029_02  | Banbury Springs                                      | 0.56   | Miles |
| ID17040212SK030_02  | Box Canyon Creek - source to mouth                   | 2.1    | Miles |
| ID17040212SK032_02  | Bickel Springs                                       | 1.77   | Miles |
| ID17040212SK034_02  | Clover Creek - Pioneer Reservoir Dam to mouth        | 42.61  | Miles |
| ID17040212SK036_03  | Clover Creek - source to Pioneer Reservoir           | 0.58   | Miles |
| ID17040212SK037_02  | Cottonwood Creek - source to mouth                   | 20.76  | Miles |
| ID17040212SK037_03  | Cottonwood Creek - source to mouth                   | 0.71   | Miles |

| ID17040212SK038_03  | Catchall Creek - source to mouth                             | 1.3    | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17040212SK039_02  | Deer Creek - source to mouth                                 | 19.07  | Miles |
| ID17040212SK041_02  | Dry Creek - source to mouth                                  | 48.64  | Miles |
| ID17040212SK041_03  | Dry Creek - source to mouth                                  | 12.02  | Miles |
| ID17040219SK030_03L | Bray Lake                                                    | 140.75 | Acres |
| 17040213            | Salmon Falls                                                 |        | -     |
| ID17040212SK000_03  | Unclassified Waters                                          | 16.43  | Miles |
| ID17040213SK000_02  | Unclassified Waters                                          | 47.76  | Miles |
| ID17040213SK000_03  | Unclassified Waters                                          | 2.92   | Miles |
| ID17040213SK001_02  | Salmon Falls Creek - Devil Creek to mouth                    | 27.28  | Miles |
| ID17040213SK001_02L | Unnamed Pond - Salmon Falls Creek                            | 4.53   | Acres |
| ID17040213SK002_02  | Devil Creek-1st and 2nd order tribs.                         | 164.57 | Miles |
| ID17040213SK002_02L | Heil Reservoir (Heil Dam)                                    | 47.69  | Acres |
| ID17040213SK003_01L | Unnamed Farm Ponds                                           | 7.84   | Acres |
| ID17040213SK003_02  | Salmon Falls Creek - Salmon Falls Creek Dam to Devil Creek   | 150.21 | Miles |
| ID17040213SK003_02L | Cedar Mesa Reservoir                                         | 23.34  | Acres |
| ID17040213SK003_03  | Salmon Falls Creek - Salmon Falls Creek Dam to Devil Creek   | 0.25   | Miles |
| ID17040213SK004_03  | Trib to Cedar Creek Reservoir                                | 1.07   | Miles |
| ID17040213SK007_02  | Whiskey Slough, Salmon Falls Creek Reservoir tributaries     | 37.02  | Miles |
| ID17040213SK007_02L | Whiskey Slough                                               | 3.43   | Acres |
| ID17040213SK009_02  | Salmon Falls Creek-Idaho/Nevada border to Salmon Falls Creek | 42.23  | Miles |
| ID17040213SK009_03  | Salmon Falls Creek-Idaho/Nevada border to Salmon Falls Creek | 1.7    | Miles |
| ID17040213SK011_02  | Shoshone Creek - Hot Creek to Idaho/Nevada border            | 87.99  | Miles |
| ID17040213SK011_03  | Shoshone Creek - Hot Creek to Idaho/Nevada border            | 2.45   | Miles |
| ID17040213SK013_02  | Shoshone Creek - Cottonwood Creek to Hot Creek               | 24.84  | Miles |
| ID17040213SK016_02L | Unnamed diversion trib to Shoshone Creek                     | 7.17   | Acres |
| 17040214            | Beaver-Camas                                                 |        |       |
| ID17040214SK001_02  | Camas Creek - Beaver Creek to Mud Lake                       | 6.82   | Miles |
| ID17040214SK001_05  | Camas Creek - Beaver Creek to Mud Lake                       | 5.54   | Miles |
| ID17040214SK001_05L | Sandhole Lake                                                | 142.06 | Acres |
| ID17040214SK001_06L | Rays Lake                                                    | 192.79 | Acres |
| ID17040214SK002_02  | Camas Creek - Spring Creek to Beaver Creek                   | 49.6   | Miles |

| ID17040214SK004_02  | Spring Creek - Dry Creek to mouth                           | 1.32    | Miles |
|---------------------|-------------------------------------------------------------|---------|-------|
| ID17040214SK004_04  | Spring Creek - Dry Creek to mouth                           | 8.73    | Miles |
| ID17040214SK005_02  | Dry Creek Tributaries                                       | 12.87   | Miles |
| ID17040214SK005_03  | Dry Creek - source to mouth                                 | 12.9    | Miles |
| ID17040214SK006_02L | Spring Creek Reservoir                                      | 8.13    | Acres |
| ID17040214SK007_04  | Camas Creek                                                 | 17.96   | Miles |
| ID17040214SK008_03L | Unnamed Lake - Crab Creek                                   | 4.24    | Acres |
| ID17040214SK009_03  | Warm Creek - Cottonwood Creek to mouth and East Camas Creek | 21.11   | Miles |
| ID17040214SK009_04  | Warm Creek - Cottonwood Creek to mouth and East Camas Creek | 6.54    | Miles |
| ID17040214SK014_02  | Beaver Creek - Dry Creek to canal                           | 91.01   | Miles |
| ID17040214SK014_02L | Unnamed Ponds - Beaver Creek to Dry Creek                   | 16.47   | Acres |
| ID17040214SK014_03  | Beaver Creek - Dry Creek to canal (T09N, R36E)              | 3.15    | Miles |
| ID17040214SK015_02  | Beaver Creek - Rattlesnake Creek to Dry Creek               | 1.39    | Miles |
| ID17040214SK016_04  | Rattlesnake Creek - source to mouth                         | 1.06    | Miles |
| ID17040214SK019_02  | Miners Creek - source to mouth                              | 21.08   | Miles |
| ID17040214SK025_02  | Dry Creek - source to mouth                                 | 23.61   | Miles |
| ID17040214SK025_03  | Dry Creek - source to mouth                                 | 7.08    | Miles |
| ID17040214SK026_02  | Cottonwood Creek Tributaries                                | 79.57   | Miles |
| ID17040214SK026_03  | Cottonwood Creek                                            | 10.25   | Miles |
| ID17040215SK001_06L | Mud Lake                                                    | 3094.08 | Acres |
| ID17040215SK001_0L  | North Lake                                                  | 764.17  | Acres |
| ID17040215SK002_02  | Medicine Lodge Creek - Indian Creek to playas               | 153.58  | Miles |
| 17040215            | Medicine Lodge                                              |         |       |
| ID17040215SK002_01L | Unnamed Intermittent Lake                                   | 11.87   | Acres |
| ID17040215SK002_02  | Medicine Lodge Creek - Indian Creek to playas               | 153.58  | Miles |
| ID17040215SK004_02  | East Fork Indian Creek                                      | 14.11   | Miles |
| ID17040215SK006_02  | Medicine Lodge Creek - Edie Creek to Indian Creek           | 8.42    | Miles |
| ID17040215SK019_02  | Blue Creek - source to mouth                                | 29.17   | Miles |
| ID17040215SK020_03  | Warm Springs Creek - source to mouth                        | 27.56   | Miles |
| ID17040215SK022_02  | Chandler Canyon complex                                     | 153.93  | Miles |
| ID17040215SK022_03  | Chandler Canyon complex                                     | 11.36   | Miles |
| ID17040216SK001_02  | Birch Creek - Reno Ditch to playas                          | 137.35  | Miles |
|                     |                                                             |         |       |

| 17040216           | Birch                                                        |        |       |
|--------------------|--------------------------------------------------------------|--------|-------|
| ID17040216SK001_02 | Birch Creek - Reno Ditch to playas                           | 137.35 | Miles |
| ID17040216SK001_03 | Birch Creek - Reno Ditch to playas                           | 2.28   | Miles |
| ID17040216SK002_02 | Birch Creek - Pass Creek to Reno Ditch                       | 18.7   | Miles |
| ID17040216SK003_02 | Birch Creek                                                  | 43.74  | Miles |
| ID17040216SK003 04 | Birch Creek                                                  | 6.74   | Miles |
| ID17040216SK004_02 | Unnamed Tributary - source to mouth; includes Timber Canyon  | 32.92  | Miles |
| ID17040216SK004_03 | Unnamed Tributary - source to mouth; includes Timber Canyon  | 2.53   | Miles |
| ID17040216SK005_02 | Birch Creek                                                  | 19.61  | Miles |
| ID17040216SK005_03 | Birch Creek                                                  | 2.44   | Miles |
| ID17040216SK005_04 | Birch Creek                                                  | 1.76   | Miles |
| ID17040216SK006_02 | Scott Canyon Creek - source to mouth                         | 16.84  | Miles |
| ID17040216SK007_02 | Mud Creek - Willow Creek to Scott Canyon Creek               | 2.63   | Miles |
| ID17040216SK007_03 | Mud Creek - Willow Creek to Scott Canyon Creek               | 4.68   | Miles |
| ID17040216SK008_02 | Cedar Gulch and Irish Canyon - source to mouth               | 29.72  | Miles |
| ID17040216SK010_02 | Mud Creek                                                    | 39.09  | Miles |
| ID17040216SK010_03 | Mud Creek                                                    | 2.51   | Miles |
| ID17040216SK011_02 | Mud Creek-source to Unnamed Tributary (T12N, R11W, Sec. 29)  | 42.25  | Miles |
| ID17040216SK011_03 | Mud Creek -source to Unnamed Tributary (T12N, R11W, Sec. 29) | 5.7    | Miles |
| ID17040216SK012_02 | Unnamed Tributary - source to mouth (T12N, R11W, Sec. 29)    | 50.06  | Miles |
| ID17040216SK012_03 | Unnamed Tributary - source to mouth (T12N, R11W, Sec. 29)    | 0.1    | Miles |
| ID17040216SK013_02 | Meadow Canyon Creek - source to mouth                        | 23.86  | Miles |
| ID17040216SK013_03 | Meadow Canyon Creek - source to mouth                        | 7.15   | Miles |
| ID17040216SK014_02 | Rocky Canyon Creek - source to mouth                         | 15.7   | Miles |
| ID17040216SK015_02 | Pass Creek - source to mouth                                 | 43.44  | Miles |
| ID17040216SK016_02 | Eightmile Canyon Creek - source to mouth                     | 50.76  | Miles |
| ID17040216SK016_03 | Eightmile Canyon Creek - source to mouth                     | 4.68   | Miles |
| 17040217           | Little Lost                                                  |        |       |
| ID17040217SK001_03 | Little Lost River - canal (T06N, R28E) to playas             | 0.14   | Miles |
| ID17040217SK002_02 | Little Lost River - Big Spring Creek to canal (T06N, R28E)   | 10.25  | Miles |
| ID17040217SK004_03 | North Creek - source to mouth                                | 5.78   | Miles |
| ID17040217SK005 03 | Uncle Ike Creek - source to mouth                            | 4.47   | Miles |

| ID17040217SK006_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unnamed Tributaries - source to mouth (T08N, R28E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                                                                                                               | Miles                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ID17040217SK007_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Little Lost River - Badger Creek to Big Spring Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.13                                                                                                                             | Miles                                                                                                    |
| ID17040217SK010_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Little Lost River - confluence of Summit and Sawmill Creeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.02                                                                                                                            | Miles                                                                                                    |
| ID17040217SK010_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Little Lost River - confluence of Summit and Sawmill Creeks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.04                                                                                                                             | Miles                                                                                                    |
| ID17040217SK011_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deep Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.24                                                                                                                            | Miles                                                                                                    |
| ID17040217SK012_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sawmill Creek - Warm Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.53                                                                                                                             | Miles                                                                                                    |
| ID17040217SK014_02L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mill Creek Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.72                                                                                                                            | Acres                                                                                                    |
| ID17040217SK020_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dry Creek - Dry Creek Canal to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.76                                                                                                                            | Miles                                                                                                    |
| ID17040217SK022_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wet Creek - Squaw Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.65                                                                                                                            | Miles                                                                                                    |
| ID17040217SK026_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Taylor Canyon Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.22                                                                                                                            | Miles                                                                                                    |
| ID17040217SK026_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Taylor Canyon Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.72                                                                                                                             | Miles                                                                                                    |
| ID17040217SK027_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cabin Fork Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.57                                                                                                                            | Miles                                                                                                    |
| ID17040217SK027_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cabin Fork Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.98                                                                                                                             | Miles                                                                                                    |
| ID17040217SK028_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hurst Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48.43                                                                                                                            | Miles                                                                                                    |
| ID17040217SK028_03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hurst Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.65                                                                                                                             | Miles                                                                                                    |
| ID17040217SK029_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unnamed Tributary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.88                                                                                                                             | Miles                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Riveland River McKee Recencie Reveland to Reveland Free Ritch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70.00                                                                                                                            | Miles                                                                                                    |
| ID17040218SK011_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Big Lost River - McKay Reservoir Dam to Beck and Evan Ditch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.99                                                                                                                            | IVIIIes                                                                                                  |
| 17040218SK011_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch<br>Big Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76.99                                                                                                                            | Miles                                                                                                    |
| <b>17040218SK011_02</b><br><b>17040218</b><br>ID17040209SK000_02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch Big Lost Unclassified Waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 521.65                                                                                                                           | Miles                                                                                                    |
| <b>17040218SK011_02</b><br><b>17040218</b><br>ID17040209SK000_02<br>ID17040209SK000_03                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch Big Lost Unclassified Waters Unclassified Waters in CU 17040209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 521.65<br>19.55                                                                                                                  | Miles                                                                                                    |
| <b>17040218</b> SK011_02<br><b>17040218</b><br>ID17040209SK000_02<br>ID17040209SK000_03<br>ID17040216SK001_02                                                                                                                                                                                                                                                                                                                                                                                                                                      | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch Big Lost Unclassified Waters Unclassified Waters in CU 17040209 Birch Creek - Reno Ditch to playas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.99<br>521.65<br>19.55<br>137.35                                                                                               | Miles<br>Miles<br>Miles<br>Miles                                                                         |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02                                                                                                                                                                                                                                                                                                                                                                                          | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76.99<br>521.65<br>19.55<br>137.35<br>2.08                                                                                       | Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                                |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK001_02                                                                                                                                                                                                                                                                                                                                                             | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35                                                                              | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                                       |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK001_02           ID17040218SK001_02           ID17040218SK001_02                                                                                                                                                                                                                                                                                                   | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel                                                                                                                                                                                                                                                                                                                                                                                                           | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06                                                                    | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                              |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK001_02           ID17040218SK001_02           ID17040218SK001_02           ID17040218SK001_02           ID17040218SK002_02           ID17040218SK002_02                                                                                                                                                                                                            | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Arco Canal                                                                                                                                                                                                                                                                                                                                                                                        | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95                                                           | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles                                              |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK001_06           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_02                                                                                                                                                                                                                                         | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Arco Canal         Big Lost River-Spring Creek to Big Lost River Sinks (playa)                                                                                                                                                                                                                                                                                                                                                           | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95<br>12.48                                                  | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles                                     |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK001_06           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_03           ID17040218SK002_04                                                                                                                     | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Arco Canal         Big Lost River-Spring Creek to Big Lost River Sinks (playa)         Big Lost River-Spring Creek to Big Lost River Sinks (playa)                                                                                                                                                                                                                                 | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95<br>12.48<br>6.05                                          | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Miles                            |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK001_06           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_03           ID17040218SK002_03           ID17040218SK002_04           ID17040218SK003_02                                                                                                                     | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Arco Canal         Big Lost River-Spring Creek to Big Lost River Sinks (playa)         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Spring Creek - Lower Pass Creek to Big Lost River                                                                                                                                                                      | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95<br>12.48<br>6.05<br>31.37                                 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Acres<br>Miles<br>Miles<br>Miles                   |
| ID17040218SK011_02           I7040218           ID17040209SK000_02           ID17040209SK000_03           ID17040209SK000_03           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_06           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_03           ID17040218SK002_04           ID17040218SK003_02           ID17040218SK002_04           ID17040218SK003_02                                                                                                                     | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Arco Canal         Big Lost River-Spring Creek to Big Lost River Sinks (playa)         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Spring Creek - Lower Pass Creek to Big Lost River         Big Lost River - Antelope Creek to Spring Creek                                                                                                              | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95<br>12.48<br>6.05<br>31.37<br>40.66                        | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17040218SK011_02           I7040218           ID17040209SK000_02           ID17040209SK000_03           ID17040209SK000_03           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_03           ID17040218SK002_04           ID17040218SK003_02           ID17040218SK004_02           ID17040218SK004_02                                                                                                                     | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Arco Canal         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Spring Creek - Lower Pass Creek to Big Lost River         Big Lost River - Antelope Creek to Spring Creek         Big Lost River - Antelope Creek to Spring Creek                                                                                                                          | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95<br>12.48<br>6.05<br>31.37<br>40.66<br>38                  | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles          |
| ID17040218SK011_02           17040218           ID17040209SK000_02           ID17040209SK000_03           ID17040209SK000_03           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_03           ID17040218SK002_04           ID17040218SK003_02           ID17040218SK004_04           ID17040218SK004_02           ID17040218SK004_02           ID17040218SK004_02           ID17040218SK004_02           ID17040218SK004_02 | Big Lost River - Mickay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Arco Canal         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Spring Creek - Lower Pass Creek to Big Lost River         Big Lost River - Antelope Creek to Spring Creek         Big Lost River - Antelope Creek to Spring Creek         King, Lime Kiln, Ramshorn, and Anderson Canyon Creek                                                             | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95<br>12.48<br>6.05<br>31.37<br>40.66<br>38<br>37.98         | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |
| ID17040218SK011_02           I7040218           ID17040209SK000_02           ID17040209SK000_03           ID17040209SK000_03           ID17040216SK001_02           ID17040218SK001_02           ID17040218SK001_06           ID17040218SK002_02           ID17040218SK002_02           ID17040218SK002_03           ID17040218SK002_04           ID17040218SK003_02           ID17040218SK004_02           ID17040218SK004_02           ID17040218SK004_02           ID17040218SK004_06           ID17040218SK005_02                              | Big Lost River - McKay Reservoir Dam to Beck and Evan Ditch         Big Lost         Unclassified Waters         Unclassified Waters in CU 17040209         Birch Creek - Reno Ditch to playas         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River Sinks (playas) and Dry Channel         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Arco Canal         Big Lost River-Spring Creek to Big Lost River Sinks (playas)         Spring Creek - Lower Pass Creek to Big Lost River         Big Lost River - Antelope Creek to Spring Creek         Big Lost River - Antelope Creek to Spring Creek         King, Lime Kiln, Ramshorn, and Anderson Canyon Creek         King, Lime Kiln, Ramshorn, and Anderson Canyon Creek | 76.99<br>521.65<br>19.55<br>137.35<br>2.08<br>32.35<br>659.06<br>17.95<br>12.48<br>6.05<br>31.37<br>40.66<br>38<br>37.98<br>0.21 | Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles<br>Miles |

| ID17040218SK006_05  | Lower Pass Creek - source to mouth                           | 3.87    | Miles |
|---------------------|--------------------------------------------------------------|---------|-------|
| ID17040218SK007_02  | Big Lost River - Alder Creek to Antelope Creek               | 7.71    | Miles |
| ID17040218SK008_02  | Elbow, Jepson, Clark, Maddock, and Jaggles Canyon Creek      | 35.46   | Miles |
| ID17040218SK008_03  | Elbow, Jepson, Clark, Maddock, and Jaggles Canyon Creek      | 3.95    | Miles |
| ID17040218SK009_02L | Mud Lake                                                     | 6.25    | Acres |
| ID17040218SK010_02  | Big Lost River - Beck and Evan Ditch to Alder Creek          | 2.79    | Miles |
| ID17040218SK011_02  | Big Lost River - McKay Reservoir Dam to Beck and Evan Ditch  | 76.99   | Miles |
| ID17040218SK012_02  | Unnamed Tributaries to McKay Reservoir                       | 30.74   | Miles |
| ID17040218SK012L_0L | McKay Reservoir                                              | 1172.23 | Acres |
| ID17040218SK013_02  | Big Lost River - Jones Creek to McKay Reservoir              | 11.86   | Miles |
| ID17040218SK014_02  | Jones Creek - source to mouth                                | 10.17   | Miles |
| ID17040218SK015_02  | Big Lost River - Thousand Springs Creek to Jones Creek       | 19.66   | Miles |
| ID17040218SK016_05  | Thousand Springs Creek - source to mouth                     | 8.86    | Miles |
| ID17040218SK017_02  | Lone Cedar Creek - source to mouth                           | 5.7     | Miles |
| ID17040218SK018_02  | Cedar Creek - source to mouth                                | 6.85    | Miles |
| ID17040218SK020_02  | Willow Creek - source to mouth                               | 19.29   | Miles |
| ID17040218SK021_02  | Arentson Gulch and Unnamed Tributaries - source to mouth     | 35.86   | Miles |
| ID17040218SK022_03  | Sage Creek - source to mouth                                 | 7.64    | Miles |
| ID17040218SK032_02  | Fall Creek - source to mouth                                 | 22.23   | Miles |
| ID17040218SK034_02  | Fox Creek - source to mouth                                  | 9.04    | Miles |
| ID17040218SK038_02L | Long and Rough Lakes                                         | 22      | Acres |
| ID17040218SK041_03  | Corral Creek - source to mouth                               | 2.19    | Miles |
| ID17040218SK042_02  | Boone Creek - source to mouth                                | 11.96   | Miles |
| ID17040218SK043_02L | Lehman Creek Lake                                            | 1.98    | Acres |
| ID17040218SK045_05  | Alder Creek - source to mouth                                | 4.65    | Miles |
| ID17040218SK047_02  | Antelope Creek - Dry Fork Creek to Spring Creek              | 9.64    | Miles |
| ID17040218SK048_02  | Spring Creek - source to mouth                               | 9.99    | Miles |
| ID17040218SK049_02  | Cherry Creek-confluence of Left Fork Cherry and Lupine Creek | 37.13   | Miles |
| ID17040218SK050_02  | Lupine Creek - source to mouth                               | 24.23   | Miles |
| ID17040218SK054_02  | Iron Bog Creek - confluence of Left and Right Fork Iron Bog  | 1.52    | Miles |
| ID17040218SK059_02  | Dry Fork Creek - source to mouth                             | 37.02   | Miles |
| ID17040218SK059_03  | Dry Fork Creek - source to mouth                             | 15.09   | Miles |
| ID17040218SK059_05  | Dry Fork Creek - source to mouth                             | 8.72    | Miles |
| 1                   |                                                              |         |       |

| ID17040218SK060_02  | South Fork Antelope Creek - Antelope Creek to mouth         | 4.48    | Miles |
|---------------------|-------------------------------------------------------------|---------|-------|
| ID17040218SK061_02  | Hammond Spring Creek complex                                | 69.58   | Miles |
| ID17040218SK061_03  | Hammond Spring Creek complex                                | 5.8     | Miles |
| 17040219            | Big Wood                                                    |         |       |
| ID17040219SK000_01L | Turkey Lake                                                 | 4.9     | Acres |
| ID17040219SK000 02  | Unclassified Waters                                         | 250.56  | Miles |
| ID17040219SK000_02L | Unnamed Reservoir                                           | 5.29    | Acres |
| ID17040219SK000_03  | Unclassified Waters                                         | 2.13    | Miles |
| ID17040219SK000_05  | Unclassified Waters                                         | 9       | Miles |
| ID17040219SK001_02  | Malad River - confluence of Black Canyon Creek and Big Wood | 18.15   | Miles |
| ID17040219SK002_02  | Big Wood River - Magic Reservoir Dam to mouth               | 48.02   | Miles |
| ID17040219SK002_03  | Big Wood River - Magic Reservoir Dam to mouth               | 3.1     | Miles |
| ID17040219SK003_02  | 01 & 02 Tribs to Magic Reservoir                            | 12.08   | Miles |
| ID17040219SK003L_0L | Magic Reservoir                                             | 3563.54 | Acres |
| ID17040219SK004_02  | Big Wood River - Seamans Creek to Magic Reservoir           | 69.25   | Miles |
| ID17040219SK005_02  | Seamans Creek - Slaughterhouse Creek to mouth               | 5.26    | Miles |
| ID17040219SK006_03L | Seaman Creek Diversion Pond                                 | 15.54   | Acres |
| ID17040219SK008_02L | Quigley Pond                                                | 5.65    | Acres |
| ID17040219SK009_02  | Indian Creek - source to mouth                              | 12.96   | Miles |
| ID17040219SK010_02  | East Fork Wood River - Hyndman Creek to mouth               | 14.2    | Miles |
| ID17040219SK011_04  | East Fork Wood River - source to Hyndman Creek              | 2.04    | Miles |
| ID17040219SK013_02  | Trail Creek - Corral Creek to mouth                         | 7.76    | Miles |
| ID17040219SK015_02  | Lake Creek - source to mouth                                | 10.64   | Miles |
| ID17040219SK025_02a | Greenhorn Creek - USFS boundary to mouth                    | 4.49    | Miles |
| ID17040219SK027_02L | Unnamed Lake Democrat Gulch                                 | 4.62    | Acres |
| ID17040219SK029_02L | Thorn Creek Reservoir                                       | 110.19  | Acres |
| ID17040219SK029_03  | Thorn Creek - source to mouth                               | 7.09    | Miles |
| ID17040219SK029_04  | Thorn Creek - source to mouth                               | 5.35    | Miles |
| ID17040219SK030_04  | Black Canyon Creek - source to mouth                        | 9.08    | Miles |
| 17040220            | Camas                                                       |         |       |
| ID17040220SK001_02  | Camas Creek - Elk Creek to Magic Reservoir                  | 48.75   | Miles |
| ID17040220SK001_05L | Magic Reservoir - Camas Creek                               | 290.08  | Acres |

| ID17040220SK003_02  | Willow Creek - Beaver Creek to mouth                         | 8.98   | Miles |
|---------------------|--------------------------------------------------------------|--------|-------|
| ID17040220SK007_02  | Camas Creek - Solider Creek to Elk Creek                     | 12.17  | Miles |
| ID17040220SK008_02  | Deer Creek - Big Deer Creek to mouth                         | 13.5   | Miles |
| ID17040220SK008_03  | Deer Creek - Big Deer Creek to mouth                         | 11.75  | Miles |
| ID17040220SK008_04  | Deer Creek - Big Deer Creek to mouth                         | 0.38   | Miles |
| ID17040220SK009_02  | Deer Creek - source to and including Big Deer Creek          | 13.8   | Miles |
| ID17040220SK010_02  | Powell Creek - source to mouth                               | 16.71  | Miles |
| ID17040220SK013_02  | Camas Creek - Corral Creek to Soldier Creek                  | 37.39  | Miles |
| ID17040220SK013_03  | Camas Creek - Corral Creek to Soldier Creek                  | 11.43  | Miles |
| ID17040220SK014_02  | Threemile Creek - source to mouth                            | 21.75  | Miles |
| ID17040220SK016_03  | East Fork Corral Creek - source to mouth                     | 1.9    | Miles |
| ID17040220SK018_02L | Unnamed Diversion to Camas Creek                             | 7.79   | Acres |
| ID17040220SK019_03  | Chimney Creek - source to mouth                              | 2.54   | Miles |
| ID17040220SK019_04  | Chimney Creek - source to mouth                              | 7.61   | Miles |
| ID17040220SK020_03  | Negro Creek - 3rd order                                      | 0.43   | Miles |
| ID17040220SK023_02  | Unnamed Tributaries near Mormon Reservoir                    | 7.74   | Miles |
| ID17040220SK023_03  | Unnamed Tributaries to Mormon Reservoir                      | 0.43   | Miles |
| ID17040220SK026_02  | Spring Creek Complex                                         | 17.82  | Miles |
| ID17040220SK026_02L | Spring Creek Reservoir                                       | 110.74 | Acres |
| ID17040220SK026_03  | Spring Creek Complex                                         | 6.4    | Miles |
| ID17040220SK027_02  | Kelly Reservoir - 1st and 2nd order tribs.                   | 3.12   | Miles |
| ID17040220SK027L_0L | Kelly Reservoir                                              | 95.92  | Acres |
| 17040221            | Little Wood                                                  |        |       |
| ID17040219SK001_02  | Malad River - confluence of Black Canyon Creek and Big Wood  | 18.15  | Miles |
| ID17040219SK002_02  | Big Wood River - Magic Reservoir Dam to mouth                | 48.02  | Miles |
| ID17040219SK002_03  | Big Wood River - Magic Reservoir Dam to mouth                | 3.1    | Miles |
| ID17040221SK000_02  | Unclassified Waters                                          | 186.74 | Miles |
| ID17040221SK000_03  | Unclassified Waters                                          | 38.43  | Miles |
| ID17040221SK000_03L | Mud Lake                                                     | 19.75  | Acres |
| ID17040221SK001_02  | Little Wood River - Richfield (T04S, R19E, Sec. 25) to mouth | 26.55  | Miles |
| ID17040221SK002_02  | Little Wood River                                            | 1.28   | Miles |
| ID17040221SK004_04  | Carey Lake outlet                                            | 1.07   | Miles |
| ID17040221SK005_02  | Unnamed Tribuatary to Carey Lake                             | 1.35   | Miles |
|                     |                                                              |        |       |

| ID17040221SK005L 0L | Carey Lake                                                   | 200.6  | Acres   |
|---------------------|--------------------------------------------------------------|--------|---------|
| ID17040221SK006_02  | Fish Creek Eish Creek Reservoir Dam to mouth                 | 46.81  | Miles   |
| 1D170402213R000_02  | FISH CIEER - FISH CIEER Reservoir Dani to mouth              | 40.01  | IVIIIES |
| ID17040221SK006_02L | Huff Lake                                                    | 35.15  | Acres   |
| ID17040221SK007_02  | Unnamed Tributaries to Fish Creek Reservoir                  | 2.84   | Miles   |
| ID17040221SK009_02  | West Fork Fish Creek - source to Fish Creek Reservoir        | 27.04  | Miles   |
| ID17040221SK010_02  | Little Wood River - Little Wood River Reservoir Dam to Carey | 39.46  | Miles   |
| ID17040221SK010_05a | Little Wood River                                            | 9.78   | Miles   |
| ID17040221SK011_02  | Little Fish Creek - source to mouth                          | 26.08  | Miles   |
| ID17040221SK011_02L | Howard Reservoir                                             | 24.88  | Acres   |
| ID17040221SK011_03  | Little Fish Creek - source to mouth                          | 5.39   | Miles   |
| ID17040221SK011_03L | Cameron Reservoir (Little Fisher Creek)                      | 28.73  | Acres   |
| ID17040221SK012_02  | 01 & 02 tribs to Little Wood River Reservoir                 | 16.61  | Miles   |
| ID17040221SK013_02  | Little Wood River-Muldoon Cr. to Little Wood River Reservoir | 24.12  | Miles   |
| ID17040221SK013_02L | Campbell Reservoir                                           | 108.91 | Acres   |
| ID17040221SK014_02L | Muldon Creek Lake                                            | 2.17   | Acres   |
| ID17040221SK015_02  | South Fork Muldoon Creek - Friedman Creek to mouth           | 9.83   | Miles   |
| ID17040221SK015_03  | South Fork Muldoon Creek - Friedman Creek to mouth           | 8.02   | Miles   |
| ID17040221SK016_03  | South Fork Muldoon Creek - source to Friedman Creek          | 2.7    | Miles   |
| ID17040221SK017_02  | Friedman Creek - Trail Creek to mouth                        | 4.65   | Miles   |
| ID17040221SK021_03  | Baugh Creek - source to mouth                                | 3.81   | Miles   |

### Category 4a: Waters have a TMDL completed and approved by EPA.

#### 2018/2020 Integrated Report - Category 4a

| 16010102                 | Central Bear           |                                 |               |       |       |
|--------------------------|------------------------|---------------------------------|---------------|-------|-------|
|                          |                        | EPA TMDL ID                     | Approval Date |       |       |
| ID16010102BR001_05       | Bear River - Idaho/Wy  | oming border to railroad bridge |               | 25.46 | Miles |
| PHOSPHORUS, TOTAL        |                        | <u>30351</u>                    | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                   | <u>30351</u>                    | Jun 29, 2006  |       |       |
| ID16010102BR003_04       | Thomas Fork - Idaho/   | Nyoming border to mouth         |               | 30.09 | Miles |
| NITROGEN, TOTAL          |                        | <u>30351</u>                    | Jun 29, 2006  |       |       |
| PHOSPHORUS, TOTAL        |                        | <u>30351</u>                    | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                   | <u>30351</u>                    | Jun 29, 2006  |       |       |
| ID16010102BR005_02       | Dry Creek - Dip Creek  | to Thomas Fork                  |               | 6.67  | Miles |
| PHOSPHORUS, TOTAL        |                        | <u>53480</u>                    | Sep 13, 2013  |       |       |
| SEDIMENTATION/SILTATION  |                        | <u>53480</u>                    | Sep 13, 2013  |       |       |
| ID16010102BR005_02a      | Dry Creek (including D | ip Creek) to USFS boundary      |               | 10.19 | Miles |
| PHOSPHORUS, TOTAL        |                        | <u>53480</u>                    | Sep 13, 2013  |       |       |
| SEDIMENTATION/SILTATION  |                        | <u>53480</u>                    | Sep 13, 2013  |       |       |
| ID16010102BR006_02       | Preuss Creek - USFS    | boundary to Geneva Ditch        |               | 6.04  | Miles |
| SEDIMENTATION/SILTATION  |                        | <u>53480</u>                    | Sep 13, 2013  |       |       |
| ID16010102BR006_02a      | Beaver Creek - headw   | raters to Preuss Creek          |               | 7.51  | Miles |
| SEDIMENTATION/SILTATION  |                        | <u>53480</u>                    | Sep 13, 2013  |       |       |
| ID16010102BR006_02b      | Preuss Creek (include  | s Fish Cr) headwaters to USFS   | boundary      | 12.03 | Miles |
| SEDIMENTATION/SILTATION  |                        | <u>53480</u>                    | Sep 13, 2013  |       |       |
| ID16010102BR008_02       | Sheep Creek - source   | to mouth                        |               | 22.42 | Miles |
| PHOSPHORUS, TOTAL        |                        | <u>30351</u>                    | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                   | <u>30351</u>                    | Jun 29, 2006  |       |       |
| ID16010102BR008_03       | Sheep Creek - source   | to mouth                        |               | 2.64  | Miles |
| PHOSPHORUS, TOTAL        |                        | <u>30351</u>                    | Jun 29, 2006  |       |       |
| SEDIMENTATION/SILTATION  |                        | <u>30351</u>                    | Jun 29, 2006  |       |       |

| 16010201                 | Bear Lake             |                                  |                         |         |       |
|--------------------------|-----------------------|----------------------------------|-------------------------|---------|-------|
|                          |                       | EPA TMDL ID                      | Approval Dat            | e       |       |
| ID16010201BR001_0L       | Alexander Reservoir   | (Bear River)                     |                         | 1031.87 | Acres |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR002_02a      | Sulpher Canyon - He   | adwaters (middle and S.Sulpher   | <sup>-</sup> ) to mouth | 12.24   | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR002_02c      | lower Skinner Creek   | - above Nounan Rd Crossing to    | Bear River              | 4.41    | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| SEDIMENTATION/SILTATION  |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR002_05       | Bear River-railroad b | ridge (T14N, R45E, Sec. 21) to ( | Ovid Cr.                | 57.47   | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR002_06       | Bear River - Ovid Cre | eek confluence to Alexander Res  | servoir                 | 44.09   | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
|                          |                       | <u>53480</u>                     | Sep 13, 2013            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
|                          |                       | <u>53480</u>                     | Sep 13, 2013            |         |       |
| ID16010201BR003_02       | lower Bailey Creek -  | FS boundary to mouth             |                         | 3.05    | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR003_02a      | Upper Bailey Creek -  | HW to FS boundary                |                         | 4.71    | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR004_02       | Eightmile Creek - hea | adwaters to N. Wilson Creek      |                         | 28.53   | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR004_02a      | South Wilson Creek    |                                  |                         | 4.68    | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                  | <u>30351</u>                     | Jun 29, 2006            |         |       |
| ID16010201BR004_03a      | Eightmile Creek - N V | Nilson Cr to 1 mi below FS bour  | ndary                   | 1.75    | Miles |
| PHOSPHORUS, TOTAL        |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |
| SEDIMENTATION/SILTATION  |                       | <u>30351</u>                     | Jun 29, 2006            |         |       |

| ID16010201BR005_02       | lower Pearl Creek                |                            |              | 0.52   | Miles |
|--------------------------|----------------------------------|----------------------------|--------------|--------|-------|
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR005_02a      | middle Pearl Creek               |                            |              | 3.41   | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR006_03       | Lower Stauffer Creek - Spring (  | Creek to Bear River        |              | 4.14   | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        | -     |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR007_02       | Skinner Creek - unnamed tribs    | of Skinner Creek           |              | 8.84   | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR009_04       | Ovid Creek - confluence of Nor   | th and Mill Creek to mouth | ı            | 15.02  | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR020_02f      | Snowslide Creek (lower) - tribut | tary to Crow Creek         |              | 0.87   | Miles |
| SEDIMENTATION/SILTATION  |                                  | <u>53480</u>               | Sep 13, 2013 |        |       |
| ID16010201BR021_02       | Snowslide Creek - Crow Creek     | tributary, source to mouth | l            | 5.48   | Miles |
| SEDIMENTATION/SILTATION  |                                  | <u>53480</u>               | Sep 13, 2013 |        |       |
| ID16010201BR022_03a      | Lower Georgetown Creek - left    | hand fork to mouth         |              | 3.91   | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR023_02a      | Soda Creek - Soda Cr Reservo     | ir to Soda Springs         |              | 3.87   | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR023_02b      | Soda Creek (lower) - Soda Spri   | ings to Alexander Reservo  | bir          | 1.01   | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR024_02       | Soda Creek Reservoir             |                            |              | 203.44 | Acres |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010201BR025_02       | Soda Creek - source to Soda C    | reek Reservoir             |              | 16.13  | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>30351</u>               | Jun 29, 2006 |        |       |

| 16010202                   | Middle Bear            |                             |               |       |       |
|----------------------------|------------------------|-----------------------------|---------------|-------|-------|
|                            |                        | EPA TMDL ID                 | Approval Date |       |       |
| ID16010202BR002_04         | Cub River - Maple Cree | ek to Border                |               | 5.57  | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
|                            |                        | <u>53480</u>                | Sep 13, 2013  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                   | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR003_02         | Cub River - Sugar Cree | ek to US Hwy 91 Bridge      |               | 12.7  | Miles |
| ESCHERICHIA COLI (E. COLI) |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                   | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR003_03         | Cub River - Sugar Cree | ek to Maple Creek           |               | 5.28  | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                   | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR003_03a        | Maple Creek            |                             |               | 3.81  | Miles |
| ESCHERICHIA COLI (E. COLI) |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR005_02         | Worm Creek - unname    | ed tributaries              |               | 21.49 | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                   | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR005_02b        | Worm Creek (lower) - 0 | Glendale Reservoir to Borde | r             | 13.67 | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
|                            |                        | <u>53480</u>                | Sep 13, 2013  |       |       |
| SEDIMENTATION/SILTATION    |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR006_02         | Bear River-Oneida Nar  | rows Reservoir Dam to Idah  | o/Utah border | 49.37 | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                   | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR006_02a        | Deep Creek             |                             |               | 10.37 | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| SEDIMENTATION/SILTATION    |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR006_06         | Bear River-Oneida Nar  | rows Reservoir Dam to Idah  | o/Utah border | 36.09 | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>30351</u>                | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                   | <u>30351</u>                | Jun 29, 2006  |       |       |
| ID16010202BR007_02a        | Strawberry Creek       |                             |               | 10.36 | Miles |
| PHOSPHORUS, TOTAL          |                        | <u>53480</u>                | Sep 13, 2013  |       |       |
| SEDIMENTATION/SILTATION    |                        | <u>53480</u>                | Sep 13, 2013  |       |       |

| ID16010202BR007_03       | Mink Creek - source to mouth    |                         |              | 8.01   | Miles |
|--------------------------|---------------------------------|-------------------------|--------------|--------|-------|
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR008_0L       | Oneida Narrows Reservoir        |                         |              | 420.78 | Acres |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR009_02       | Unnamed Tributaries             |                         |              | 112.96 | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        | -     |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR009_02a      | Smith Creek - HW to mouth       |                         |              | 9.07   | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR009_02b      | Alder Creek - headwaters to mo  | outh                    |              | 17.72  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR009_02c      | Burton Creek - headwaters to m  | outh                    |              | 13.83  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR009_06       | Bear River - Alexander Reservo  | ir Dam to Densmore Cree | ek           | 15.62  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
|                          |                                 | <u>53480</u>            | Sep 13, 2013 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR009_06a      | Bear River - Denismore Cr to at | oove Oneida Reservoir   |              | 21.37  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR010_02       | Williams Creek - source to mou  | th                      |              | 20.49  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR010_02a      | Williams Creek - FS boundary to | o Bear River            |              | 4.04   | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |
| ID16010202BR011_02       | Trout Creek - source to mouth   |                         |              | 47.03  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>30351</u>            | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>30351</u>            | Jun 29, 2006 |        |       |

| ID16010202BR011_03        | Trout Creek - source to mouth    |                           |              | 3.94  | Miles |
|---------------------------|----------------------------------|---------------------------|--------------|-------|-------|
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR012_02        | Whiskey Creek - source to mout   | h                         |              | 4.91  | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR013_02        | Densmore Creek - source to mo    | uth                       |              | 22.88 | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR014_04        | Cottonwood Creek - lower Cotto   | nwood Creek (4th order)   |              | 14.02 | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR015_02        | Battle Creek - upper Battle Cree | k and unnamed tributaries | 6            | 68.66 | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR015_03        | Battle Creek - source to mouth   |                           |              | 3.03  | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR015_04        | Battle Creek - source to mouth   |                           |              | 16.27 | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR019_02        | Fivemile Creek - source to Dayto | on                        |              | 9.51  | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR019_02a       | Fivemile Creek - Dayton to mout  | h                         |              | 5.71  | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR020_02        | Weston Creek - unnamed tributa   | aries                     |              | 32.2  | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR020_02a       | Black Canyon                     |                           |              | 15.15 | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |
| ID16010202BR020_02c       | upper Weston Creek - FS bound    | lary to reservoir         |              | 12.19 | Miles |
| PHOSPHORUS, TOTAL         |                                  | <u>30351</u>              | Jun 29, 2006 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                             | <u>30351</u>              | Jun 29, 2006 |       |       |

| ID16010202BR020_02d      | Weston Cr - HW to FS b    | boundary and Trail Hollow     |               | 10.76 | Miles |
|--------------------------|---------------------------|-------------------------------|---------------|-------|-------|
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010202BR020_03       | Weston Creek - Dry Ca     | nyon to above Weston City     |               | 8.29  | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010202BR020_04       | Weston Creek - above \    | Weston City to Bear River     |               | 4.7   | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| 16010204                 | Lower Bear-Mala           | d                             |               |       |       |
|                          |                           | EPA TMDL ID                   | Approval Date |       |       |
| ID16010204BR001_04       | Malad River - Little Mala | ad River to Idaho/Utah border | r             | 25.56 | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010204BR002_02       | Devil Creek - Devil Cree  | ek Reservoir Dam to mouth     |               | 10.24 | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010204BR002_02a      | Campbell Creek            |                               |               | 2.87  | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010204BR002_02c      | Evans Creek               |                               |               | 2.64  | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010204BR002_03       | Devil Creek - Devil Cree  | ek Reservoir Dam to mouth     |               | 25.63 | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010204BR005_03       | Deep Creek - Deep Cre     | ek Reservoir Dam to mouth     |               | 10.53 | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010204BR006_02       | Susan Hollow              |                               |               | 4.04  | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |
| ID16010204BR006_03       | Deep Creek Reservoir      |                               |               | 0.34  | Miles |
| PHOSPHORUS, TOTAL        |                           | <u>30351</u>                  | Jun 29, 2006  |       |       |
| TOTAL SUSPENDED SOLIDS ( | (TSS)                     | <u>30351</u>                  | Jun 29, 2006  |       |       |

| ID16010204BR007_02       | Deep Creek - source to upper D    | eep Creek Reservoir        |              | 4.45   | Miles |
|--------------------------|-----------------------------------|----------------------------|--------------|--------|-------|
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR007_03       | Deep Creek - upper Deep Creek     | Reservoir to Deep Cr Re    | eservoir     | 1.01   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR008_02       | Malad River - mouth and unnam     | ed tributaries to N Fk Car | nyon         | 117.09 | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR008_02a      | Elkhorn Creek - source to mouth   | ı                          |              | 4.55   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR008_03       | Little Malad River - Daniels Rese | ervoir Dam to mouth        |              | 4.06   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR008_04       | Little Malad River - Daniels Rese | ervoir Dam to mouth        |              | 24.55  | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR009_02       | Little Malad River - headwaters t | to Daniels Reservoir       |              | 36.04  | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR010_02b      | Upper Wright Creek - headwate     | rs to Indian Mill Canyon   |              | 8.86   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR010_03       | middle Wright Creek - Indian Mil  | Il Canyon to Dairy Creek   |              | 2.72   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR010_04       | Wright Creek - Dairy Creek to D   | aniels Reservoir           |              | 4.16   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |
| ID16010204BR011_03       | Dairy Creek - source to mouth     |                            |              | 5.41   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>53480</u>               | Sep 13, 2013 |        |       |
| ID16010204BR012_02       | Malad River - source to Little Ma | alad River                 |              | 47.4   | Miles |
| PHOSPHORUS, TOTAL        |                                   | <u>30351</u>               | Jun 29, 2006 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>30351</u>               | Jun 29, 2006 |        |       |

| 16020309                   | Curlew Valley             |                    |               |       |       |
|----------------------------|---------------------------|--------------------|---------------|-------|-------|
|                            |                           | EPA TMDL ID        | Approval Date |       |       |
| ID16020309BR001_03         | North Canyon              |                    |               | 6.01  | Miles |
| TOTAL SUSPENDED SOLIDS (1  | rss)                      | ID_Curle_Jul-02-19 | Jul 02, 2019  |       |       |
| ID16020309BR002_02a        | Sheep Creek               |                    |               | 13.38 | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | ID_Curle_Jul-02-19 | Jul 02, 2019  |       |       |
| TOTAL SUSPENDED SOLIDS (1  | rss)                      | ID_Curle_Jul-02-19 | Jul 02, 2019  |       |       |
| ID16020309BR003_02a        | Meadow Brook Creek        |                    |               | 28.99 | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | ID_Curle_Jul-02-19 | Jul 02, 2019  |       |       |
| TOTAL SUSPENDED SOLIDS (1  | rss)                      | ID_Curle_Jul-02-19 | Jul 02, 2019  |       |       |
| ID16020309BR003_03a        | Rock Creek (Curlew Valley | <i>(</i> )         |               | 3.71  | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | ID_Curle_Jul-02-19 | Jul 02, 2019  |       |       |
| TOTAL SUSPENDED SOLIDS (1  | rss)                      | ID_Curle_Jul-02-19 | Jul 02, 2019  |       |       |

| 17060108                   | Palouse                   |                           |               |       |       |
|----------------------------|---------------------------|---------------------------|---------------|-------|-------|
|                            |                           | EPA TMDL ID               | Approval Date |       |       |
| ID17060108CL001_02         | Cow Creek - source to Id  | aho/Washington border     |               | 85.95 | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | 22724                     | Feb 13, 2006  |       |       |
| ID17060108CL001_03         | Cow Creek - source to Id  | aho/Washington border     |               | 10.69 | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>22724</u>              | Feb 13, 2006  |       |       |
| TEMPERATURE                |                           | <u>56186</u>              | Apr 30, 2014  |       |       |
| ID17060108CL002_03         | South Fork Palouse Rive   | r-Gnat Cr. to Idaho/Washi | ngton border  | 8.25  | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>33470</u>              | Oct 01, 2007  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>33470</u>              | Oct 01, 2007  |       |       |
| TEMPERATURE                |                           | <u>33470</u>              | Oct 01, 2007  |       |       |
|                            |                           | <u>68181</u>              | Aug 23, 2017  |       |       |
| ID17060108CL003_02         | South Fork Palouse Rive   | r - source to Gnat Creek; | tribs         | 14.51 | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>33470</u>              | Oct 01, 2007  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>33470</u>              | Oct 01, 2007  |       |       |
| TEMPERATURE                |                           | <u>33470</u>              | Oct 01, 2007  |       |       |
|                            |                           | <u>68181</u>              | Aug 23, 2017  |       |       |
| ID17060108CL003_03         | South Fork Palouse Rive   | r - source to Gnat Creek  |               | 1.91  | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>33470</u>              | Oct 01, 2007  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>33470</u>              | Oct 01, 2007  |       |       |
| TEMPERATURE                |                           | <u>33470</u>              | Oct 01, 2007  |       |       |
|                            |                           | <u>68181</u>              | Aug 23, 2017  |       |       |
| ID17060108CL005_02         | Paradise Creek - Urban I  | ooundary to Idaho/Washin  | gton border   | 11.41 | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | <u>67000</u>              | Nov 01, 2016  |       |       |
|                            |                           | <u>907</u>                | Feb 12, 1998  |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>907</u>                | Feb 12, 1998  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>907</u>                | Feb 12, 1998  |       |       |
| TEMPERATURE                |                           | <u>907</u>                | Feb 12, 1998  |       |       |
| ID17060108CL005_02a        | Paradise Creek - forest h | abitat boundary to Urban  | boundary      | 16.91 | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | <u>67000</u>              | Nov 01, 2016  |       |       |
|                            |                           | <u>907</u>                | Feb 12, 1998  |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>907</u>                | Feb 12, 1998  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>907</u>                | Feb 12, 1998  |       |       |
| TEMPERATURE                |                           | <u>907</u>                | Feb 12, 1998  |       |       |

| ID17060108CL005_02b        | Idlers Rest Creek -  | source to forest habitat bounda | ry           | 5.49  | Miles |
|----------------------------|----------------------|---------------------------------|--------------|-------|-------|
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATOR | RS <u>907</u>                   | Feb 12, 1998 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>907</u>                      | Feb 12, 1998 |       |       |
| TEMPERATURE                |                      | <u>907</u>                      | Feb 12, 1998 |       |       |
| ID17060108CL011a_02        | Flannigan Creek - s  | source to T41N, R05W, Sec. 23   |              | 18.03 | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATOR | RS <u>11288</u>                 | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| TEMPERATURE                |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
|                            |                      | <u>68181</u>                    | Aug 23, 2017 |       |       |
| ID17060108CL011a_03        | Flannigan Creek - s  | ource to T41N, R05W, Sec. 23    |              | 3.06  | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATOR | RS <u>11288</u>                 | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| TEMPERATURE                |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
|                            |                      | <u>68181</u>                    | Aug 23, 2017 |       |       |
| ID17060108CL011b_02        | Flannigan Creek - 1  | 41N, R05W, Sec. 23 to mouth     |              | 2.92  | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATOR | RS <u>11288</u>                 | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| TEMPERATURE                |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
|                            |                      | <u>68181</u>                    | Aug 23, 2017 |       |       |
| ID17060108CL011b_03        | Flannigan Creek - 1  | 41N, R05W, Sec. 23 to mouth     |              | 3.71  | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATOR | RS <u>11288</u>                 | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| TEMPERATURE                |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
|                            |                      | <u>68181</u>                    | Aug 23, 2017 |       |       |
| ID17060108CL012_03         | Rock Creek-conflue   | ence of WF and EF Rock Cr to r  | mouth        | 1.73  | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| ID17060108CL013a_02        | West Fork Rock Cr    | eek - source to T41N, R04W, S   | ec. 30       | 5.68  | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |
| ID17060108CL013b_03        | West Fork Rock Cr    | eek - T41N, R04W, Sec. 30 to r  | mouth        | 1.4   | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | 11288                           | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                      | <u>11288</u>                    | Mar 14, 2005 |       |       |

| ID17060108CL014a_02        | East Fork Rock Creek - sou  | urce to T41N, R 04W, S | Sec. 29      | 2.23  | Miles |
|----------------------------|-----------------------------|------------------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| ID17060108CL014b_02        | East Fork Rock Creek - T4   | 1N, R 04W, Sec. 29 to  | mouth        | 1.66  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| ID17060108CL015a_02        | Hatter Creek - source to T4 | 0N, R04W, Sec. 3       |              | 17.3  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| TEMPERATURE                |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
|                            |                             | <u>68181</u>           | Aug 23, 2017 |       |       |
| ID17060108CL015b_02        | Hatter Creek - T40N, R04W   | /, Sec. 3 to mouth     |              | 20.47 | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS       | <u>11288</u>           | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| TEMPERATURE                |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
|                            |                             | <u>68181</u>           | Aug 23, 2017 |       |       |
| ID17060108CL015b_03        | Hatter Creek - T40N, R04W   | /, Sec. 3 to mouth     |              | 5.23  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS       | <u>11288</u>           | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| TEMPERATURE                |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
|                            |                             | <u>68181</u>           | Aug 23, 2017 |       |       |
| ID17060108CL027a_02        | Big Creek - source to T42N  | , R03W, Sec. 08        |              | 5.23  | Miles |
| TEMPERATURE                |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
|                            |                             | <u>68181</u>           | Aug 23, 2017 |       |       |
| ID17060108CL027b_02        | Big Creek - T42N, R03W, S   | Sec. 08 to mouth       |              | 15.49 | Miles |
| TEMPERATURE                |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
|                            |                             | <u>68181</u>           | Aug 23, 2017 |       |       |
| ID17060108CL029_02         | Gold Creek - T42N, R04W,    | Sec. 28 to mouth       |              | 1.45  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
| TEMPERATURE                |                             | <u>11288</u>           | Mar 14, 2005 |       |       |
|                            |                             | <u>68181</u>           | Aug 23, 2017 |       |       |

| ID17060108CL029_03         | Gold Creek - T42N, R04W, Sec. 28 to mouth  |              | 1.78  | Miles |
|----------------------------|--------------------------------------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) | <u>11288</u>                               | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |
| ID17060108CL030_02         | Gold Creek - source to T42N, R04W, Sec. 28 |              | 19.96 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |
| ID17060108CL031a_02        | Crane Creek - source to T42N, 04W, Sec. 28 |              | 3.7   | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>11288</u>                               | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |
| ID17060108CL031b_02        | Crane Creek - T42N, 04W, Sec. 08 to mouth  |              | 6.56  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>11288</u>                               | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |
| ID17060108CL032a_02        | Deep Creek - source to T42, R05, Sec. 02   |              | 23.75 | Miles |
| SEDIMENTATION/SILTATION    | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |
| ID17060108CL032a_03        | Deep Creek - source to T42, R05, Sec. 02   |              | 0.63  | Miles |
| SEDIMENTATION/SILTATION    | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |
| ID17060108CL032b_02        | Deep Creek - T42, R05, Sec. 02 to mouth    |              | 15.29 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>11288</u>                               | Mar 14, 2005 |       |       |
| SEDIMENTATION/SILTATION    | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |
| ID17060108CL032b_03        | Deep Creek - T42, R05, Sec. 02 to mouth    |              | 6.18  | Miles |
| SEDIMENTATION/SILTATION    | <u>11288</u>                               | Mar 14, 2005 |       |       |
| TEMPERATURE                | <u>11288</u>                               | Mar 14, 2005 |       |       |
|                            | <u>68181</u>                               | Aug 23, 2017 |       |       |

| 17060303                | Lochsa                    |                          |               |       |       |
|-------------------------|---------------------------|--------------------------|---------------|-------|-------|
|                         |                           | EPA TMDL ID              | Approval Date |       |       |
| ID17060303CL001_02      | Lochsa River - Deadman    | Creek to mouth           |               | 27.91 | Miles |
| TEMPERATURE             |                           | <u>ID99922</u>           | Aug 27, 2018  |       |       |
| ID17060303CL061_02      | Deadman Creek - source    | to East Fork Deadman (   | Creek         | 8.67  | Miles |
| TEMPERATURE             |                           | <u>ID99922</u>           | Aug 27, 2018  |       |       |
| ID17060303CL062_03      | Canyon Creek - source to  | mouth                    |               | 0.63  | Miles |
| TEMPERATURE             |                           | ID99922                  | Aug 27, 2018  |       |       |
| ID17060303CL063_02      | Pete King Creek - Walde   | Creek to mouth           |               | 12.71 | Miles |
| TEMPERATURE             |                           | ID99922                  | Aug 27, 2018  |       |       |
| ID17060303CL063_03      | Pete King Creek - Walde   | Creek to mouth           |               | 5.5   | Miles |
| TEMPERATURE             |                           | ID99922                  | Aug 27, 2018  |       |       |
| ID17060303CL064_02      | Walde Creek - source to r | nouth                    |               | 12.46 | Miles |
| TEMPERATURE             |                           | ID99922                  | Aug 27, 2018  |       |       |
| 17060305                | South Fork Clearw         | ater                     |               |       |       |
|                         |                           | EPA TMDL ID              | Approval Date |       |       |
| ID17060305CL001_02      | South Fork Clearwater Riv | ver - Butcher Creek to m | outh          | 2.8   | Miles |
| SEDIMENTATION/SILTATION |                           | <u>10730</u>             | Jul 22, 2004  |       |       |
|                         |                           | <u>11089</u>             | Jul 22, 2004  |       |       |
| TEMPERATURE             |                           | <u>10730</u>             | Jul 22, 2004  |       |       |
|                         |                           | <u>11089</u>             | Jul 22, 2004  |       |       |
| ID17060305CL003_02      | Cottonwood Creek - source | e to Cottonwood Creek    | waterfall     | 30.32 | Miles |
| AMMONIA, UN-IONIZED     |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| DISSOLVED OXYGEN        |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS     | <u>334</u>               | Jun 06, 2000  |       |       |
| SEDIMENTATION/SILTATION |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| TEMPERATURE             |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| ID17060305CL003_03      | Cottonwood Creek - source | e to Cottonwood Creek    | waterfall     | 0.39  | Miles |
| AMMONIA, UN-IONIZED     |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| DISSOLVED OXYGEN        |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| FECAL COLIFORM          |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS     | <u>334</u>               | Jun 06, 2000  |       |       |
| SEDIMENTATION/SILTATION |                           | <u>334</u>               | Jun 06, 2000  |       |       |
| TEMPERATURE             |                           | <u>334</u>               | Jun 06, 2000  |       |       |

| ID17060305CL003_04        | Cottonwood Creek - sou  | rce to Cottonwood Creek v | vaterfall    | 5.4   | Miles |
|---------------------------|-------------------------|---------------------------|--------------|-------|-------|
| AMMONIA, UN-IONIZED       |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| DISSOLVED OXYGEN          |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION   | BIOLOGICAL INDICATORS   | <u>334</u>                | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION   |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| TEMPERATURE               |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| ID17060305CL006_02        | Stockney Creek - source | e to mouth                |              | 21.98 | Miles |
| DISSOLVED OXYGEN          |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION   | BIOLOGICAL INDICATORS   | <u>334</u>                | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION   |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| TEMPERATURE               |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| ID17060305CL006_03        | Stockney Creek - source | e to mouth                |              | 6.44  | Miles |
| DISSOLVED OXYGEN          |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION   | BIOLOGICAL INDICATORS   | <u>334</u>                | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION   |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| TEMPERATURE               |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| ID17060305CL007_02        | Shebang Creek - source  | e to mouth                |              | 34.31 | Miles |
| DISSOLVED OXYGEN          |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION   | BIOLOGICAL INDICATORS   | <u>334</u>                | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION   |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| TEMPERATURE               |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| ID17060305CL007_03        | Shebang Creek - source  | e to mouth                |              | 7.72  | Miles |
| DISSOLVED OXYGEN          |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION   | BIOLOGICAL INDICATORS   | <u>334</u>                | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION   |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| TEMPERATURE               |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| ID17060305CL008_02        | South Fork Cottonwood   | Creek - source to mouth   |              | 24.97 | Miles |
| DISSOLVED OXYGEN          |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION I | BIOLOGICAL INDICATORS   | <u>334</u>                | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION   |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| TEMPERATURE               |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| ID17060305CL008_03        | South Fork Cottonwood   | Creek - 3rd order segment | 1            | 5.02  | Miles |
| DISSOLVED OXYGEN          |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION I | BIOLOGICAL INDICATORS   | <u>334</u>                | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION   |                         | <u>334</u>                | Jun 06, 2000 |       |       |
| TEMPERATURE               |                         | <u>334</u>                | Jun 06, 2000 |       |       |

| ID17060305CL009_02         | Long Haul Creek - source  | e to mouth                  |              | 14.98 | Miles |
|----------------------------|---------------------------|-----------------------------|--------------|-------|-------|
| DISSOLVED OXYGEN           |                           | <u>334</u>                  | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>334</u>                  | Jun 06, 2000 |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>334</u>                  | Jun 06, 2000 |       |       |
| TEMPERATURE                |                           | <u>334</u>                  | Jun 06, 2000 |       |       |
| ID17060305CL010_02         | Threemile Creek - source  | e to unnamed tributary      |              | 36.08 | Miles |
| DISSOLVED OXYGEN           |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| ESCHERICHIA COLI (E. COLI) |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| TEMPERATURE                |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| ID17060305CL011a_02        | Butcher Creek-unnamed     | tributary (mouth fish ba    | rrier)       | 5.94  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| TEMPERATURE                |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| ID17060305CL011b_02        | Butcher Creek - fish barr | ier to source               |              | 11.17 | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| TEMPERATURE                |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| ID17060305CL012_02         | South Fork Clearwater R   | iver - sidewall tributaries | 3            | 46.75 | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
| TEMPERATURE                |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
| ID17060305CL012_02a        | Schwartz Creek            |                             |              | 44.46 | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
| TEMPERATURE                |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
| ID17060305CL012_05         | South Fork Clearwater R   | iver - Johns Creek to Bu    | utcher Creek | 22.27 | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |
| TEMPERATURE                |                           | <u>10730</u>                | Jul 22, 2004 |       |       |
|                            |                           | <u>11089</u>                | Jul 22, 2004 |       |       |

| ID17060305CL013_02      | Mill Creek - source to mouth              |                     | 36.24 | Miles |
|-------------------------|-------------------------------------------|---------------------|-------|-------|
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL013_03      | Mill Creek - 3rd order, from Merton Creek | to mouth            | 8.45  | Miles |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL014_02      | Johns Creek - tributaries                 |                     | 42.61 | Miles |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL014_04      | Johns Creek - Gospel Creek to mouth       |                     | 9.48  | Miles |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL015_03      | Gospel Creek - source to mouth            |                     | 1.96  | Miles |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL017_02      | Johns Creek - Moores Creek to Gospel C    | Creek               | 15.01 | Miles |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL017_03      | Johns Creek - Moores Creek to Gospel C    | Creek               | 3.84  | Miles |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL022_02      | Huddleson Creek and tributaries           |                     | 33.91 | Miles |
| SEDIMENTATION/SILTATION | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL022_02a     | Granite Creek                             |                     | 4.08  | Miles |
| SEDIMENTATION/SILTATION | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| ID17060305CL022_05      | South Fork Clearwater River - Tenmile C   | reek to Johns Creek | 11.78 | Miles |
| SEDIMENTATION/SILTATION | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |
| TEMPERATURE             | <u>10730</u>                              | Jul 22, 2004        |       |       |
|                         | <u>11089</u>                              | Jul 22, 2004        |       |       |

| ID17060305CL023_02 | Wing Creek - source to Little | e Wing Creek          |               | 9.58  | Miles |
|--------------------|-------------------------------|-----------------------|---------------|-------|-------|
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL023_03 | Wing Creek - Little Wing Cr   | eek to mouth          |               | 1.42  | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL024_02 | Twentymile Creek - 1st and    | 2nd order mainstem    | & tributaries | 24.75 | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL024_03 | Twentymile Creek - unname     | ed tributary to mouth |               | 3.17  | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL025_02 | Tenmile Creek - Sixmile Cre   | ek to mouth           |               | 2.75  | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL025_04 | Tenmile Creek - Sixmile Cre   | eek to mouth          |               | 3.67  | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL026_02 | Tenmile Creek - Williams C    | reek to Sixmile Creek |               | 12.5  | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL026_03 | Tenmile Creek - 3rd order s   | egment                |               | 2.45  | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL027_02 | Tenmile Creek - source to V   | Villiams Creek        |               | 21.73 | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL028_02 | Williams Creek - source to r  | mouth                 |               | 11.67 | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL029_02 | Sixmile Creek - source to m   | outh                  |               | 12.8  | Miles |
| TEMPERATURE        |                               | <u>10730</u>          | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |
| ID17060305CL029_03 | Sixmile Creek - 3rd Order fr  | om Fourmile Cr to mo  | outh          | 1.03  | Miles |
| TEMPERATURE        |                               | 10730                 | Jul 22, 2004  |       |       |
|                    |                               | <u>11089</u>          | Jul 22, 2004  |       |       |

| ID17060305CL030_02      | South Fork Clearwater River - Crooked River to | Tenmile Creek  | 28.39 | Miles |
|-------------------------|------------------------------------------------|----------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL030_05      | South Fork Clearwater River - Crooked River to | Tenmile Creek  | 11.76 | Miles |
| SEDIMENTATION/SILTATION | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL031_02      | Crooked River - Relief Creek to mouth          |                | 12.45 | Miles |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL031_03      | Crooked River - 3rd order from Relief Creek to | mouth          | 7.44  | Miles |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL032_02      | Crooked River - confluence of West and East F  | ork Crooked R. | 29.48 | Miles |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL032_03      | Crooked River - WF and EF Crooked R. to Reli   | ef Creek       | 4.21  | Miles |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL033_02      | West Fork Crooked River - source to mouth      |                | 13.51 | Miles |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL034_02      | East Fork Crooked River - source to mouth      |                | 12    | Miles |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL035_02      | Relief Creek - source to mouth                 |                | 13.47 | Miles |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| ID17060305CL036_02      | South Fork Clearwater River - tributaries      |                | 2.49  | Miles |
| SEDIMENTATION/SILTATION | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |
| TEMPERATURE             | <u>10730</u>                                   | Jul 22, 2004   |       |       |
|                         | <u>11089</u>                                   | Jul 22, 2004   |       |       |

| ID17060305CL036_05      | South Fork Clearwater River - 5th order mainstem  | segment      | 3.96  | Miles |
|-------------------------|---------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL037_02      | Red River- Siegel Creek to mouth                  |              | 17.13 | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL037_04      | Red River- Siegel Creek to mouth                  |              | 7.82  | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL038_02      | Red River - South Fork Red River to Siegel Creek  |              | 27.13 | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL038_02a     | Little Moose Creek - source to mouth              |              | 8.86  | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
| 1                       | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL038_04      | Red River - South Fork Red River to Siegel Creek  |              | 7.62  | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL039_02      | Moose Butte Creek - source to, and including Hays | Cr.          | 12.51 | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL039_03      | Moose Butte Creek - 3rd order segment             |              | 2.64  | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL040_02      | South Fork Red River - Trapper Creek to mouth     |              | 3.38  | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL040_03      | South Fork Red River - Trapper Creek to mouth     |              | 3.02  | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL041_02      | South Fork Red River - West Fork Red River to Tra | apper Creek  | 4.1   | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |
| ID17060305CL041_03      | South Fork Red River - West Fork Red River to Tra | apper Creek  | 3.74  | Miles |
| TEMPERATURE             | <u>10730</u>                                      | Jul 22, 2004 |       |       |
|                         | <u>11089</u>                                      | Jul 22, 2004 |       |       |

| ID17060305CL042_02 | West Fork Red River - source to | o mouth                |              | 14.14 | Miles |
|--------------------|---------------------------------|------------------------|--------------|-------|-------|
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL042_03 | West Fork Red River - source to | o mouth                |              | 0.74  | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL043_02 | South Fork Red River - source t | o West Fork Red River  |              | 7.91  | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL044_02 | Trapper Creek - source to mout  | h                      |              | 13.82 | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL045_02 | Red River - source to South For | k Red River            |              | 32.47 | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL045_03 | Red River - Unnamed tributary t | o South Fork Red River |              | 10.89 | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL046_02 | Soda Creek - source to mouth    |                        |              | 7.95  | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL047_02 | Bridge Creek - source to mouth  |                        |              | 7.18  | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL048_02 | Otterson Creek - source to mou  | th                     |              | 6.18  | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL049_02 | Trail Creek - source to mouth   |                        |              | 9.37  | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL050_02 | Siegel Creek - source to mouth  |                        |              | 13.6  | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |
| ID17060305CL051_02 | Red Horse Creek - source to me  | outh                   |              | 14.04 | Miles |
| TEMPERATURE        |                                 | <u>10730</u>           | Jul 22, 2004 |       |       |
|                    |                                 | <u>11089</u>           | Jul 22, 2004 |       |       |

| ID17060305CL052_02 | American River - East Fork American River to mouth       |              | 10.6  | Miles |
|--------------------|----------------------------------------------------------|--------------|-------|-------|
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL052_04 | American River - 4th order, East Fork American River to  | o mouth      | 9.47  | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL053_02 | Kirks Fork - source to mouth                             |              | 15.76 | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL053_03 | Kirks Fork - 3rd order segment                           |              | 1.3   | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL054_02 | East Fork American River - source to mouth               |              | 30.96 | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL054_03 | East Fork American River - source to mouth               |              | 2.13  | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL055_02 | American River - source to East Fork American River      |              | 33.69 | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL055_03 | American River - source to East Fork American River      |              | 5.62  | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL056_02 | Elk Creek                                                |              | 2.04  | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL056_03 | Elk Creek-confluence of Big Elk & Little Elk Creeks to r | nouth        | 2.35  | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL057_02 | Little Elk Creek - source to mouth                       |              | 12.69 | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | <u>11089</u>                                             | Jul 22, 2004 |       |       |
| ID17060305CL058_02 | Big Elk Creek - source to WF Big Elk Creek               |              | 15.34 | Miles |
| TEMPERATURE        | <u>10730</u>                                             | Jul 22, 2004 |       |       |
|                    | 11089                                                    | Jul 22, 2004 |       |       |

| ID17060305CL058_03 | Big Elk Creek - 3rd Order       |              |              | 4.36 | Miles |
|--------------------|---------------------------------|--------------|--------------|------|-------|
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL059_02 | Buffalo Gulch - source to mouth |              |              | 6.49 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL060_02 | Whiskey Creek - source to mout  | th           |              | 4.19 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL061_02 | Maurice Creek - source to mout  | h            |              | 2.64 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL062_02 | Newsome Creek - Beaver Creek    | c to mouth   |              | 5.48 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL062_04 | Newsome Creek - Beaver Creek    | c to mouth   |              | 6.92 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL063_02 | Bear Creek - source to mouth    |              |              | 8.01 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
| ID17060305CL064_02 | Nugget Creek - source to mouth  |              |              | 4.55 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL065_02 | Beaver Creek - source to mouth  |              |              | 6.67 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL066_04 | Newsome Creek - 4th order       |              |              | 2.26 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL067_02 | Mule Creek - source to mouth    |              |              | 13.2 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | <u>11089</u> | Jul 22, 2004 |      |       |
| ID17060305CL067_03 | Mule Creek - 3rd Order          |              |              | 0.57 | Miles |
| TEMPERATURE        |                                 | <u>10730</u> | Jul 22, 2004 |      |       |
|                    |                                 | 11089        | Jul 22, 2004 |      |       |

| ID17060305CL068_02  | Newsome Creek - source to Mu    | lle Creek      |              | 15.2  | Miles |
|---------------------|---------------------------------|----------------|--------------|-------|-------|
| TEMPERATURE         |                                 | 10730          | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL068_03  | Newsome Creek - source to Mu    | lle Creek      |              | 0.48  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL069_02  | Haysfork Creek - source to mou  | ıth            |              | 9.5   | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL070_02  | Baldy Creek - source to mouth   |                |              | 8.01  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL071_02  | Pilot Creek - source to mouth   |                |              | 7.61  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL071_03  | Pilot Creek - 3rd Order         |                |              | 2.84  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL072_02  | Sawmill Creek - source to mout  | h              |              | 6.03  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL073_02  | Sing Lee Creek - source to mou  | ıth            |              | 4.51  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL074_02  | West Fork Newsome Creek - so    | ource to mouth |              | 4.25  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL074_02a | West Fork Newsome Creek         |                |              | 2.95  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL075_02  | Leggett Creek - source to mouth | h              |              | 11.86 | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |
| ID17060305CL076_02  | Fall Creek - source to mouth    |                |              | 7.77  | Miles |
| TEMPERATURE         |                                 | <u>10730</u>   | Jul 22, 2004 |       |       |
|                     |                                 | <u>11089</u>   | Jul 22, 2004 |       |       |

| ID17060305CL077_02         | Silver Creek - 1st and 2 | 2nd order                   |               | 9.63  | Miles |
|----------------------------|--------------------------|-----------------------------|---------------|-------|-------|
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| ID17060305CL077_02a        | Silver Creek - headwate  | ers and tributaries         |               | 29.47 | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| ID17060305CL077_03         | Silver Creek - unnamed   | I tributary to mouth        |               | 1.87  | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| ID17060305CL078_02         | Peasley Creek - source   | to mouth                    |               | 22.28 | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
| ID17060305CL079_02         | Cougar Creek - source    | to mouth                    |               | 17.05 | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| ID17060305CL080_02         | Meadow Creek - source    | e to and inc. NF Meadow Cr. |               | 41.01 | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| ID17060305CL080_03         | Meadow Creek - NF Me     | eadow Cr to mouth           |               | 6.76  | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
| ID17060305CL081_02         | Sally Ann Creek - sourc  | e to and inc. Wall Creek    |               | 17.73 | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| ID17060305CL081_03         | Sally Ann Creek - Wall   | Creek to mouth              |               | 0.26  | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| ID17060305CL082_02         | Rabbit Creek - source t  | o mouth                     |               | 8.81  | Miles |
| TEMPERATURE                |                          | <u>10730</u>                | Jul 22, 2004  |       |       |
|                            |                          | <u>11089</u>                | Jul 22, 2004  |       |       |
| 17060306                   | Clearwater               |                             |               |       |       |
|                            |                          | EPA TMDL ID                 | Approval Date |       |       |
| ID17060306CL003_02         | Lindsay Creek - 1st and  | 2nd order tributaries       |               | 21.1  | Miles |
| ESCHERICHIA COLI (E. COLI) |                          | 32412                       | Jun 26, 2007  |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS    | <u>32412</u>                | Jun 26, 2007  |       |       |
| SEDIMENTATION/SILTATION    |                          | <u>32412</u>                | Jun 26, 2007  |       |       |

| ID17060306CL003_03         | Lindsay Creek - 3rd order |                            |              | 3.64  | Miles |
|----------------------------|---------------------------|----------------------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                           | <u>32412</u>               | Jun 26, 2007 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>32412</u>               | Jun 26, 2007 |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>32412</u>               | Jun 26, 2007 |       |       |
| ID17060306CL029_02         | Eldorado Creek - 1st and  | 2nd Order Tributaries      |              | 52.08 | Miles |
| TEMPERATURE                |                           | <u>41453</u>               | Dec 12, 2011 |       | -     |
| ID17060306CL031_02         | Jim Brown Creek - 1st an  | d 2nd Order Tributaries    |              | 44.61 | Miles |
| TEMPERATURE                |                           | <u>41453</u>               | Dec 12, 2011 |       |       |
| ID17060306CL031_03         | Jim Brown Creek - 3rd Or  | rder                       |              | 5.51  | Miles |
| TEMPERATURE                |                           | <u>41453</u>               | Dec 12, 2011 |       |       |
| ID17060306CL032_02         | Musselshell Creek - 1st a | nd 2nd order tributaries   |              | 30.83 | Miles |
| TEMPERATURE                |                           | <u>41453</u>               | Dec 12, 2011 |       |       |
| ID17060306CL032_03         | Musselshell Creek - 3rd C | Drder                      |              | 4.33  | Miles |
| TEMPERATURE                |                           | <u>41453</u>               | Dec 12, 2011 |       |       |
| ID17060306CL034_04         | Jim Ford Creek - waterfal | l (12.5 miles upstream) t  | to mouth     | 8.97  | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>580</u>                 | Jun 06, 2000 |       |       |
| TEMPERATURE                |                           | <u>580</u>                 | Jun 06, 2000 |       |       |
|                            |                           | <u>ID99955</u>             | Sep 26, 2018 |       |       |
| ID17060306CL035_02         | Heywood, Wilson Creeks    | and tributaries            |              | 48.65 | Miles |
| FECAL COLIFORM             |                           | <u>580</u>                 | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>580</u>                 | Jun 06, 2000 |       |       |
| TEMPERATURE                |                           | <u>580</u>                 | Jun 06, 2000 |       |       |
|                            |                           | <u>ID99955</u>             | Sep 26, 2018 |       |       |
| ID17060306CL035_03         | Jim Ford Creek - source t | to Jim Ford Cr waterfall ( | (12.5 mi)    | 6.39  | Miles |
| FECAL COLIFORM             |                           | <u>580</u>                 | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>580</u>                 | Jun 06, 2000 |       |       |
| TEMPERATURE                |                           | <u>580</u>                 | Jun 06, 2000 |       |       |
|                            |                           | <u>ID99955</u>             | Sep 26, 2018 |       |       |
| ID17060306CL035_04         | Jim Ford Creek - source t | to Jim Ford Creek water    | fall         | 3.87  | Miles |
| FECAL COLIFORM             |                           | <u>580</u>                 | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>580</u>                 | Jun 06, 2000 |       |       |
| TEMPERATURE                |                           | <u>580</u>                 | Jun 06, 2000 |       |       |
|                            |                           | <u>ID99955</u>             | Sep 26, 2018 |       |       |

| ID17060306CL036_02      | Grasshopper Creek - so    | urce to mouth               |              | 19.58 | Miles |
|-------------------------|---------------------------|-----------------------------|--------------|-------|-------|
| FECAL COLIFORM          |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS     | <u>580</u>                  | Jun 06, 2000 |       |       |
| TEMPERATURE             |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
|                         |                           | <u>ID99955</u>              | Sep 26, 2018 |       |       |
| ID17060306CL036_03      | Grasshopper Creek - so    | urce to mouth               |              | 4.3   | Miles |
| FECAL COLIFORM          |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS     | <u>580</u>                  | Jun 06, 2000 |       |       |
| TEMPERATURE             |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
|                         |                           | <u>ID99955</u>              | Sep 26, 2018 |       |       |
| ID17060306CL037_02      | Winter Creek - Winter C   | reek waterfall (3.4 miles u | pstream)     | 6.63  | Miles |
| FECAL COLIFORM          |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS     | <u>580</u>                  | Jun 06, 2000 |       |       |
| TEMPERATURE             |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
|                         |                           | <u>ID99955</u>              | Sep 26, 2018 |       |       |
| ID17060306CL037_03      | Winter Creek - waterfall  | (3.4 miles upstream) to m   | outh         | 2.41  | Miles |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS     | <u>580</u>                  | Jun 06, 2000 |       |       |
| TEMPERATURE             |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
|                         |                           | <u>ID99955</u>              | Sep 26, 2018 |       |       |
| ID17060306CL038_02      | Winter Creek - source to  | Winter Creek waterfall      |              | 6.77  | Miles |
| FECAL COLIFORM          |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS     | <u>580</u>                  | Jun 06, 2000 |       |       |
| TEMPERATURE             |                           | <u>580</u>                  | Jun 06, 2000 |       |       |
|                         |                           | <u>ID99955</u>              | Sep 26, 2018 |       |       |
| ID17060306CL044_06      | Potlatch River - 6th Orde | er                          |              | 7.35  | Miles |
| SEDIMENTATION/SILTATION |                           | <u>35864</u>                | Feb 13, 2009 |       |       |
| TEMPERATURE             |                           | <u>35864</u>                | Feb 13, 2009 |       |       |
|                         |                           | <u>99944</u>                | Jul 12, 2018 |       |       |
| ID17060306CL045_05      | Potlatch River - 5th Orde | er                          |              | 18.48 | Miles |
| TEMPERATURE             |                           | <u>35864</u>                | Feb 13, 2009 |       |       |
|                         |                           | <u>99944</u>                | Jul 12, 2018 |       |       |
| ID17060306CL046_04      | Cedar Creek - 4th Order   |                             |              | 5.18  | Miles |
| SEDIMENTATION/SILTATION |                           | <u>35864</u>                | Feb 13, 2009 |       |       |
| TEMPERATURE             |                           | <u>35864</u>                | Feb 13, 2009 |       |       |
|                         |                           | <u>99944</u>                | Jul 12, 2018 |       |       |
| ID17060306CL047_03         | Boulder Creek - 3rd Order        |              |              | 4.14  | Miles |
|----------------------------|----------------------------------|--------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL048_04         | Potlatch River - 4th Order       |              |              | 6.67  | Miles |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL048_05         | Potlatch River - 5th Order       |              |              | 7.7   | Miles |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL049_02         | Potlatch River - headwaters      |              |              | 61.69 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL049_03         | Potlatch River - 3rd Order       |              |              | 5.3   | Miles |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL049_04         | Potlatch River - 4th Order       |              |              | 3.71  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL051_04         | East Fork Potlatch River - 4th C | Order        |              | 4.73  | Miles |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL052_03         | Ruby Creek - 3rd Order           |              |              | 2.14  | Miles |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL053_02         | Moose Creek - headwaters         |              |              | 15.7  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | <u>99944</u> | Jul 12, 2018 |       |       |
| ID17060306CL053_03         | Moose Creek - 3rd Order          |              |              | 3.7   | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
| TEMPERATURE                |                                  | <u>35864</u> | Feb 13, 2009 |       |       |
|                            |                                  | 99944        | Jul 12, 2018 |       |       |

| ID17060306CL054_02         | Corral Creek - headwaters   |                    |              | 22.29 | Miles |
|----------------------------|-----------------------------|--------------------|--------------|-------|-------|
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
|                            |                             | <u>99944</u>       | Jul 12, 2018 |       |       |
| ID17060306CL054_03         | Corral Creek - 3rd Order    |                    |              | 7.57  | Miles |
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
|                            |                             | <u>99944</u>       | Jul 12, 2018 |       |       |
| ID17060306CL055_02         | Pine Creek - headwaters     |                    |              | 35.94 | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS       | <u>35864</u>       | Feb 13, 2009 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
|                            |                             | <u>99944</u>       | Jul 12, 2018 |       |       |
| ID17060306CL055_03         | Pine Creek - 3rd Order      |                    |              | 3.87  | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS       | <u>35864</u>       | Feb 13, 2009 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
|                            |                             | <u>99944</u>       | Jul 12, 2018 |       |       |
| ID17060306CL056_04         | Big Bear Creek - 4th Order  |                    |              | 17.05 | Miles |
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
|                            |                             | <u>99944</u>       | Jul 12, 2018 |       |       |
| ID17060306CL056_05         | Big Bear Creek - 5th Order  |                    |              | 1.01  | Miles |
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| r                          |                             | <u>99944</u>       | Jul 12, 2018 |       |       |
| ID17060306CL061_02         | West Fork Little Bear Creek | - 1st and 2nd Orde | r            | 38.52 | Miles |
| NITROGEN, TOTAL            |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| ID17060306CL061_03         | West Fork Little Bear Creek | - 3rd Order        |              | 9.22  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| NITROGEN, TOTAL            |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| ID17060306CL062_02         | Middle Potlatch Creek - hea | dwaters            |              | 45.85 | Miles |
| SEDIMENTATION/SILTATION    |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
|                            |                             | <u>99944</u>       | Jul 12, 2018 |       |       |
| ID17060306CL062_03         | Middle Potlatch Creek - 3rd | Order              |              | 14.47 | Miles |
| SEDIMENTATION/SILTATION    |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
| TEMPERATURE                |                             | <u>35864</u>       | Feb 13, 2009 |       |       |
|                            |                             | <u>99944</u>       | Jul 12, 2018 |       |       |

#### Clearwater

| ID17060306CL067_02         | Hatwai Creek - 1st and 2nd | Hatwai Creek - 1st and 2nd Order tributaries |              | 37.53 | Miles |
|----------------------------|----------------------------|----------------------------------------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                            | <u>39642</u>                                 | Dec 28, 2010 |       |       |
| NITROGEN, NITRATE          |                            | <u>39642</u>                                 | Dec 28, 2010 |       |       |
| PHOSPHORUS, TOTAL          |                            | <u>39642</u>                                 | Dec 28, 2010 |       |       |
| ID17060306CL067_03         | Hatwai Creek - 3rd Order   |                                              |              | 4.1   | Miles |
| ESCHERICHIA COLI (E. COLI) |                            | <u>39642</u>                                 | Dec 28, 2010 |       |       |
| NITROGEN, NITRATE          |                            | <u>39642</u>                                 | Dec 28, 2010 |       |       |
| PHOSPHORUS, TOTAL          |                            | <u>39642</u>                                 | Dec 28, 2010 |       |       |
| TEMPERATURE                |                            | <u>39642</u>                                 | Dec 28, 2010 |       |       |
|                            |                            | ID_Hatwa_Aug-23-19                           | Aug 23, 2019 |       |       |

#### 17060307 Upper North Fork Clearwater

|                     | EPA                             | A TMDL ID         | Approval Date |       |       |
|---------------------|---------------------------------|-------------------|---------------|-------|-------|
| ID17060307CL001_02a | Sneak Creek - source to mouth   |                   |               | 5.38  | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL005_02  | Orogrande Creek - 1st and 2nd o | order tributaries |               | 28.97 | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL005_02a | Tamarack Creek - source to mou  | uth               |               | 5.66  | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL005_04  | Orogrande Creek - 4th Order     |                   |               | 12.59 | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL006_02  | Orogrande Creek - headwaters    |                   |               | 36.83 | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL006_03  | Orogrande Creek - 3rd Order     |                   |               | 4.04  | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL007_02a | Sylvan Creek - source to mouth  |                   |               | 5.72  | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL012_02  | Middle Creek - tributaries      |                   |               | 18.23 | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL012_02a | Middle Creek - headwaters       |                   |               | 8.46  | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL012_03  | Middle Creek - 3rd Order        |                   |               | 2.05  | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL012_03a | Middle Creek                    |                   |               | 5.54  | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |
| ID17060307CL021_02  | Gravey Creek - source to mouth  |                   |               | 19.13 | Miles |
| TEMPERATURE         |                                 | <u>9705</u>       | Dec 09, 2003  |       |       |

#### Clearwater

ID17060308CL002\_02d

TEMPERATURE

| ID17060307CL021_02a     | Marten Creek - source to mouth    |                       |               | 7.55  | Miles |
|-------------------------|-----------------------------------|-----------------------|---------------|-------|-------|
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL021_02b     | Grass Creek - source to mouth     |                       |               | 1.65  | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL021_03      | Gravey Creek - 3rd Order          |                       |               | 1.44  | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL021_03a     | Gravey Creek - 3rd Order          |                       |               | 4.4   | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL030_02      | Osier Creek - source to mouth     |                       |               | 18.94 | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL030_02a     | Osier Creek Tributaries: Sugar, S | Swamp, Pollock Creeks |               | 13.74 | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL030_03      | Osier Creek - 3rd Order           |                       |               | 3.88  | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL032_02a     | Deception Gulch Creek - source    | to mouth              |               | 6.38  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL033_03      | Lake Creek - 3rd order segment    |                       |               | 4.85  | Miles |
| TEMPERATURE             |                                   | <u>ID99933</u>        | Sep 04, 2018  |       |       |
| ID17060307CL040_02      | Cold Springs Creek - source to n  | nouth                 |               | 11.26 | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL044_02a     | Grizzly Creek - source to mouth   |                       |               | 4.49  | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| ID17060307CL045_02      | Cougar Creek - source to mouth    |                       |               | 5.9   | Miles |
| TEMPERATURE             |                                   | <u>9705</u>           | Dec 09, 2003  |       |       |
| 17060308                | Lower North Fork Clear            | water                 |               |       |       |
|                         | EPA                               | TMDL ID               | Approval Date |       |       |
| ID17060308CL002_02a     | Swamp Creek - 1st and 2nd Orde    | er Tributaries        |               | 12.77 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>3828</u>           | Jan 15, 2003  |       |       |
| TEMPERATURE             |                                   | <u>3828</u>           | Jan 15, 2003  |       |       |
| ID17060308CL002_02b     | Elkberry Creek                    |                       |               | 32.2  | Miles |
| TEMPERATURE             |                                   | 54540                 | Nov 06, 2013  |       |       |
| ID17060308CL002_02c     | Middle Fork Robinson Creek        |                       |               | 25.54 | Miles |
| TEMPERATURE             |                                   | <u>54540</u>          | Nov 06, 2013  |       |       |

Jan 15, 2003

6.22

Miles

<u>3828</u>

Cedar Creek - source to mouth

| ID17060308CL002_03a        | Swamp Creek - 3rd order, Follet | Creek to Dworshak Rese  | ervoir       | 0.72  | Miles |
|----------------------------|---------------------------------|-------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| ID17060308CL002_04         | Elk Creek - Cedar Creek to Dwo  | rshak Reservoir         |              | 7.47  | Miles |
| TEMPERATURE                |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| ID17060308CL002_04a        | Long Meadow Creek - unnamed     | trib to Dworshak Reserv | oir          | 2.31  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| ID17060308CL003_02         | Gold Creek, Meadow Creek, unr   | named tributary         |              | 29.71 | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL003_03         | Reeds Creek - Alder Creek to Go | old Creek               |              | 3.35  | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL003_04         | Reeds Creek - Gold Creek to un  | named tributary         |              | 1.85  | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL004_02         | Reeds Creek - source to Deer C  | reek, inc. tribs        |              | 28.18 | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL004_03         | Reeds Creek - Deer Creek to Ald | der Creek               |              | 8.05  | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL005_02         | Alder Creek - source to mouth   |                         |              | 30.86 | Miles |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL009_02         | Beaver Creek - tributaries      |                         |              | 38.38 | Miles |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL009_02c        | Bingo Creek - source to mouth   |                         |              | 2.77  | Miles |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL009_02e        | Beaver Creek - headwater        |                         |              | 4.73  | Miles |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL009_03         | Beaver Creek - source to mouth  |                         |              | 5.65  | Miles |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL009_04         | Beaver Creek - source to mouth  |                         |              | 7.7   | Miles |
| TEMPERATURE                |                                 | <u>54540</u>            | Nov 06, 2013 |       |       |

| ID17060308CL010_03         | Isabella Creek - Elmer/Jug Cree  | k to mouth              |              | 5.39  | Miles |
|----------------------------|----------------------------------|-------------------------|--------------|-------|-------|
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL020_02         | Unnamed tributary to Stony Cree  | ek                      |              | 2.09  | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL020_04         | Stony Creek - Glover Creek to B  | reakfast Creek          |              | 3.68  | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL020_04a        | Breakfast Creek - 4th Order, Sto | ony Cr to Dworshak Rese | rvoir        | 1.91  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL021_02         | Floodwood Creek - tributaries    |                         |              | 43.66 | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL021_02a        | Floodwood Creek - headwaters     | to Pinchot Creek        |              | 8.23  | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL021_03         | Floodwood Creek - 3rd order      |                         |              | 9.93  | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL021_03a        | Floodwood Creek - Pinchot Cree   | ek to Goat Creek        |              | 1.67  | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL023_02         | Stony Creek - source to Glover;  | tributaries             |              | 21.44 | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL023_02a        | Stony Creek - 2nd Order          |                         |              | 2.76  | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL023_03         | Stony Creek - unnamed trib to G  | ilover Creek            |              | 5.79  | Miles |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL025_02         | Breakfast Creek - source to Stor | ny Creek                |              | 10.04 | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                  | <u>54540</u>            | Nov 06, 2013 |       |       |
| ID17060308CL028_02         | Swamp Creek - source to Dwors    | shak Reservoir          |              | 1.79  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |
| ID17060308CL028_03         | Swamp Creek - source to Dwors    | shak Reservoir          |              | 3     | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |
| ID17060308CL029_02         | Cranberry Creek - source to Dwo  | orshak Reservoir        |              | 14.26 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | 3828                    | Jan 15, 2003 |       |       |
| SEDIMENTATION/SILTATION    |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                  | <u>3828</u>             | Jan 15, 2003 |       |       |

| ID17060308CL030_02d        | Partridge Creek - source to mout   | h                          |              | 6.87  | Miles |
|----------------------------|------------------------------------|----------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| ID17060308CL030_02e        | Deep Creek, Fisher Creek, and tr   | ributaries                 |              | 33.31 | Miles |
| TEMPERATURE                |                                    | 3828                       | Jan 15, 2003 |       |       |
| ID17060308CL030_03a        | Elk Creek - 3rd Order, Reservoir   | to Elk Creek Falls         |              | 3.83  | Miles |
| TEMPERATURE                |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| ID17060308CL030_03b        | Elk Creek - Elk Creek Falls to cor | nflence of Deep Creek      |              | 2.13  | Miles |
| TEMPERATURE                |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| ID17060308CL030_04         | Elk Creek - confluence of Deep C   | Creek to Cedar Creek       |              | 3.66  | Miles |
| TEMPERATURE                |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| ID17060308CL034_02         | Three Bear, Round Meadow, Ovi      | att Creeks and tributaries | S            | 58.46 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| ID17060308CL034_02a        | Long Meadow Creek                  |                            |              | 1.2   | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| ID17060308CL034_03         | Long Meadow Creek - 3rd Order      |                            |              | 7.7   | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| ID17060308CL034_04         | Long Meadow Creek - 4th Order      |                            |              | 4.4   | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | 3828                       | Jan 15, 2003 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |
| TEMPERATURE                |                                    | <u>3828</u>                | Jan 15, 2003 |       |       |

| 17010104                | Lower Kootenai                          |                     |               |       |       |
|-------------------------|-----------------------------------------|---------------------|---------------|-------|-------|
|                         | EPA TN                                  | IDL ID              | Approval Date |       |       |
| ID17010104PN002_02      | Boundary Cr & tribs - ID/Canada bore    | der to ID/Canada b  | order         | 16.99 | Miles |
| TEMPERATURE             | <u>320</u>                              | <u>02</u>           | Feb 06, 2007  |       |       |
|                         | <u>ID_Koote_</u>                        | <u>Jun-28-19</u>    | Jun 28, 2019  |       |       |
| ID17010104PN002_03      | Boundary Creek - Idaho/Canadian bo      | order to Id/Canadia | n border      | 7.58  | Miles |
| TEMPERATURE             | <u>320</u>                              | <u>02</u>           | Feb 06, 2007  |       |       |
|                         | <u>ID_Koote_</u>                        | <u>Jun-28-19</u>    | Jun 28, 2019  |       |       |
| ID17010104PN003_02      | 1st & 2nd order tribs to Grass Creek    |                     |               | 27.34 | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN003_03      | Grass Creek - third order portion to le | daho/Canadian bor   | der           | 7.73  | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN004_02      | Blue Joe Creek - source to Idaho/Ca     | nadian border       |               | 15.43 | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN005_04      | Smith Creek - Cow Creek to Kootena      | ai River            |               | 7.87  | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN006_02      | Cow Creek - headwaters to Smith Cr      | eek                 |               | 9.47  | Miles |
| SEDIMENTATION/SILTATION | <u>320</u>                              | <u>02</u>           | Feb 06, 2007  |       |       |
| ID17010104PN006_03      | Cow Creek - source to mouth             |                     |               | 2.16  | Miles |
| SEDIMENTATION/SILTATION | <u>320</u>                              | <u>02</u>           | Feb 06, 2007  |       |       |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN007_03      | Smith Creek - source to Cow Creek       |                     |               | 4.99  | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN008_02      | Long Canyon Creek - source to mou       | th                  |               | 29.8  | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN010_03      | Trout Creek - 3rd order to branch       |                     |               | 4.55  | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN011_02      | Upper Ball Creek - source to forest e   | dge                 |               | 34.24 | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN011_02a     | Ball Creek- lower portion, forest to Ko | ootenai River       |               | 0.78  | Miles |
| TEMPERATURE             | <u>616</u>                              | <u>40</u>           | Oct 22, 2014  |       |       |
| ID17010104PN013_03      | Myrtle Creek - Jim Creek to mouth       |                     |               | 11    | Miles |
| TEMPERATURE             | <u>616</u>                              | 40                  | Oct 22, 2014  |       |       |
| ID17010104PN014_02      | Cascade Creek - source to mouth         |                     |               | 3.57  | Miles |
| TEMPERATURE             | 616                                     | <u>40</u>           | Oct 22, 2014  |       |       |

| ID17010104PN015_04      | Lower Deep Creek - Snow Creek to Kootenai River       |              | 4.32  | Miles |
|-------------------------|-------------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>32002</u>                                          | Feb 06, 2007 |       |       |
| TEMPERATURE             | <u>32002</u>                                          | Feb 06, 2007 |       |       |
|                         | ID_Koote_Jun-28-19                                    | Jun 28, 2019 |       |       |
| ID17010104PN016_03      | Lower Snow Creek                                      |              | 7.57  | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |
| ID17010104PN017_02      | Caribou Creek - source to mouth                       |              | 10.74 | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |
| ID17010104PN018_04      | Deep Creek - Ruby Creek to Snow Creek                 |              | 4.91  | Miles |
| SEDIMENTATION/SILTATION | <u>32002</u>                                          | Feb 06, 2007 |       |       |
| TEMPERATURE             | <u>32002</u>                                          | Feb 06, 2007 |       |       |
|                         | ID_Koote_Jun-28-19                                    | Jun 28, 2019 |       |       |
| ID17010104PN019_04      | Deep Creek - Trail Creek to Brown Creek               |              | 4.63  | Miles |
| SEDIMENTATION/SILTATION | <u>32002</u>                                          | Feb 06, 2007 |       |       |
| TEMPERATURE             | <u>32002</u>                                          | Feb 06, 2007 |       |       |
|                         | ID_Koote_Jun-28-19                                    | Jun 28, 2019 |       |       |
| ID17010104PN020_03      | Ruby Creek - lower, Gold Creek to Deep Creek          |              | 1.6   | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |
| ID17010104PN021_03      | Fall Creek - lower, 3rd order portion to Deep Creek   |              | 8.07  | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |
| ID17010104PN022_03      | Deep Creek - McArthur Lake to Trail Creek             |              | 6.58  | Miles |
| SEDIMENTATION/SILTATION | <u>32002</u>                                          | Feb 06, 2007 |       |       |
| TEMPERATURE             | <u>32002</u>                                          | Feb 06, 2007 |       |       |
|                         | ID_Koote_Jun-28-19                                    | Jun 28, 2019 |       |       |
| ID17010104PN025_02      | Deep Creek - source to McArthur Lake                  |              | 11.51 | Miles |
| TEMPERATURE             | <u>32002</u>                                          | Feb 06, 2007 |       |       |
|                         | ID_Koote_Jun-28-19                                    | Jun 28, 2019 |       |       |
| ID17010104PN026_03      | Trail Creek - source to Highway                       |              | 2.61  | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |
| ID17010104PN030_03      | Cow Creek - lower, Brush Creek to earthen levy        |              | 1.32  | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |
| ID17010104PN032_03      | Boulder Creek - East Fork Boulder Creek to mouth      |              | 4.22  | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |
| ID17010104PN033_03      | Boulder Creek - Pinochle Creek to East Fork Boulder C | reek         | 9.74  | Miles |
| TEMPERATURE             | <u>61640</u>                                          | Oct 22, 2014 |       |       |

| ID17010104PN035_03 | Curley Creek - lower, unnam  | ed trib to Kootenai River |               | 8.65  | Miles |
|--------------------|------------------------------|---------------------------|---------------|-------|-------|
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010104PN036_03 | Fleming Creek - lower        |                           |               | 3.49  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010104PN037_03 | Rock Creek - lower           |                           |               | 1.33  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010104PN038_03 | Mission Creek - Brush Creek  | to mouth                  |               | 2.91  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010104PN039_02 | Brush Creek - source to mou  | ıth                       |               | 9.73  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010104PN040_03 | Mission Creek - Idaho/Canad  | dian border to Brush Cre  | ek            | 9.06  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| 17010105           | Movie                        |                           |               |       |       |
|                    |                              | EPA TMDL ID               | Approval Date |       |       |
| ID17010105PN002_02 | Moyie River - Meadow Creek   | to Moyie Falls Dam        |               | 9.19  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN003_02 | Skin Creek - Idaho/Montana   | border to mouth           |               | 8.81  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN004_02 | Deer Creek - source to mout  | h                         |               | 30.94 | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN004_03 | Deer Creek - source to mout  | h                         |               | 6.25  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN006_02 | Tribs to Moyie River btwn CA | A border and Round Prai   | rie Creek     | 22.87 | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN007_02 | Canuck Creek - Idaho/Monta   | ana border to Idaho/Cana  | adian border  | 13.71 | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN009_02 | Gillon Creek - Idaho/Canadia | an border to mouth        |               | 6.95  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN010_03 | Round Prairie Creek - source | e to Gillon Creek         |               | 2.96  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN011_02 | Miller Creek - source to mou | th                        |               | 3.69  | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN012_02 | Meadow Creek - source to W   | /all Creek                |               | 22.63 | Miles |
| TEMPERATURE        |                              | <u>61640</u>              | Oct 22, 2014  |       |       |
| ID17010105PN012_03 | Meadow Creek - Wall Creek    | to Moyie River            |               | 2.63  | Miles |
| TEMPERATURE        |                              | 61640                     | Oct 22, 2014  |       |       |

| 17010213                | Lower Clark Fo          | rk                          |               |       |       |
|-------------------------|-------------------------|-----------------------------|---------------|-------|-------|
|                         |                         | EPA TMDL ID                 | Approval Date |       |       |
| ID17010213PN001_08      | Clark Fork River Delta  | - Mosquito Creek to Pend    | Oreille Lake  | 11    | Miles |
| CADMIUM                 |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| COPPER                  |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| DISSOLVED GAS SUPERSATU | JRATION                 | <u>33766</u>                | Oct 22, 2007  |       |       |
| ZINC                    |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN002_02      | Johnson Creek - sour    | ce to mouth                 |               | 15.31 | Miles |
| SEDIMENTATION/SILTATION |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| TEMPERATURE             |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN002_03      | Johnson Creek - sour    | ce to mouth                 |               | 2.12  | Miles |
| SEDIMENTATION/SILTATION |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| TEMPERATURE             |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN003_08      | Clark Fork River - Cat  | pinet Gorge Dam to Mosquit  | o Creek       | 7.45  | Miles |
| CADMIUM                 |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| COPPER                  |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| DISSOLVED GAS SUPERSATU | JRATION                 | <u>33766</u>                | Oct 22, 2007  |       |       |
| ZINC                    |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN004_02      | Twin Creek - 1st & 2n   | d order Twin & Delyle Creek | (             | 13.89 | Miles |
| SEDIMENTATION/SILTATION |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| TEMPERATURE             |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN004_02a     | Dry Creek               |                             |               | 9.65  | Miles |
| TEMPERATURE             |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN004_03      | Twin Creek - Delyle C   | reek to Clark Fork River    |               | 3.46  | Miles |
| SEDIMENTATION/SILTATION |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| TEMPERATURE             |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN005_08      | Clark Fork River - Idal | no/Montana border to Cabin  | et Gorge Dam  | 0.55  | Miles |
| CADMIUM                 |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| COPPER                  |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| DISSOLVED GAS SUPERSATU | JRATION                 | <u>33766</u>                | Oct 22, 2007  |       |       |
| ZINC                    |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN009_02      | Mosquito Creek - sou    | rce to mouth                |               | 8.78  | Miles |
| TEMPERATURE             |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| ID17010213PN010_04      | Lightning Creek - Spri  | ng Creek to mouth           |               | 1.51  | Miles |
| SEDIMENTATION/SILTATION |                         | <u>33766</u>                | Oct 22, 2007  |       |       |
| TEMPERATURE             |                         | <u>33766</u>                | Oct 22, 2007  |       |       |

| ID17010213PN011_02      | Lightning Creek - Cascade Creek   | k to Spring Creek         |              | 0.22  | Miles |
|-------------------------|-----------------------------------|---------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN011_04      | Lightning Creek - Cascade Creek   | k to Spring Creek         |              | 2.66  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN012_02      | Cascade Creek - source to mout    | h                         |              | 7.38  | Miles |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN013_02      | Lightning Creek - East Fork Cree  | ek to Cascade Creek       |              | 10.38 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       | -     |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN013_04      | Lightning Creek - East Fork Cree  | ek to Cascade Creek       |              | 6.77  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN014_02      | East Fork Creek - Idaho/Montana   | a border to mouth         |              | 5.24  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN014_03      | East Fork Creek - Idaho/Montana   | a border to mouth         |              | 0.92  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN015_02      | Savage Creek - Idaho/Montana k    | oorder to mouth           |              | 4.84  | Miles |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN016_02      | Tribs. to Lightning Cr between W  | ellington & E. Fork Creek | (            | 15.18 | Miles |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN016_03      | Lightning Creek - Wellington Cre  | ek to East Fork Creek     |              | 4.78  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN017_02      | Lightning Creek - tribs between V | Vellington & Rattle Creek |              | 2.78  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN017_03      | Lightning Creek - Rattle Creek to | Wellington Creek          |              | 2.72  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |
| ID17010213PN018_02      | Rattle Creek - source to mouth    |                           |              | 10.41 | Miles |
| SEDIMENTATION/SILTATION |                                   | 33766                     | Oct 22, 2007 |       |       |
| TEMPERATURE             |                                   | <u>33766</u>              | Oct 22, 2007 |       |       |

| ID17010213PN019_02      | Lightning Creek - source to Ratt | le Creek     |               | 18.37  | Miles |
|-------------------------|----------------------------------|--------------|---------------|--------|-------|
| SEDIMENTATION/SILTATION |                                  | <u>33766</u> | Oct 22, 2007  |        |       |
| TEMPERATURE             |                                  | <u>33766</u> | Oct 22, 2007  |        |       |
| ID17010213PN019_03      | Lightning Creek - source to Ratt | le Creek     |               | 2.13   | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>33766</u> | Oct 22, 2007  |        |       |
| TEMPERATURE             |                                  | <u>33766</u> | Oct 22, 2007  |        |       |
| ID17010213PN020_02      | Wellington Creek - source to mo  | outh         |               | 7.91   | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>33766</u> | Oct 22, 2007  |        |       |
| TEMPERATURE             |                                  | <u>33766</u> | Oct 22, 2007  |        |       |
| 17010214                | Pend Oreille Lake                |              |               |        |       |
|                         | EP                               | A TMDL ID    | Approval Date | )      |       |
| ID17010214PN003_02      | Hoodoo Creek - source to mouth   | า            |               | 51.82  | Miles |
| SEDIMENTATION/SILTATION |                                  | 2003         | Sep 14, 2000  |        |       |
| TEMPERATURE             |                                  | <u>34333</u> | Apr 24, 2008  |        |       |
| ID17010214PN003_02a     | Hoodoo Creek                     |              |               | 14.86  | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>2002</u>  | Apr 02, 2001  |        |       |
| TEMPERATURE             |                                  | <u>34333</u> | Apr 24, 2008  |        |       |
| ID17010214PN012_02      | Cocolalla Creek - Cocolalla Lake | e to mouth   |               | 13.28  | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>2003</u>  | Sep 14, 2000  |        |       |
| ID17010214PN012_04      | Cocolalla Creek - Cocolalla Lake | e to mouth   |               | 7.42   | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>2002</u>  | Apr 02, 2001  |        |       |
| TEMPERATURE             |                                  | <u>34333</u> | Apr 24, 2008  |        |       |
| ID17010214PN013L_0L     | Cocolalla Lake                   |              |               | 803.74 | Acres |
| DISSOLVED OXYGEN        |                                  | <u>2002</u>  | Apr 02, 2001  |        |       |
| PHOSPHORUS, TOTAL       |                                  | <u>2002</u>  | Apr 02, 2001  |        |       |
| ID17010214PN014_02      | Cocolalla Creek - source to Coc  | olalla Lake  |               | 40.66  | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>2002</u>  | Apr 02, 2001  |        |       |
| TEMPERATURE             |                                  | <u>34333</u> | Apr 24, 2008  |        |       |
| ID17010214PN014_03      | Cocolalla Creek - source to Coc  | olalla Lake  |               | 9.17   | Miles |
| SEDIMENTATION/SILTATION |                                  | 2002         | Apr 02, 2001  |        |       |
| TEMPERATURE             |                                  | <u>34333</u> | Apr 24, 2008  |        |       |
| ID17010214PN014_04      | Cocolalla Creek - source to Coc  | olalla Lake  |               | 0.2    | Miles |
| TEMPERATURE             |                                  | 34333        | Apr 24, 2008  |        |       |
| ID17010214PN015_02      | Fish Creek - source to mouth     |              |               | 15.27  | Miles |
| SEDIMENTATION/SILTATION |                                  | 2002         | Apr 02, 2001  |        |       |

| ID17010214PN015_03      | Fish Creek - source to mouth    |              |              | 2.37   | Miles |
|-------------------------|---------------------------------|--------------|--------------|--------|-------|
| TEMPERATURE             |                                 | <u>33918</u> | Jan 31, 2008 |        |       |
| ID17010214PN018L_0L     | Pend Oreille Lake               |              | 80           | 828.61 | Acres |
| PHOSPHORUS, TOTAL       |                                 | <u>3498</u>  | Oct 08, 2002 |        |       |
| ID17010214PN021_02      | Cheer Creek                     |              |              | 4.64   | Miles |
| SEDIMENTATION/SILTATION |                                 | 2002         | Apr 02, 2001 |        |       |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN021_03      | Gold Crk WGold to lake PDO      |              |              | 1.67   | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>2002</u>  | Apr 02, 2001 |        |       |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN022_02      | West Gold Creek                 |              |              | 9.62   | Miles |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN023_02      | Gold Creek, headwaters to chlor | ide gulch    |              | 6.92   | Miles |
| SEDIMENTATION/SILTATION |                                 | 2002         | Apr 02, 2001 |        |       |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN023_03      | Gold Creek                      |              |              | 1.15   | Miles |
| SEDIMENTATION/SILTATION |                                 | 2002         | Apr 02, 2001 |        |       |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN024_02      | Chloride Creek                  |              |              | 7.13   | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>2002</u>  | Apr 02, 2001 |        |       |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN025_02      | North Gold Creek - source to mo | outh         |              | 17.13  | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>33918</u> | Jan 31, 2008 |        |       |
| ID17010214PN025_03      | North Gold Creek                |              |              | 2.29   | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>33918</u> | Jan 31, 2008 |        |       |
| ID17010214PN026_02      | Cedar Creek                     |              |              | 9.47   | Miles |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN027_02      | Granite Creek                   |              |              | 26.56  | Miles |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN027_03      | Granite Creek, Lower            |              |              | 4.68   | Miles |
| TEMPERATURE             |                                 | <u>34333</u> | Apr 24, 2008 |        |       |
| ID17010214PN030_02      | Trestle Creek - source to mouth |              |              | 21     | Miles |
| TEMPERATURE             |                                 | 34333        | Apr 24, 2008 |        |       |

| ID17010214PN031_04      | Lower Pack River - Sand Creek to mouth               |              | 19.22 | Miles |
|-------------------------|------------------------------------------------------|--------------|-------|-------|
| PHOSPHORUS, TOTAL       | <u>35767</u>                                         | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | <u>2002</u>                                          | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN032_02      | Trout Creek                                          |              | 10.13 | Miles |
| PHOSPHORUS, TOTAL       | <u>35767</u>                                         | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | 2002                                                 | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN033_02      | Rapid Lightning Creek, Upper                         |              | 47.03 | Miles |
| SEDIMENTATION/SILTATION | <u>2003</u>                                          | Sep 14, 2000 |       |       |
| ID17010214PN033_03      | Rapid Lightning Creek, Trapper Cr to Pack R          |              | 7.8   | Miles |
| SEDIMENTATION/SILTATION | <u>2003</u>                                          | Sep 14, 2000 |       |       |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN034_02      | Gold Creek - headwaters to Pack River                |              | 17.79 | Miles |
| SEDIMENTATION/SILTATION | <u>2002</u>                                          | Apr 02, 2001 |       |       |
|                         | <u>33918</u>                                         | Jan 31, 2008 |       |       |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN035_02      | Grouse Creek - tributaries to Grouse Creek           |              | 3.34  | Miles |
| SEDIMENTATION/SILTATION | <u>2002</u>                                          | Apr 02, 2001 |       |       |
| ID17010214PN035_03      | Grouse Creek - North Fork Grouse Creek to Pack R.    |              | 9.14  | Miles |
| SEDIMENTATION/SILTATION | <u>2002</u>                                          | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN036_02      | Grouse Creek - 1st and 2nd order tribs above NF Grou | ise Cr       | 28.55 | Miles |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN036_03      | Grouse Creek - Flume Cr to North Fork Grouse Cr      |              | 7.07  | Miles |
| SEDIMENTATION/SILTATION | <u>2002</u>                                          | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN037_02      | North Fork Grouse Creek - headwaters to Grouse Cr    |              | 16.69 | Miles |
| SEDIMENTATION/SILTATION | <u>2003</u>                                          | Sep 14, 2000 |       |       |
| TEMPERATURE             | <u>34333</u>                                         | Apr 24, 2008 |       |       |
| ID17010214PN038_02      | Sand Creek - headwaters to Pack River                |              | 13.54 | Miles |
| PHOSPHORUS, TOTAL       | <u>35767</u>                                         | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | <u>2002</u>                                          | Apr 02, 2001 |       |       |
| ID17010214PN039_02      | Upper Pack River - tribs between Lindsey Cr and Sand | l Cr         | 12.87 | Miles |
| SEDIMENTATION/SILTATION | 2002                                                 | Apr 02, 2001 |       |       |

| ID17010214PN039_03      | Upper Pack River - Hellroaring Cr to Colburn Cr           |              | 8.33  | Miles |
|-------------------------|-----------------------------------------------------------|--------------|-------|-------|
| PHOSPHORUS, TOTAL       | <u>35767</u>                                              | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | 2002                                                      | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |
| ID17010214PN039_04      | Upper Pack River - Colburn Cr to Sand Creek               |              | 3.8   | Miles |
| PHOSPHORUS, TOTAL       | <u>35767</u>                                              | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | 2002                                                      | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |
| ID17010214PN041_02      | Upper Pack River - tributaries above Hellroaring Cr.      |              | 55.79 | Miles |
| PHOSPHORUS, TOTAL       | <u>35767</u>                                              | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | <u>33918</u>                                              | Jan 31, 2008 |       |       |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |
| ID17010214PN041_03      | Upper Pack River - Mainstem, Zuni Cr. to Hellroaring Cr.  |              | 10.11 | Miles |
| PHOSPHORUS, TOTAL       | <u>35767</u>                                              | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | <u>33918</u>                                              | Jan 31, 2008 |       |       |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |
| ID17010214PN042_02      | McCormick Creek - headwaters to Pack R.                   |              | 10.78 | Miles |
| SEDIMENTATION/SILTATION | <u>2002</u>                                               | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |
| ID17010214PN043_02      | Jeru Creek - source to mouth                              |              | 6.33  | Miles |
| SEDIMENTATION/SILTATION | <u>2002</u>                                               | Apr 02, 2001 |       |       |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |
| ID17010214PN044_02      | Hellroaring Creek - Headwaters to Pack R.                 |              | 10.92 | Miles |
| SEDIMENTATION/SILTATION | <u>33918</u>                                              | Jan 31, 2008 |       | -     |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |
| ID17010214PN046_02      | Berry Creek - headwaters to Colburn Cr.                   |              | 13.58 | Miles |
| SEDIMENTATION/SILTATION | 2002                                                      | Apr 02, 2001 |       |       |
| ID17010214PN046_03      | Colburn Cr, Berry Cr to Pack River                        |              | 0.36  | Miles |
| PHOSPHORUS, TOTAL       | <u>35767</u>                                              | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | <u>2002</u>                                               | Apr 02, 2001 |       |       |
| ID17010214PN047_02      | Colburn Creek - Headwaters to Berry Cr.                   |              | 8.6   | Miles |
| PHOSPHORUS, TOTAL       | <u>35767</u>                                              | Dec 31, 2008 |       |       |
| SEDIMENTATION/SILTATION | <u>2002</u>                                               | Apr 02, 2001 |       |       |
| ID17010214PN048_03      | Sand Creek - Schweitzer Cr to Pend Oreille L. at City Bea | ach          | 4.04  | Miles |
| SEDIMENTATION/SILTATION | <u>33918</u>                                              | Jan 31, 2008 |       |       |
| TEMPERATURE             | <u>34333</u>                                              | Apr 24, 2008 |       |       |

| ID17010214PN048_03a     | Sand Creek                                            |              | 1.6   | Miles |
|-------------------------|-------------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>33918</u>                                          | Jan 31, 2008 |       |       |
| ID17010214PN049_02      | Sand Creek - tributaries above Schweitzer Creek       |              | 15.92 | Miles |
| SEDIMENTATION/SILTATION | <u>33918</u>                                          | Jan 31, 2008 |       |       |
| TEMPERATURE             | <u>34333</u>                                          | Apr 24, 2008 |       |       |
| ID17010214PN049_03      | Sand Creek - 3rd order portion above Schweitzer Creek |              |       | Miles |
| SEDIMENTATION/SILTATION | <u>33918</u>                                          | Jan 31, 2008 |       | -     |
| TEMPERATURE             | <u>34333</u>                                          | Apr 24, 2008 |       |       |
| ID17010214PN050_02      | Spring Jack Creek - headwaters to Sand Cr.            |              | 2.62  | Miles |
| SEDIMENTATION/SILTATION | <u>33918</u>                                          | Jan 31, 2008 |       |       |
| ID17010214PN051_02      | Swede Creek - headwaters to Sand Cr.                  |              | 3.06  | Miles |
| SEDIMENTATION/SILTATION | <u>33918</u>                                          | Jan 31, 2008 |       |       |
| ID17010214PN052_02      | Schweitzer Creek - headwaters to Sand Cr.             |              | 6.74  | Miles |
| SEDIMENTATION/SILTATION | <u>33918</u>                                          | Jan 31, 2008 |       |       |

| 17010215                | Priest                |                              |               |       |       |
|-------------------------|-----------------------|------------------------------|---------------|-------|-------|
|                         |                       | EPA TMDL ID                  | Approval Date |       |       |
| ID17010215PN001_05      | Lower Priest River-Up | per West Branch Priest River | to mouth      | 35.97 | Miles |
| SEDIMENTATION/SILTATION |                       | <u>6509</u>                  | Jun 23, 2003  |       |       |
| TEMPERATURE             |                       | ID_PRIES_5-15-2019           | May 15, 2019  |       |       |
| ID17010215PN003_02      | Middle Fork East Rive | r - source to mouth          |               | 26.32 | Miles |
| TEMPERATURE             |                       | <u>6509</u>                  | Jun 23, 2003  |       |       |
|                         |                       | ID_PRIES_5-15-2019           | May 15, 2019  |       |       |
| ID17010215PN003_03      | Middle Fork East Rive | r - source to mouth          |               | 6.58  | Miles |
| TEMPERATURE             |                       | <u>6509</u>                  | Jun 23, 2003  |       |       |
|                         |                       | ID_PRIES_5-15-2019           | May 15, 2019  |       |       |
| ID17010215PN003_04      | East River main stem  | - source to mouth            |               | 2.51  | Miles |
| SEDIMENTATION/SILTATION |                       | <u>6509</u>                  | Jun 23, 2003  |       | -     |
| TEMPERATURE             |                       | <u>6509</u>                  | Jun 23, 2003  |       |       |
|                         |                       | ID_PRIES_5-15-2019           | May 15, 2019  |       |       |
| ID17010215PN004_02      | North Fork East River | - source to mouth            |               | 27.51 | Miles |
| TEMPERATURE             |                       | <u>6509</u>                  | Jun 23, 2003  |       |       |
|                         |                       | ID_PRIES_5-15-2019           | May 15, 2019  |       |       |
| ID17010215PN004_03      | North Fork East River | - source to mouth            |               | 2.22  | Miles |
| TEMPERATURE             |                       | <u>6509</u>                  | Jun 23, 2003  |       |       |
|                         |                       | ID_PRIES_5-15-2019           | May 15, 2019  |       |       |

| ID17010215PN008_03      | Soldier Creek - source to mouth                     |              | 1.78  | Miles |
|-------------------------|-----------------------------------------------------|--------------|-------|-------|
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN009_03      | Hunt Creek - source to mouth                        |              | 1.18  | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN010_02      | Indian Creek - source to mouth                      |              | 21.63 | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN010_03      | Indian Creek - source to mouth                      |              | 3.24  | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN012_02      | Two Mouth Creek - source to mouth                   |              | 27.77 | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN013_02      | Lion Creek - source to mouth                        |              | 32.42 | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN017_02      | Trapper Creek - source to mouth                     |              | 22.48 | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN017_03      | Trapper Creek - source to mouth                     |              | 1.71  | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN018_02      | Upper Priest River - Idaho/Canadian border to mouth |              | 47.33 | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN019_02      | Hughes Fork - source to mouth                       |              | 57.1  | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN020_03      | Beaver Creek - source to mouth                      |              | 1.66  | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN022_04      | Granite Creek - Idaho/Washington border to mouth    |              | 14    | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       | -     |
| ID17010215PN023_02      | Reeder Creek - source to mouth                      |              | 22.63 | Miles |
| SEDIMENTATION/SILTATION | <u>6509</u>                                         | Jun 23, 2003 |       |       |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN023_03      | Reeder Creek - source to mouth                      |              | 0.64  | Miles |
| SEDIMENTATION/SILTATION | <u>6509</u>                                         | Jun 23, 2003 |       |       |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN024_03      | Kalispell Creek - Idaho/Washington border to mouth  |              | 12.18 | Miles |
| SEDIMENTATION/SILTATION | <u>2077</u>                                         | Mar 27, 2002 |       |       |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |
| ID17010215PN025_02      | Lamb Creek - Idaho/Washington border to mouth       |              | 27.95 | Miles |
| TEMPERATURE             | ID_PRIES_5-15-2019                                  | May 15, 2019 |       |       |

| ID17010215PN026_02                                                                                                                                                                                                                                                                                                       | Binarch Creek - Idaho/Washington border to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       | 13.24                                                   | Miles                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                                                                  | <u>6509</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jun 23, 2003                                                                                                                                                                                          |                                                         |                                           |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | ID_PRIES_5-15-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 15, 2019                                                                                                                                                                                          |                                                         |                                           |
| ID17010215PN027_04                                                                                                                                                                                                                                                                                                       | Upper West Branch Priest River - Idaho/Washington bo                                                                                                                                                                                                                                                                                                                                                                                                                                              | order                                                                                                                                                                                                 | 6.72                                                    | Miles                                     |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | ID_PRIES_5-15-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 15, 2019                                                                                                                                                                                          |                                                         |                                           |
| ID17010215PN028_03                                                                                                                                                                                                                                                                                                       | Goose Creek - Idaho/Washington border to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       | 5.23                                                    | Miles                                     |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | ID_PRIES_5-15-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 15, 2019                                                                                                                                                                                          |                                                         |                                           |
| ID17010215PN030_03                                                                                                                                                                                                                                                                                                       | Lower West Branch Priest River - Idaho/Washington bo                                                                                                                                                                                                                                                                                                                                                                                                                                              | order                                                                                                                                                                                                 | 11.91                                                   | Miles                                     |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                                                                  | <u>2077</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar 27, 2002                                                                                                                                                                                          |                                                         |                                           |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | ID_PRIES_5-15-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 15, 2019                                                                                                                                                                                          |                                                         |                                           |
| ID17010215PN030_04                                                                                                                                                                                                                                                                                                       | Lower West Branch Priest River -ID/WA border to Pries                                                                                                                                                                                                                                                                                                                                                                                                                                             | st River                                                                                                                                                                                              | 10.81                                                   | Miles                                     |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                                                                  | <u>2077</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar 27, 2002                                                                                                                                                                                          |                                                         |                                           |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | ID_PRIES_5-15-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 15, 2019                                                                                                                                                                                          |                                                         |                                           |
| ID17010215PN031_03                                                                                                                                                                                                                                                                                                       | Moores Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       | 3.86                                                    | Miles                                     |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | ID_PRIES_5-15-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May 15, 2019                                                                                                                                                                                          |                                                         |                                           |
| 17010301                                                                                                                                                                                                                                                                                                                 | Upper Coeur d Alene                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                         |                                           |
|                                                                                                                                                                                                                                                                                                                          | EPA TMDL ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approval Date                                                                                                                                                                                         |                                                         |                                           |
| ID17010301PN001 02                                                                                                                                                                                                                                                                                                       | North Fork Coeur d'Alene River tributaries below Pricha                                                                                                                                                                                                                                                                                                                                                                                                                                           | and Cr                                                                                                                                                                                                | 77 05                                                   | Mileo                                     |
|                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                       | 11.00                                                   | Ivilles                                   |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | <u>56000</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apr 17, 2014                                                                                                                                                                                          | CO.11                                                   | Willes                                    |
| TEMPERATURE                                                                                                                                                                                                                                                                                                              | 56000<br>North Fork Coeur d'Alene River, below Prichard Creek                                                                                                                                                                                                                                                                                                                                                                                                                                     | Apr 17, 2014                                                                                                                                                                                          | 26.28                                                   | Miles                                     |
| TEMPERATURE ID17010301PN001_05 SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                                   | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047                                                                                                                                                                                                                                                                                                                                                                                                                   | Apr 17, 2014<br>Feb 19, 2002                                                                                                                                                                          | 26.28                                                   | Miles                                     |
| TEMPERATURE ID17010301PN001_05 SEDIMENTATION/SILTATION TEMPERATURE                                                                                                                                                                                                                                                       | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000                                                                                                                                                                                                                                                                                                                                                                                                     | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014                                                                                                                                                          | 26.28                                                   | Miles                                     |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a                                                                                                                                                                                                                       | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Prichard                                                                                                                                                                                                                                                                                                                                      | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr                                                                                                                                                 | 26.28                                                   | Miles                                     |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE                                                                                                                                                                                                        | 56000<br>North Fork Coeur d'Alene River, below Prichard Creek<br>2047<br>56000<br>North Fork Coeur d'Alene R. btw Yellowdog and Prichar<br>56000                                                                                                                                                                                                                                                                                                                                                  | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014                                                                                                                                 | 26.28                                                   | Miles                                     |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02                                                                                                                                                                                  | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         Beaver Creek - Headwaters and tributaries                                                                                                                                                                                                                                                                        | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014                                                                                                                                 | 26.28<br>14.75<br>44.89                                 | Miles                                     |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION                                                                                                                                                       | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         Beaver Creek - Headwaters and tributaries         2047         2047                                                                                                                                                                                                                                              | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002                                                                                                                 | 26.28<br>14.75<br>44.89                                 | Miles                                     |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION<br>TEMPERATURE                                                                                                                                        | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         Beaver Creek - Headwaters and tributaries         2047         56000                                                                                                                                                                                                                                             | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014                                                                                                 | 26.28<br>14.75<br>44.89                                 | Miles                                     |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN003_03                                                                                                                  | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         Beaver Creek - Headwaters and tributaries         2047         56000         Beaver Creek - Headwaters and tributaries         2047         56000                                                                                                                                                                | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014                                                                                                 | 26.28<br>26.28<br>14.75<br>44.89<br>3.7                 | Miles                                     |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN003_03<br>SEDIMENTATION/SILTATION                                                                                       | 56000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         Beaver Creek - Headwaters and tributaries         2047         56000         Beaver Creek - Headwaters and tributaries         2047         56000         Beaver Creek - below White Creek         2047                                                                                                          | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002                                                 | 26.28<br>14.75<br>44.89<br>3.7                          | Miles<br>Miles<br>Miles                   |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN003_03<br>SEDIMENTATION/SILTATION<br>TEMPERATURE                                                                        | Second of Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         Beaver Creek - Headwaters and tributaries         2047         56000         Beaver Creek - Headwaters and tributaries         2047         56000         Beaver Creek- below White Creek         2047         56000                                         | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014                                 | 26.28<br>14.75<br>44.89<br>3.7                          | Miles<br>Miles<br>Miles                   |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN003_03<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN004_02                                                  | Second Cr., tributaries between Butte Gulch and Eagle                                                                                                                                                                                                                                                                                                                                                                                                                                             | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014                                 | 26.28<br>26.28<br>14.75<br>44.89<br>3.7<br>4.17         | Miles<br>Miles<br>Miles<br>Miles<br>Miles |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN003_03<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN004_02<br>SEDIMENTATION/SILTATION                       | S6000         North Fork Coeur d'Alene River, below Prichard Creek         2047         S6000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         S6000         Beaver Creek - Headwaters and tributaries         2047         S6000         Beaver Creek - Headwaters and tributaries         2047         S6000         Beaver Creek - below White Creek         2047         S6000         Prichard Cr., tributaries between Butte Gulch and Eagle         2047               | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014 | 26.28<br>14.75<br>44.89<br>3.7<br>4.17                  | Miles<br>Miles<br>Miles<br>Miles          |
| TEMPERATURE<br>ID17010301PN001_05<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN001_05a<br>TEMPERATURE<br>ID17010301PN003_02<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN003_03<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17010301PN004_02<br>SEDIMENTATION/SILTATION<br>ID17010301PN004_03 | S6000         North Fork Coeur d'Alene River, below Prichard Creek         2047         56000         North Fork Coeur d'Alene R. btw Yellowdog and Pricha         56000         Beaver Creek - Headwaters and tributaries         2047         56000         Beaver Creek - Headwaters and tributaries         2047         56000         Prichard Creek- below White Creek         2047         56000         Prichard Cr., tributaries between Butte Gulch and Eagle         2047         2047 | Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>rd Cr<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014<br>Feb 19, 2002<br>Apr 17, 2014 | 26.28<br>26.28<br>14.75<br>44.89<br>3.7<br>4.17<br>5.45 | Miles<br>Miles<br>Miles<br>Miles<br>Miles |

| ID17010301PN004_04      | Prichard Creek below Eagle Creek   | κ                        |              | 2.94  | Miles |
|-------------------------|------------------------------------|--------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| TEMPERATURE             | 5                                  | <u>56000</u>             | Apr 17, 2014 |       |       |
| ID17010301PN005_02      | Prichard Creek -headwaters and tr  | ributaries above Butte G | ulch         | 24.34 | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| TEMPERATURE             | 5                                  | <u>56000</u>             | Apr 17, 2014 |       |       |
| ID17010301PN005_03      | Prichard Creek - between Barton C  | Gulch to Butte Gulch     |              | 1.98  | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| ID17010301PN006_02      | Butte Gulch - headwaters to Pricha | ard Cr.                  |              | 5.33  | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| ID17010301PN007_02      | East Fork Eagle Creek and tributa  | ries                     |              | 16.3  | Miles |
| CADMIUM                 |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| LEAD                    |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| SEDIMENTATION/SILTATION |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| ZINC                    |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| ID17010301PN007_03      | Eagle Creek                        |                          |              | 1.02  | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| ID17010301PN008_02      | West Fork Eagle Creek and tributa  | aries                    |              | 14.68 | Miles |
| TEMPERATURE             | 5                                  | <u>56000</u>             | Apr 17, 2014 |       |       |
| ID17010301PN009_03      | Lost Creek, below East Fork Lost   | Creek                    |              | 1.28  | Miles |
| TEMPERATURE             | Ę                                  | <u>56000</u>             | Apr 17, 2014 |       |       |
| ID17010301PN010_03      | Shoshone Creek, below Falls Cree   | ek                       |              | 6.76  | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>2047</u>              | Feb 19, 2002 |       |       |
| TEMPERATURE             | 5                                  | <u>56000</u>             | Apr 17, 2014 |       |       |
| ID17010301PN011_02      | Falls Creek and tributaries        |                          |              | 8.06  | Miles |
| TEMPERATURE             | Ę                                  | <u>56000</u>             | Apr 17, 2014 |       |       |
| ID17010301PN012_02      | Shoshone Creek, headwaters and     | tribs above Falls Creek  |              | 46.83 | Miles |
| TEMPERATURE             | Ş                                  | <u>56000</u>             | Apr 17, 2014 |       |       |
| ID17010301PN012_03      | Shoshone Creek, between Little Lo  | ost Fork and Falls Creek | (            | 7.07  | Miles |
| TEMPERATURE             | 5                                  | 56000                    | Apr 17, 2014 |       |       |
| ID17010301PN013_02      | NF Coeur d'Alene R tributaries btw | v Tepee Cr and Yellowdo  | og Cr        | 33.83 | Miles |
| TEMPERATURE             | 5                                  | 56000                    | Apr 17, 2014 |       |       |
| ID17010301PN013_04      | North Fork Coeur d'Alene River bt  | w Jordan Cr and Tepee    | Cr           | 7.05  | Miles |
| TEMPERATURE             | Ę                                  | 56000                    | Apr 17, 2014 |       |       |

| ID17010301PN013_05      | North Fork Coeur d'Alene River btw  | v Tepee Cr and Yellowo   | log Cr       | 11.87 | Miles |
|-------------------------|-------------------------------------|--------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | 2                                   | 2047                     | Feb 19, 2002 |       |       |
| TEMPERATURE             | <u>5</u>                            | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN014_03      | Jordan Creek and lower Lost Fork    | below Plant Creek        |              | 3.39  | Miles |
| TEMPERATURE             | <u>5</u>                            | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN015_02      | NF Coeur d'Alene River, upper, hea  | adwaters and tributaries | 6            | 70.4  | Miles |
| TEMPERATURE             | 5                                   | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN015_03      | NF Coeur d'Alene River, upper, and  | d lower Buckskin Creek   |              | 6.03  | Miles |
| TEMPERATURE             | 5                                   | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN015_04      | NF Coeur d'Alene R. between Buck    | kskin Cr. and Jordan Cr  |              | 9.52  | Miles |
| TEMPERATURE             | 5                                   | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN016_02      | West Elk Creek and Cataract Cree    | k                        |              | 7.33  | Miles |
| TEMPERATURE             | <u>5</u>                            | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN017_04      | Tepee Creek, between Trail and In   | dependence Creek         |              | 4.13  | Miles |
| SEDIMENTATION/SILTATION | 2                                   | 2047                     | Feb 19, 2002 |       |       |
| TEMPERATURE             | <u>5</u>                            | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN017_05      | Tepee Creek, below Independence     | e Creek                  |              | 4.7   | Miles |
| SEDIMENTATION/SILTATION | 2                                   | 2047                     | Feb 19, 2002 |       |       |
| TEMPERATURE             | 5                                   | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN018_02      | Independence Creek headwaters a     | and tributaries          |              | 68.83 | Miles |
| TEMPERATURE             | 5                                   | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN018_03a     | Declaration Creek, lower            |                          |              | 1.53  | Miles |
| TEMPERATURE             | 5                                   | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN018_03b     | Snow Creek, lower                   |                          |              | 2.76  | Miles |
| TEMPERATURE             | 5                                   | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN018_04      | Independence Creek, below Declar    | ration Creek             |              | 9.99  | Miles |
| TEMPERATURE             | <u>5</u>                            | <u>6000</u>              | Apr 17, 2014 |       | -     |
| ID17010301PN019_02      | Trail Creek - headwaters and tribut | aries                    |              | 35.65 | Miles |
| TEMPERATURE             | <u>5</u>                            | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN019_03      | Trail Creek, below Stewart Creek    |                          |              | 6.29  | Miles |
| TEMPERATURE             | <u>5</u>                            | <u>6000</u>              | Apr 17, 2014 |       |       |
| ID17010301PN020_02      | Tepee Creek - headwaters and trib   | outaries                 |              | 48.56 | Miles |
| TEMPERATURE             | 5                                   | 6000                     | Apr 17, 2014 |       |       |
| ID17010301PN020_03      | Tepee Creek-between Short Creek     | and Trail Creek          |              | 4.6   | Miles |
| TEMPERATURE             | 50                                  | 6000                     | Apr 17, 2014 |       |       |

| ID17010301PN021_02      | Brett Creek and tributaries       |                            |              | 6.56  | Miles |
|-------------------------|-----------------------------------|----------------------------|--------------|-------|-------|
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN022_02      | Miners Creek and tributaries      |                            |              | 4.95  | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN023_03      | Flat Creek, lower                 |                            |              | 4.68  | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN024_02      | Yellowdog Creek - Headwaters      | to NF CDA River            |              | 12.19 | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN026_02      | Brown Creek and tributaries       |                            |              | 7.79  | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN028_02      | Steamboat Creek - headwaters      | to tributaries             |              | 47.21 | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN028_03      | Steamboat Creek and West For      | k Steamboat Cr. below C    | omfy Cr.     | 6.86  | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN029_03      | Cougar Gulch, btw EF Cougar G     | Sulch and NF CDA River     |              | 6.7   | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN030_02      | Little North Fork Coeur d'Alene I | R - headwaters to Solitair | е            | 4.52  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>2047</u>                | Feb 19, 2002 |       |       |
| ID17010301PN030_02a     | Little North Fork Coeur d'Alene I | R tributaries above Iron C | r.           | 16.32 | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN030_02c     | Little NF Coeur d'Alene R tribs b | tw Hudlow and Deception    | n Cr         | 25.99 | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN030_02d     | Little North Fork Coeur d'Alene I | R tributaries below Skook  | um           | 30.81 | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN030_03      | Little NF CDA River - btw Solitai | re and Deception Creek     |              | 11.26 | Miles |
| SEDIMENTATION/SILTATION |                                   | 2047                       | Feb 19, 2002 |       |       |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN030_04      | Little North Fork CDA River belo  | w Skookum Creek            |              | 23.97 | Miles |
| SEDIMENTATION/SILTATION |                                   | 2047                       | Feb 19, 2002 |       |       |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN031_02      | Bumblebee Creek and tributarie    | S                          |              | 7.93  | Miles |
| TEMPERATURE             |                                   | <u>56000</u>               | Apr 17, 2014 |       |       |
| ID17010301PN032_02      | Laverne Creek and tributaries     |                            |              | 8.91  | Miles |
| TEMPERATURE             |                                   | 56000                      | Apr 17, 2014 |       |       |
| ID17010301PN033_02      | Leiberg Creek and tributaries     |                            |              | 12.96 | Miles |
| TEMPERATURE             |                                   | 56000                      | Apr 17, 2014 |       |       |

| ID17010301PN034_02                            | Bootjack Creek and tributaries                     |                            |               | 5.14      | Miles   |
|-----------------------------------------------|----------------------------------------------------|----------------------------|---------------|-----------|---------|
| TEMPERATURE                                   |                                                    | 56000                      | Apr 17, 2014  |           |         |
| ID17010301PN035_02                            | Iron Creek and tributaries                         |                            |               | 13.44     | Miles   |
| TEMPERATURE                                   |                                                    | <u>56000</u>               | Apr 17, 2014  |           |         |
| ID17010301PN036_02                            | Burnt Cabin Creek and tributarie                   | S                          |               | 12.99     | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>2047</u>                | Feb 19, 2002  |           |         |
| TEMPERATURE                                   |                                                    | <u>56000</u>               | Apr 17, 2014  |           |         |
| ID17010301PN037_02                            | Deception Creek and tributaries                    |                            |               | 8.34      | Miles   |
| TEMPERATURE                                   |                                                    | <u>56000</u>               | Apr 17, 2014  |           |         |
| ID17010301PN038_03                            | Skookum Creek, lower                               |                            |               | 0.91      | Miles   |
| TEMPERATURE                                   |                                                    | <u>56000</u>               | Apr 17, 2014  |           |         |
| ID17010301PN039_02                            | Copper Creek headwaters and t                      | ributaries                 |               | 18.88     | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>2047</u>                | Feb 19, 2002  |           |         |
| ID17010301PN039_03                            | Copper Creek - below Homer Cr                      | reek                       |               | 2.55      | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>2047</u>                | Feb 19, 2002  |           |         |
| TEMPERATURE                                   |                                                    | <u>56000</u>               | Apr 17, 2014  |           |         |
| 17010302                                      | South Fork Coeur d Ale                             | ne                         |               |           |         |
|                                               | EP/                                                | A TMDL ID                  | Approval Date |           |         |
| ID17010302PN001_02                            | South Fork Coeur d'Alene River                     | - Tributaries below Place  | er Cr         | 62.8      | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>9448</u>                | Aug 21, 2003  |           |         |
| ID17010302PN001_03                            | South Fork Coeur d' Alene River                    | -btw Placer Cr. and Big (  | Cr.           | 7.6       | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>9448</u>                | Aug 21, 2003  |           |         |
| ID17010302PN001_03a                           | South Fork Coeur d'Alene River-                    | Canyon Creek to Placer     | Creek         | 0.85      | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>9448</u>                | Aug 21, 2003  |           |         |
| ID17010302PN001_04                            | South Fork Coeur d'Alene River                     | - btw Big Cr and Pine Cr   |               | 9.96      | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>9448</u>                | Aug 21, 2003  |           |         |
| ID17010302PN001_05                            | South Fork Coeur d'Alene River                     | - btw Pine Cr and CdA R    | iver          | 2.23      | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>9448</u>                | Aug 21, 2003  |           |         |
| ID17010302PN002_04                            | Pine Creek - East Fork Pine Cre                    | ek to South Fork CdA Ri    | ver           | 5.31      | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>9448</u>                | Aug 21, 2003  |           |         |
| ID17010302PN004_02                            | East Fork Pine Creek headwater                     | rs and tributaries         |               | 22.54     | Miles   |
| SEDIMENTATION/SILTATION                       |                                                    | <u>9448</u>                | Aug 21, 2003  |           |         |
| ID17010302PN004 03                            |                                                    |                            |               |           | Miles   |
|                                               | East Fork Pine Creek below Dou                     | iglas Creek                |               | 4         | ivilies |
| SEDIMENTATION/SILTATION                       | East Fork Pine Creek below Dou                     | ıglas Creek<br><u>9448</u> | Aug 21, 2003  | 4         | IVIIIes |
| SEDIMENTATION/SILTATION<br>ID17010302PN006_02 | East Fork Pine Creek below Dou<br>Government Gulch | uglas Creek<br><u>9448</u> | Aug 21, 2003  | 4<br>3.54 | Miles   |

| ID17010302PN014_02      | Canyon Creek - from Gorge G     | ulch to South For | k CdA R.      | 8.64   | Miles |
|-------------------------|---------------------------------|-------------------|---------------|--------|-------|
| SEDIMENTATION/SILTATION |                                 | 9448              | Aug 21, 2003  |        |       |
| ID17010302PN015_02      | Canyon Creek from headwater     | rs to Gorge Gulch | 1             | 4.08   | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>9448</u>       | Aug 21, 2003  |        |       |
| ID17010302PN016_02      | Ninemile Creek and tribs exce   | pt Ninemile Cr ab | ove East Fork | 9.32   | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>9448</u>       | Aug 21, 2003  |        |       |
| ID17010302PN017_02      | Ninemile Creek above East Fo    | ork Ninemile Cree | k             | 1.79   | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>9448</u>       | Aug 21, 2003  |        |       |
| 17010303                | Coeur d Alene Lake              |                   |               |        |       |
|                         | E                               | PA TMDL ID        | Approval Date | 9      |       |
| ID17010303PN002_02      | Cougar Creek - source to mou    | th                |               | 15.72  | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>2001</u>       | Jul 14, 2000  |        |       |
| TEMPERATURE             |                                 | <u>50345</u>      | Nov 30, 2012  |        |       |
| ID17010303PN003_02      | Kid Creek - source to mouth     |                   |               | 4.08   | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>2001</u>       | Jul 14, 2000  |        |       |
| ID17010303PN004_02      | Mica Creek - source to mouth    |                   |               | 24.18  | Miles |
| FECAL COLIFORM          |                                 | <u>2001</u>       | Jul 14, 2000  |        |       |
| SEDIMENTATION/SILTATION |                                 | <u>2001</u>       | Jul 14, 2000  |        |       |
| TEMPERATURE             |                                 | <u>50345</u>      | Nov 30, 2012  |        |       |
| ID17010303PN004_03      | Mica Creek - source to mouth    |                   |               | 1.29   | Miles |
| FECAL COLIFORM          |                                 | <u>2001</u>       | Jul 14, 2000  |        |       |
| SEDIMENTATION/SILTATION |                                 | <u>2001</u>       | Jul 14, 2000  |        |       |
| ID17010303PN009L_0L     | Black Lake                      |                   |               | 201.72 | Acres |
| PHOSPHORUS, TOTAL       |                                 | <u>40619</u>      | Aug 31, 2011  |        |       |
| ID17010303PN015_02      | Latour Creek - source to mout   | h                 |               | 48.84  | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>2001</u>       | Jul 14, 2000  |        |       |
| TEMPERATURE             |                                 | <u>50345</u>      | Nov 30, 2012  |        |       |
| ID17010303PN020_02      | Fourth of July Creek - source t | o mouth           |               | 31.87  | Miles |
| TEMPERATURE             |                                 | <u>50345</u>      | Nov 30, 2012  |        |       |
| ID17010303PN020_03      | Fourth of July Creek - source t | o mouth           |               | 5.66   | Miles |
| TEMPERATURE             |                                 | <u>50345</u>      | Nov 30, 2012  |        |       |
| ID17010303PN021_02      | Rose Creek                      |                   |               | 8.17   | Miles |
| TEMPERATURE             |                                 | <u>50345</u>      | Nov 30, 2012  |        |       |
| ID17010303PN022_02      | Tributaries to Killarney Lake   |                   |               | 17.67  | Miles |
| TEMPERATURE             |                                 | <u>50345</u>      | Nov 30, 2012  |        |       |

| ID17010303PN024_02      | Cottonwood Creek                     |              | 9.96   | Miles |
|-------------------------|--------------------------------------|--------------|--------|-------|
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN026_02      | Carlin Creek - source to mouth       |              | 17.23  | Miles |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN028_02      | Beauty Creek - source to mouth       |              | 11.59  | Miles |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN028_03      | Beauty Creek - source to mouth       |              | 2.62   | Miles |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN029_02      | Wolf Lodge Creek - source to mouth   |              | 23.79  | Miles |
| SEDIMENTATION/SILTATION | <u>2001</u>                          | Jul 14, 2000 |        |       |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN029_03      | Wolf Lodge Creek - source to mouth   |              | 5.74   | Miles |
| SEDIMENTATION/SILTATION | <u>2001</u>                          | Jul 14, 2000 |        |       |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN030_02      | Cedar Creek - source to mouth        |              | 24.92  | Miles |
| SEDIMENTATION/SILTATION | <u>2001</u>                          | Jul 14, 2000 |        |       |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN030_03      | Cedar Creek - source to mouth        |              | 1.46   | Miles |
| SEDIMENTATION/SILTATION | <u>2001</u>                          | Jul 14, 2000 |        |       |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN031_02      | Marie Creek - source to mouth        |              | 19.67  | Miles |
| SEDIMENTATION/SILTATION | <u>2001</u>                          | Jul 14, 2000 |        |       |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN032_03      | Fernan Creek - Fernan Lake to mouth  |              | 0.74   | Miles |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN033_03L     | Fernan Lake                          |              | 340.36 | Acres |
| PHOSPHORUS, TOTAL       | <u>54580</u>                         | Nov 06, 2013 |        |       |
| ID17010303PN034_02      | Fernan Creek - source to Fernan Lake |              | 19.38  | Miles |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN034_02a     | Fernan Creek                         |              | 0.69   | Miles |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |
| ID17010303PN034_03      | Fernan Creek - source to Fernan Lake |              | 3.14   | Miles |
| TEMPERATURE             | <u>50345</u>                         | Nov 30, 2012 |        |       |

17010304 St. Joe

|                         | EP/                               | A TMDL ID         | Approval Date |       |       |
|-------------------------|-----------------------------------|-------------------|---------------|-------|-------|
| ID17010304PN007_05      | St. Maries River - Santa Creek to | o mouth           |               | 24.06 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN008_02      | Alder Creek - source to mouth     |                   |               | 7.38  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| ID17010304PN009_02      | John Creek - source to mouth      |                   |               | 27.76 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN010_02      | Santa Creek - source to mouth     |                   |               | 34.22 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN010_03      | Santa Creek - source to mouth     |                   |               | 4.18  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN010_04      | Santa Creek - source to mouth     |                   |               | 8.95  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       | -     |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN011_02      | Charlie Creek - source to mouth   |                   |               | 32.72 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| ID17010304PN011_03      | Charlie Creek - source to mouth   |                   |               | 5.81  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN012_05      | St. Maries River - Carpenter Cree | ek to Santa Creek |               | 9.42  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN013_02      | Tyson Creek - headwaters to mo    | outh              |               | 14.16 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| ID17010304PN013_03      | Tyson Creek - source to mouth     |                   |               | 2.14  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>9449</u>       | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |
| ID17010304PN014_02      | Carpenter Creek - source to mou   | uth               |               | 27.55 | Miles |
| SEDIMENTATION/SILTATION |                                   | 9449              | Aug 21, 2003  |       |       |
| TEMPERATURE             |                                   | <u>41462</u>      | Dec 05, 2011  |       |       |

| ID17010304PN014_03      | Carpenter Creek - source to mouth                  |              | 1.02  | Miles |
|-------------------------|----------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| ID17010304PN015_05      | St. Maries River                                   |              | 10.43 | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN016_02      | Emerald Creek - source to mouth                    |              | 40.14 | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       | -     |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN016_03      | Emerald Creek - E Fork Emerald to St. Maries River |              | 8.68  | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       | -     |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN017_02      | West Fork St. Maries River - source to mouth       |              | 52.34 | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN017_03      | West Fork St. Maries River - source to mouth       |              | 5.53  | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN017_04      | West Fork St. Maries River - source to mouth       |              | 3.66  | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN018_02      | Middle Fork St. Maries River - source to mouth     |              | 34.25 | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN018_03      | Middle Fork St. Maries River - source to mouth     |              | 1.54  | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN018_04      | Middle Fork St. Maries River - source to mouth     |              | 4.7   | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN018_05      | Middle Fork St. Maries River - source to mouth     |              | 1.39  | Miles |
| SEDIMENTATION/SILTATION | <u>9449</u>                                        | Aug 21, 2003 |       |       |
| TEMPERATURE             | <u>41462</u>                                       | Dec 05, 2011 |       |       |
| ID17010304PN019_02      | Gold Center Creek - source to mouth                |              | 19.68 | Miles |
| TEMPERATURE             | 41462                                              | Dec 05, 2011 |       |       |
| ID17010304PN019_03      | Gold Center Creek - source to mouth                |              | 2.16  | Miles |
| TEMPERATURE             | 41462                                              | Dec 05, 2011 |       |       |

| ID17010304PN020_03      | Merry Creek - source to mouth         |                         |              | 5.13  | Miles |
|-------------------------|---------------------------------------|-------------------------|--------------|-------|-------|
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN023_02      | Crystal Creek - source to mouth       |                         |              | 8.89  | Miles |
| SEDIMENTATION/SILTATION |                                       | <u>9449</u>             | Aug 21, 2003 |       |       |
| ID17010304PN024_02      | Renfro Creek - source to mouth        |                         |              | 21.97 | Miles |
| SEDIMENTATION/SILTATION |                                       | 9449                    | Aug 21, 2003 |       |       |
| ID17010304PN024_03      | Renfro Creek - locally known as E     | Davis Creek             |              | 1.22  | Miles |
| SEDIMENTATION/SILTATION |                                       | 9449                    | Aug 21, 2003 |       |       |
| ID17010304PN026_02      | Thorn Creek - upper                   |                         |              | 35.2  | Miles |
| SEDIMENTATION/SILTATION |                                       | <u>9449</u>             | Aug 21, 2003 |       |       |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN026_03      | Thorn Creek - lower                   |                         |              | 1.91  | Miles |
| SEDIMENTATION/SILTATION |                                       | 9449                    | Aug 21, 2003 |       |       |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN027_02b     | 1st and 2nd order to St Joe River     | between Big and Slate C | Cr           | 42.63 | Miles |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN027_05      | St. Joe River - St. Joe City to St. I | Maries River            |              | 14.76 | Miles |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN027_05a     | St. Joe River - North Fork St. Joe    | River to St. Joe City   |              | 36.35 | Miles |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN030_02      | Mica Creek - source to mouth          |                         |              | 40.01 | Miles |
| SEDIMENTATION/SILTATION |                                       | <u>9450</u>             | Aug 21, 2003 |       | -     |
| ID17010304PN030_03      | Mica Creek - source to mouth          |                         |              | 10.68 | Miles |
| SEDIMENTATION/SILTATION |                                       | <u>9450</u>             | Aug 21, 2003 |       | -     |
| ID17010304PN031_04      | Marble Creek - Hobo Creek to mo       | outh                    |              | 11.81 | Miles |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN033_02      | Bear and Little Bear Creeks           |                         |              | 4.52  | Miles |
| SEDIMENTATION/SILTATION |                                       | <u>9450</u>             | Aug 21, 2003 |       | -     |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN039_03      | Fishhook Creek - source to mouth      | h                       |              | 4.5   | Miles |
| SEDIMENTATION/SILTATION |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
|                         |                                       | <u>9450</u>             | Aug 21, 2003 |       |       |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |
| ID17010304PN039_04      | Fishhook Creek - source to mouth      | h                       |              | 5.35  | Miles |
| SEDIMENTATION/SILTATION |                                       | <u>9450</u>             | Aug 21, 2003 |       |       |
| TEMPERATURE             |                                       | <u>41462</u>            | Dec 05, 2011 |       |       |

| ID17010304PN041_02a     | Sherlock Creek                   |                      |              | 2.23    | Miles |
|-------------------------|----------------------------------|----------------------|--------------|---------|-------|
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN041_03a     | Heller Creek 3rd order           |                      |              | 0.23    | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN045_02      | EF and WF Bluff Creek, upstrea   | m from their converg | gence        | 37.13   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN045_03      | Bluff Creek - downstream from o  | convergence of EF a  | nd WF        | 1.83    | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN048_02      | Beaver Creek - source to mouth   |                      |              | 10.79   | Miles |
| TEMPERATURE             |                                  | <u>9450</u>          | Aug 21, 2003 |         |       |
| ID17010304PN052_02      | Simmons Creek - source to mou    | uth                  |              | 31.46   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN052_03      | Simmons Creek - source to mou    | uth                  |              | 10.05   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN053_02      | Gold Creek - source to mouth     |                      |              | 25.85   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN060_02      | Loop Creek - source to mouth     |                      |              | 39.84   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN060_03      | Loop Creek - source to mouth     |                      |              | 6.59    | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN062_03      | Slate Creek - source to mouth    |                      |              | 14.49   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN063_02      | Big Creek - source to mouth      |                      |              | 46.31   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| ID17010304PN063_03      | Big Creek - source to mouth      |                      |              | 11.62   | Miles |
| TEMPERATURE             |                                  | <u>41462</u>         | Dec 05, 2011 |         |       |
| 17010305                | Upper Spokane                    |                      |              |         |       |
|                         | EP.                              | A TMDL ID            | Approval Dat | e       |       |
| ID17010305PN005L_0L     | Hayden Lake                      |                      |              | 3800.26 | Acres |
| PHOSPHORUS, TOTAL       |                                  | <u>2019</u>          | Jan 31, 2001 |         |       |
| ID17010305PN013L_0L     | Twin Lakes                       |                      |              | 915.25  | Acres |
| PHOSPHORUS, TOTAL       |                                  | 2019                 | Jan 31, 2001 |         |       |
| ID17010305PN014_02      | Fish Creek -upper and tributarie | s, ID/WA border to T | win Lake     | 26.69   | Miles |
| SEDIMENTATION/SILTATION |                                  | 34434                | Jun 05, 2008 |         |       |
| TEMPERATURE             |                                  | <u>34434</u>         | Jun 05, 2008 |         |       |

| ID17010305PN014_03         | Fish Creek - mainstem, Idaho/Washington border to Twin Lakes |                             |                | 4.53   | Miles |
|----------------------------|--------------------------------------------------------------|-----------------------------|----------------|--------|-------|
| ESCHERICHIA COLI (E. COLI) |                                                              | <u>34434</u>                | Jun 05, 2008   |        |       |
| SEDIMENTATION/SILTATION    |                                                              | <u>34434</u>                | Jun 05, 2008   |        |       |
| TEMPERATURE                |                                                              | <u>34434</u>                | Jun 05, 2008   |        |       |
| ID17010305PN016L_0L        | Hauser Lake                                                  |                             |                | 539.18 | Acres |
| PHOSPHORUS, TOTAL          |                                                              | <u>2019</u>                 | Jan 31, 2001   |        |       |
| 17010306                   | Hangman                                                      |                             |                |        |       |
|                            |                                                              | EPA TMDL ID                 | Approval Date  | )      |       |
| ID17010306PN001_02         | Hangman Creek -                                              | Tribs to Hangman Cr from He | adwaters to WA | 16.53  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                                              | <u>32994</u>                | Aug 29, 2007   |        |       |

| ( )                        |                                  |                      | 0            |     |       |
|----------------------------|----------------------------------|----------------------|--------------|-----|-------|
| SEDIMENTATION/SILTATION    | <u>32</u>                        | <u>2994</u>          | Aug 29, 2007 |     |       |
| TEMPERATURE                | <u>32</u>                        | <u>2994</u>          | Aug 29, 2007 |     |       |
| ID17010306PN001_03         | Hangman Creek confluence with SF | F to Tribal Boundary |              | 0.1 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>32</u>                        | 2994                 | Aug 29, 2007 |     |       |
| SEDIMENTATION/SILTATION    | <u>32</u>                        | 2994                 | Aug 29, 2007 |     |       |
| TEMPERATURE                | 30                               | 2004                 | Aug 29 2007  |     |       |

#### Salmon

| 17060101                   | Hells Canyon               |                      |               |       |       |
|----------------------------|----------------------------|----------------------|---------------|-------|-------|
|                            |                            | EPA TMDL ID          | Approval Date |       |       |
| ID17060101SL001_08         | Snake River - Wolf Creek t | o Salmon River       |               | 14.77 | Miles |
| DISSOLVED GAS SUPERSATU    | RATION                     | <u>9781</u>          | Mar 01, 2004  |       |       |
| TEMPERATURE                |                            | <u>10745</u>         | Sep 09, 2004  |       |       |
| ID17060101SL002_08         | Snake River - Sheep Creek  | to Wolf Creek        |               | 26.28 | Miles |
| DISSOLVED GAS SUPERSATU    | RATION                     | <u>9781</u>          | Mar 01, 2004  |       |       |
| TEMPERATURE                |                            | <u>10745</u>         | Sep 09, 2004  |       |       |
| ID17060101SL003_08         | Snake River - Hells Canyor | n Dam to Sheep Creek |               | 17.93 | Miles |
| DISSOLVED GAS SUPERSATU    | RATION                     | <u>9781</u>          | Mar 01, 2004  |       |       |
| TEMPERATURE                |                            | <u>10745</u>         | Sep 09, 2004  |       |       |
| ID17060101SL024_04         | Wolf Creek - 4th Order     |                      |               | 5.75  | Miles |
| TEMPERATURE                |                            | <u>38235</u>         | Feb 09, 2010  |       |       |
| ID17060101SL025_02         | Wolf Creek - 1st and 2nd C | Order Tributaries    |               | 22.37 | Miles |
| TEMPERATURE                |                            | <u>38235</u>         | Feb 09, 2010  |       |       |
| ID17060101SL025_03         | Wolf Creek - 3rd Order     |                      |               | 2.83  | Miles |
| TEMPERATURE                |                            | <u>38235</u>         | Feb 09, 2010  |       |       |
| ID17060101SL025_04         | Wolf Creek - 4th Order     |                      |               | 0.87  | Miles |
| TEMPERATURE                |                            | <u>38235</u>         | Feb 09, 2010  |       | -     |
| ID17060101SL028_02         | Divide Creek - 1st and 2nd | order Tributaries    |               | 34.98 | Miles |
| ESCHERICHIA COLI (E. COLI) |                            | <u>38235</u>         | Feb 09, 2010  |       |       |
| TEMPERATURE                |                            | <u>38235</u>         | Feb 09, 2010  |       |       |
| ID17060101SL028_03         | Divide Creek - 3rd Order   |                      |               | 11.04 | Miles |
| ESCHERICHIA COLI (E. COLI) |                            | 38235                | Feb 09, 2010  |       |       |
| TEMPERATURE                |                            | <u>38235</u>         | Feb 09, 2010  |       |       |
|                            |                            |                      |               |       |       |

#### 17060103 Lower Snake-Asotin

|                            | EPA TMDL ID                                   | Approval Date |       |       |
|----------------------------|-----------------------------------------------|---------------|-------|-------|
| ID17060103SL014_02         | Tammany Creek - WBID 015 to unnamed tributary |               | 14.57 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>39572</u>                                  | Dec 17, 2010  |       | -     |
| NITROGEN, NITRATE          | <u>39572</u>                                  | Dec 17, 2010  |       |       |
| PHOSPHORUS, TOTAL          | <u>39572</u>                                  | Dec 17, 2010  |       |       |
| SEDIMENTATION/SILTATION    | <u>39572</u>                                  | Dec 17, 2010  |       |       |

| ID17060103SL014_03         | Tammany Creek - Unnamed Tributary to mouth         |                | 4.26  | Miles |
|----------------------------|----------------------------------------------------|----------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) | <u>39572</u>                                       | Dec 17, 2010   |       |       |
| NITROGEN, NITRATE          | <u>39572</u>                                       | Dec 17, 2010   |       |       |
| PHOSPHORUS, TOTAL          | <u>39572</u>                                       | Dec 17, 2010   |       |       |
| SEDIMENTATION/SILTATION    | <u>39572</u>                                       | Dec 17, 2010   |       |       |
| ID17060103SL016_02         | Tammany Creek-source to Unnamed Tributary(T34N     | , R04W, Sec19) | 18.48 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>39572</u>                                       | Dec 17, 2010   |       | -     |
| NITROGEN, NITRATE          | <u>39572</u>                                       | Dec 17, 2010   |       |       |
| PHOSPHORUS, TOTAL          | <u>39572</u>                                       | Dec 17, 2010   |       |       |
| SEDIMENTATION/SILTATION    | <u>39572</u>                                       | Dec 17, 2010   |       |       |
| 17060201                   | Upper Salmon                                       |                |       |       |
|                            | EPA TMDL ID                                        | Approval Date  | •     | _     |
| ID17060201SL001_06         | Salmon River - Pennal Gulch to Pahsimeroi River    |                | 25.79 | Miles |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL007_04         | Challis Creek - Darling Creek to mouth             |                | 3.42  | Miles |
| SEDIMENTATION/SILTATION    | <u>4107</u>                                        | Mar 19, 2003   |       |       |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL009_03         | Challis Creek - Bear Creek to Darling Creek        |                | 4.94  | Miles |
| SEDIMENTATION/SILTATION    | <u>4107</u>                                        | Mar 19, 2003   |       |       |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL009_04         | Challis Creek - Bear Creek to Darling Creek        |                | 1.5   | Miles |
| SEDIMENTATION/SILTATION    | <u>4107</u>                                        | Mar 19, 2003   |       |       |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL014_06         | Salmon River - Garden Creek to Pennal Gulch        |                | 10.82 | Miles |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL016_06         | Salmon River - East Fork Salmon River to Garden Cr | eek            | 15.93 | Miles |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL019_05         | Salmon River - Squaw Creek to East Fork Salmon Ri  | ver            | 8.16  | Miles |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL021_04         | Squaw Creek - Cash Creek to mouth                  |                | 7.79  | Miles |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL023_02         | Squaw Creek Tributaries                            |                | 46.1  | Miles |
| TEMPERATURE                | <u>67081</u>                                       | Dec 07, 2016   |       |       |
| ID17060201SL023_03         | Squaw Creek- Willow Creek to Martin Creek          |                | 6.01  | Miles |
| TEMPERATURE                | 67081                                              | Dec 07, 2016   |       |       |

| ID17060201SL023_04      | Squaw Creek - Martin Creek to Cash Creek           |              | 2.95   | Miles |
|-------------------------|----------------------------------------------------|--------------|--------|-------|
| TEMPERATURE             | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL024_02      | Aspen Creek - source to mouth                      |              | 5.58   | Miles |
| TEMPERATURE             | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL027_05      | Salmon River - Thompson Creek to Squaw Creek       |              | 4.42   | Miles |
| TEMPERATURE             | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL031_05      | Salmon River - Yankee Fork Creek to Thompson Creek |              | 13.85  | Miles |
| TEMPERATURE             | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL047_05      | Salmon River - Valley Creek to Yankee Fork Creek   |              | 12.64  | Miles |
| TEMPERATURE             | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL063_05      | Salmon River - Redfish Lake Creek to Valley Creek  |              | 5.39   | Miles |
| TEMPERATURE             | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL131_04      | Warm Spring Creek - Hole-in-Rock Creek to mouth    |              | 4.29   | Miles |
| SEDIMENTATION/SILTATION | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL132_02      | Warm Spring Creek - source to Hole-in-Rock Creek   |              | 104.66 | Miles |
| SEDIMENTATION/SILTATION | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL132_03      | Warm Spring Creek - source to Hole-in-Rock Creek   |              | 5.07   | Miles |
| SEDIMENTATION/SILTATION | <u>67081</u>                                       | Dec 07, 2016 |        |       |
| ID17060201SL132_04      | Warm Spring Creek - source to Hole-in-Rock Creek   |              | 6.72   | Miles |
| SEDIMENTATION/SILTATION | <u>67081</u>                                       | Dec 07, 2016 |        |       |

| 17060202                   | Pahsimeroi       |                                   |               |       |       |
|----------------------------|------------------|-----------------------------------|---------------|-------|-------|
|                            |                  | EPA TMDL ID                       | Approval Date |       |       |
| ID17060202SL001_05         | Pahsimeroi River | - Patterson Creek to mouth        |               | 10.27 | Miles |
| SEDIMENTATION/SILTATION    |                  | <u>2000</u>                       | Dec 06, 2001  |       |       |
| TEMPERATURE                |                  | <u>2000</u>                       | Dec 06, 2001  |       |       |
|                            |                  | <u>55921</u>                      | Apr 10, 2014  |       |       |
| ID17060202SL002_02         | Pahsimeroi River | - Meadow Creek to Patterson Creek |               | 50.68 | Miles |
| ESCHERICHIA COLI (E. COLI) |                  | <u>55921</u>                      | Apr 10, 2014  |       |       |
| SEDIMENTATION/SILTATION    |                  | <u>55921</u>                      | Apr 10, 2014  |       |       |
| TEMPERATURE                |                  | <u>55921</u>                      | Apr 10, 2014  |       |       |
| ID17060202SL002_04         | Pahsimeroi River | - Meadow Creek to Patterson Creek |               | 2.47  | Miles |
| SEDIMENTATION/SILTATION    |                  | 2000                              | Dec 06, 2001  |       |       |
| ID17060202SL002_05         | Pahsimeroi River | - Meadow Creek to Patterson Creek |               | 10.21 | Miles |
| SEDIMENTATION/SILTATION    |                  | <u>2000</u>                       | Dec 06, 2001  |       |       |
| TEMPERATURE                |                  | <u>55921</u>                      | Apr 10, 2014  |       |       |

| ID17060202SL004_02         | North Fork Lawson Cre   | ek - source to mouth       |                | 11.83  | Miles |
|----------------------------|-------------------------|----------------------------|----------------|--------|-------|
| SEDIMENTATION/SILTATION    |                         | <u>55921</u>               | Apr 10, 2014   |        |       |
| ID17060202SL007_04         | Pahsimeroi River - Fure | ey Lane (T15S, R22E) to Me | adow Creek     | 1.56   | Miles |
| SEDIMENTATION/SILTATION    |                         | 2000                       | Dec 06, 2001   |        |       |
| ID17060202SL008_04         | Pahsimeroi River - Big  | Creek to Furey Lane (T15S, | R22E)          | 3.18   | Miles |
| SEDIMENTATION/SILTATION    |                         | <u>2000</u>                | Dec 06, 2001   |        |       |
| ID17060202SL010_03         | Pahsimeroi River - Golo | burg Creek to Big Creek    |                | 5.32   | Miles |
| SEDIMENTATION/SILTATION    |                         | <u>2000</u>                | Dec 06, 2001   |        |       |
| ID17060202SL010_04         | Pahsimeroi River - Golo | burg Creek to Big Creek    |                | 6.74   | Miles |
| SEDIMENTATION/SILTATION    |                         | 2000                       | Dec 06, 2001   |        |       |
| ID17060202SL011_04         | Pahsimeroi R-Unname     | d Trib (T12N,R23E,Sec. 22) | to Goldburg Ck | 2.54   | Miles |
| SEDIMENTATION/SILTATION    |                         | 2000                       | Dec 06, 2001   |        |       |
| ID17060202SL017_04         | Pahsimeroi R-Burnt Ck   | to Unnamed Trib (T12N, R2  | 23E, Sec. 22)  | 10.34  | Miles |
| SEDIMENTATION/SILTATION    |                         | 2000                       | Dec 06, 2001   |        |       |
| ID17060202SL018_04         | Pahsimeroi River - Mah  | ogany Creek to Burnt Creek | (              | 6.17   | Miles |
| SEDIMENTATION/SILTATION    |                         | 2000                       | Dec 06, 2001   |        |       |
| TEMPERATURE                |                         | <u>2000</u>                | Dec 06, 2001   |        |       |
|                            |                         | <u>55921</u>               | Apr 10, 2014   |        |       |
| ID17060202SL022_03         | East Fork Pahsimeroi F  | River - source to mouth    |                | 1.42   | Miles |
| SEDIMENTATION/SILTATION    |                         | <u>2000</u>                | Dec 06, 2001   |        |       |
| TEMPERATURE                |                         | <u>2000</u>                | Dec 06, 2001   |        |       |
|                            |                         | <u>55921</u>               | Apr 10, 2014   |        |       |
| ID17060202SL026_02         | Short Creek - source to | mouth                      |                | 5.83   | Miles |
| SEDIMENTATION/SILTATION    |                         | <u>55921</u>               | Apr 10, 2014   |        |       |
| 17060203                   | Middle Salmon-F         | Panther                    |                |        |       |
|                            |                         | EPA TMDL ID                | Approval Date  | •      |       |
| ID17060203SL047_02L        | Williams Lake           |                            |                | 179.98 | Acres |
| PHOSPHORUS, TOTAL          |                         | <u>1379</u>                | Jul 02, 2001   |        |       |
| 17060204                   | Lemhi                   |                            |                |        |       |
|                            |                         | EPA TMDL ID                | Approval Date  | )      |       |
| ID17060204SL001_06         | Lemhi River - Kenney C  | Creek to mouth             |                | 24.65  | Miles |
| ESCHERICHIA COLI (E. COLI) |                         | <u>673</u>                 | Mar 14, 2000   |        |       |
| TEMPERATURE                |                         | <u>50329</u>               | Feb 27, 2013   |        |       |
| ID17060204SL005_06         | Lemhi River - Hayden C  | Creek to Kenney Creek      |                | 12.77  | Miles |
| ESCHERICHIA COLI (E. COLI) |                         | <u>673</u>                 | Mar 14, 2000   |        |       |

| ID17060204SL007a_03        | McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mou    | th           | 2.36  | Miles |
|----------------------------|------------------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| ID17060204SL007b_02        | McDevitt Creek - source to diversion (T19N, R23E, Sec. 3   | 86)          | 19.09 | Miles |
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| ID17060204SL007b_03        | McDevitt Creek - source to diversion (T19N, R23E, Sec. 3   | 86)          | 4.44  | Miles |
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| ID17060204SL024_05         | Lemhi River - Peterson Creek to Hayden Creek               |              | 11.7  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| ID17060204SL025_05         | Lemhi River - confluence of Big and Little Eightmile Creek | S            | 5.87  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| ID17060204SL030_04         | Lemhi River (West Branch) - Big Spring Creek               |              | 6.57  | Miles |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL030_05         | Lemhi River (East Branch)-Eighteenmile & Texas Ck Con      | fluence      | 10.39 | Miles |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL041_04         | Eighteenmile Creek - Hawley Creek to mouth                 |              | 2.21  | Miles |
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL042_03         | Eighteenmile Creek - Clear Creek to Hawley Creek           |              | 12.62 | Miles |
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL043_03         | Eighteenmile Creek - Divide Creek to Clear Creek           |              | 5.96  | Miles |
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL045_02         | Eighteenmile Creek - source to Divide Creek                |              | 29.68 | Miles |
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL051b_02        | Canyon Creek - source to diversion (T16N, R26E, Sec.22     | )            | 70.12 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL052a_02        | Little Eightmile Creek                                     |              | 0.43  | Miles |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL052b_02        | Little Eightmile Creek-source to diversion                 |              | 25    | Miles |
| TEMPERATURE                | <u>50329</u>                                               | Feb 27, 2013 |       |       |
| ID17060204SL062a_02        | Sandy Creek - diversion (T20N, R24E, Sec. 17) to mouth     |              | 2.1   | Miles |
| SEDIMENTATION/SILTATION    | <u>673</u>                                                 | Mar 14, 2000 |       |       |

|                         |                                                           | EPA TMDL ID             | Approval Date |       |       |
|-------------------------|-----------------------------------------------------------|-------------------------|---------------|-------|-------|
| 17060205                | Upper Middle Fork                                         | Salmon                  |               |       |       |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL066b_02     | Kirtley Creek                                             |                         |               | 20.95 | Miles |
| TEMPERATURE             |                                                           | <u>50329</u>            | Feb 27, 2013  |       |       |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL066a_03     | Kirtley Creek - diversion (1                              | 21N, R22E, Sec. 02) to  | mouth         | 2.28  | Miles |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL065b_02     | Geertson Creek - source t                                 | o diversion (T21N, R23E | E, Sec. 20)   | 14.71 | Miles |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL065a_02     | Geertson Creek - diversion (T21N, R23E, Sec. 20) to mouth |                         |               | 11.44 | Miles |
| TEMPERATURE             |                                                           | <u>50329</u>            | Feb 27, 2013  |       |       |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL064b_02     | Bohannon Creek - source                                   | to diversion (T21N, R23 | E, Sec. 22)   | 13.58 | Miles |
| TEMPERATURE             |                                                           | <u>50329</u>            | Feb 27, 2013  |       |       |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL064a_02     | Bohannon Creek - diversio                                 | on (T21N, R23E, Sec. 22 | 2) to mouth   | 1.36  | Miles |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL063_02      | Wimpey Creek - source to                                  | mouth                   |               | 19.67 | Miles |
| TEMPERATURE             |                                                           | <u>50329</u>            | Feb 27, 2013  |       |       |
| SEDIMENTATION/SILTATION |                                                           | <u>673</u>              | Mar 14, 2000  |       |       |
| ID17060204SL062b_02     | Sandy Creek - source to d                                 | iversion (T20N, R24E, S | Sec. 17)      | 12.33 | Miles |
| D17060204SL0626 02      | Sandy Crook agures to d                                   | iversion (T20N D24E C   | (ac. 17)      | 10.00 | κ/    |

|                    | EPA IMULIU                                | Approval Date |       |       |
|--------------------|-------------------------------------------|---------------|-------|-------|
| ID17060205SL018_05 | Marsh Creek - Beaver Creek to mouth       |               | 5.47  | Miles |
| TEMPERATURE        | <u>35882</u>                              | Feb 13, 2009  |       |       |
| ID17060205SL019_03 | Marsh Creek - Knapp Creek to Beaver Creek |               | 4.5   | Miles |
| TEMPERATURE        | <u>35882</u>                              | Feb 13, 2009  |       |       |
| ID17060205SL019_04 | Marsh Creek - Knapp Creek to Beaver Creek |               | 0.83  | Miles |
| TEMPERATURE        | <u>35882</u>                              | Feb 13, 2009  |       |       |
| ID17060205SL024_02 | Marsh Creek - source to Knapp Creek       |               | 20.72 | Miles |
| TEMPERATURE        | <u>35882</u>                              | Feb 13, 2009  |       |       |
| ID17060205SL024_03 | Marsh Creek - source to Knapp Creek       |               | 1.11  | Miles |
| TEMPERATURE        | <u>35882</u>                              | Feb 13, 2009  |       |       |
| ID17060205SL025_02 | Knapp Creek - source to mouth             |               | 28.1  | Miles |
| TEMPERATURE        | <u>35882</u>                              | Feb 13, 2009  |       |       |
| ID17060205SL028_04 | Beaver Creek - Bear Creek to mouth        |               | 5.26  | Miles |
| TEMPERATURE        | <u>35882</u>                              | Feb 13, 2009  |       |       |
| ID17060205SL030_02 | Winnemucca Creek - source to mouth                    |               | 12.92 | Miles |
|--------------------|-------------------------------------------------------|---------------|-------|-------|
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060205SL030_03 | Winnemucca Creek - source to mouth                    |               | 3.69  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| 17060206           | Lower Middle Fork Salmon                              |               |       |       |
|                    | EPA TMDL ID                                           | Approval Date | •     |       |
| ID17060206SL020_04 | Camas Creek - Yellowjacket Creek to mouth             |               | 4.37  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL021_04 | Camas Creek - Forge Creek to Yellowjacket Creek       |               | 3.61  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL022_04 | Camas Creek - Duck Creek to Forge Creek               |               | 3.8   | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL023_04 | Camas Creek - Silver Creek to Duck Creek              |               | 2.2   | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL025_04 | Camas Creek - Castle Creek to Silver Creek            |               | 2.83  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL026_04 | Camas Creek - Furnance Creek to Castle Creek          |               | 2.65  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL027_04 | Camas Creek - White Goat Creek to Furnance Creek      |               | 1.87  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL028_04 | Camas Creek - South Fork Camas Creek to White Go      | at Creek      | 1.64  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL030_02 | Camas Creek - source to South Fork Camas Creek        |               | 47.1  | Miles |
| TEMPERATURE        | 35882                                                 | Feb 13, 2009  |       |       |
| ID17060206SL033_02 | Castle Creek - source to mouth                        |               | 25.47 | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL034_02 | Silver Creek - source to mouth                        |               | 48.08 | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL034_03 | Silver Creek - source to mouth                        |               | 14.6  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL035_02 | Duck Creek - source to mouth                          |               | 11.03 | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL038_03 | Yellowjacket Creek - Hoodoo Creek to Jenny Creek      |               | 1.56  | Miles |
| TEMPERATURE        | <u>35882</u>                                          | Feb 13, 2009  |       |       |
| ID17060206SL039_03 | Yellowjacket Creek - Little Jacket Creek to Hoodoo Cr | eek           | 0.82  | Miles |
| TEMPERATURE        | 35882                                                 | Feb 13, 2009  |       |       |

| ID17060206SL041_03      | Yellowjacket Creek - Trail Creek to Little Jacket Cr | eek           | 2.98   | Miles |
|-------------------------|------------------------------------------------------|---------------|--------|-------|
| TEMPERATURE             | <u>35882</u>                                         | Feb 13, 2009  |        |       |
| ID17060206SL043_02      | Yellowjacket Creek - source to Trail Creek           |               | 48.55  | Miles |
| TEMPERATURE             | <u>35882</u>                                         | Feb 13, 2009  |        |       |
| ID17060206SL043_03      | Yellowjacket Creek - source to Trail Creek           |               | 5.39   | Miles |
| TEMPERATURE             | <u>35882</u>                                         | Feb 13, 2009  |        |       |
| 17060207                | Middle Salmon-Chamberlain                            |               |        |       |
|                         | EPA TMDL ID                                          | Approval Date | )      |       |
| ID17060207SL067_05      | Crooked Creek - Lake Creek to mouth                  |               | 8.27   | Miles |
| TEMPERATURE             | <u>3822</u>                                          | Jan 09, 2003  |        |       |
|                         | <u>68180</u>                                         | Aug 21, 2017  |        |       |
| ID17060207SL068_02      | Crooked Creek - source to unnamed tributary          |               | 41.74  | Miles |
| TEMPERATURE             | <u>3822</u>                                          | Jan 09, 2003  |        |       |
|                         | <u>68180</u>                                         | Aug 21, 2017  |        |       |
| ID17060207SL068_03      | Crooked Creek - unnamed tributary to Big Creek       |               | 2.5    | Miles |
| TEMPERATURE             | 3822                                                 | Jan 09, 2003  |        |       |
|                         | <u>68180</u>                                         | Aug 21, 2017  |        |       |
| 17060208                | South Fork Salmon                                    |               |        |       |
|                         | EPA TMDL ID                                          | Approval Date | )      |       |
| ID17060208SL001_06      | South Fork Salmon River - East Fork Salmon Rive      | r to mouth    | 36.73  | Miles |
| SEDIMENTATION/SILTATION | <u>2617</u>                                          | Jan 31, 1992  |        |       |
|                         | <u>41957</u>                                         | Jul 03, 2012  |        |       |
| TEMPERATURE             | <u>41957</u>                                         | Jul 03, 2012  |        |       |
| ID17060208SL005_02      | Secesh River - 1st and 2nd order tributaries         |               | 146.83 | Miles |
| TEMPERATURE             | <u>41957</u>                                         | Jul 03, 2012  |        |       |
| ID17060208SL005_03      | Secesh River, Grouse, and Willow Basket Creeks       | - 3rd order   | 7.1    | Miles |
| TEMPERATURE             | <u>41957</u>                                         | Jul 03, 2012  |        |       |
| ID17060208SL009_02      | Lick Creek - 1st and 2nd order                       |               | 25.4   | Miles |
| TEMPERATURE             | <u>41957</u>                                         | Jul 03, 2012  |        |       |
| ID17060208SL009_03      | Lick Creek - 3rd order (Prince Creek to Secesh Riv   | /er)          | 6.24   | Miles |
| TEMPERATURE             | <u>41957</u>                                         | Jul 03, 2012  |        |       |
| ID17060208SL010_02      | SF Salmon River and tribs above EFSF - 1st and 2     | nd order      | 135.11 | Miles |
| TEMPERATURE             | <u>41957</u>                                         | Jul 03, 2012  |        |       |

| ID17060208SL010_03      | SF Salmon River - 3rd order (Curtis Creek to Mormon Cre  | ek)          | 13.7  | Miles |
|-------------------------|----------------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>2617</u>                                              | Jan 31, 1992 |       |       |
|                         | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL010_04      | SF Salmon River - 4th order (Curtis Cr. to Buckhorn Cr.) |              | 26.77 | Miles |
| SEDIMENTATION/SILTATION | <u>2617</u>                                              | Jan 31, 1992 |       |       |
|                         | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL010_05      | South Fork Salmon River - 5th order                      |              | 8.22  | Miles |
| SEDIMENTATION/SILTATION | <u>2617</u>                                              | Jan 31, 1992 |       |       |
|                         | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL012_02      | Buckhorn Creek and tributaries - 1st and 2nd order       |              | 56.32 | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL012_03      | Buckhorn Creek - 3rd order                               |              | 9.02  | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL012_04      | Buckhorn and WF Buckhorn Creeks - 4th order              |              | 2.58  | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL012_05      | Buckhorn Creek - 5th order (WF Buckhorn Creek to mout    | h)           | 0.49  | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL015_02      | Dollar and NF Dollar Creeks - 1st and 2nd order          |              | 22.37 | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL015_03      | Dollar Creek - 3rd order (NF Dollar Creek to mouth)      |              | 0.94  | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL018_02      | Rice Creek - entire watershed                            |              | 9.4   | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL019_02      | All 1st and 2nd order streams in Warm Lake Creek draina  | ige          | 16.21 | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL019_03      | Warm Lake and Cabin Creeks - 3rd order                   |              | 1.93  | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL020_02      | Warm Lake Creek above Warm Lake - entire watershed       |              | 6.2   | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL025_02      | Upper Johnson Creek and tributaries - 1st and 2nd order  |              | 70.57 | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |
| ID17060208SL025_03      | Johnson Creek - 3rd order                                |              | 18.12 | Miles |
| TEMPERATURE             | <u>41957</u>                                             | Jul 03, 2012 |       |       |

| ID17060208SL025_04 | Johnson Creek - 4th order          |                                                             |              | 13.09 | Miles |
|--------------------|------------------------------------|-------------------------------------------------------------|--------------|-------|-------|
| TEMPERATURE        |                                    | <u>41957</u>                                                | Jul 03, 2012 |       |       |
| ID17060208SL031_02 | Profile Creek and tributaries - 1s | and 2nd order                                               |              | 21.38 | Miles |
| TEMPERATURE        |                                    | <u>41957</u>                                                | Jul 03, 2012 |       |       |
| ID17060208SL031_03 | Profile Creek - 3rd order (Missor  | Profile Creek - 3rd order (Missouri Cr. to SF Salmon River) |              |       |       |
| TEMPERATURE        |                                    | <u>41957</u>                                                | Jul 03, 2012 |       |       |
| ID17060208SL034_02 | Elk Creek and tributaries - 1st a  | nd 2nd order                                                |              | 37.03 | Miles |
| TEMPERATURE        |                                    | <u>41957</u>                                                | Jul 03, 2012 |       |       |
| ID17060208SL034_03 | Elk Creek and West Fork Elk Cr     | eek - 3rd order sections                                    |              | 1.16  | Miles |
| TEMPERATURE        |                                    | <u>41957</u>                                                | Jul 03, 2012 |       |       |
| ID17060208SL034_04 | Elk Creek - 4th order (West Forl   | c Elk Creek to mouth)                                       |              | 4.12  | Miles |
| TEMPERATURE        |                                    | <u>41957</u>                                                | Jul 03, 2012 |       |       |

| 17060209                   | Lower Salmon                |                        |               |       |       |
|----------------------------|-----------------------------|------------------------|---------------|-------|-------|
|                            |                             | EPA TMDL ID            | Approval Date |       |       |
| ID17060209SL003_02         | Cottonwood Creek - source   | e to unnamed tributary |               | 22.64 | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| ID17060209SL004_02         | Billy Creek - source to mou | uth                    |               | 5.17  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| ID17060209SL007_02         | Rice Creek - tributaries    |                        |               | 55.28 | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| TEMPERATURE                |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| ID17060209SL007_03         | Rice Creek - 3rd Order      |                        |               | 8.88  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| TEMPERATURE                |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| ID17060209SL028_03         | Allison Creek - 3rd Order   |                        |               | 2.72  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| ID17060209SL056_04         | Rock Creek - 4th Order      |                        |               | 3.74  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| TEMPERATURE                |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| ID17060209SL057_02         | John's Creek - 1st and 2nd  | d order tributaries    |               | 44.3  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>38235</u>           | Feb 09, 2010  |       |       |
| TEMPERATURE                |                             | <u>38235</u>           | Feb 09, 2010  |       |       |

| ID17060209SL057_02a        | Telcher Creek - 1st & 2nd o   | rder stream segment | ts            | 34.63 | Miles |
|----------------------------|-------------------------------|---------------------|---------------|-------|-------|
| TEMPERATURE                |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| ID17060209SL057_03         | Rock Creek - 3rd order        |                     |               | 6.56  | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| TEMPERATURE                |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| ID17060209SL058_02         | Grave Creek - headwaters t    | o unnamed tributary |               | 27.43 | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| ID17060209SL058_03         | Grave Creek - unnamed trib    | to Rock Creek       |               | 3.38  | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| ID17060209SL060_02         | Deep Creek - source to unn    | amed tributary      |               | 28.3  | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>38235</u>        | Feb 09, 2010  |       |       |
| 17060210                   | Little Salmon                 |                     |               |       |       |
|                            |                               | EPA TMDL ID         | Approval Date |       |       |
| ID17060210SL007 04         | Little Salmon River - 4th ord | er                  |               | 4.27  | Miles |

| ID17060210SL007_04         | Little Salmon River - 4th order  |                           |              | 4.27  | Miles |
|----------------------------|----------------------------------|---------------------------|--------------|-------|-------|
| TEMPERATURE                |                                  | <u>22907</u>              | Mar 29, 2006 |       |       |
| ID17060210SL007_05         | Little Salmon River - 5th order  |                           |              | 16.91 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>22907</u>              | Mar 29, 2006 |       |       |
| PHOSPHORUS, TOTAL          |                                  | <u>22907</u>              | Mar 29, 2006 |       |       |
| TEMPERATURE                |                                  | <u>22907</u>              | Mar 29, 2006 |       |       |
| ID17060210SL008_03         | Mud and Little Mud Creeks - 3rd  | order                     |              | 8.13  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>50340</u>              | Apr 10, 2013 |       |       |
| ID17060210SL009_02a        | Big Creek - lower 2nd order (ran | geland)                   |              | 4.38  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>22907</u>              | Mar 29, 2006 |       |       |
| PHOSPHORUS, TOTAL          |                                  | <u>22907</u>              | Mar 29, 2006 |       |       |
| ID17060210SL010_04         | East Branch Goose Creek and 4    | th order section of Goose | e Creek      | 5.45  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | 50340                     | Apr 10, 2013 |       |       |

| 17050101                | C. J. Strike Reservoir              |                   |              |         |       |
|-------------------------|-------------------------------------|-------------------|--------------|---------|-------|
|                         | EPA <sup>-</sup>                    | TMDL ID           | Approval Dat | e       |       |
| ID17050101SW001_02      | CJ Strike Reservoir & Dry Creek -   | 1st and 2nd order |              | 126.73  | Miles |
| DISSOLVED OXYGEN        | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| PHOSPHORUS, TOTAL       | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050101SW001_07      | Snake River - Browns Creek to CJ    | Strike Reservoir  |              | 11.15   | Miles |
| DISSOLVED OXYGEN        | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| PHOSPHORUS, TOTAL       | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050101SW001_07L     | CJ Strike Reservoir (excluding Bru  | neau arm)         |              | 4764.97 | Acres |
| DISSOLVED OXYGEN        | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| PHOSPHORUS, TOTAL       | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050101SW005_07      | Snake River - Clover Creek to Brow  | wns Creek         |              | 25      | Miles |
| PHOSPHORUS, TOTAL       | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| SEDIMENTATION/SILTATION | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050101SW012_02      | Little Canyon Creek - 1st and 2nd   | order             |              | 31.02   | Miles |
| SEDIMENTATION/SILTATION | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050101SW012_03      | Little Canyon Creek - upper 3rd or  | der               |              | 10.2    | Miles |
| SEDIMENTATION/SILTATION | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050101SW012_03a     | Little Canyon Creek - lower 3rd ord | ler               |              | 10.9    | Miles |
| SEDIMENTATION/SILTATION | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050101SW014_03      | Cold Springs Creek - 3rd order      |                   |              | 17.28   | Miles |
| SEDIMENTATION/SILTATION | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| 17050102                | Bruneau                             |                   |              |         |       |
|                         | EPA                                 | TMDL ID           | Approval Dat | e       |       |
| ID17050101SW001_07L     | CJ Strike Reservoir (excluding Bru  | neau arm)         |              | 4764.97 | Acres |
| DISSOLVED OXYGEN        | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| PHOSPHORUS, TOTAL       | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| ID17050102SW001L_0L     | CJ Strike Reservoir - Bruneau Arm   | 1                 |              | 2052.27 | Acres |
| DISSOLVED OXYGEN        | 3                                   | <u>80361</u>      | Jun 21, 2006 |         |       |
| PHOSPHORUS, TOTAL       | <u>3</u>                            | <u>80361</u>      | Jun 21, 2006 |         |       |

#### Southwest

| ID17050102SW002_05         | Jacks Creek-Little Jacks Ck to C  | J Strike Reservoir       |              | 12.29 | Miles |
|----------------------------|-----------------------------------|--------------------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| PHOSPHORUS, TOTAL          |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
|                            |                                   | <u>33833</u>             | Nov 13, 2007 |       |       |
| SEDIMENTATION/SILTATION    |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| TOTAL SUSPENDED SOLIDS (T  | SS)                               | <u>1998</u>              | Mar 13, 2001 |       |       |
|                            |                                   | <u>33833</u>             | Nov 13, 2007 |       |       |
| ID17050102SW008_04         | Sugar Valley Wash - 4th order     |                          |              | 5.45  | Miles |
| DISSOLVED OXYGEN           |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| ESCHERICHIA COLI (E. COLI) |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| PHOSPHORUS, TOTAL          |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| SEDIMENTATION/SILTATION    |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| ID17050102SW009_06         | Bruneau River - 6th order (Hot Cr | reek to mouth)           |              | 16.9  | Miles |
| PHOSPHORUS, TOTAL          |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| ID17050102SW028_04         | Clover Creek - 4th order (Deadwo  | ood Creek to Buck Flat D | raw)         | 29.63 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| ID17050102SW028_05         | Clover Creek (East Fork Bruneau   | ı River) - 5th order     |              | 24.75 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| ID17050102SW031_02         | Three Creek - 1st and 2nd order   |                          |              | 34.9  | Miles |
| SEDIMENTATION/SILTATION    |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |
| ID17050102SW031_03         | Three Creek - 3rd order           |                          |              | 6.99  | Miles |
| SEDIMENTATION/SILTATION    |                                   | <u>1998</u>              | Mar 13, 2001 |       |       |

#### 17050103 Middle Snake-Succor

|                            |                             | EPA TMDL ID         | Approval Date |       |       |
|----------------------------|-----------------------------|---------------------|---------------|-------|-------|
| ID17050103SW001_07         | Snake River - Marsing (RI   | M425) to State Line |               | 16.09 | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS       | <u>9711</u>         | Jan 05, 2004  |       |       |
| ID17050103SW001_07a        | Snake River - State line to | Boise River         |               | 4.19  | Miles |
| DDD (DICHLORODIPHENYLDIC   | CHLOROETHANE)               | <u>9781</u>         | Mar 01, 2004  |       |       |
| DDE (DICHLORODIPHENYLDIC   | HLOROETHYLENE)              | <u>9781</u>         | Mar 01, 2004  |       |       |
| DDT (DICHLORODIPHENYLTRI   | CHLOROETHANE)               | <u>9781</u>         | Mar 01, 2004  |       |       |
| DIELDRIN                   |                             | <u>9781</u>         | Mar 01, 2004  |       |       |
| PHOSPHORUS, TOTAL          |                             | <u>9711</u>         | Jan 05, 2004  |       |       |
| ID17050103SW002_03         | Sage Creek - 3rd order      |                     |               | 7.76  | Miles |
| ESCHERICHIA COLI (E. COLI) |                             | <u>9711</u>         | Jan 05, 2004  |       |       |
| SEDIMENTATION/SILTATION    |                             | <u>9711</u>         | Jan 05, 2004  |       |       |

| ID17050103SW002_04      | Lower Succor Creek - 4th order (state line to mouth)   |              | 5.51   | Miles |
|-------------------------|--------------------------------------------------------|--------------|--------|-------|
| FECAL COLIFORM          | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| ID17050103SW003_02      | Upper Succor Creek - 1st and 2nd order tributaries     |              | 68.4   | Miles |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| TEMPERATURE             | <u>33844</u>                                           | Dec 11, 2007 |        |       |
| ID17050103SW003_03      | Upper Succor Creek - 3rd order (Granite Creek to State | e Line)      | 15.7   | Miles |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| TEMPERATURE             | <u>33844</u>                                           | Dec 11, 2007 |        |       |
| ID17050103SW004_02      | McBride Creek - 1st and 2nd order                      |              | 73.1   | Miles |
| SEDIMENTATION/SILTATION | <u>53940</u>                                           | Oct 22, 2013 |        |       |
| ID17050103SW004_03      | McBride Creek - 3rd order                              |              | 6.89   | Miles |
| SEDIMENTATION/SILTATION | <u>53940</u>                                           | Oct 22, 2013 |        |       |
| ID17050103SW005_02      | Jump Creek - 1st and 2nd order                         |              | 85.11  | Miles |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| ID17050103SW005_03      | Jump Creek - 3rd order                                 |              | 19.51  | Miles |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| ID17050103SW006_07b     | Snake River - Swan Falls to Marsing (RM425)            |              | 36.13  | Miles |
| PHOSPHORUS, TOTAL       | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| ID17050103SW008_02      | Hardtrigger Creek - entire drainage                    |              | 23.01  | Miles |
| SEDIMENTATION/SILTATION | <u>53940</u>                                           | Oct 22, 2013 |        |       |
| ID17050103SW012_04      | Sinker Creek - 4th order                               |              | 15.74  | Miles |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| TEMPERATURE             | <u>38234</u>                                           | Feb 18, 2010 |        |       |
| ID17050103SW014_02      | Castle Creek - 1st & 2nd order rangeland tributaries   |              | 163.39 | Miles |
| TEMPERATURE             | <u>33844</u>                                           | Dec 11, 2007 |        |       |
| ID17050103SW014_02a     | Castle Creek - 1st & 2nd order forested tributaries    |              | 56.15  | Miles |
| TEMPERATURE             | <u>33844</u>                                           | Dec 11, 2007 |        |       |
| ID17050103SW014_03      | Castle Creek - 3rd order tributaries                   |              | 10.41  | Miles |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| TEMPERATURE             | <u>33844</u>                                           | Dec 11, 2007 |        |       |
| ID17050103SW014_04      | Castle Creek - lower 4th order (irrigated section)     |              | 9.21   | Miles |
| SEDIMENTATION/SILTATION | <u>9711</u>                                            | Jan 05, 2004 |        |       |
| TEMPERATURE             | <u>33844</u>                                           | Dec 11, 2007 |        |       |
| ID17050103SW014_04a     | Castle Creek - upper 4th order (canyon section)        |              | 16.4   | Miles |
| TEMPERATURE             | <u>33844</u>                                           | Dec 11, 2007 |        |       |

| ID17050103SW014_05       | Castle Creek - 5th order (Ca | atherine Cr. to Snake   | River)        | 3.81   | Miles |
|--------------------------|------------------------------|-------------------------|---------------|--------|-------|
| SEDIMENTATION/SILTATION  |                              | <u>9711</u>             | Jan 05, 2004  |        |       |
| TEMPERATURE              |                              | <u>33844</u>            | Dec 11, 2007  |        |       |
| ID17050103SW016_03       | Pickett Creek - 3rd order    |                         |               | 6.43   | Miles |
| SEDIMENTATION/SILTATION  |                              | <u>53940</u>            | Oct 22, 2013  |        |       |
| ID17050103SW020_02       | South Fork Castle Creek &    | tributaries - 1st & 2nd | l order       | 41.8   | Miles |
| TEMPERATURE              |                              | <u>33844</u>            | Dec 11, 2007  |        |       |
| ID17050103SW020_03       | SF Castle Creek - 3rd order  | (Clover Cr. to NF Ca    | astle Cr.)    | 5.55   | Miles |
| TEMPERATURE              |                              | <u>33844</u>            | Dec 11, 2007  |        |       |
| ID17050103SW021_03       | Birch Creek - 3rd order      |                         |               | 15.11  | Miles |
| TOTAL SUSPENDED SOLIDS ( | TSS)                         | <u>53940</u>            | Oct 22, 2013  |        |       |
| ID17050103SW021_04       | Birch Creek - 4th order      |                         |               | 2.69   | Miles |
| TOTAL SUSPENDED SOLIDS ( | TSS)                         | <u>53940</u>            | Oct 22, 2013  |        |       |
| ID17050103SW023_03       | Vinson Wash - 3rd order      |                         |               | 7.95   | Miles |
| TOTAL SUSPENDED SOLIDS ( | TSS)                         | <u>53940</u>            | Oct 22, 2013  |        |       |
| 17050104                 | Upper Owvhee                 |                         |               |        |       |
|                          |                              | EPA TMDL ID             | Approval Date | Ð      |       |
| ID17050104SW005L_0L      | Juniper Basin Reservoir      |                         |               | 241.79 | Acres |
| SEDIMENTATION/SILTATION  |                              | <u>4106</u>             | Mar 12, 2003  |        |       |
| ID17050104SW013_03       | Blue Creek - 3rd order upstr | eam of Blue Creek R     | Reservoir     | 13.72  | Miles |
| SEDIMENTATION/SILTATION  |                              | <u>4106</u>             | Mar 12, 2003  |        |       |
| ID17050104SW013_0L       | Blue Creek Reservoir         |                         |               | 183.88 | Acres |
| SEDIMENTATION/SILTATION  |                              | <u>4106</u>             | Mar 12, 2003  |        |       |
| ID17050104SW023_02       | Battle Creek - 1st & 2nd ord | er                      |               | 252.96 | Miles |
| TEMPERATURE              |                              | <u>42251</u>            | Jul 20, 2012  |        |       |
| ID17050104SW023_03       | Battle Creek - 3rd order     |                         |               | 36.39  | Miles |
| TEMPERATURE              |                              | <u>42251</u>            | Jul 20, 2012  |        |       |
| ID17050104SW023_04       | Battle Creek - 4th order     |                         |               | 29.46  | Miles |
| TEMPERATURE              |                              | <u>42251</u>            | Jul 20, 2012  |        |       |
| ID17050104SW026_04       | Deep Creek - 4th order sect  | ion                     |               | 15.54  | Miles |
| SEDIMENTATION/SILTATION  |                              | <u>4106</u>             | Mar 12, 2003  |        |       |
| TEMPERATURE              |                              | <u>42251</u>            | Jul 20, 2012  |        |       |
| ID17050104SW026_05       | Deep Creek - 5th order (Nic  | kel Creek to mouth)     |               | 24.9   | Miles |
| SEDIMENTATION/SILTATION  |                              | 4106                    | Mar 12, 2003  |        |       |
| TEMPERATURE              |                              | 42251                   | Jul 20, 2012  |        |       |

| ID17050104SW028_02      | Pole Creek - 1st and 2nd order     |                      |              | 71.16 | Miles |
|-------------------------|------------------------------------|----------------------|--------------|-------|-------|
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW028_03      | Pole Creek - 3rd order             |                      |              | 6.4   | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW028_04      | Pole Creek - 4th order             |                      |              | 12.13 | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW029_03      | Camas Creek - 3rd order            |                      |              | 7.31  | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW030_02      | Camel Creek - 1st and 2nd orde     | r                    |              | 28.58 | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW031_02      | Nickel Creek & tributaries - 1st a | nd 2nd order         |              | 76.89 | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>4106</u>          | Mar 12, 2003 |       |       |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW031_03      | Nickel, Thomas & Smith Creeks      | - 3rd order sections |              | 9.7   | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>4106</u>          | Mar 12, 2003 |       |       |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW031_04      | Nickel Creek - 4th order           |                      |              | 8.21  | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>4106</u>          | Mar 12, 2003 |       |       |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW032_02      | Castle Creek - 1st and 2nd order   | r                    |              | 44.45 | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>4106</u>          | Mar 12, 2003 |       |       |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW032_03      | Castle Creek - 3rd order           |                      |              | 6.02  | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>4106</u>          | Mar 12, 2003 |       |       |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW033_03      | Beaver Creek - 3rd order           |                      |              | 3.7   | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW033_04      | Beaver Creek - 4th order           |                      |              | 2.58  | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW034_02      | Red Canyon Creek - 1st and 2nd     | d order              |              | 77.65 | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW034_03      | Red Canyon Creek - 3rd order       |                      |              | 10.09 | Miles |
| TEMPERATURE             |                                    | <u>42251</u>         | Jul 20, 2012 |       |       |
| ID17050104SW034_04      | Red Canyon Creek - 4th order       |                      |              | 2.96  | Miles |
| TEMPERATURE             |                                    | 42251                | Jul 20, 2012 |       |       |

| 17050105           | South Fork Owyhee                                     |               |       |       |
|--------------------|-------------------------------------------------------|---------------|-------|-------|
|                    | EPA TMDL ID                                           | Approval Date |       |       |
| ID17050105SW001_06 | SF Owyhee River - Nevada border to Little Owyhee F    | River         | 19.62 | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050105SW001_07 | South Fork Owyhee River - Little Owyhee River to mo   | outh          | 12.8  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| 17050107           | Middle Owyhee                                         |               |       |       |
|                    | EPA TMDL ID                                           | Approval Date | •     |       |
| ID17050107SW004_02 | MF Owyhee River & tributaries - 1st and 2nd order     |               | 48.02 | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW004_03 | Middle Fork Owyhee River - 3rd order section          |               | 4.59  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW008_02 | North Fork Owyhee River - 1st and 2nd order           |               | 39.82 | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW008_03 | North Fork Owyhee River - 3rd order section           |               | 6.52  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW008_04 | NF Owyhee River & Juniper Creek - 4th order           |               | 2.32  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW008_05 | NF Owyhee River - 5th order (Juniper Creek to State   | Line)         | 6.38  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW009_02 | Pleasant Valley Cr. & Tribs - 1st & 2nd order         |               | 37.74 | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW009_03 | Pleasant Valley Creek - 3rd order section             |               | 5.68  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW010_02 | Noon Creek - entire watershed                         |               | 23.95 | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW011_02 | Cabin & Corral Creeks & tributaries - 1st & 2nd order |               | 36.08 | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW011_03 | Cabin & Corral Creeks - 3rd order sections            |               | 2.59  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW012_02 | Juniper Creek & tributaries - 1st & 2nd order         |               | 24.49 | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |
| ID17050107SW012_03 | Juniper Creek - 3rd order section                     |               | 6.87  | Miles |
| TEMPERATURE        | <u>42251</u>                                          | Jul 20, 2012  |       |       |

| 17050108                   | Jordan                           |                          |               |        |       |
|----------------------------|----------------------------------|--------------------------|---------------|--------|-------|
|                            | EPA                              | A TMDL ID                | Approval Date |        |       |
| ID17050108SW001_05         | Jordan Creek - Williams Creek to | o State Line             |               | 13.35  | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW004_02         | Jordan Creek, Upper - 1st and 2  | nd order tributaries     |               | 102.35 | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW004_03         | Jordan Creek - Jacobs Gulch to   | Louse Creek              |               | 13.41  | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW004_04         | Jordan Creek - Louse Creek to E  | Big Boulder Creek        |               | 5.64   | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW004_05         | Jordan Creek - Big Boulder Cree  | k to Williams Creek      |               | 3.37   | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW013_02         | Rock Creek above Triangle Rese   | ervoir - 1st and 2nd ord | er            | 63.9   | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW014_02         | Louisa Creek - entire drainage   |                          |               | 13.81  | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW015_02         | Spring and Meadow Creeks - 1st   | t and 2nd order          |               | 48.83  | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW015_03         | Spring and Meadow Creeks - 3rd   | d order sections         |               | 8.09   | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW021_02         | Cow Creek - 1st and 2nd order    |                          |               | 55.14  | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW021_03         | Cow Creek - 3rd order (Wildcat G | Canyon to Soda Creek)    | 1             | 3.42   | Miles |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW022_02         | Soda, Swisher and Chimney Cre    | eks - 1st and 2nd orde   | r             | 36.92  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| ID17050108SW022_03         | Soda Creek - 3rd order section   |                          |               | 3.08   | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| TEMPERATURE                |                                  | <u>40189</u>             | Apr 13, 2011  |        |       |
| 17050112                   | Boise-Mores                      |                          |               |        |       |
|                            | EPA                              | A TMDL ID                | Approval Date |        |       |
| ID17050112SW001L_0La       | Lucky Peak Lake - Robie Creek    | Swim Beach area          |               | 13     | Acres |
| ESCHERICHIA COLI (E. COLI) |                                  | 38234                    | Feb 18, 2010  |        |       |

| ID17050112SW009_02      | Mores Creek - 1st and 2nd orde   | r                        |               | 133.16 | Miles |
|-------------------------|----------------------------------|--------------------------|---------------|--------|-------|
| SEDIMENTATION/SILTATION |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW009_03      | Mores Creek - 3rd order (Hayfor  | rk Creek to Elk Creek)   |               | 12.3   | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW009_04      | Mores Creek - 4th order (Elk Cre | eek to Grimes Creek)     |               | 8.84   | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW009_06      | Mores Creek - 6th order (Grimes  | s Creek to mouth)        |               | 10.54  | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW011_03      | Thorn Creek - 3rd order (NF Tho  | orn Creek to mouth)      |               | 4.99   | Miles |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW013_02      | Grimes Creek - 1st and 2nd orde  | er                       |               | 154.27 | Miles |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW013_03      | Grimes, Clear and Smith Creeks   | s - 3rd order sections   |               | 8.57   | Miles |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW013_04      | Grimes Creek - 4th order (Clear  | Creek to Granite Creek   | x)            | 9.64   | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW013_05      | Grimes Creek - 5th order (Grani  | te Creek to mouth)       |               | 14.65  | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| ID17050112SW015_02      | Macks Creek - 1st and 2nd orde   | er                       |               | 17.79  | Miles |
| TEMPERATURE             |                                  | <u>38234</u>             | Feb 18, 2010  |        |       |
| 17050113                | South Fork Boise                 |                          |               |        |       |
|                         | EP                               | A TMDL ID                | Approval Date |        |       |
| ID17050113SW010_05      | Lime Creek - 5th order           |                          |               | 4.07   | Miles |
| TEMPERATURE             |                                  | <u>35910</u>             | Mar 25, 2009  |        |       |
| ID17050113SW032_02      | Smith Creek and tributaries - 1s | t and 2nd order          |               | 47.41  | Miles |
| TEMPERATURE             |                                  | <u>35910</u>             | Mar 25, 2009  |        |       |
| ID17050113SW032_03      | Smith Creek - 3rd order (Mule G  | Sulch to SF Boise River) |               | 16.45  | Miles |
| TEMPERATURE             |                                  | <u>35910</u>             | Mar 25, 2009  |        |       |

| 17050114                   | Lower Boise              |                             |               |        |       |
|----------------------------|--------------------------|-----------------------------|---------------|--------|-------|
|                            |                          | EPA TMDL ID                 | Approval Date | ;      |       |
| ID17050114SW001_02         | Dixie Slough             |                             |               | 20.16  | Miles |
| ESCHERICHIA COLI (E. COLI) |                          | <u>64560</u>                | Sep 18, 2015  |        |       |
| ID17050114SW001_06         | Boise River - Indian Cre | eek to mouth                |               | 44.91  | Miles |
| FECAL COLIFORM             |                          | <u>34394</u>                | Jun 03, 2008  |        |       |
|                            |                          | <u>735</u>                  | Jan 25, 2000  |        |       |
| PHOSPHORUS, TOTAL          |                          | <u>65220</u>                | Dec 22, 2015  |        |       |
| SEDIMENTATION/SILTATION    |                          | <u>34394</u>                | Jun 03, 2008  |        |       |
|                            |                          | <u>735</u>                  | Jan 25, 2000  |        |       |
| ID17050114SW002_04         | Indian Creek - Sugar A   | venue to Boise River        |               | 11.91  | Miles |
| ESCHERICHIA COLI (E. COLI) |                          | <u>64560</u>                | Sep 18, 2015  |        |       |
| SEDIMENTATION/SILTATION    |                          | <u>64560</u>                | Sep 18, 2015  |        |       |
| ID17050114SW003b_03        | Indian Creek - Indian C  | reek Reservoir to New York  | Canal         | 41.2   | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>64560</u>                | Sep 18, 2015  |        |       |
| ID17050114SW003d_02        | Indian Creek above Re    | servoir - 1st and 2nd order |               | 62.17  | Miles |
| ESCHERICHIA COLI (E. COLI) |                          | <u>64560</u>                | Sep 18, 2015  |        |       |
| SEDIMENTATION/SILTATION    |                          | <u>64560</u>                | Sep 18, 2015  |        |       |
| ID17050114SW003d_03        | Indian Creek above Re    | servoir - 3rd order         |               | 11.54  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>64560</u>                | Sep 18, 2015  |        |       |
| ID17050114SW004_06         | Lake Lowell              |                             |               | 6059.2 | Acres |
| PHOSPHORUS, TOTAL          |                          | <u>39781</u>                | Dec 06, 2010  |        |       |
| ID17050114SW005_06         | Boise River - Veterans   | Memorial Parkway to Star B  | ridge         | 36.89  | Miles |
| FECAL COLIFORM             |                          | <u>34394</u>                | Jun 03, 2008  |        |       |
|                            |                          | <u>735</u>                  | Jan 25, 2000  |        |       |
| SEDIMENTATION/SILTATION    |                          | <u>34394</u>                | Jun 03, 2008  |        |       |
|                            |                          | <u>735</u>                  | Jan 25, 2000  |        |       |
| ID17050114SW005_06a        | Boise River-Star to Mid  | dleton                      |               | 11.34  | Miles |
| FECAL COLIFORM             |                          | <u>735</u>                  | Jan 25, 2000  |        |       |
| SEDIMENTATION/SILTATION    |                          | <u>735</u>                  | Jan 25, 2000  |        |       |
| ID17050114SW005_06b        | Boise River-Middleton t  | to Indian Creek             |               | 7.84   | Miles |
| FECAL COLIFORM             |                          | 735                         | Jan 25, 2000  |        |       |
| PHOSPHORUS, TOTAL          |                          | <u>65220</u>                | Dec 22, 2015  |        |       |
| SEDIMENTATION/SILTATION    |                          | <u>735</u>                  | Jan 25, 2000  |        |       |

| ID17050114SW006 02         | Mason Creek - entire watershed     |                           |              | 29.83 | Miles |
|----------------------------|------------------------------------|---------------------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| SEDIMENTATION/SILTATION    |                                    | 64560                     | Sep 18, 2015 |       |       |
| ID17050114SW007 04         | Fifteenmile Creek - 4th order (Fiv | vemile Creek to mouth)    | • •          | 3.73  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW008_03         | Tenmile Creek - 3rd order below    | Blacks Creek Reservoir    |              | 29.49 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW010_02         | Fivemile, Eightmile, and Ninemile  | e Creeks - 1st and 2nd or | der          | 66.16 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW010_03         | Fivemile Creek - 3rd order         |                           |              | 22.63 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | 64560                     | Sep 18, 2015 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW012_02         | Stewart Gulch, Cottonwood and (    | Crane Creeks - 1st & 2nd  | d order      | 63.71 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW015_03         | Willow Creek - 3rd order           |                           |              | 18.36 | Miles |
| SEDIMENTATION/SILTATION    |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW016_03         | Sand Hollow Creek (C-Line Cana     | al to I-84)               |              | 5.55  | Miles |
| SEDIMENTATION/SILTATION    |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW017_03         | Sand Hollow Creek - I-84 to Shar   | p Road                    |              | 18.25 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |
| ID17050114SW017_06         | Sand Hollow Creek - Sharp Road     | to Snake River            |              | 3.68  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | 64560                     | Sep 18, 2015 |       |       |
| SEDIMENTATION/SILTATION    |                                    | <u>64560</u>              | Sep 18, 2015 |       |       |

| 17050115                   | Middle Snake         | -Payette                            |               |        |       |
|----------------------------|----------------------|-------------------------------------|---------------|--------|-------|
|                            |                      | EPA TMDL ID                         | Approval Date | )      |       |
| ID17050115SW001_08         | Snake River - Boise  | River to Weiser River               |               | 75.57  | Miles |
| DDD (DICHLORODIPHENYLDIC   | HLOROETHANE)         | <u>9781</u>                         | Mar 01, 2004  |        |       |
| DDE (DICHLORODIPHENYLDIC   | HLOROETHYLENE)       | <u>9781</u>                         | Mar 01, 2004  |        |       |
| DDT (DICHLORODIPHENYLTRI   | CHLOROETHANE)        | <u>9781</u>                         | Mar 01, 2004  |        |       |
| DIELDRIN                   |                      | <u>9781</u>                         | Mar 01, 2004  |        |       |
| DISSOLVED OXYGEN           |                      | <u>9781</u>                         | Mar 01, 2004  |        |       |
| PHOSPHORUS, TOTAL          |                      | <u>10745</u>                        | Sep 09, 2004  |        |       |
| SEDIMENTATION/SILTATION    |                      | <u>10745</u>                        | Sep 09, 2004  |        |       |
| TEMPERATURE                |                      | <u>10745</u>                        | Sep 09, 2004  |        |       |
| 17050121                   | Middle Fork P        | avette                              |               |        |       |
|                            |                      | EPA TMDL ID                         | Approval Date | )      |       |
| ID17050121SW001_04         | Lower MF Payette F   | River - 4th order                   |               | 13.2   | Miles |
| SEDIMENTATION/SILTATION    |                      | <u>4189</u>                         | Jul 18, 2000  |        |       |
| TEMPERATURE                |                      | <u>33841</u>                        | Dec 04, 2007  |        |       |
| ID17050121SW005_03         | Upper MF Payette F   | River - 3rd order                   |               | 13.15  | Miles |
| TEMPERATURE                |                      | <u>33841</u>                        | Dec 04, 2007  |        |       |
| ID17050121SW005_04         | Upper MF Payette F   | River - 4th order                   |               | 8.52   | Miles |
| TEMPERATURE                |                      | <u>33841</u>                        | Dec 04, 2007  |        |       |
| 17050122                   | Pavette              |                                     |               |        |       |
|                            |                      | EPA TMDL ID                         | Approval Date | )      |       |
| ID17050122SW001_06         | Payette River - Blac | k Canyon Reservoir Dam to mou       | th            | 66.8   | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>744</u>                          | May 31, 2000  |        |       |
| ID17050122SW015_03a        | Bissel Creek - lower | 3rd order                           |               | 3.94   | Miles |
| ESCHERICHIA COLI (E. COLI) |                      | <u>9668</u>                         | Oct 24, 2003  |        |       |
| SEDIMENTATION/SILTATION    |                      | <u>9668</u>                         | Oct 24, 2003  |        |       |
| ID17050122SW017_02         | Big Willow Creek - 1 | Ist and 2nd order                   |               | 164.98 | Miles |
| TEMPERATURE                |                      | <u>34592</u>                        | Jul 01, 2008  |        |       |
| ID17050122SW017_03         | Big Willow Creek an  | nd Dry Creek - 3rd order sections   |               | 15.82  | Miles |
| TEMPERATURE                |                      | <u>34592</u>                        | Jul 01, 2008  |        |       |
| ID17050122SW017_04         | Big Willow Creek - 4 | Ith order (Dry Creek to Payette D   | itch)         | 13.28  | Miles |
| TEMPERATURE                |                      | <u>34592</u>                        | Jul 01, 2008  |        |       |
| ID17050122SW017_06         | Big Willow Creek - 6 | oth order (Payette Ditch, Birding I | sland)        | 14.89  | Miles |
| TEMPERATURE                |                      | <u>34592</u>                        | Jul 01, 2008  |        |       |

| ID17050122SW018_03         | Little Willow Creek - Paddock Valley Dam to Indian Creek |              | 5.85  | Miles |
|----------------------------|----------------------------------------------------------|--------------|-------|-------|
| TEMPERATURE                | <u>55301</u>                                             | Dec 11, 2013 |       |       |
| ID17050122SW018_04         | Little Willow Creek - Indian Creek to mouth              |              | 19.25 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>55301</u>                                             | Dec 11, 2013 |       |       |
| SEDIMENTATION/SILTATION    | <u>55301</u>                                             | Dec 11, 2013 |       |       |
| TEMPERATURE                | <u>55301</u>                                             | Dec 11, 2013 |       |       |

| 17050123                | North Fork Payette                                      |               |        |       |
|-------------------------|---------------------------------------------------------|---------------|--------|-------|
|                         | EPA TMDL ID                                             | Approval Date |        |       |
| ID17050123SW001_06      | North Fork Payette River - Cascade to Smiths Ferry      |               | 23.21  | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW002_02      | Round Valley Creek - 1st and 2nd order                  |               | 30.32  | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW002_03      | Round Valley Creek - 3rd order                          |               | 2.4    | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW003_02      | Clear Creek - 1st and 2nd order tributaries             |               | 47.54  | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW003_03      | Clear Creek - upper 3rd order                           |               | 9.56   | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW003_03a     | Clear Creek - lower 3rd order                           |               | 3.69   | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW004_03a     | Big Creek - lower 3rd order (Horsethief Creek to mouth) | )             | 5.63   | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW004_06      | Big Creek - NF Payette River side channel               |               | 3.16   | Miles |
| SEDIMENTATION/SILTATION | <u>11766</u>                                            | Aug 17, 2005  |        |       |
| ID17050123SW007_02      | West Mountain tributaries to Cascade Reservoir          |               | 60.49  | Miles |
| PHOSPHORUS, TOTAL       | <u>221</u>                                              | May 13, 1996  |        |       |
| ID17050123SW007_05      | Gold Fork, 5th order, between high and low water lines  |               | 1.17   | Miles |
| PH                      | <u>1999</u>                                             | Apr 19, 1999  |        |       |
| PHOSPHORUS, TOTAL       | <u>1999</u>                                             | Apr 19, 1999  |        |       |
| ID17050123SW007L_0L     | Cascade Reservoir                                       | 25            | 039.52 | Acres |
| PH                      | <u>1999</u>                                             | Apr 19, 1999  |        |       |
| PHOSPHORUS, TOTAL       | <u>1999</u>                                             | Apr 19, 1999  |        |       |
| ID17050123SW008_05      | Gold Fork - upper 5th order, above Gold Fork Ditch      |               | 2.61   | Miles |
| PHOSPHORUS, TOTAL       | 221                                                     | May 13, 1996  |        |       |

| ID17050123SW008_05a     | Gold Fork - lower 5th order, below Gold Fork Ditch     |               | 4.01  | Miles |
|-------------------------|--------------------------------------------------------|---------------|-------|-------|
| PHOSPHORUS, TOTAL       | <u>1999</u>                                            | Apr 19, 1999  |       |       |
| SEDIMENTATION/SILTATION | <u>41498</u>                                           | Feb 22, 2012  |       |       |
| ID17050123SW011_02      | Boulder/Willow Creek - 1st and 2nd order irrigated se  | ctions        | 19.63 | Miles |
| PHOSPHORUS, TOTAL       | <u>221</u>                                             | May 13, 1996  |       |       |
| ID17050123SW011_03      | Boulder Creek - 3rd order (Louie Creek to mouth)       |               | 11.55 | Miles |
| PHOSPHORUS, TOTAL       | <u>221</u>                                             | May 13, 1996  |       |       |
| SEDIMENTATION/SILTATION | <u>41498</u>                                           | Feb 22, 2012  |       |       |
| ID17050123SW015_02      | Mud Creek - 1st and 2nd order                          |               | 26.75 | Miles |
| PHOSPHORUS, TOTAL       | <u>221</u>                                             | May 13, 1996  |       |       |
| SEDIMENTATION/SILTATION | <u>41498</u>                                           | Feb 22, 2012  |       |       |
| ID17050123SW015_03      | Mud Creek - 3rd order (Norwood to Reservoir)           |               | 7.26  | Miles |
| PHOSPHORUS, TOTAL       | <u>221</u>                                             | May 13, 1996  |       |       |
| SEDIMENTATION/SILTATION | <u>41498</u>                                           | Feb 22, 2012  |       |       |
| ID17050123SW017_02a     | Payette Lake - Eastside tribs, inc.Lemah & parts of Fa | all Cr.       | 22.57 | Miles |
| TEMPERATURE             | <u>11766</u>                                           | Aug 17, 2005  |       |       |
| ID17050123SW017_03      | Fall Creek - 3rd order                                 |               | 2.5   | Miles |
| TEMPERATURE             | <u>11766</u>                                           | Aug 17, 2005  |       |       |
| ID17050123SW018_02      | North Fork Payette River - 1st and 2nd order           |               | 37.22 | Miles |
| TEMPERATURE             | <u>11766</u>                                           | Aug 17, 2005  |       |       |
| 17050124                | Weiser                                                 |               |       |       |
|                         | EPA TMDL ID                                            | Approval Date |       |       |
| ID17050124SW001_05      | Weiser River - Keithly Creek to Crane Creek            |               | 20.72 | Miles |
| SEDIMENTATION/SILTATION | <u>31999</u>                                           | Jan 19, 2007  |       |       |
| TEMPERATURE             | <u>31999</u>                                           | Jan 19, 2007  |       |       |
| ID17050124SW001_06      | Weiser River - Crane Creek to Galloway Dam             |               | 4.66  | Miles |
| SEDIMENTATION/SILTATION | <u>31999</u>                                           | Jan 19, 2007  |       |       |
| TEMPERATURE             | <u>31999</u>                                           | Jan 19, 2007  |       |       |

| TEMPERATURE                                                     | <u>31999</u>                                                  | Jan 19, 2007                                     |       |       |
|-----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-------|-------|
| ID17050124SW001_06a                                             | Weiser River - Galloway Dam to Snake River                    |                                                  | 16.98 | Miles |
| SEDIMENTATION/SILTATION                                         | <u>31999</u>                                                  | Jan 19, 2007                                     |       |       |
| TEMPERATURE                                                     | <u>31999</u>                                                  | Jan 19, 2007                                     |       |       |
|                                                                 |                                                               | Crane Creek - Crane Creek Reservoir Dam to mouth |       |       |
| ID17050124SW003_05                                              | Crane Creek - Crane Creek Reservoir Dam to mouth              |                                                  | 17.17 | Miles |
| ID17050124SW003_05<br>FECAL COLIFORM                            | Crane Creek - Crane Creek Reservoir Dam to mouth <u>31999</u> | Jan 19, 2007                                     | 17.17 | Miles |
| ID17050124SW003_05<br>FECAL COLIFORM<br>SEDIMENTATION/SILTATION | Crane Creek - Crane Creek Reservoir Dam to mouth 31999 31999  | Jan 19, 2007<br>Jan 19, 2007                     | 17.17 | Miles |

| ID17050124SW004_04         | North Crane Creek -500m segn      | nent above reservoir (ve | ery small)    | 0.26   | Miles |
|----------------------------|-----------------------------------|--------------------------|---------------|--------|-------|
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW005_02         | South Crane & Tennison Creek      | s - 1st and 2nd order    |               | 50.95  | Miles |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW005_03         | South Crane Creek - 3rd order     |                          |               | 7.2    | Miles |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW005_04         | South Crane Creek - 4th order     |                          |               | 2.44   | Miles |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW006_02         | North Crane Creek watershed -     | all 1st and 2nd order st | reams         | 185.98 | Miles |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW006_03         | North Crane Creek - 3rd order     |                          |               | 14.49  | Miles |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW006_04         | North Crane Creek - (Middle Cr    | eek to Reservoir)        |               | 5.85   | Miles |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW007_05         | Weiser River - Hornet Creek to    | Little Weiser River      |               | 24.29  | Miles |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW007_05a        | Weiser River - Little Weiser Riv  | er to Keithly Creek      |               | 7.38   | Miles |
| SEDIMENTATION/SILTATION    |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW008_03         | Little Weiser River - lower 3rd o | rder (rangeland)         |               | 17.2   | Miles |
| ESCHERICHIA COLI (E. COLI) |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| ID17050124SW008_04         | Little Weiser River - Grays Cree  | ek to mouth              |               | 20.3   | Miles |
| ESCHERICHIA COLI (E. COLI) |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| SEDIMENTATION/SILTATION    |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| TEMPERATURE                |                                   | <u>31999</u>             | Jan 19, 2007  |        |       |
| 17050201                   | Brownlee Reservoir                |                          |               |        |       |
|                            | EP                                | A TMDL ID                | Approval Date |        |       |

| ID17050201SW001_08       | Hells Canyon Reservoir |              |              | 2510.21 | Acres |
|--------------------------|------------------------|--------------|--------------|---------|-------|
| DISSOLVED GAS SUPERSATUR | RATION                 | <u>9781</u>  | Mar 01, 2004 |         |       |
| TEMPERATURE              |                        | <u>10745</u> | Sep 09, 2004 |         |       |

| ID17050201SW002_08                                                                                                                                                                                                                                                                                                                                                                            | Oxbow Reservoir                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     | 1106.23                            | Acres                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|
| DDD (DICHLORODIPHENYLDIC                                                                                                                                                                                                                                                                                                                                                                      | HLOROETHANE)                                                                                                                       | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DDE (DICHLORODIPHENYLDIC                                                                                                                                                                                                                                                                                                                                                                      | HLOROETHYLENE)                                                                                                                     | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DDT (DICHLORODIPHENYLTRI                                                                                                                                                                                                                                                                                                                                                                      | CHLOROETHANE)                                                                                                                      | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DIELDRIN                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DISSOLVED GAS SUPERSATU                                                                                                                                                                                                                                                                                                                                                                       | RATION                                                                                                                             | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    | <u>10745</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sep 09, 2004                                                                                                                                                                                        |                                    |                         |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    | <u>10745</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sep 09, 2004                                                                                                                                                                                        |                                    |                         |
| TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | <u>10745</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sep 09, 2004                                                                                                                                                                                        |                                    |                         |
| ID17050201SW003_08                                                                                                                                                                                                                                                                                                                                                                            | Brownlee Reservoir, Low                                                                                                            | er (Porters Flat to Browr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nlee Dam)                                                                                                                                                                                           | 13193.87                           | Acres                   |
| DDD (DICHLORODIPHENYLDIC                                                                                                                                                                                                                                                                                                                                                                      | HLOROETHANE)                                                                                                                       | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DDE (DICHLORODIPHENYLDIC                                                                                                                                                                                                                                                                                                                                                                      | HLOROETHYLENE)                                                                                                                     | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DDT (DICHLORODIPHENYLTRI                                                                                                                                                                                                                                                                                                                                                                      | CHLOROETHANE)                                                                                                                      | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DIELDRIN                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| DISSOLVED OXYGEN                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    | <u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar 01, 2004                                                                                                                                                                                        |                                    |                         |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    | <u>10745</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sep 09, 2004                                                                                                                                                                                        |                                    |                         |
| TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | <u>10745</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sep 09, 2004                                                                                                                                                                                        |                                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     |                                    |                         |
| ID17050201SW004_08                                                                                                                                                                                                                                                                                                                                                                            | Brownlee Reservoir, Upp                                                                                                            | er (Weiser to Porters Fla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at)                                                                                                                                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC                                                                                                                                                                                                                                                                                                                                                | Brownlee Reservoir, Upp<br>HLOROETHANE)                                                                                            | er (Weiser to Porters Fla<br><u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at)<br>Mar 01, 2004                                                                                                                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC                                                                                                                                                                                                                                                                                                                    | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)                                                                          | er (Weiser to Porters Fla<br><u>9781</u><br><u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at)<br>Mar 01, 2004<br>Mar 01, 2004                                                                                                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC                                                                                                                                                                                                                                                                                       | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)                                                         | er (Weiser to Porters Fla<br><u>9781</u><br><u>9781</u><br><u>9781</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004                                                                                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN                                                                                                                                                                                                                                                                           | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)                                                         | er (Weiser to Porters Fla<br><u>9781</u><br><u>9781</u><br><u>9781</u><br><u>10745</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004                                                                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN                                                                                                                                                                                                                                                       | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)                                                         | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004                                                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL                                                                                                                                                                                                                                  | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)                                                         | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>9781<br>9781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004                                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION                                                                                                                                                                                                       | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)                                                         | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>9781<br>9781<br>10745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004                                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE                                                                                                                                                                                        | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)                                                         | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>9781<br>9781<br>10745<br>10745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004                                                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02                                                                                                                                                                  | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa                            | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>9781<br>9781<br>10745<br>10745<br>10745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004                                                                 | 22.95                              | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02<br>PHOSPHORUS, TOTAL                                                                                                                                             | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa                            | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004<br>Sep 09, 2004                                                                 | 22.95                              | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION                                                                                                                  | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa                            | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>10745<br>10745<br>10745<br>10745<br>10745<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004<br>Sep 09, 2004                                                                 | 22.95                              | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17050201SW006_02                                                                                            | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa                            | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>9781<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004<br>Sep 09, 2003<br>Sep 30, 2003                                 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17050201SW006_02<br>PHOSPHORUS, TOTAL                                                                       | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa                            | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745                                                                                                 | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004<br>Sep 30, 2003<br>Sep 30, 2003                                 | 1081.27                            | Acres<br>Miles<br>Miles |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17050201SW006_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION                                            | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa                            | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>10745<br>10745<br>10745<br>atershed<br>9489<br>9489<br>9489<br>9489<br>9489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004<br>Sep 30, 2003<br>Sep 30, 2003<br>Sep 30, 2003<br>Sep 30, 2003 | 1081.27                            | Acres                   |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17050201SW006_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION                                            | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa<br>Scott Creek - 2nd order | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745                                                                                                 | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004<br>Sep 30, 2003<br>Sep 30, 2003<br>Sep 30, 2003                 | 1081.27<br>22.95<br>15.52<br>14.39 | Acres Miles Miles       |
| ID17050201SW004_08<br>DDD (DICHLORODIPHENYLDIC<br>DDE (DICHLORODIPHENYLDIC<br>DDT (DICHLORODIPHENYLTRIC<br>DIELDRIN<br>DISSOLVED OXYGEN<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TEMPERATURE<br>ID17050201SW005_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17050201SW006_02<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17050201SW006_03<br>PHOSPHORUS, TOTAL | Brownlee Reservoir, Upp<br>HLOROETHANE)<br>HLOROETHYLENE)<br>CHLOROETHANE)<br>Jenkins Creek - entire wa<br>Scott Creek - 2nd order | er (Weiser to Porters Fla<br>9781<br>9781<br>9781<br>10745<br>9781<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745<br>10745                                                                                                 | at)<br>Mar 01, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Mar 01, 2004<br>Mar 01, 2004<br>Sep 09, 2004<br>Sep 09, 2004<br>Sep 30, 2003<br>Sep 30, 2003<br>Sep 30, 2003<br>Sep 30, 2003 | 1081.27<br>22.95<br>15.52<br>14.39 | Acres<br>Miles<br>Miles |

| ID17050201SW007_02      | Warm Springs Creek - 1st and 2   | nd order                 |              | 32.62 | Miles |
|-------------------------|----------------------------------|--------------------------|--------------|-------|-------|
| PHOSPHORUS, TOTAL       |                                  | <u>9489</u>              | Sep 30, 2003 |       |       |
| SEDIMENTATION/SILTATION |                                  | <u>9489</u>              | Sep 30, 2003 |       |       |
| ID17050201SW007_03      | Warm Springs Creek - 3rd order   |                          |              | 5.31  | Miles |
| PHOSPHORUS, TOTAL       |                                  | <u>9489</u>              | Sep 30, 2003 |       |       |
| SEDIMENTATION/SILTATION |                                  | <u>9489</u>              | Sep 30, 2003 |       |       |
| ID17050201SW008_02      | Hog Creek - 1st & 2nd order      |                          |              | 34.41 | Miles |
| PHOSPHORUS, TOTAL       |                                  | <u>9489</u>              | Sep 30, 2003 |       |       |
| ID17050201SW008_03      | Hog Creek - 3rd order section    |                          |              | 2.89  | Miles |
| PHOSPHORUS, TOTAL       |                                  | <u>9489</u>              | Sep 30, 2003 |       |       |
| ID17050201SW012_02      | Dennett Creek - 1st & 2nd order  |                          |              | 16.38 | Miles |
| SEDIMENTATION/SILTATION |                                  | <u>9489</u>              | Sep 30, 2003 |       |       |
| ID17050201SW015_02      | Wildhorse River - 1st and 2nd or | der, including Crooked R | iver         | 73.79 | Miles |
| TEMPERATURE             |                                  | <u>33476</u>             | Oct 01, 2007 |       |       |
| ID17050201SW015_04      | Wildhorse River - 4th order (Bea | r Creek to mouth)        |              | 13.74 | Miles |
| TEMPERATURE             |                                  | <u>33476</u>             | Oct 01, 2007 |       |       |
| ID17050201SW016_02      | Bear Creek - 1st and 2nd order   |                          |              | 88.4  | Miles |
| TEMPERATURE             |                                  | <u>33476</u>             | Oct 01, 2007 |       |       |
| ID17050201SW016_03      | Lick and Deer Creeks - 3rd orde  | r sections               |              | 4.74  | Miles |
| TEMPERATURE             |                                  | 33476                    | Oct 01, 2007 |       |       |
| ID17050201SW016_04      | Lick and Bear Creeks - 4th order | sections                 |              | 7.45  | Miles |
| TEMPERATURE             |                                  | 33476                    | Oct 01, 2007 |       |       |

| 17040104                   | Palisades                |                              |               |       |       |
|----------------------------|--------------------------|------------------------------|---------------|-------|-------|
|                            |                          | EPA TMDL ID                  | Approval Date |       |       |
| ID17040104SK001_02         | Snake River - Black Ca   | nyon Creek to river mile 856 |               | 48.36 | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>55461</u>                 | Feb 10, 2014  |       |       |
| ID17040104SK002_02         | Antelope Creek - source  | e to mouth                   |               | 70.51 | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>2013</u>                  | Feb 20, 2001  |       |       |
| ID17040104SK002_03         | Antelope Creek - source  | e to mouth                   |               | 5.95  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>2013</u>                  | Feb 20, 2001  |       |       |
| ID17040104SK006_02         | Fall Creek - source to S | outh Fork Fall Creek         |               | 72.67 | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>9805</u>                  | Apr 08, 2004  |       |       |
| TEMPERATURE                |                          | <u>9805</u>                  | Apr 08, 2004  |       |       |
| ID17040104SK006_03         | Fall Creek - source to S | outh Fork Fall Creek         |               | 5.02  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>9805</u>                  | Apr 08, 2004  |       |       |
| TEMPERATURE                |                          | <u>9805</u>                  | Apr 08, 2004  |       |       |
| ID17040104SK006_04         | Fall Creek - source to S | outh Fork Fall Creek         |               | 7.23  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>9805</u>                  | Apr 08, 2004  |       |       |
| TEMPERATURE                |                          | <u>9805</u>                  | Apr 08, 2004  |       |       |
| ID17040104SK011_04         | Bear Creek - North Fork  | < Bear Creek to Palisades Re | servoir       | 5.35  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>2013</u>                  | Feb 20, 2001  |       | -     |
| ID17040104SK013_02         | Bear Creek - source to   | North Fork Bear Creek        |               | 54.73 | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>2013</u>                  | Feb 20, 2001  |       | -     |
| ID17040104SK013_03         | Bear Creek - source to   | North Fork Bear Creek        |               | 6.75  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>2013</u>                  | Feb 20, 2001  |       |       |
| ID17040104SK024_04         | Indian Creek - Idaho/W   | yoming border to Palisades R | eservoir      | 2.21  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>55461</u>                 | Feb 10, 2014  |       |       |
| ID17040104SK028_04         | Rainey Creek - source t  | to mouth                     |               | 12.45 | Miles |
| ESCHERICHIA COLI (E. COLI) |                          | <u>55461</u>                 | Feb 10, 2014  |       |       |
| TEMPERATURE                |                          | ID_Raine_Jul-25-19           | Jul 25, 2019  |       |       |
| 17040105                   | Salt                     |                              |               |       |       |
|                            |                          | EPA TMDL ID                  | Approval Date |       |       |
| ID17040105SK001_02b        | Newswander Canyon        |                              |               | 4.96  | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>ID99911</u>               | Aug 27, 2018  |       |       |
| ID17040105SK003_02         | Tincup Creek - source t  | o Idaho/Wyoming border       |               | 59.91 | Miles |
| SEDIMENTATION/SILTATION    |                          | <u>ID99911</u>               | Aug 27, 2018  |       |       |
| ID17040105SK003_02e        | Bear Canyon              |                              |               | 3.1   | Miles |
| ESCHERICHIA COLI (E. COLI) |                          | <u>68601</u>                 | Jan 24, 2018  |       |       |
|                            |                          |                              |               |       |       |

| ID17040105SK003_02i        | Luthi Canyon                  |                |              | 4.29  | Miles |
|----------------------------|-------------------------------|----------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK003_02j        | Haderlie Creek                |                |              | 8.65  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK006_02c        | Upper Boulder Creek           |                |              | 4.68  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK006_02g        | Graehl Canyon                 |                |              | 1.4   | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK006_04         | lower Stump Creek             |                |              | 10.43 | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>68601</u>   | Jan 24, 2018 |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK007_02c        | Smoky Creek                   |                |              | 10.78 | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>68601</u>   | Jan 24, 2018 |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK007_02f        | Draney Creek                  |                |              | 6.87  | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>68601</u>   | Jan 24, 2018 |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK007_03         | Tygee Creek - source to mouth | ı              |              | 5.55  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK008_02a        | White Dugway Creek            |                |              | 5.31  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK008_02c        | Beaver Dam Creek              |                |              | 5.12  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK008_04         | Crow Creek - Deer Creek to be | order          |              | 10.44 | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>68601</u>   | Jan 24, 2018 |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK011_03         | Rock Creek                    |                |              | 3.44  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK012_02a        | Little Elk Creek              |                |              | 8.38  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| ID17040105SK012_03         | Spring Creek                  |                |              | 1.22  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>ID99911</u> | Aug 27, 2018 |       |       |
| 17040201                   | Idaho Falls                   |                |              |       |       |

|                         |                              | EPA TMDL ID  | Approval Da  | ate   |       |
|-------------------------|------------------------------|--------------|--------------|-------|-------|
| ID17040201SK008_02      | Birch Creek - source to mour | th           |              | 29.34 | Miles |
| SEDIMENTATION/SILTATION |                              | <u>11120</u> | Nov 22, 2004 | Ļ     | -     |

| ID17040201SK008_03         | Birch Creek - source to mouth     |                     |               | 6.21  | Miles |
|----------------------------|-----------------------------------|---------------------|---------------|-------|-------|
| SEDIMENTATION/SILTATION    |                                   | <u>11120</u>        | Nov 22, 2004  |       |       |
| 17040202                   | Upper Henrys                      |                     |               |       |       |
|                            | EP/                               | A TMDL ID           | Approval Date |       |       |
| ID17040202SK002_04         | Warm River - Warm River Spring    | g to mouth          |               | 8.74  | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK002_05         | Warm River - Warm River Spring    | g to mouth          |               | 0.56  | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK005_02         | Warm River - source to Warm R     | iver Spring         |               | 70.27 | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK005_03         | Warm River - source to Warm R     | iver Spring         |               | 17.47 | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK005_04         | Warm River - source to Warm R     | iver Spring         |               | 7.49  | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK018_03         | Buffalo River - source to Elk Cre | ek                  |               | 7.27  | Miles |
| SEDIMENTATION/SILTATION    |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK033_02         | Howard Creek - source to mouth    | 1                   |               | 15.23 | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK034_02         | Targhee Creek - source to mout    | h                   |               | 29.06 | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK034_03         | Targhee Creek - source to mout    | h                   |               | 9.34  | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK035_02         | Timber Creek - source to mouth    |                     |               | 16.96 | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK035_03         | Timber Creek - source to mouth    |                     |               | 3.37  | Miles |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK036_03         | Duck Creek - source to mouth      |                     |               | 4.79  | Miles |
| SEDIMENTATION/SILTATION    |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| TEMPERATURE                |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| ID17040202SK045_03         | Sheridan Creek - Kilgore Road (   | T13N, R41E, Sec. 07 | 7) to mouth   | 18.63 | Miles |
| SEDIMENTATION/SILTATION    |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |
| 17040203                   | Lower Henrvs                      |                     |               |       |       |
|                            | EPA                               | A TMDL ID           | Approval Date |       |       |
| ID17040203SK007_02         | Conant Creek - Idaho/Wyoming      | border to mouth     |               | 45.25 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                   | <u>39050</u>        | Aug 17, 2010  |       |       |

| ID17040203SK007_03         | Conant Creek - Idaho/Wyoming border to mouth             |               | 19.42 | Miles |
|----------------------------|----------------------------------------------------------|---------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) | <u>39050</u>                                             | Aug 17, 2010  |       |       |
| ID17040204SK002_05         | North Fork Teton River - Teton River Forks to Henrys For | ork           | 18.75 | Miles |
| PHOSPHORUS, TOTAL          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| SEDIMENTATION/SILTATION    | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| 17040204                   | Teton                                                    |               |       |       |
|                            | EPA TMDL ID                                              | Approval Date |       |       |
| ID17040204SK002_05         | North Fork Teton River - Teton River Forks to Henrys For | ork           | 18.75 | Miles |
| PHOSPHORUS, TOTAL          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| SEDIMENTATION/SILTATION    | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| ID17040204SK003_05         | Teton River - Teton Dam to Teton River Forks             |               | 22.16 | Miles |
| PHOSPHORUS, TOTAL          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| ID17040204SK005_04         | Moody Creek - confluence of North and South Fork Moo     | dy Creek      | 19.57 | Miles |
| PHOSPHORUS, TOTAL          | <u>9476</u>                                              | Sep 26, 2003  |       |       |
| ID17040204SK006_02         | South Fork Moody Creek - source to mouth                 |               | 19.98 | Miles |
| SEDIMENTATION/SILTATION    | <u>67400</u>                                             | Feb 13, 2017  |       | -     |
| ID17040204SK007_02         | North Fork Moody Creek - source to mouth                 |               | 26.35 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>67400</u>                                             | Feb 13, 2017  |       |       |
| ID17040204SK014_04         | Teton River - Felt Dam outlet to Milk Creek              |               | 1.66  | Miles |
| NITROGEN, NITRATE          | <u>4070</u>                                              | Feb 24, 2003  |       | -     |
| PHOSPHORUS, TOTAL          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| SEDIMENTATION/SILTATION    | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| ID17040204SK015_04         | Teton River - Felt Dam pool                              |               | 4.12  | Miles |
| NITROGEN, NITRATE          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| PHOSPHORUS, TOTAL          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| SEDIMENTATION/SILTATION    | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| ID17040204SK016_04         | Teton River - Highway 33 bridge to Felt Dam pool         |               | 3.26  | Miles |
| NITROGEN, NITRATE          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| PHOSPHORUS, TOTAL          | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| SEDIMENTATION/SILTATION    | <u>4070</u>                                              | Feb 24, 2003  |       |       |
| ID17040204SK017_04         | Teton River                                              |               | 13.67 | Miles |
| SEDIMENTATION/SILTATION    | <u>4070</u>                                              | Feb 24, 2003  |       |       |
|                            | <u>67400</u>                                             | Feb 13, 2017  |       |       |
| TEMPERATURE                | <u>67400</u>                                             | Feb 13, 2017  |       |       |
| ID17040204SK018_03         | Packsaddle Creek-diversion (NE 1/4 Sec. 8, T5N, R44E)    | to mouth      | 4.45  | Miles |
| SEDIMENTATION/SILTATION    | <u>4070</u>                                              | Feb 24, 2003  |       |       |

| ID17040204SK019_02         | Packsaddle Creek                 |                           |              | 14.59 | Miles |
|----------------------------|----------------------------------|---------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
| ID17040204SK020_04         | Teton River                      |                           |              | 15.72 | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
|                            |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
| TEMPERATURE                |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
| ID17040204SK025_02         | Mahogany Creek                   |                           |              | 6.48  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
| TEMPERATURE                |                                  | <u>9476</u>               | Sep 26, 2003 |       |       |
| ID17040204SK026_02         | Teton River - Tributaries betwe  | en Trail Creek to Teton C | reek         | 23.5  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
| TEMPERATURE                |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
|                            |                                  | <u>9476</u>               | Sep 26, 2003 |       |       |
| ID17040204SK026_04         | Teton River - Trail Creek to Tet | ton Creek                 |              | 5.63  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
|                            |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
| TEMPERATURE                |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
| ID17040204SK028_03         | Teton River                      |                           |              | 2.6   | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
| TEMPERATURE                |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
| ID17040204SK035_03         | Trail Creek                      |                           |              | 7.88  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
| ID17040204SK041_02         | Fox Creek                        |                           |              | 7.99  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
| TEMPERATURE                |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
|                            |                                  | <u>9476</u>               | Sep 26, 2003 |       |       |
| ID17040204SK042_02         | Fox Creek                        |                           |              | 0.91  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
| TEMPERATURE                |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |
|                            |                                  | <u>9476</u>               | Sep 26, 2003 |       |       |
| ID17040204SK044_02         | Darby Creek - SW ¼, SE ¼, S      | 10, T4N, R45E, to mouth   |              | 4.13  | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
| ID17040204SK045_02         | Darby Creek                      |                           |              | 11.05 | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>4070</u>               | Feb 24, 2003 |       |       |
| ID17040204SK049_02         | Driggs Springs spring creek co   | mplex - located between   | Teton        | 4.94  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>67400</u>              | Feb 13, 2017 |       |       |

| ID17040204SK050_02         | Woods Creek                |                          |                   | 5.41  | Miles |
|----------------------------|----------------------------|--------------------------|-------------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                            | <u>67400</u>             | Feb 13, 2017      |       |       |
| ID17040204SK052_03         | South Leigh Creek - SE 1/4 | , NE ¼, Sec. 1 T5N, R4   | I4E to mouth      | 2.03  | Miles |
| SEDIMENTATION/SILTATION    |                            | <u>4070</u>              | Feb 24, 2003      |       |       |
| ID17040204SK053_03         | South Leigh Creek          |                          |                   | 9.7   | Miles |
| SEDIMENTATION/SILTATION    |                            | <u>4070</u>              | Feb 24, 2003      |       |       |
| ID17040204SK054_03         | Spring Creek - North Leigh | n Creek to mouth         |                   | 13.17 | Miles |
| SEDIMENTATION/SILTATION    |                            | <u>4070</u>              | Feb 24, 2003      |       |       |
| TEMPERATURE                |                            | <u>67400</u>             | Feb 13, 2017      |       |       |
|                            |                            | <u>9476</u>              | Sep 26, 2003      |       |       |
| ID17040204SK056_02         | Spring Creek - source to N | lorth Leigh Creek, inclu | ding spring       | 24.21 | Miles |
| TEMPERATURE                |                            | <u>67400</u>             | Feb 13, 2017      |       |       |
|                            |                            | <u>9476</u>              | Sep 26, 2003      |       |       |
| ID17040204SK056_03         | Spring Creek - source to N | lorth Leigh Creek, inclu | ding spring       | 1.44  | Miles |
| SEDIMENTATION/SILTATION    |                            | <u>4070</u>              | Feb 24, 2003      |       |       |
| TEMPERATURE                |                            | <u>67400</u>             | Feb 13, 2017      |       |       |
|                            |                            | <u>9476</u>              | Sep 26, 2003      |       |       |
| ID17040204SK057_03         | Badger Creek-spring (NW    | 1⁄4, SW 1⁄4, Sec. 26 T7N | I, R44E) to mouth | 4.69  | Miles |
| SEDIMENTATION/SILTATION    |                            | <u>4070</u>              | Feb 24, 2003      |       |       |
| ID17040204SK058_03         | Badger Creek               |                          |                   | 6.06  | Miles |
| SEDIMENTATION/SILTATION    |                            | <u>4070</u>              | Feb 24, 2003      |       |       |
| 17040205                   | Willow                     |                          |                   |       |       |
|                            |                            | EPA TMDL ID              | Approval Date     |       |       |
| ID17040205SK004_05         | Willow Creek - Bulls Fork  | to Ririe Reservoir       |                   | 2.99  | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS      | <u>10489</u>             | Jun 30, 2004      |       |       |
| SEDIMENTATION/SILTATION    |                            | <u>10489</u>             | Jun 30, 2004      |       |       |
| TEMPERATURE                |                            | <u>10489</u>             | Jun 30, 2004      |       |       |
|                            |                            |                          |                   |       |       |

|                                               |                               | 10100        | 0011 00, 200 T |       |       |
|-----------------------------------------------|-------------------------------|--------------|----------------|-------|-------|
| ID17040205SK005_02                            | Willow Creek - Birch Creek to | Bulls Fork   |                | 57.41 | Miles |
| TEMPERATURE                                   |                               | <u>10489</u> | Jun 30, 2004   |       |       |
| ID17040205SK005_04                            | Willow Creek - Birch Creek to | Bulls Fork   |                | 2.3   | Miles |
| NUTRIENT/EUTROPHICATION BIOLOGICAL INDICATORS |                               | <u>10489</u> | Jun 30, 2004   |       |       |
| ID17040205SK005_05                            | Willow Creek - Birch Creek to | Bulls Fork   |                | 13.51 | Miles |
| TEMPERATURE                                   |                               | <u>10489</u> | Jun 30, 2004   |       |       |
| ID17040205SK008_04                            | Willow Creek - Mud Creek to   | Birch Creek  |                | 8.84  | Miles |
| NUTRIENT/EUTROPHICATION                       | BIOLOGICAL INDICATORS         | <u>10489</u> | Jun 30, 2004   |       |       |

| ID17040205SK010_02      | Sellars Creek - source to mouth   |                 |              | 16.77 | Miles |
|-------------------------|-----------------------------------|-----------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK010_03      | Sellars Creek - source to mouth   |                 |              | 4.23  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK011_02      | Willow Creek - Crane Creek to N   | /lud Creek      |              | 23.25 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK011_04      | Willow Creek - Crane Creek to N   | /lud Creek      |              | 8.4   | Miles |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS             | <u>10489</u>    | Jun 30, 2004 |       |       |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK012_02      | Mill Creek - source to mouth      |                 |              | 13.64 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK012_03      | Mill Creek - source to mouth      |                 |              | 3.3   | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK013_02      | Willow Creek - source to Crane    | Creek           |              | 37.36 | Miles |
| PHOSPHORUS, TOTAL       |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK013_03      | Willow Creek - source to Crane    | Creek           |              | 3.7   | Miles |
| NUTRIENT/EUTROPHICATION | BIOLOGICAL INDICATORS             | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK014_02      | Crane Creek - source to mouth     |                 |              | 44.94 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK014_03      | Crane Creek - source to mouth     |                 |              | 10.86 | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK016_04      | Grays Lake outlet - Hell Creek to | mouth           |              | 4.7   | Miles |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK017_04      | Grays Lake outlet - Homer Cree    | k to Hell Creek |              | 8.61  | Miles |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| ID17040205SK018_02      | Homer Creek - source to mouth     |                 |              | 60.4  | Miles |
| SEDIMENTATION/SILTATION |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                   | <u>10489</u>    | Jun 30, 2004 |       |       |

| ID17040205SK018_03      | Homer Creek - source to mouth   |                     |              | 17.26 | Miles |
|-------------------------|---------------------------------|---------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK019_04      | Grays Lake outlet - Brockman C  | reek to Homer Creek |              | 12.49 | Miles |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK020_02      | Grays Lake outlet - Grays Lake  | to Brockman Creek   |              | 18.04 | Miles |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK020_04      | Grays Lake outlet - Grays Lake  | to Brockman Creek   |              | 11.55 | Miles |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK024_02      | Brockman Creek - Corral Creek   | to mouth            |              | 20.03 | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       | -     |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK024_03      | Brockman Creek - Corral Creek   | to mouth            |              | 7.58  | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK025_02      | Brockman Creek - source to Co   | rral Creek          |              | 17.34 | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK025_03      | Brockman Creek - source to Co   | rral Creek          |              | 0.24  | Miles |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK026_02      | Corral Creek - source to mouth  |                     |              | 7.22  | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK027_02      | Sawmill Creek - source to mouth | ו                   |              | 8.44  | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK028_02      | Lava Creek - source to mouth    |                     |              | 14.67 | Miles |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK028_03      | Lava Creek - source to mouth    |                     |              | 3.29  | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK029_02      | Hell Creek - source to mouth    |                     |              | 38.37 | Miles |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| ID17040205SK029_03      | Hell Creek - source to mouth    |                     |              | 10.82 | Miles |
| SEDIMENTATION/SILTATION |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |
| TEMPERATURE             |                                 | <u>10489</u>        | Jun 30, 2004 |       |       |

| ID17040205SK031_02      | Tex Creek - source to mouth                            |               | 41.54    | Miles |
|-------------------------|--------------------------------------------------------|---------------|----------|-------|
| SEDIMENTATION/SILTATION | <u>10489</u>                                           | Jun 30, 2004  |          |       |
| TEMPERATURE             | <u>10489</u>                                           | Jun 30, 2004  |          |       |
| ID17040205SK031_03      | Tex Creek - source to mouth                            |               | 8.85     | Miles |
| SEDIMENTATION/SILTATION | <u>10489</u>                                           | Jun 30, 2004  |          |       |
| TEMPERATURE             | <u>10489</u>                                           | Jun 30, 2004  |          |       |
| ID17040205SK032_02      | Meadow Creek - source to Ririe Reservoir               |               | 40.56    | Miles |
| SEDIMENTATION/SILTATION | <u>10489</u>                                           | Jun 30, 2004  |          |       |
| ID17040205SK032_03      | Meadow Creek - source to Ririe Reservoir               |               | 1.24     | Miles |
| SEDIMENTATION/SILTATION | <u>10489</u>                                           | Jun 30, 2004  |          |       |
| 17040206                | American Falls                                         |               |          |       |
|                         | EPA TMDL ID                                            | Approval Date | e        |       |
| ID17040206SK001_02      | American Falls Reservoir 1st and 2nd order tributaries |               | 34.83    | Miles |
| PHOSPHORUS, TOTAL       | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK001_02a     | Danielson Creek                                        |               | 4.4      | Miles |
| PHOSPHORUS, TOTAL       | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| SEDIMENTATION/SILTATION | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK001L_0L     | American Falls Reservoir (Snake River)                 | 3             | 31724.26 | Acres |
| CHLOROPHYLL-A           | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK002_02      | Bannock Creek - source to American Falls Reservoir     |               | 132.97   | Miles |
| PHOSPHORUS, TOTAL       | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| SEDIMENTATION/SILTATION | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK002_03      | Bannock Creek - source to American Falls Reservoir     |               | 14.24    | Miles |
| PHOSPHORUS, TOTAL       | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| SEDIMENTATION/SILTATION | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK002_04      | Bannock Creek - source to American Falls Reservoir     |               | 0.81     | Miles |
| PHOSPHORUS, TOTAL       | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| SEDIMENTATION/SILTATION | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK005_02      | Sunbeam Creek - source to mouth                        |               | 24.02    | Miles |
| PHOSPHORUS, TOTAL       | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| SEDIMENTATION/SILTATION | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK006_02      | Moonshine Creek - source to mouth                      |               | 7.37     | Miles |
| SEDIMENTATION/SILTATION | <u>42340</u>                                           | Aug 06, 2012  |          |       |
| ID17040206SK008_02      | West Fork Bannock Creek - source to mouth              |               | 18.21    | Miles |
| SEDIMENTATION/SILTATION | 42340                                                  | Aug 06, 2012  |          |       |

| ID17040206SK009_02      | Knox Creek - source to mouth       |                         |               | 23.85  | Miles |
|-------------------------|------------------------------------|-------------------------|---------------|--------|-------|
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK009_03      | Knox Creek - source to mouth       |                         |               | 7.83   | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK010_02      | Rattlesnake Creek - source to m    | outh                    |               | 50.82  | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK010_02b     | Rattlesnake Creek                  |                         |               | 1.1    | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK010_03      | Rattlesnake Creek - source to m    | outh                    |               | 9.95   | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK010_04      | Rattlesnake Creek - lower          |                         |               | 1.27   | Miles |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK022_02      | Tribs. to Snake R - btw river mile | e 791 to American Falls | Res           | 147.92 | Miles |
| PHOSPHORUS, TOTAL       |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK024_02      | McTucker Creek - source to Ame     | erican Falls Reservoir  |               | 1.94   | Miles |
| PHOSPHORUS, TOTAL       |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK024_02a     | McTucker Creek                     |                         |               | 2.13   | Miles |
| PHOSPHORUS, TOTAL       |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK025_02a     | Little Hole Draw                   |                         |               | 4.11   | Miles |
| PHOSPHORUS, TOTAL       |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK026_02      | Pleasant Valley - source to Amer   | rican Falls Reservoir   |               | 78.95  | Miles |
| PHOSPHORUS, TOTAL       |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040206SK026_03      | Pleasant Valley - source to Amer   | rican Falls Reservoir   |               | 12.18  | Miles |
| PHOSPHORUS, TOTAL       |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| 17040207                | Blackfoot                          |                         |               |        |       |
|                         | EP/                                | A TMDL ID               | Approval Date | )      |       |
| ID17040206SK022_02      | Tribs. to Snake R - btw river mile | e 791 to American Falls | Res           | 147.92 | Miles |
| PHOSPHORUS, TOTAL       |                                    | 42340                   | Aug 06, 2012  |        |       |
| SEDIMENTATION/SILTATION |                                    | <u>42340</u>            | Aug 06, 2012  |        |       |
| ID17040207SK002_02b     | Deadman Creek - Blackfoot Rive     | er tributary            |               | 1.06   | Miles |
| SEDIMENTATION/SILTATION |                                    | 52522                   | Jul 26, 2013  |        |       |

| ID17040207SK002_05         | Blackfoot River - Blackfo | oot Reservoir Dam to Fort   | Hall Main    | 65.16 | Miles |
|----------------------------|---------------------------|-----------------------------|--------------|-------|-------|
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS     | <u>2078</u>                 | Apr 03, 2002 |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK005_02         | Grave Creek - Blackfoot   | River tributary, source to  | mouth        | 15.06 | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK005_02a        | Grave Creek - upper (Bla  | ackfoot River tributary)    |              | 3.95  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK005_02b        | Warbonnet Creek           |                             |              | 6.22  | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK005_02c        | Wood Creek (Blackfoot     | River tributary)            |              | 3.19  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK005_02d        | Coyote Creek (Blackfoot   | River tributary)            |              | 1.23  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK005_02e        | Sunday Creek (Blackfoo    | t River tributary)          |              | 6.28  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK005_03         | Grave Creek - West Cre    | ek to Blackfoot River       |              | 5.49  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK006_02         | Corral Creek - Headwate   | ers and unnamed tributari   | es           | 40.63 | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK006_02a        | Chicken Creek - headwa    | aters to Corral Creek (Blac | kfoot River) | 6.42  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       | -     |
| ID17040207SK006_02b        | Bear Creek - headwaters   | s to Corral Creek (Blackfo  | ot River)    | 3.85  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>52522</u>                | Jul 26, 2013 |       | -     |
| ID17040207SK006_03         | Corral Creek - middle     |                             |              | 9.22  | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK006_04         | Corral Creek - lower (Bla | ackfoot River tributary)    |              | 6.59  | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK007_02         | Grizzly Creek - source to | mouth                       |              | 16.72 | Miles |
| SEDIMENTATION/SILTATION    |                           | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK007_02a        | Sawmill Creek - headwa    | ters to Grizzly Creek, Blac | kfoot River  | 7.46  | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | <u>52522</u>                | Jul 26, 2013 |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK007_03         | Grizzly Creek - source to | mouth                       |              | 4.54  | Miles |
| SEDIMENTATION/SILTATION    |                           | 2078                        | Apr 03, 2002 |       |       |

| ID17040207SK007_04         | Grizzly Creek - source to mouth                        |              | 2.78   | Miles |
|----------------------------|--------------------------------------------------------|--------------|--------|-------|
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| ID17040207SK008_02         | Thompson Creek - upper (Blackfoot River tributary)     |              | 10.7   | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK009_02a        | Collett Creek - headwaters to Blackfoot Reservoir      |              | 3.98   | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK009_02b        | Poison Creek - source to Blackfoot Reservoir           |              | 8.82   | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK009_03         | Little Blackfoot River                                 |              | 7.56   | Miles |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK010_02a        | State Land Creek - headwaters to Blackfoot River       |              | 9.08   | Miles |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK010_04         | Blackfoot River - headwaters to Slug Creek             |              | 13.82  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| TEMPERATURE                | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK010_05         | Blackfoot River                                        |              | 20.72  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| TEMPERATURE                | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK011_02         | Trail Creek - Headwaters and unnamed tributaries       |              | 24.28  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| ID17040207SK011_03         | Trail Creek - source to mouth (Below Findlayson Ranch) |              | 7.85   | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| ID17040207SK011_03a        | upper Trail Creek                                      |              | 1.08   | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| ID17040207SK012_02         | Slug Creek - Headwaters and unnamed tributaries        |              | 101.22 | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| ID17040207SK012_02b        | Goodheart Creek                                        |              | 7.54   | Miles |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                           | Jul 26, 2013 |        |       |
| ID17040207SK012_03         | Slug Creek - source to mouth                           |              | 4.8    | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                            | Apr 03, 2002 |        |       |
| ID17040207SK012_03a        | lower Johnson Creek                                    |              | 2.9    | Miles |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                           | Jul 26, 2013 |        |       |

| ID17040207SK012_04         | Slug Creek - source to mouth                       |              | 18.61 | Miles |
|----------------------------|----------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK013_02         | Dry Valley Creek - unnamed tributaries             |              | 14.89 | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK013_02a        | Dry Valley Creek                                   |              | 6.43  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK013_02b        | Chicken Creek (tributary to Dry Valley Creek)      |              | 2.85  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK014_02         | Maybe Creek - source to mouth                      |              | 5.23  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK015_04         | Blackfoot River - small section near Diamond Creek |              | 0.36  | Miles |
| SEDIMENTATION/SILTATION    | 2078                                               | Apr 03, 2002 |       |       |
| ID17040207SK016_02         | Diamond Creek - unnamed tributaries                |              | 41.77 | Miles |
| SEDIMENTATION/SILTATION    | 2078                                               | Apr 03, 2002 |       |       |
| ID17040207SK016_02b        | Coyote Creek                                       |              | 2.88  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK016_02d        | Timber Creek - headwaters to Diamond Creek         |              | 5.56  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK016_02e        | Cabin Creek                                        |              | 3.42  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK016_02f        | Stewart Canyon                                     |              | 2.99  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK016_02g        | Campbell Canyon                                    |              | 2.16  | Miles |
| SEDIMENTATION/SILTATION    | 2078                                               | Apr 03, 2002 |       |       |
| ID17040207SK016_02h        | upper Kendall Creek                                |              | 1.55  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK016_02i        | lower Kendall Creek                                |              | 0.77  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK016_03         | Diamond Creek - lower                              |              | 19.29 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>52522</u>                                       | Jul 26, 2013 |       |       |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK016_03a        | Diamond Creek - middle                             |              | 10.63 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>52522</u>                                       | Jul 26, 2013 |       |       |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |
| ID17040207SK018_02         | Lanes Creek - unnamed tributaries                  |              | 22.25 | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                        | Apr 03, 2002 |       |       |

| ID17040207SK018_02b        | Daves Creek - Headwaters to road crossing                |              | 3.05  | Miles |
|----------------------------|----------------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK018_02c        | Daves Creek - road crossing to Lanes Creek               |              | 0.67  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK018_02d        | Corrailsen Creek                                         |              | 3.91  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK018_02e        | Lanes Creek - FS boundary to Lander Creek                |              | 3.13  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK018_03         | Lanes Creek - Lander Creek to Chippy Creek               |              | 3.65  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK018_04         | Lanes Creek - Chippy Creek to Blackfoot River            |              | 9.41  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK019_02         | Bacon Creek - unnamed tributaries                        |              | 18.9  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK019_02a        | upper Bacon Creek                                        |              | 9.1   | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK019_02b        | Bacon Creek - below FS boundary                          |              | 3.52  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK019_03         | Bacon Creek - below FS boundary                          |              | 2.03  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK019_04         | Bacon Creek - below FS boundary                          |              | 4.62  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK021_03         | Chippy Creek - lower (Blackfoot River tributary)         |              | 4.61  | Miles |
| SEDIMENTATION/SILTATION    | <u>52522</u>                                             | Jul 26, 2013 |       |       |
| ID17040207SK022_02a        | South Fork Sheep Creek                                   |              | 1.84  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK022_03         | Sheep Creek - below confluence of South Fork Sheep Creek | eek          | 2.55  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK023_02         | Angus Creek - unnamed tributaries                        |              | 11.31 | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK023_02a        | Rasmussen Creek                                          |              | 6.27  | Miles |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |
| ID17040207SK023_02b        | Angus Creek - upper, headwaters to Rasumussen Creek      |              | 7.81  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>52522</u>                                             | Jul 26, 2013 |       |       |
| SEDIMENTATION/SILTATION    | <u>2078</u>                                              | Apr 03, 2002 |       |       |

| ID17040207SK023_04         | Lower Angus Creek - Rasmus    | ssen Creek to Blackfoot     | River        | 3.46  | Miles |
|----------------------------|-------------------------------|-----------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK025_02         | Meadow Creek - headwaters     | and unnamed tributaries     |              | 58.17 | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK025_02a        | Meadow Creek - headwaters     | to Crooked Creek            |              | 13.09 | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK025_02d        | Meadow Creek - HW to Fk (in   | cluding Wham Creek)         |              | 12.31 | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK025_03         | Meadow Creek - Crooked Cre    | eek to Clarks Cut           |              | 7.19  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK025_03b        | Crooked Creek (Meadow Cr/E    | Blackfoot River tributary)  |              | 2.13  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK025_04         | Meadow Creek - Blackfoot Re   | eservoir to Clarks Cut      |              | 9.71  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK026_02         | Brush Creek - source to mout  | h                           |              | 54.56 | Miles |
| TEMPERATURE                |                               | <u>33837</u>                | Nov 30, 2007 |       |       |
| ID17040207SK026_03         | Brush Creek - source to mout  | h                           |              | 13.35 | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| TEMPERATURE                |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK027_02         | Rawlins Creek - headwaters to | o Horse Creek               |              | 6.23  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK027_03         | Rawlins Creek - source to mo  | uth                         |              | 1.89  | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK029_02         | Cedar Creek - source to mout  | th (Blackfoot River tributa | ary)         | 21.56 | Miles |
| ESCHERICHIA COLI (E. COLI) |                               | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK029_03         | Cedar Creek - source to mout  | th (Blackfoot River tributa | ary)         | 2.09  | Miles |
| SEDIMENTATION/SILTATION    |                               | <u>52522</u>                | Jul 26, 2013 |       |       |
| ID17040207SK030_03         | Wolverine Creek - Jones Cree  | ek to Mouth                 |              | 2.55  | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS         | <u>2078</u>                 | Apr 03, 2002 |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>2078</u>                 | Apr 03, 2002 |       |       |
| ID17040207SK031_02         | Jones Creek - source to mout  | h (Blackfoot River tributa  | ary)         | 4.54  | Miles |
| NUTRIENT/EUTROPHICATION    | BIOLOGICAL INDICATORS         | <u>2078</u>                 | Apr 03, 2002 |       |       |
| SEDIMENTATION/SILTATION    |                               | <u>52522</u>                | Jul 26, 2013 |       |       |
| 17040208                   | Portneuf            |                                 |               |       |       |
|----------------------------|---------------------|---------------------------------|---------------|-------|-------|
|                            |                     | EPA TMDL ID                     | Approval Date |       |       |
| ID17040206SK001L_0L        | American Falls Res  | ervoir (Snake River)            | 317           | 24.26 | Acres |
| CHLOROPHYLL-A              |                     | <u>42340</u>                    | Aug 06, 2012  |       |       |
| ID17040208SK001_02         | Unnamed 2nd order   | r tributaries to Portneuf River |               | 56.86 | Miles |
| NITROGEN, TOTAL            |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| PHOSPHORUS, TOTAL          |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| SEDIMENTATION/SILTATION    |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| ID17040208SK001_05         | Portneuf River - Ma | rsh Creek to American Falls Res | ervoir        | 24.46 | Miles |
| ESCHERICHIA COLI (E. COLI) |                     | <u>39000</u>                    | Jul 29, 2010  |       |       |
| NITROGEN, TOTAL            |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| OIL AND GREASE             |                     | <u>39000</u>                    | Jul 29, 2010  |       |       |
| PHOSPHORUS, TOTAL          |                     | <u>39000</u>                    | Jul 29, 2010  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                | <u>39000</u>                    | Jul 29, 2010  |       |       |
| ID17040208SK003_02         | lower Gibson Jack ( | Creek                           |               | 0.7   | Miles |
| SEDIMENTATION/SILTATION    |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| ID17040208SK004_02a        | Kinney Creek - head | dwaters to Mink Creek           |               | 2.58  | Miles |
| NITROGEN, TOTAL            |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| PHOSPHORUS, TOTAL          |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS)                | <u>39000</u>                    | Jul 29, 2010  |       |       |
| ID17040208SK004_02c        | South Fork Mink Cr  | eek - headwaters to Mink Creek  |               | 6.75  | Miles |
| NITROGEN, TOTAL            |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| PHOSPHORUS, TOTAL          |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| SEDIMENTATION/SILTATION    |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| ID17040208SK004_02d        | East Fork Mink Cree | ek, 2nd order                   |               | 7.35  | Miles |
| NITROGEN, TOTAL            |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| PHOSPHORUS, TOTAL          |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| SEDIMENTATION/SILTATION    |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| ID17040208SK004_03a        | Mink Creek - S. Fk  | to E. Fk Mink Creek             |               | 2.82  | Miles |
| NITROGEN, TOTAL            |                     | 2016                            | Apr 16, 2001  |       |       |
| PHOSPHORUS, TOTAL          |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |
| SEDIMENTATION/SILTATION    |                     | <u>2016</u>                     | Apr 16, 2001  |       |       |

| ID17040208SK004_04         | Lower Mink Creek                |              |              | 3.81  | Miles |
|----------------------------|---------------------------------|--------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                                 | <u>39000</u> | Jul 29, 2010 |       |       |
| NITROGEN, TOTAL            |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| ID17040208SK005_02         | Indian Creek - source to mouth  |              |              | 8.13  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>39000</u> | Jul 29, 2010 |       |       |
| ID17040208SK006_03         | upper middle Marsh Creek        |              |              | 11.11 | Miles |
| NITROGEN, TOTAL            |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| ID17040208SK006_03a        | Marsh Creek - Rt Fk to Red Roo  | k Pass       |              | 3.78  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>39000</u> | Jul 29, 2010 |       |       |
| NITROGEN, TOTAL            |                                 | <u>39000</u> | Jul 29, 2010 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>39000</u> | Jul 29, 2010 |       |       |
| TOTAL SUSPENDED SOLIDS (1  | rss)                            | <u>39000</u> | Jul 29, 2010 |       |       |
| ID17040208SK006_04         | Lower Marsh Creek               |              |              | 17.69 | Miles |
| NITROGEN, TOTAL            |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| ID17040208SK006_04a        | Lower Middle Marsh Creek        |              |              | 19.76 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>39000</u> | Jul 29, 2010 |       |       |
| NITROGEN, TOTAL            |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| ID17040208SK008_02         | Bell Marsh Creek - source to mo | outh         |              | 1.86  | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| ID17040208SK008_02b        | lower Bell Marsh Creek          |              |              | 2.7   | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>2016</u>  | Apr 16, 2001 |       |       |
| ID17040208SK009_02         | Rowe Creek                      |              |              | 3.82  | Miles |
| SEDIMENTATION/SILTATION    |                                 | 2016         | Apr 16, 2001 |       |       |
| ID17040208SK009_02b        | Goodenough Creek                |              |              | 3.67  | Miles |
| SEDIMENTATION/SILTATION    |                                 | 2016         | Apr 16, 2001 |       |       |

| [                          |                                                     |              |       |       |
|----------------------------|-----------------------------------------------------|--------------|-------|-------|
| ID17040208SK010_02         | Garden Creek - source to mouth                      |              | 19.43 | Miles |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| ID17040208SK010_02a        | upper Garden Creek - headwaters to Garden Creek Gap |              | 9.5   | Miles |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| ID17040208SK010_02b        | Garden Creek - lower                                |              | 7.65  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>39000</u>                                        | Jul 29, 2010 |       |       |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| ID17040208SK011_02         | Hawkins Creek - Hawkins Reservoir Dam to mouth      |              | 23.58 | Miles |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| ID17040208SK011_03         | lower Hawkins Creek                                 |              | 9.11  | Miles |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| ID17040208SK012L_0L        | Hawkins Reservoir                                   |              | 67.42 | Acres |
| NITROGEN, TOTAL            | <u>39000</u>                                        | Jul 29, 2010 |       |       |
| PHOSPHORUS, TOTAL          | <u>39000</u>                                        | Jul 29, 2010 |       |       |
| ID17040208SK013_02         | Hawkins Creek - source to Hawkins Reservoir         |              | 17.03 | Miles |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| ID17040208SK013_02a        | Hawkins Creek                                       |              | 4.95  | Miles |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| ID17040208SK013_02b        | Yellow Dog Creek - headwaters to Hawkins Creek      |              | 6.01  | Miles |
| NITROGEN, TOTAL            | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                         | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                         | Apr 16, 2001 |       |       |

| ID17040208SK013_03         | Hawkins Creek - source to Hawk     | kins Reservoir           |              | 0.93   | Miles |
|----------------------------|------------------------------------|--------------------------|--------------|--------|-------|
| NITROGEN, TOTAL            |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| PHOSPHORUS, TOTAL          |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| SEDIMENTATION/SILTATION    |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| ID17040208SK014_02         | Cherry Creek - ephemeral tributa   | aries                    |              | 17.64  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>39000</u>             | Jul 29, 2010 |        | -     |
| NITROGEN, TOTAL            |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| PHOSPHORUS, TOTAL          |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| SEDIMENTATION/SILTATION    |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| ID17040208SK014_02a        | Upper Cherry Creek                 |                          |              | 10.04  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>39000</u>             | Jul 29, 2010 |        |       |
| ID17040208SK014_02b        | Cherry Creek                       |                          |              | 5.83   | Miles |
| ESCHERICHIA COLI (E. COLI) |                                    | <u>39000</u>             | Jul 29, 2010 |        |       |
| ID17040208SK014_03         | Cherry Creek - lower               |                          |              | 1.57   | Miles |
| NITROGEN, TOTAL            |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| PHOSPHORUS, TOTAL          |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| SEDIMENTATION/SILTATION    |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| ID17040208SK014_04         | Birch Creek from Cherry Creek t    | o Marsh Creek confluen   | ces          | 2.74   | Miles |
| NITROGEN, TOTAL            |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| PHOSPHORUS, TOTAL          |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| SEDIMENTATION/SILTATION    |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| ID17040208SK015_02         | Birch Creek - source to mouth      |                          |              | 13.05  | Miles |
| NITROGEN, TOTAL            |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| PHOSPHORUS, TOTAL          |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| SEDIMENTATION/SILTATION    |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| ID17040208SK015_03         | Birch Creek - source to mouth      |                          |              | 3.96   | Miles |
| NITROGEN, TOTAL            |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| PHOSPHORUS, TOTAL          |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| SEDIMENTATION/SILTATION    |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| ID17040208SK015_03a        | Birch Creek - Mill Creek to I-15 r | oad crossing             |              | 2.8    | Miles |
| NITROGEN, TOTAL            |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| PHOSPHORUS, TOTAL          |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| SEDIMENTATION/SILTATION    |                                    | <u>2016</u>              | Apr 16, 2001 |        |       |
| ID17040208SK016_02         | Portneuf R - 2nd order tribs-Che   | sterfield Dam to Marsh C | Creek        | 162.63 | Miles |
| SEDIMENTATION/SILTATION    |                                    | 2016                     | Apr 16, 2001 |        |       |

| ID17040208SK016_03         | Portneuf River- Chesterfield Reservoir to Toponce Cree  | k            | 5.52  | Miles |
|----------------------------|---------------------------------------------------------|--------------|-------|-------|
| FECAL COLIFORM             | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| NITROGEN, TOTAL            | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| OIL AND GREASE             | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK016_04         | Portneuf River- hist. channel, Toponce to Twentyfour Mi | le Ck        | 2.82  | Miles |
| FECAL COLIFORM             | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| NITROGEN, TOTAL            | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| OIL AND GREASE             | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK016_05         | Portneuf River- Twentyfour Mile Creek to Marsh Creek    |              | 52.21 | Miles |
| FECAL COLIFORM             | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| NITROGEN, TOTAL            | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| OIL AND GREASE             | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| PHOSPHORUS, TOTAL          | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK017_02         | Dempsey Creek - source to mouth                         |              | 1.39  | Miles |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK017_02c        | Beaverdam Creek                                         |              | 3.84  | Miles |
| TOTAL SUSPENDED SOLIDS (1  | rss) <u>39000</u>                                       | Jul 29, 2010 |       |       |
| ID17040208SK017_03         | Lower Dempsey Creek                                     |              | 3.58  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>39000</u>                                            | Jul 29, 2010 |       |       |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK018_02         | Unnamed tribs to Twentyfourmile and Eighteenmile Cree   | eks          | 59    | Miles |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK018_02a        | Twentyfour Mile Creek                                   |              | 1.17  | Miles |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK018_03         | Eighteenmile Creek                                      |              | 5.16  | Miles |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK018_03a        | Twentyfour Mile Creek                                   |              | 6.07  | Miles |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |
| ID17040208SK020_02         | Portneuf Rtributaries - source to Chesterfield Reservoi | r            | 5.84  | Miles |
| SEDIMENTATION/SILTATION    | <u>2016</u>                                             | Apr 16, 2001 |       |       |

| ID17040208SK021_02       | Unnamed tributary to Toponce C    | reek                  |              | 2.63  | Miles |
|--------------------------|-----------------------------------|-----------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK021_02a      | Little Toponce Creek              |                       |              | 1.38  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK021_02e      | upper Toponce Creek               |                       |              | 5.59  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK021_03       | lower Toponce Creek               |                       |              | 4.24  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK022_02       | Pebble Creek - source to mouth    |                       |              | 1.8   | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK022_03a      | North Fork Pebble Creek           |                       |              | 0.98  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK023_02       | Unnamed 2nd order tributaries to  | Rapid Creek           |              | 28.88 | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK023_02a      | upper Jackson Creek               |                       |              | 2.38  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK023_02b      | lower Jackson Creek               |                       |              | 2.15  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK023_02e      | upper Moonlight Creek             |                       |              | 2.76  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK023_02f      | lower Moonlight Creek             |                       |              | 0.71  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK023_03a      | lower Inman Creek                 |                       |              | 2.38  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK023_03c      | North Fork Rapid Creek            |                       |              | 1.58  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK024_02       | Unnamed forks of Pocatello Cree   | ek                    |              | 3.71  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK024_03       | lower Pocatello Creek             |                       |              | 2.91  | Miles |
| SEDIMENTATION/SILTATION  |                                   | <u>2016</u>           | Apr 16, 2001 |       |       |
| ID17040208SK024_03a      | middle Pocatello Creek - Fks to ( | Outback Driving Range |              | 2.02  | Miles |
| SEDIMENTATION/SILTATION  |                                   | 2016                  | Apr 16, 2001 |       |       |
| ID17040208SK025_02       | South Fork Pocatello Creek - sou  | urce to mouth         |              | 5.02  | Miles |
| TOTAL SUSPENDED SOLIDS ( | TSS)                              | <u>39000</u>          | Jul 29, 2010 |       |       |

| 17040209                   | Lake Walcott                                        |               |        |       |
|----------------------------|-----------------------------------------------------|---------------|--------|-------|
|                            | EPA TMDL ID                                         | Approval Date | )      |       |
| ID17040206SK026_02         | Pleasant Valley - source to American Falls Reservo  | bir           | 78.95  | Miles |
| PHOSPHORUS, TOTAL          | <u>42340</u>                                        | Aug 06, 2012  |        |       |
| ID17040209SK001_02         | D16 Drain & 2nd order tributaries to the Snake Rive | er            | 5.46   | Miles |
| PHOSPHORUS, TOTAL          | <u>649</u>                                          | Jun 27, 2000  |        |       |
| ID17040209SK001_07         | Snake River - Heyburn/Burley Bridge to Milner Dam   | 1             | 15.58  | Miles |
| PHOSPHORUS, TOTAL          | <u>649</u>                                          | Jun 27, 2000  |        |       |
| ID17040209SK002_02         | Duck Creek, Spring Creek & 2nd order Snake River    | r tributaries | 41.44  | Miles |
| PHOSPHORUS, TOTAL          | <u>649</u>                                          | Jun 27, 2000  |        |       |
| ID17040209SK002_07         | Snake River - Minidoka Dam to Heyburn/Burley Brid   | dge           | 19.54  | Miles |
| PHOSPHORUS, TOTAL          | <u>649</u>                                          | Jun 27, 2000  |        |       |
| ID17040209SK003_03         | Marsh Creek - source to mouth                       |               | 12.17  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>63781</u>                                        | Jan 23, 2015  |        |       |
| TEMPERATURE                | <u>63781</u>                                        | Jan 23, 2015  |        |       |
| ID17040209SK003_04         | Marsh Creek - source to mouth                       |               | 17.14  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>63781</u>                                        | Jan 23, 2015  |        |       |
| TEMPERATURE                | <u>63781</u>                                        | Jan 23, 2015  |        |       |
| ID17040209SK008_04         | Rock Creek - lower (Rockland Valley)                |               | 12.53  | Miles |
| TOTAL SUSPENDED SOLIDS (1  | -SS) <u>2007</u>                                    | Oct 11, 2000  |        |       |
| ID17040209SK009_02         | South Fork Rock Creek - source to mouth             |               | 246.35 | Miles |
| TOTAL SUSPENDED SOLIDS (1  | -SS) <u>649</u>                                     | Jun 27, 2000  |        |       |
| ID17040209SK009_03         | South Fork Rock Creek - source to mouth             |               | 8.01   | Miles |
| TOTAL SUSPENDED SOLIDS (1  | -SS) <u>649</u>                                     | Jun 27, 2000  |        |       |
| ID17040209SK009_04         | South Fork Rock Creek - source to mouth             |               | 20.14  | Miles |
| TOTAL SUSPENDED SOLIDS (1  | -SS) <u>649</u>                                     | Jun 27, 2000  |        |       |
| ID17040209SK010_02         | East Fork Rock Creek - source to mouth              |               | 22.24  | Miles |
| TOTAL SUSPENDED SOLIDS (1  | -SS) <u>649</u>                                     | Jun 27, 2000  |        |       |
| ID17040209SK010_03         | Rock Creek - East Fork (Rockland) source to mouth   | h             | 9.24   | Miles |
| TOTAL SUSPENDED SOLIDS (1  | -SS) <u>649</u>                                     | Jun 27, 2000  |        |       |

|                            | EPA TMDL ID                                      | Approval Date |        |       |
|----------------------------|--------------------------------------------------|---------------|--------|-------|
| ID17040210SK002_02         | Raft River - Cassia Creek to Heglar Canyon Creek |               | 166.91 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>10681</u>                                     | Jul 27, 2004  |        |       |
| SEDIMENTATION/SILTATION    | <u>10681</u>                                     | Jul 27, 2004  |        |       |

| ID17040210SK003_04         | Cassia Creek - Conner Creek to m    | nouth          |              | 12.76 | Miles |
|----------------------------|-------------------------------------|----------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) | 1                                   | 10681          | Jul 27, 2004 |       |       |
| PHOSPHORUS, TOTAL          | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| SEDIMENTATION/SILTATION    | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| ID17040210SK005_04         | Cassia Creek - Clyde Creek to Cor   | nner Creek     |              | 4.49  | Miles |
| ESCHERICHIA COLI (E. COLI) | 1                                   | 10681          | Jul 27, 2004 |       |       |
| PHOSPHORUS, TOTAL          | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| SEDIMENTATION/SILTATION    | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| TEMPERATURE                | 4                                   | 1538           | Apr 17, 2012 |       |       |
| ID17040210SK007_02         | Cassia Creek - source to Clyde Cre  | eek            |              | 38.5  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>1</u>                            | 1 <u>0681</u>  | Jul 27, 2004 |       |       |
| PHOSPHORUS, TOTAL          | <u>1</u>                            | <u>10681</u>   | Jul 27, 2004 |       |       |
| SEDIMENTATION/SILTATION    | <u>1</u>                            | <u>10681</u>   | Jul 27, 2004 |       |       |
| ID17040210SK007_03         | Cassia Creek- source to confluenc   | e of Dry Creek |              | 7.11  | Miles |
| ESCHERICHIA COLI (E. COLI) | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| PHOSPHORUS, TOTAL          | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| SEDIMENTATION/SILTATION    | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| ID17040210SK007_04         | Cassia Creek - Cross Creek to Cly   | /de Creek      |              | 5.51  | Miles |
| ESCHERICHIA COLI (E. COLI) | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| PHOSPHORUS, TOTAL          | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| SEDIMENTATION/SILTATION    | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| ID17040210SK008_04         | Raft River - Cottonwood Creek to 0  | Cassia Creek   |              | 19.86 | Miles |
| ESCHERICHIA COLI (E. COLI) | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| SEDIMENTATION/SILTATION    | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| TEMPERATURE                | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| ID17040210SK010_04         | Raft River                          |                |              | 19.1  | Miles |
| SEDIMENTATION/SILTATION    | 1                                   | 10681          | Jul 27, 2004 |       |       |
| TEMPERATURE                | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| ID17040210SK013_04         | Raft River - Idaho/Utah border to E | Edwards Creek  |              | 8.32  | Miles |
| ESCHERICHIA COLI (E. COLI) | 1                                   | 1 <u>0681</u>  | Jul 27, 2004 |       |       |
| SEDIMENTATION/SILTATION    | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| TEMPERATURE                | 1                                   | <u>10681</u>   | Jul 27, 2004 |       |       |
| ID17040210SK020 0L         | Sublett Reservoir                   |                |              | 79.91 | Acres |
| PHOSPHORUS, TOTAL          | 1                                   | 1 <u>0681</u>  | Jul 27, 2004 |       |       |
| ID17040210SK021 02         | Sublett Creek - source to Sublett R | Reservoir      |              | 38.45 | Miles |
| PHOSPHORUS, TOTAL          | 1                                   |                | Jul 27, 2004 |       |       |

| ID17040210SK021_03   Sublett Creek - source to Sublett Reservoir   5.9   N     PHOSPHORUS, TOTAL   10681   Jul 27, 2004 | Viles |
|-------------------------------------------------------------------------------------------------------------------------|-------|
| PHOSPHORUS, TOTAL <u>10681</u> Jul 27, 2004                                                                             |       |
|                                                                                                                         |       |
| ID17040210SK022_02 Lake Fork - source to Sublett Reservoir 17 M                                                         | Viles |
| ESCHERICHIA COLI (E. COLI) <u>10681</u> Jul 27, 2004                                                                    |       |
| PHOSPHORUS, TOTAL   10681   Jul 27, 2004                                                                                |       |
| ID17040210SK022_03 Lake Fork - source to Sublett Reservoir 1.34 M                                                       | Viles |
| PHOSPHORUS, TOTAL   10681   Jul 27, 2004                                                                                |       |
| 17040211 Goose                                                                                                          |       |
| EPA TMDL ID Approval Date                                                                                               |       |
| ID17040209SK001_02 D16 Drain & 2nd order tributaries to the Snake River 5.46 M                                          | Viles |
| PHOSPHORUS, TOTAL <u>649</u> Jun 27, 2000                                                                               |       |
| ID17040211SK000_02A Little Cottonwood Creek 63.28 M                                                                     | Viles |
| ESCHERICHIA COLI (E. COLI) <u>10680</u> Jul 25, 2004                                                                    |       |
| ID17040211SK003_02 Trapper Creek 28.09 M                                                                                | Viles |
| PHOSPHORUS, TOTAL <u>10680</u> Jul 25, 2004                                                                             |       |
| SEDIMENTATION/SILTATION 10680 Jul 25, 2004                                                                              |       |
| ID17040211SK003_04 Trapper Creek - from and including Squaw Cr. to reservoir 7.3 M                                      | Viles |
| PHOSPHORUS, TOTAL <u>10680</u> Jul 25, 2004                                                                             |       |
| SEDIMENTATION/SILTATION 10680 Jul 25, 2004                                                                              |       |
| ID17040211SK004_02 Trapper Creek - source to Squaw Creek 32.59 M                                                        | Viles |
| PHOSPHORUS, TOTAL <u>10680</u> Jul 25, 2004                                                                             |       |
| SEDIMENTATION/SILTATION <u>10680</u> Jul 25, 2004                                                                       |       |
| ID17040211SK004_03 Trapper Creek - source to Squaw Creek 8.95 M                                                         | Viles |
| PHOSPHORUS, TOTAL <u>10680</u> Jul 25, 2004                                                                             |       |
| SEDIMENTATION/SILTATION 10680 Jul 25, 2004                                                                              |       |
| ID17040211SK005 03 Goose Creek - Beaverdam Creek to Lower Goose Creek Reservoir 7.18                                    | Viles |
| TEMPERATURE <u>10680</u> Jul 25, 2004                                                                                   |       |
| ID17040211SK005 05 Goose Creek - Beaverdam Creek to Lower Goose Creek Reservoir 18.76 M                                 | Viles |
| SEDIMENTATION/SILTATION <u>10680</u> Jul 25, 2004                                                                       |       |
| TEMPERATURE <u>10680</u> Jul 25, 2004                                                                                   |       |
| ID17040211SK006 02 Beaverdam Creek - source to mouth 55.89 M                                                            | Viles |
| DISSOLVED OXYGEN 10680 Jul 25, 2004                                                                                     |       |
| ESCHERICHIA COLI (E. COLI) 10680 Jul 25. 2004                                                                           |       |
| PHOSPHORUS, TOTAL 10680 Jul 25, 2004                                                                                    |       |
| TEMPERATURE 10680 Jul 25, 2004                                                                                          |       |
| TOTAL SUSPENDED SOLIDS (TSS)   10680   Jul 25, 2004                                                                     |       |

# Upper Snake

| ID17040211SK006_03         | Beaverdam Creek - source to r   | nouth         |              | 6.32  | Miles |
|----------------------------|---------------------------------|---------------|--------------|-------|-------|
| DISSOLVED OXYGEN           |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| TEMPERATURE                |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| TOTAL SUSPENDED SOLIDS (1  | rss)                            | <u>10680</u>  | Jul 25, 2004 |       |       |
| ID17040211SK007_02         | Trout Creek - source to Idaho/N | Nevada border |              | 19.92 | Miles |
| TEMPERATURE                |                                 | <u>41539</u>  | Apr 25, 2012 |       |       |
| ID17040211SK007_03         | Trout Creek - source to Idaho/N | Nevada border |              | 4.33  | Miles |
| TEMPERATURE                |                                 | <u>41539</u>  | Apr 25, 2012 |       |       |
| ID17040211SK008_02         | Goose Creek - source to Idaho   | /Utah border  |              | 65.23 | Miles |
| TEMPERATURE                |                                 | <u>41539</u>  | Apr 25, 2012 |       |       |
| ID17040211SK009_02         | Birch Creek - Idaho/Utah borde  | er to mouth   |              | 11.04 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| ID17040211SK009_03         | Birch Creek - Idaho/Utah borde  | er to mouth   |              | 2.28  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| ID17040211SK011_02         | Cold Creek - source to mouth    |               |              | 15.76 | Miles |
| TEMPERATURE                |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| ID17040211SK012_02         | Unnamed tributary to Birch Cre  | ek            |              | 66.9  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| ID17040211SK012_03         | Birch Creek - source to mouth   |               |              | 6.66  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
| ID17040211SK012_04         | Birch Creek - source to mouth   |               |              | 11.9  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | 10680         | Jul 25, 2004 |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>10680</u>  | Jul 25, 2004 |       |       |
|                            |                                 |               |              |       |       |

#### 17040212 Upper Snake-Rock

|                           | EPA TMDL ID                                     | Approval Date | •      |       |
|---------------------------|-------------------------------------------------|---------------|--------|-------|
| ID17040212SK000_02        | 1st and 2nd order tribs to Yahoo and Deep Creek |               | 391.97 | Miles |
| FECAL COLIFORM            | <u>2018</u>                                     | Aug 25, 2000  |        |       |
| PHOSPHORUS, TOTAL         | <u>2018</u>                                     | Aug 25, 2000  |        |       |
| TOTAL SUSPENDED SOLIDS (T | SS) <u>12122</u>                                | Sep 14, 2005  |        |       |
|                           | <u>2018</u>                                     | Aug 25, 2000  |        |       |

| ID17040212SK001_02                                  | Snake River - Lower Salmon F   | alls to Clover Creek       |              | 22.13 | Miles |
|-----------------------------------------------------|--------------------------------|----------------------------|--------------|-------|-------|
| PHOSPHORUS, TOTAL                                   |                                | <u>12122</u>               | Sep 14, 2005 |       |       |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |
| ID17040212SK001_07                                  | Snake River - Lower Salmon F   | alls to Clover Creek       |              | 26.68 | Miles |
| PHOSPHORUS, TOTAL                                   |                                | <u>12122</u>               | Sep 14, 2005 |       |       |
|                                                     |                                | <u>2018</u>                | Aug 25, 2000 |       |       |
|                                                     |                                | <u>781</u>                 | Apr 25, 1997 |       |       |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |
| ID17040212SK005_02                                  | Snake River tribs containing R | iley Creek and Sand Sprin  | gs           | 17.38 | Miles |
| FECAL COLIFORM                                      |                                | <u>2018</u>                | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL                                   |                                | <u>2018</u>                | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |
|                                                     |                                | <u>2018</u>                | Aug 25, 2000 |       |       |
| ID17040212SK005_07                                  | Snake River - Box Canyon Cre   | ek to Lower Salmon Falls   |              | 16.51 | Miles |
| PHOSPHORUS, TOTAL                                   |                                | <u>2018</u>                | Aug 25, 2000 |       | -     |
| TOTAL SUSPENDED SOLIDS (TSS)   12122   Sep 14, 2005 |                                | Sep 14, 2005               |              |       |       |
| ID17040212SK006_02                                  | Riley Creek - source to mouth  |                            |              | 4.16  | Miles |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |
| ID17040212SK007_02                                  | 2nd order segments of Briggs   | Creeks and Cedar Draw      |              | 31.06 | Miles |
| PHOSPHORUS, TOTAL                                   |                                | <u>2018</u>                | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |
| ID17040212SK007_07                                  | Snake River - Rock Creek to B  | ox Canyon Creek            |              | 18.3  | Miles |
| PHOSPHORUS, TOTAL                                   |                                | <u>2018</u>                | Aug 25, 2000 |       |       |
|                                                     |                                | <u>781</u>                 | Apr 25, 1997 |       |       |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |
| ID17040212SK008_02                                  | Deep Creek - High Line Canal   | to mouth                   |              | 15.81 | Miles |
| FECAL COLIFORM                                      |                                | <u>2018</u>                | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL                                   |                                | <u>12122</u>               | Sep 14, 2005 |       |       |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |
| ID17040212SK008_03                                  | Deep Creek - High Line Canal   | to Snake River (3rd order) |              | 9.74  | Miles |
| FECAL COLIFORM                                      |                                | 2018                       | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL                                   |                                | <u>12122</u>               | Sep 14, 2005 |       |       |
| TOTAL SUSPENDED SOLIDS (                            | TSS)                           | <u>12122</u>               | Sep 14, 2005 |       |       |

| ID17040212SK010_02        | Mud Creek and Clear Creek    | 1                  |              | 7.39  | Miles |
|---------------------------|------------------------------|--------------------|--------------|-------|-------|
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK010_03        | Mud Creek - Deep Creek Re    | oad (T09S, R14E)   | to mouth     | 1.07  | Miles |
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK011_02        | Mud Creek - source to Deep   | o Creek Road (T09  | 9S, R14E)    | 9.54  | Miles |
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK012_02        | Cedar Draw - source to mou   | uth                |              | 17.98 | Miles |
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK012_03        | Cedar Draw - source to mou   | uth                |              | 2.93  | Miles |
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK013_04        | Rock Creek -river mile 25 (1 | 11S, R18E, Sec. 3  | 36) to mouth | 4.63  | Miles |
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK013_05        | Rock Creek -river mile 25 (1 | 11S, R18E, Sec. 3  | 36) to mouth | 20.19 | Miles |
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>12122</u>       | Sep 14, 2005 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK014_02        | North/Dry Cottonwood Cree    | k - source to mout | h            | 37.64 | Miles |
| FECAL COLIFORM            |                              | <u>2018</u>        | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>12122</u>       | Sep 14, 2005 |       |       |
| SEDIMENTATION/SILTATION   |                              | <u>12122</u>       | Sep 14, 2005 |       |       |
| ID17040212SK014_04        | Cottonwood Creek - 4th ord   | er segment         |              | 6.26  | Miles |
| FECAL COLIFORM            |                              | 2018               | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL         |                              | <u>12122</u>       | Sep 14, 2005 |       |       |
| TOTAL SUSPENDED SOLIDS (1 | rss)                         | <u>12122</u>       | Sep 14, 2005 |       |       |

| ID17040212SK015_02       | McMullen Creek - source to mou   | ıth              |              | 49.99 | Miles |
|--------------------------|----------------------------------|------------------|--------------|-------|-------|
| FECAL COLIFORM           |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL        |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
| ID17040212SK015_03       | McMullen Creek - source to mou   | ıth              |              | 9.41  | Miles |
| FECAL COLIFORM           |                                  | <u>2018</u>      | Aug 25, 2000 |       | -     |
| PHOSPHORUS, TOTAL        |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
| ID17040212SK016_04       | Rock Creek                       |                  |              | 8.31  | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>2018</u>      | Aug 25, 2000 |       | -     |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
| ID17040212SK019_02       | Snake River - Twin Falls to Rock | <pre>Creek</pre> |              | 0.92  | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>12122</u>     | Sep 14, 2005 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
| ID17040212SK019_07       | Snake River - Twin Falls to Rock | Creek            |              | 12.58 | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
|                          |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
|                          |                                  | <u>40172</u>     | Mar 30, 2011 |       |       |
| ID17040212SK020_07       | Snake River - Milner Dam to Tw   | in Falls         |              | 21.31 | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
|                          |                                  | <u>781</u>       | Apr 25, 1997 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
| ID17040212SK022_03       | Dry Creek - source to mouth      |                  |              | 9.85  | Miles |
| FECAL COLIFORM           |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL        |                                  | <u>12122</u>     | Sep 14, 2005 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
| ID17040212SK023_02       | West Fork Dry Creek - source to  | mouth            |              | 10.72 | Miles |
| FECAL COLIFORM           |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| PHOSPHORUS, TOTAL        |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |
| ID17040212SK027_02       | Vinyard Creek - Vinyard Lake to  | mouth            |              | 10.8  | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>2018</u>      | Aug 25, 2000 |       |       |
| ID17040212SK028_02       | Clear Lakes                      |                  |              | 22.52 | Acres |
| PHOSPHORUS, TOTAL        |                                  | 2018             | Aug 25, 2000 |       |       |
| TOTAL SUSPENDED SOLIDS ( | rss)                             | <u>12122</u>     | Sep 14, 2005 |       |       |

| ID17040212SK031_02       | Sand Springs               |                            |              | 4.6    | Miles |
|--------------------------|----------------------------|----------------------------|--------------|--------|-------|
| PHOSPHORUS, TOTAL        |                            | <u>12122</u>               | Sep 14, 2005 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                       | <u>12122</u>               | Sep 14, 2005 |        |       |
| ID17040212SK033_02       | Billingsley Creek - source | e to mouth                 |              | 8.13   | Miles |
| PHOSPHORUS, TOTAL        |                            | <u>125</u>                 | Aug 23, 1993 |        |       |
|                          |                            | <u>2018</u>                | Aug 25, 2000 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                       | <u>12122</u>               | Sep 14, 2005 |        |       |
|                          |                            | <u>125</u>                 | Aug 23, 1993 |        |       |
| ID17040212SK034_04       | Clover Creek - Pioneer F   | Reservoir Dam outlet to Si | nake River   | 10.1   | Miles |
| FECAL COLIFORM           |                            | <u>2018</u>                | Aug 25, 2000 |        |       |
| PHOSPHORUS, TOTAL        |                            | <u>2018</u>                | Aug 25, 2000 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                       | <u>12122</u>               | Sep 14, 2005 |        |       |
| ID17040212SK035_04       | Pioneer Reservoir          |                            |              | 228.92 | Acres |
| PHOSPHORUS, TOTAL        |                            | <u>2018</u>                | Aug 25, 2000 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                       | <u>12122</u>               | Sep 14, 2005 |        |       |
| ID17040212SK036_02       | Clover Creek - source to   | Pioneer Reservoir          |              | 72.84  | Miles |
| PHOSPHORUS, TOTAL        |                            | <u>12122</u>               | Sep 14, 2005 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                       | <u>12122</u>               | Sep 14, 2005 |        |       |
|                          |                            | <u>2018</u>                | Aug 25, 2000 |        |       |
| ID17040212SK036_04       | Clover Creek - source to   | Pioneer Reservoir          |              | 26.04  | Miles |
| PHOSPHORUS, TOTAL        |                            | <u>12122</u>               | Sep 14, 2005 |        |       |
|                          |                            | <u>2018</u>                | Aug 25, 2000 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                       | <u>12122</u>               | Sep 14, 2005 |        |       |
|                          |                            | <u>2018</u>                | Aug 25, 2000 |        |       |
| 17040213                 | Salmon Falls               |                            |              |        |       |

|                          |                              | EPA TMDL ID         | Approval Date | )      |       |
|--------------------------|------------------------------|---------------------|---------------|--------|-------|
| ID17040212SK000_02       | 1st and 2nd order tribs to Y | ahoo and Deep Creek |               | 391.97 | Miles |
| FECAL COLIFORM           |                              | <u>2018</u>         | Aug 25, 2000  |        |       |
| PHOSPHORUS, TOTAL        |                              | <u>2018</u>         | Aug 25, 2000  |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                         | <u>12122</u>        | Sep 14, 2005  |        |       |
|                          |                              | <u>2018</u>         | Aug 25, 2000  |        |       |
| ID17040213SK000_04       | Cedar Creek-reservoir to S   | almon Falls Creek   |               | 9.1    | Miles |
| SEDIMENTATION/SILTATION  |                              | <u>34001</u>        | Feb 27, 2008  |        |       |
| TEMPERATURE              |                              | <u>34001</u>        | Feb 27, 2008  |        |       |

| ID17040213SK001_06       | Salmon Falls Creek - Devil Cree | k to mouth                |              | 21.94  | Miles |
|--------------------------|---------------------------------|---------------------------|--------------|--------|-------|
| NITROGEN, TOTAL          |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| PHOSPHORUS, TOTAL        |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>34001</u>              | Feb 27, 2008 |        |       |
| ID17040213SK002_03       | Devil Creek                     |                           |              | 26.45  | Miles |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        | -     |
| ID17040213SK002_04       | Devil Creek - 4th order segment | to mouth                  |              | 15.8   | Miles |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| ID17040213SK003_06       | Salmon Falls Creek - Salmon Fa  | alls Creek Dam to Devil C | reek         | 27.56  | Miles |
| NITROGEN, TOTAL          |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| PHOSPHORUS, TOTAL        |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                            | <u>34001</u>              | Feb 27, 2008 |        |       |
| ID17040213SK004_02       | 01 & 02 tribs Cedar Creek Rese  | rvoir                     |              | 29.15  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| SEDIMENTATION/SILTATION  |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| ID17040213SK004_0L       | Cedar Creek Reservoir           |                           |              | 970.63 | Acres |
| PHOSPHORUS, TOTAL        |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| SEDIMENTATION/SILTATION  |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| ID17040213SK005_02       | House Creek - source to Cedar   | Creek Reservoir           |              | 56.59  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>34001</u>              | Feb 27, 2008 |        | -     |
| SEDIMENTATION/SILTATION  |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| ID17040213SK005_03       | House Creek - source to Cedar   | Creek Reservoir           |              | 12.81  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| SEDIMENTATION/SILTATION  |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| ID17040213SK006_02       | Cedar Creek - source to Cedar ( | Creek Reservoir           |              | 44.27  | Miles |
| PHOSPHORUS, TOTAL        |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| SEDIMENTATION/SILTATION  |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |
| TEMPERATURE              |                                 | <u>34001</u>              | Feb 27, 2008 |        |       |

| ID17040213SK006 03       | Cedar Creek - source to Cedar (  | Creek Reservoir           |              | 3.72    | Miles |
|--------------------------|----------------------------------|---------------------------|--------------|---------|-------|
| PHOSPHORUS, TOTAL        |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| SEDIMENTATION/SILTATION  |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK007L_0L      | Salmon Falls Creek Reservoir     |                           |              | 2648.81 | Acres |
| MERCURY                  |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| PHOSPHORUS, TOTAL        |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| SEDIMENTATION/SILTATION  |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK008_02       | China, Browns, Corral, Player Cr | reeks                     |              | 47.57   | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK008_03       | China Creek                      |                           |              | 3.22    | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| SEDIMENTATION/SILTATION  |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK009_06       | Salmon Falls Creek-Idaho/Neva    | da border to Salmon Falls | s Creek      | 8.66    | Miles |
| PHOSPHORUS, TOTAL        |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| SEDIMENTATION/SILTATION  |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| TOTAL SUSPENDED SOLIDS ( | TSS)                             | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK010_02       | North Fork Salmon Falls Creek-s  | source to Idaho/Nevada b  | oorder       | 26.74   | Miles |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         | -     |
| ID17040213SK010_03       | North Fork Salmon Falls Creek-s  | source to Idaho/Nevada b  | oorder       | 0.85    | Miles |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK011_04       | Shoshone Creek - Hot Creek to    | Idaho/Nevada border       |              | 11.06   | Miles |
| SEDIMENTATION/SILTATION  |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK012_02       | Hot Creek - Idaho/Nevada borde   | er to mouth               |              | 28.64   | Miles |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK012_03       | Hot Creek - Idaho/Nevada borde   | er to mouth               |              | 3.54    | Miles |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK012_03A      | Hot Creek                        |                           |              | 2.34    | Miles |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |
| ID17040213SK012_04       | Hot Creek - Idaho/Nevada borde   | er to mouth               |              | 0.11    | Miles |
| TEMPERATURE              |                                  | <u>34001</u>              | Feb 27, 2008 |         |       |

| ID17040213SK013_04         | Shoshone Creek - Cottonwood C   | Creek to Hot Creek |               | 9.66  | Miles |
|----------------------------|---------------------------------|--------------------|---------------|-------|-------|
| SEDIMENTATION/SILTATION    |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| TEMPERATURE                |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| ID17040213SK014_02         | Big Creek - source to mouth     |                    |               | 38.26 | Miles |
| PHOSPHORUS, TOTAL          |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| TEMPERATURE                |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| ID17040213SK014_03         | Big Creek - source to mouth     |                    |               | 7.18  | Miles |
| PHOSPHORUS, TOTAL          |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| TEMPERATURE                |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| ID17040213SK015_02         | Cottonwood Creek - source to me | outh               |               | 36.63 | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| TEMPERATURE                |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| ID17040213SK015_03         | Cottonwood Creek - source to me | outh               |               | 3.57  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| PHOSPHORUS, TOTAL          |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| SEDIMENTATION/SILTATION    |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| TEMPERATURE                |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| ID17040213SK016_02         | Shoshone Creek - source to Cott | tonwood Creek      |               | 55.89 | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| TEMPERATURE                |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| ID17040213SK016_03         | Shoshone Creek - source to Cott | tonwood Creek      |               | 11.69 | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| TEMPERATURE                |                                 | <u>34001</u>       | Feb 27, 2008  |       |       |
| 17040214                   | Beaver-Camas                    |                    |               |       |       |
|                            | EPA                             | TMDL ID            | Approval Date |       |       |
| ID17040214SK002_05         | Camas Creek - Spring Creek to B | Beaver Creek       |               | 40.87 | Miles |
| SEDIMENTATION/SILTATION    |                                 | <u>11655</u>       | Aug 04, 2005  |       |       |
| TEMPERATURE                |                                 | <u>11655</u>       | Aug 04, 2005  |       |       |
| ID17040214SK010_02         | East Camas Creek                |                    |               | 2.43  | Miles |
| TEMPERATURE                |                                 | 11655              | Aug 04, 2005  |       |       |
| ID17040214SK010_03         | East Camas Creek                |                    |               | 4.26  | Miles |
| TEMPERATURE                |                                 | <u>11655</u>       | Aug 04, 2005  |       |       |

| ID17040214SK011_02      | East Camas Creek - source to Larkspur Creek           |              | 9.63  | Miles |
|-------------------------|-------------------------------------------------------|--------------|-------|-------|
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK011_03      | East Camas Creek - source to Larkspur Creek           |              | 3.39  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK012_03      | West Camas Creek                                      |              | 21.29 | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK013_02      | West Camas Creek -source to Targhee National Forest I | Boundary     | 52.54 | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK013_03      | West Camas Creek -source to Targhee National Forest I | Boundary     | 6.54  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK014_05      | Beaver Creek - Dry Creek to canal (T09N, R36E)        |              | 15.7  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK017_02      | Threemile Creek - source to mouth                     |              | 23.1  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK017_03      | Threemile Creek - source to mouth                     |              | 1.82  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK018_02      | Beaver Creek - Miners Creek to Rattlesnake Creek      |              | 40.25 | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK018_04      | Beaver Creek - Miners Creek to Rattlesnake Creek      |              | 8.93  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK020_03      | Beaver Creek - Idaho Creek to Miners Creek            |              | 3.63  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK021_02      | Beaver Creek - source to Idaho Creek                  |              | 68.41 | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK021_03      | Beaver Creek - source to Idaho Creek                  |              | 5.37  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040214SK024_02      | Huntley Canyon Creek - source to mouth                |              | 5.77  | Miles |
| TEMPERATURE             | <u>11655</u>                                          | Aug 04, 2005 |       |       |
| ID17040215SK002_04      | Medicine Lodge Creek                                  |              | 51.98 | Miles |
| SEDIMENTATION/SILTATION | <u>4152</u>                                           | May 06, 2003 |       |       |
| TEMPERATURE             | <u>4152</u>                                           | May 06, 2003 |       |       |
|                         | <u>67360</u>                                          | Jan 26, 2017 |       |       |

| 17040215                   | Medicine Lodge             |                         |               |       |       |
|----------------------------|----------------------------|-------------------------|---------------|-------|-------|
|                            |                            | EPA TMDL ID             | Approval Date |       |       |
| ID17040215SK002_04         | Medicine Lodge Creek       |                         |               | 51.98 | Miles |
| SEDIMENTATION/SILTATION    |                            | <u>4152</u>             | May 06, 2003  |       |       |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK003_02         | Indian Creek - confluence  | of West and East Fork   | Indian Creek  | 10.48 | Miles |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK003_03         | Indian Creek - confluence  | of West and East Fork   | Indian Creek  | 6.04  | Miles |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK005_02         | West Fork Indian Creek -   | source to mouth         |               | 24.46 | Miles |
| ESCHERICHIA COLI (E. COLI) |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK006_04         | Medicine Lodge Creek - E   | die Creek to Indian Cre | ek            | 14.7  | Miles |
| ESCHERICHIA COLI (E. COLI) |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| SEDIMENTATION/SILTATION    |                            | <u>4152</u>             | May 06, 2003  |       |       |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK007_02         | Middle Creek - Dry Creek   | to mouth                |               | 27.33 | Miles |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK007_03         | Middle Creek - Dry Creek   | to mouth                |               | 5.61  | Miles |
| ESCHERICHIA COLI (E. COLI) |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK008_02         | Middle Creek - source to I | Dry Creek               |               | 12.12 | Miles |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |
| ID17040215SK010_02         | Edie Creek - source to mo  | outh                    |               | 10.17 | Miles |
| SEDIMENTATION/SILTATION    |                            | 4152                    | May 06, 2003  |       |       |
| TEMPERATURE                |                            | <u>4152</u>             | May 06, 2003  |       |       |
|                            |                            | <u>67360</u>            | Jan 26, 2017  |       |       |

| ID17040215SK011_02         | Medicine Lodge Creek           |              |              | 19.17 | Miles |
|----------------------------|--------------------------------|--------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION    |                                | <u>4152</u>  | May 06, 2003 |       |       |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK011_03         | Medicine Lodge Creek           |              |              | 1.83  | Miles |
| SEDIMENTATION/SILTATION    |                                | <u>4152</u>  | May 06, 2003 |       |       |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK011_04         | Medicine Lodge Creek           |              |              | 3.83  | Miles |
| SEDIMENTATION/SILTATION    |                                | <u>4152</u>  | May 06, 2003 |       |       |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK012_02         | Irving Creek - source to mouth |              |              | 13.69 | Miles |
| SEDIMENTATION/SILTATION    |                                | <u>4152</u>  | May 06, 2003 |       |       |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK012_03         | Irving Creek - source to mouth |              |              | 2.56  | Miles |
| SEDIMENTATION/SILTATION    |                                | <u>4152</u>  | May 06, 2003 |       |       |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK013_02         | Warm Creek - source to mouth   |              |              | 14.88 | Miles |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
| ID17040215SK013_03         | Warm Creek - source to mouth   |              |              | 2.44  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK015_02         | Horse Creek - source to mouth  |              |              | 8.42  | Miles |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK016_02         | Fritz Creek - source to mouth  |              |              | 15.27 | Miles |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |
| ID17040215SK017_02         | Webber Creek - source to mout  | h            |              | 28.27 | Miles |
| TEMPERATURE                |                                | <u>4152</u>  | May 06, 2003 |       |       |
|                            |                                | <u>67360</u> | Jan 26, 2017 |       |       |

| ID17040215SK018_02      | Deep Creek - source to mouth                      |               | 77.08 | Miles |
|-------------------------|---------------------------------------------------|---------------|-------|-------|
| TEMPERATURE             | <u>4152</u>                                       | May 06, 2003  |       |       |
|                         | <u>67360</u>                                      | Jan 26, 2017  |       |       |
| ID17040215SK018_03      | Deep Creek - source to mouth                      |               | 8.98  | Miles |
| TEMPERATURE             | <u>4152</u>                                       | May 06, 2003  |       | -     |
|                         | <u>67360</u>                                      | Jan 26, 2017  |       |       |
| ID17040215SK021_02      | Crooked Creek - source to mouth                   |               | 53.1  | Miles |
| TEMPERATURE             | <u>4152</u>                                       | May 06, 2003  |       |       |
|                         | <u>67360</u>                                      | Jan 26, 2017  |       |       |
| ID17040215SK021_03      | Crooked Creek - source to mouth                   |               | 3.67  | Miles |
| TEMPERATURE             | <u>4152</u>                                       | May 06, 2003  |       |       |
|                         | <u>67360</u>                                      | Jan 26, 2017  |       |       |
| 17040217                | Little Lost                                       |               |       |       |
|                         | EPA TMDL ID                                       | Approval Date |       |       |
| ID17040217SK001_05      | Little Lost River - canal (T06N, R28E) to playas  |               | 18.63 | Miles |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK002_05      | Little Lost River - Big Spring Creek to canal (T0 | 6N, R28E)     | 5.66  | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                                        | Sep 27, 2000  |       |       |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK003_02      | Big Spring Creek - source to mouth                |               | 8.1   | Miles |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK003_03      | Big Spring Creek - source to mouth                |               | 7.1   | Miles |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK003_04      | Big Spring Creek - source to mouth                |               | 1.98  | Miles |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK007_02      | Little Lost River - Badger Creek to Big Spring C  | reek          | 79.14 | Miles |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK007_04      | Little Lost River - Badger Creek to Big Spring C  | reek          | 14.15 | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                                        | Sep 27, 2000  |       |       |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK009_02      | Little Lost River - Wet Creek to Badger Creek     |               | 54.26 | Miles |
| TEMPERATURE             | <u>65300</u>                                      | Jan 14, 2016  |       |       |
| ID17040217SK009_04      | Little Lost River - Wet Creek to Badger Creek     |               | 8.89  | Miles |
| SEDIMENTATION/SILTATION | 703                                               | Sep 27, 2000  |       |       |

| ID17040217SK010_04      | Little Lost River - confluence of Summit | and Sawmill Creeks | 8.56  | Miles |
|-------------------------|------------------------------------------|--------------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>703</u>                               | Sep 27, 2000       |       |       |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK012_04      | Sawmill Creek - Warm Creek to mouth      |                    | 8.13  | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                               | Sep 27, 2000       |       |       |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK014_02      | Sawmill Creek                            |                    | 33.46 | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK014_04      | Sawmill Creek                            |                    | 7.65  | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                               | Sep 27, 2000       |       |       |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK015_02      | Squaw Creek - source to mouth            |                    | 12.53 | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK017_02      | Main Fork - source to mouth              |                    | 15.65 | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                               | Sep 27, 2000       |       |       |
| ID17040217SK017_03      | Main Fork - source to mouth              |                    | 2.69  | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                               | Sep 27, 2000       |       |       |
| ID17040217SK018_03      | Timber Creek - source to mouth           |                    | 1.48  | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK019_02a     | Moffett Creek                            |                    | 2.58  | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK019_03      | Summit Creek - source to mouth           |                    | 9     | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK020_03      | Dry Creek - Dry Creek Canal to mouth     |                    | 14.65 | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK021_02      | Dry Creek - source to Dry Creek Canal    |                    | 46.58 | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK021_03      | Dry Creek - source to Dry Creek Canal    |                    | 2.69  | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK022_03      | Wet Creek - Squaw Creek to mouth         |                    | 8.36  | Miles |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |
| ID17040217SK024_02      | Wet Creek - source to Squaw Creek        |                    | 53.22 | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                               | Sep 27, 2000       |       |       |
| ID17040217SK024_03      | Wet Creek - source to Squaw Creek        |                    | 5.8   | Miles |
| SEDIMENTATION/SILTATION | <u>703</u>                               | Sep 27, 2000       |       |       |
| TEMPERATURE             | <u>65300</u>                             | Jan 14, 2016       |       |       |

| ID17040217SK025_02         | Deer Creek - source to mouth        |                        |               | 17.21 | Miles |
|----------------------------|-------------------------------------|------------------------|---------------|-------|-------|
| TEMPERATURE                | 9                                   | <u>65300</u>           | Jan 14, 2016  |       |       |
| 17040218                   | Big Lost                            |                        |               |       |       |
|                            | EPA                                 | TMDL ID                | Approval Date |       |       |
| ID17040218SK006_06         | Lower Pass Creek - source to mou    | uth                    |               | 3.95  | Miles |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK007_05         | Big Lost River - Alder Creek to Ant | telope Creek           |               | 16    | Miles |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK010_05         | Big Lost River - Beck and Evan Di   | tch to Alder Creek     |               | 7.82  | Miles |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK011_05         | Big Lost River - McKay Reservoir    | Dam to Beck and Eva    | n Ditch       | 14.72 | Miles |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK013_05         | Big Lost River - Jones Creek to Me  | cKay Reservoir         |               | 4.16  | Miles |
| SEDIMENTATION/SILTATION    | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK015_05         | Big Lost River - Thousand Springs   | Creek to Jones Cree    | k             | 4.77  | Miles |
| SEDIMENTATION/SILTATION    | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK016_02         | Thousand Springs Creek - source     | to mouth               |               | 20.15 | Miles |
| SEDIMENTATION/SILTATION    | :                                   | 10685                  | Aug 03, 2004  |       |       |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK016_03         | Thousand Springs Creek - source     | to mouth               |               | 12.03 | Miles |
| SEDIMENTATION/SILTATION    | 2                                   | <u>10685</u>           | Aug 03, 2004  |       |       |
| ID17040218SK022_02         | Sage Creek - source to mouth        |                        |               | 35.64 | Miles |
| ESCHERICHIA COLI (E. COLI) | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK024_05         | Big Lost River - Burnt Creek to The | ousand Springs Creek   |               | 18.99 | Miles |
| SEDIMENTATION/SILTATION    | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK025_05         | Big Lost River - Summit Creek to a  | and including Burnt Cr | eek           | 5.43  | Miles |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK026_02         | Bridge Creek - source to mouth      |                        |               | 21.48 | Miles |
| SEDIMENTATION/SILTATION    | -                                   | 10685                  | Aug 03, 2004  |       |       |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |
| ID17040218SK026_03         | Bridge Creek - source to mouth      |                        |               | 3.94  | Miles |
| SEDIMENTATION/SILTATION    |                                     | 10685                  | Aug 03, 2004  |       | be    |
| TEMPERATURE                | 4                                   | <u>41461</u>           | Dec 14, 2011  |       |       |

| ID17040218SK027_03      | North Fork Big Lost River - source to mouth      |              | 12.54 | Miles |
|-------------------------|--------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                     | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                               | Jun 10, 2019 |       |       |
| ID17040218SK028_02      | Summit Creek - source to mouth                   |              | 33.33 | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                     | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                               | Jun 10, 2019 |       |       |
| ID17040218SK030_04      | Wildhorse Creek - Fall Creek to mouth            |              | 4.95  | Miles |
| SEDIMENTATION/SILTATION | <u>4152</u>                                      | May 06, 2003 |       |       |
| TEMPERATURE             | <u>10685</u>                                     | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                               | Jun 10, 2019 |       |       |
| ID17040218SK033_02      | East Fork Big Lost River - Cabin Creek to mouth  |              | 58.56 | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                     | Dec 14, 2011 |       |       |
| ID17040218SK033_03      | East Fork Big Lost River - Cabin Creek to mouth  |              | 1.9   | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                     | Dec 14, 2011 |       |       |
| ID17040218SK033_04      | East Fork Big Lost River - Cabin Creek to mouth  |              | 18.35 | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                     | Dec 14, 2011 |       |       |
| ID17040218SK035_02      | Star Hope Creek - Lake Creek to mouth            |              | 17.1  | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                     | Aug 03, 2004 |       |       |
|                         | <u>ID_BigLo_Jun-10-19</u>                        | Jun 10, 2019 |       |       |
| ID17040218SK035_04      | Star Hope Creek - Lake Creek to mouth            |              | 7.63  | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                     | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                               | Jun 10, 2019 |       |       |
| ID17040218SK036_04      | Star Hope Creek - source to Lake Creek           |              | 3.32  | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                     | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                               | Jun 10, 2019 |       |       |
| ID17040218SK039_02      | East Fork Big Lost River - source to Cabin Creek |              | 37.58 | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                     | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                     | Dec 14, 2011 |       |       |

| ID17040218SK039_03      | East Fork Big Lost River - source to Cabin Creek       |              | 5.34  | Miles |
|-------------------------|--------------------------------------------------------|--------------|-------|-------|
| SEDIMENTATION/SILTATION | <u>10685</u>                                           | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                           | Dec 14, 2011 |       |       |
| ID17040218SK041_02      | Corral Creek - source to mouth                         |              | 18.03 | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                           | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                           | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                                     | Jun 10, 2019 |       |       |
| ID17040218SK043_02      | Warm Springs Creek - source to mouth                   |              | 65.08 | Miles |
| TEMPERATURE             | <u>10685</u>                                           | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                                     | Jun 10, 2019 |       |       |
| ID17040218SK043_03      | Warm Springs Creek - source to mouth                   |              | 1.19  | Miles |
| TEMPERATURE             | <u>10685</u>                                           | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                                     | Jun 10, 2019 |       |       |
| ID17040218SK046_02      | Antelope Creek - Spring Creek to mouth                 |              | 49.58 | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                           | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                           | Aug 03, 2004 |       |       |
|                         | ID_BigLo_Jun-10-19                                     | Jun 10, 2019 |       |       |
| ID17040218SK046_05      | Antelope Creek - Spring Creek to mouth                 |              | 26.73 | Miles |
| TEMPERATURE             | <u>41461</u>                                           | Dec 14, 2011 |       |       |
| ID17040218SK047_04      | Antelope Creek - Dry Fork Creek to Spring Creek        |              | 3.56  | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                           | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                           | Dec 14, 2011 |       |       |
| ID17040218SK047_05      | Antelope Creek - Dry Fork Creek to Spring Creek        |              | 0.25  | Miles |
| TEMPERATURE             | <u>41461</u>                                           | Dec 14, 2011 |       |       |
| ID17040218SK049_04      | Cherry Creek-confluence of Left Fork Cherry and Lupine | Creek        | 13.46 | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                           | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                           | Dec 14, 2011 |       |       |
| ID17040218SK049_05      | Cherry Creek-confluence of Left Fork Cherry and Lupine | Creek        | 0.65  | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                           | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>41461</u>                                           | Dec 14, 2011 |       |       |
| ID17040218SK052_04      | Antelope Creek - Iron Bog Creek to Dry Fork Creek      |              | 12.45 | Miles |
| TEMPERATURE             | <u>41461</u>                                           | Dec 14, 2011 |       |       |
| ID17040218SK053_03      | Bear Creek - source to mouth                           |              | 5.09  | Miles |
| SEDIMENTATION/SILTATION | <u>10685</u>                                           | Aug 03, 2004 |       |       |
| TEMPERATURE             | <u>10685</u>                                           | Aug 03, 2004 |       |       |
|                         | <u>ID BigLo Jun-10-19</u>                              | Jun 10, 2019 |       |       |

| ID17040218SK057_02         | Antelope Creek - source to Iron Bog Creek        |               | 19.14 | Miles |
|----------------------------|--------------------------------------------------|---------------|-------|-------|
| TEMPERATURE                | <u>41461</u>                                     | Dec 14, 2011  |       |       |
| ID17040218SK057_03         | Antelope Creek - source to Iron Bog Creek        |               | 3.49  | Miles |
| TEMPERATURE                | <u>41461</u>                                     | Dec 14, 2011  |       |       |
| ID17040218SK058_02         | Leadbelt Creek - source to mouth                 |               | 16.83 | Miles |
| TEMPERATURE                | <u>41461</u>                                     | Dec 14, 2011  |       |       |
| 17040219                   | Big Wood                                         |               |       |       |
|                            | EPA TMDL ID                                      | Approval Date |       |       |
| ID17040219SK001_06         | Malad River - confluence of Black Canyon Creek a | nd Big Wood   | 17.81 | Miles |
| ESCHERICHIA COLI (E. COLI) | 2239                                             | May 15, 2002  |       |       |
| PHOSPHORUS, TOTAL          | <u>2239</u>                                      | May 15, 2002  |       |       |
| SEDIMENTATION/SILTATION    | <u>2239</u>                                      | May 15, 2002  |       |       |
| TOTAL SUSPENDED SOLIDS (   | TSS) <u>12122</u>                                | Sep 14, 2005  |       |       |
| ID17040219SK002_06         | Big Wood River - Magic Reservoir Dam to mouth    |               | 62.38 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>2239</u>                                      | May 15, 2002  |       |       |
| PHOSPHORUS, TOTAL          | <u>2239</u>                                      | May 15, 2002  |       |       |
| SEDIMENTATION/SILTATION    | <u>2239</u>                                      | May 15, 2002  |       |       |
| ID17040219SK004_05         | Big Wood River - Seamans Creek to Magic Reserv   | oir           | 39.26 | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>41532</u>                                     | Feb 09, 2012  |       |       |
| PHOSPHORUS, TOTAL          | <u>2239</u>                                      | May 15, 2002  |       |       |
| SEDIMENTATION/SILTATION    | <u>2239</u>                                      | May 15, 2002  |       |       |
| ID17040219SK005_05         | Seamans Creek - Slaughterhouse Creek to mouth    |               | 5.62  | Miles |
| ESCHERICHIA COLI (E. COLI) | <u>2239</u>                                      | May 15, 2002  |       |       |
| PHOSPHORUS, TOTAL          | <u>2239</u>                                      | May 15, 2002  |       |       |
| SEDIMENTATION/SILTATION    | <u>2239</u>                                      | May 15, 2002  |       |       |
| ID17040219SK006_02         | Slaughterhouse Gulch Creek                       |               | 40.23 | Miles |
| PHOSPHORUS, TOTAL          | <u>2239</u>                                      | May 15, 2002  |       |       |
| SEDIMENTATION/SILTATION    | <u>2239</u>                                      | May 15, 2002  |       |       |
| ID17040219SK006_03         | Seamans Creek - source to and including Slaughte | rhouse Creek  | 3.23  | Miles |
| PHOSPHORUS, TOTAL          | <u>2239</u>                                      | May 15, 2002  |       |       |
| SEDIMENTATION/SILTATION    | <u>2239</u>                                      | May 15, 2002  |       |       |
| ID17040219SK006_05         | Seamans Creek - source to and including Slaughte | rhouse Creek  | 0.21  | Miles |
| PHOSPHORUS, TOTAL          | <u>2239</u>                                      | May 15, 2002  |       |       |
| SEDIMENTATION/SILTATION    | 2239                                             | May 15, 2002  |       |       |
| ID17040219SK008_02         | Quigley Creek - source to mouth                  |               | 15.86 | Miles |
| TEMPERATURE                | <u>55340</u>                                     | Dec 23, 2013  |       |       |

| ID17040219SK011_02                                                                                                                                                                                                                                                                  | East Fork Wood River - source to                                                                                                      | o Hyndman Creek                                                                |                                                                                                                                                                | 40.7                          | Miles                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                             |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK015_03                                                                                                                                                                                                                                                                  | Lake Creek - source to mouth                                                                                                          |                                                                                |                                                                                                                                                                | 6.99                          | Miles                   |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK016_02                                                                                                                                                                                                                                                                  | Eagle Creek - source to mouth                                                                                                         |                                                                                |                                                                                                                                                                | 12.78                         | Miles                   |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                             |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK016_03                                                                                                                                                                                                                                                                  | Eagle Creek - source to mouth                                                                                                         |                                                                                |                                                                                                                                                                | 1.56                          | Miles                   |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               | -                       |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                             |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK024_02                                                                                                                                                                                                                                                                  | Warm Springs Creek - source to                                                                                                        | and including Thompson                                                         | Creek                                                                                                                                                          | 73.68                         | Miles                   |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK024_03                                                                                                                                                                                                                                                                  | Warm Springs Creek - source to                                                                                                        | and including Thompson                                                         | Creek                                                                                                                                                          | 7.74                          | Miles                   |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK025_02                                                                                                                                                                                                                                                                  | Greenhorn Creek - source USFS                                                                                                         | boundary                                                                       |                                                                                                                                                                | 24.65                         | Miles                   |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                             |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK025_03                                                                                                                                                                                                                                                                  | Greenhorn Creek - source to mo                                                                                                        | uth                                                                            |                                                                                                                                                                | 4.48                          | Miles                   |
| PHOSPHORUS, TOTAL                                                                                                                                                                                                                                                                   |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                             |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK027_02                                                                                                                                                                                                                                                                  | Croy Creek - source to mouth                                                                                                          |                                                                                |                                                                                                                                                                | 37.36                         | Miles                   |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                                                             |                                                                                                                                       |                                                                                |                                                                                                                                                                |                               |                         |
|                                                                                                                                                                                                                                                                                     |                                                                                                                                       | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   |                               |                         |
| ID17040219SK027_03                                                                                                                                                                                                                                                                  | Croy Creek - source to mouth                                                                                                          | <u>2239</u>                                                                    | May 15, 2002                                                                                                                                                   | 8.36                          | Miles                   |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL                                                                                                                                                                                                                                             | Croy Creek - source to mouth                                                                                                          | <u>2239</u><br>2239                                                            | May 15, 2002<br>May 15, 2002                                                                                                                                   | 8.36                          | Miles                   |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION                                                                                                                                                                                                                  | Croy Creek - source to mouth                                                                                                          | 2239<br>2239<br>2239<br>2239                                                   | May 15, 2002<br>May 15, 2002<br>May 15, 2002                                                                                                                   | 8.36                          | Miles                   |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7                                                                                                                                                                                     | Croy Creek - source to mouth                                                                                                          | 2239<br>2239<br>2239<br>2239<br>2239                                           | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002                                                                                                   | 8.36                          | Miles                   |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7<br>ID17040219SK028_02                                                                                                                                                               | Croy Creek - source to mouth<br>TSS)<br>Rock Creek - source to mouth                                                                  | 2239<br>2239<br>2239<br>2239<br>2239                                           | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002                                                                                                   | 8.36<br>39.4                  | Miles                   |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7<br>ID17040219SK028_02<br>TEMPERATURE                                                                                                                                                | Croy Creek - source to mouth<br>TSS)<br>Rock Creek - source to mouth                                                                  | 2239<br>2239<br>2239<br>2239<br>2239<br>55340                                  | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>Dec 23, 2013                                                                                   | 8.36<br>39.4                  | Miles                   |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7<br>ID17040219SK028_02<br>TEMPERATURE<br>ID17040219SK028_03                                                                                                                          | Croy Creek - source to mouth<br>(TSS)<br>Rock Creek - source to mouth<br>Rock Creek - source to mouth                                 | 2239<br>2239<br>2239<br>2239<br>2239<br>55340                                  | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>Dec 23, 2013                                                                                   | 8.36<br>39.4<br>9.19          | Miles<br>Miles<br>Miles |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (*<br>ID17040219SK028_02<br>TEMPERATURE<br>ID17040219SK028_03<br>ESCHERICHIA COLI (E. COLI)                                                                                            | Croy Creek - source to mouth<br>TSS)<br>Rock Creek - source to mouth<br>Rock Creek - source to mouth                                  | 2239<br>2239<br>2239<br>2239<br>55340<br>2239                                  | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>Dec 23, 2013<br>May 15, 2002                                                                   | 8.36<br>39.4<br>9.19          | Miles<br>Miles<br>Miles |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7<br>ID17040219SK028_02<br>TEMPERATURE<br>ID17040219SK028_03<br>ESCHERICHIA COLI (E. COLI)<br>PHOSPHORUS, TOTAL                                                                       | Croy Creek - source to mouth<br>TSS)<br>Rock Creek - source to mouth<br>Rock Creek - source to mouth                                  | 2239<br>2239<br>2239<br>2239<br>2239<br>55340<br>55340<br>2239<br>2239         | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>Dec 23, 2013<br>May 15, 2002<br>May 15, 2002                                                   | 8.36<br>39.4<br>9.19          | Miles<br>Miles<br>Miles |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7<br>ID17040219SK028_02<br>TEMPERATURE<br>ID17040219SK028_03<br>ESCHERICHIA COLI (E. COLI)<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION                                            | Croy Creek - source to mouth<br>TSS)<br>Rock Creek - source to mouth<br>Rock Creek - source to mouth                                  | 2239<br>2239<br>2239<br>2239<br>2239<br>55340<br>55340<br>2239<br>2239<br>2239 | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>Dec 23, 2013<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002                                   | 8.36<br>39.4<br>9.19          | Miles<br>Miles<br>Miles |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7<br>ID17040219SK028_02<br>TEMPERATURE<br>ID17040219SK028_03<br>ESCHERICHIA COLI (E. COLI)<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17040219SK029_02                      | Croy Creek - source to mouth<br>TSS)<br>Rock Creek - source to mouth<br>Rock Creek - source to mouth<br>Thorn Creek - source to mouth | 2239<br>2239<br>2239<br>2239<br>2239<br>2239<br>2239<br>2239                   | May 15, 2002 (<br>May 15, 2002 (<br>May 15, 2002 (<br>May 15, 2002 (<br>Dec 23, 2013 (<br>May 15, 2002 (<br>May 15, 2002 (<br>May 15, 2002 (<br>May 15, 2002 ( | 8.36<br>39.4<br>9.19<br>57.95 | Miles<br>Miles<br>Miles |
| ID17040219SK027_03<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>TOTAL SUSPENDED SOLIDS (7<br>ID17040219SK028_02<br>TEMPERATURE<br>ID17040219SK028_03<br>ESCHERICHIA COLI (E. COLI)<br>PHOSPHORUS, TOTAL<br>SEDIMENTATION/SILTATION<br>ID17040219SK029_02<br>PHOSPHORUS, TOTAL | Croy Creek - source to mouth<br>TSS)<br>Rock Creek - source to mouth<br>Rock Creek - source to mouth<br>Thorn Creek - source to mouth | 2239<br>2239<br>2239<br>2239<br>2239<br>55340<br>2239<br>2239<br>2239<br>2239  | May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>Dec 23, 2013<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002<br>May 15, 2002                   | 8.36<br>39.4<br>9.19<br>57.95 | Miles<br>Miles<br>Miles |

| 17040220                | Camas                          |               |               |       |       |
|-------------------------|--------------------------------|---------------|---------------|-------|-------|
|                         | EP                             | A TMDL ID     | Approval Date |       |       |
| ID17040220SK001_05      | Camas Creek - Elk Creek to Ma  | gic Reservoir |               | 14.83 | Miles |
| PHOSPHORUS, TOTAL       |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
| TEMPERATURE             |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
|                         |                                | <u>67160</u>  | Dec 20, 2016  |       |       |
| ID17040220SK002_02      | Camp Creek - source to mouth   |               |               | 37.28 | Miles |
| TEMPERATURE             |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
|                         |                                | <u>67160</u>  | Dec 20, 2016  |       |       |
| ID17040220SK002_03      | Camp Creek - source to mouth   |               |               | 4.79  | Miles |
| SEDIMENTATION/SILTATION |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
| ID17040220SK003_04      | Willow Creek - Beaver Creek to | mouth         |               | 9.35  | Miles |
| TEMPERATURE             |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
|                         |                                | <u>67160</u>  | Dec 20, 2016  |       |       |
| ID17040220SK004_02      | Beaver Creek - source to mouth |               |               | 14.14 | Miles |
| TEMPERATURE             |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
|                         |                                | <u>67160</u>  | Dec 20, 2016  |       |       |
| ID17040220SK004_03      | Beaver Creek - source to mouth |               |               | 0.73  | Miles |
| TEMPERATURE             |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
|                         |                                | <u>67160</u>  | Dec 20, 2016  |       |       |
| ID17040220SK006_02      | Elk Creek - source to mouth    |               |               | 18.45 | Miles |
| SEDIMENTATION/SILTATION |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
| ID17040220SK007_05      | Camas Creek - Soldier Creek to | Elk Creek     |               | 14.31 | Miles |
| PHOSPHORUS, TOTAL       |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
| TEMPERATURE             |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
|                         |                                | <u>67160</u>  | Dec 20, 2016  |       |       |
| ID17040220SK011_03      | Soldier Creek - Wardrop Creek  | o mouth       |               | 12.72 | Miles |
| SEDIMENTATION/SILTATION |                                | <u>12257</u>  | Sep 30, 2005  |       | -     |
| TEMPERATURE             |                                | <u>12257</u>  | Sep 30, 2005  |       |       |
|                         |                                | <u>67160</u>  | Dec 20, 2016  |       |       |

| Camas Creek - Corral Creek to Soldier                      | Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>67160</u>                                               | Dec 20, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Corral Creek - confluence of East Fork                     | and West Fork Corral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Camas Creek - source to Corral Creek                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 132.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>67160</u>                                               | Dec 20, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Camas Creek - source to Corral Creek                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>67160</u>                                               | Dec 20, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Camas Creek - source to Corral Creek                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>67160</u>                                               | Dec 20, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Camas Creek - Cow Creek to Corral C                        | reek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>67160</u>                                               | Dec 20, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Wildhorse Creek - 3rd order                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>67160</u>                                               | Dec 20, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mormon Reservoir                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1583.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>12257</u>                                               | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12257<br>Dairy Creek - source to Mormon Reserv             | Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12257<br>Dairy Creek - source to Mormon Reservent<br>12257 | Sep 30, 2005<br>/oir<br>Sep 30, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | Camas Creek - Corral Creek to Soldier<br>12257<br>12257<br>67160<br>Corral Creek - confluence of East Fork<br>12257<br>Camas Creek - source to Corral Creek<br>12257<br>12257<br>12257<br>67160<br>Camas Creek - source to Corral Creek<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>12257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257<br>1257 | Camas Creek - Corral Creek to Soldier Creek   Sep 30, 2005     12257   Sep 30, 2005     12257   Sep 30, 2005     67160   Dec 20, 2016     Corral Creek - confluence of East Fork and West Fork Corral   12257     Camas Creek - source to Corral Creek   Sep 30, 2005     Camas Creek - source to Corral Creek   12257     Sep 30, 2005   67160     12257   Sep 30, 2005     12257   Sep 30, 2005     67160   Dec 20, 2016     Camas Creek - source to Corral Creek   12257     Sep 30, 2005   67160     12257   Sep 30, 2005     12257   Sep 30, 2005 | Camas Creek - Corral Creek to Soldier Creek 91.257 Sep 30,2005   12257 Sep 30,2005 12257   12257 Sep 30,2005 100   67160 Dec 20,2016 10.82   Corral Creek - confluence of East Fork and West Fork Corral 10.82   Camas Creek - source to Corral Creek 132.19   12257 Sep 30,2005 122   Camas Creek - source to Corral Creek 132.19   12257 Sep 30,2005 122   Camas Creek - source to Corral Creek 18.61   12257 Sep 30,2005 12   Camas Creek - source to Corral Creek 18.61   12257 Sep 30,2005 12   12257 Sep 30,2005 </td |

| ID17040220SK025_02         | McKinney Creek - source   | e to Mormon Reservoir  |               | 17 49 | Miles |
|----------------------------|---------------------------|------------------------|---------------|-------|-------|
| SEDIMENTATION/SILTATION    |                           | 12257                  | Sep 30, 2005  |       |       |
| ID17040220SK025 03         | McKinnev Creek - source   | e to Mormon Reservoir  |               | 2.26  | Miles |
| SEDIMENTATION/SILTATION    |                           | 12257                  | Sep 30, 2005  |       |       |
| 470 4000 4                 |                           |                        |               |       |       |
| 17040221                   | Little wood               |                        | Approval Date |       |       |
| ID17040221SK001 05         | Little Wood River         |                        |               | 26.86 | Miles |
| PHOSPHORUS, TOTAL          |                           | 12256                  | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION    |                           | 12256                  | Sep 30, 2005  |       |       |
| TEMPERATURE                |                           | 12256                  | Sep 30, 2005  |       |       |
| ID17040221SK001 05a        | Little Wood River         |                        | ·             | 29.69 | Miles |
| PHOSPHORUS, TOTAL          |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| TEMPERATURE                |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| ID17040221SK001_05b        | Little Wood River         |                        |               | 5.66  | Miles |
| PHOSPHORUS, TOTAL          |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| TEMPERATURE                |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| ID17040221SK002_05         | Little Wood River         |                        |               | 25.8  | Miles |
| PHOSPHORUS, TOTAL          |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| TEMPERATURE                |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| ID17040221SK006_03         | Fish Creek - Fish Creek   | Reservoir Dam to mouth |               | 2.68  | Miles |
| PHOSPHORUS, TOTAL          |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| TEMPERATURE                |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| ID17040221SK006_04         | Fish Creek - Fish Creek   | Reservoir Dam to mouth |               | 16.6  | Miles |
| PHOSPHORUS, TOTAL          |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| TEMPERATURE                |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| ID17040221SK008_02         | Fish Creek - source to Fi | ish Creek Reservoir    |               | 52.93 | Miles |
| ESCHERICHIA COLI (E. COLI) |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| PHOSPHORUS, TOTAL          |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| SEDIMENTATION/SILTATION    |                           | <u>12256</u>           | Sep 30, 2005  |       |       |
| TEMPERATURE                |                           | <u>12256</u>           | Sep 30, 2005  |       |       |

| ID17040221SK008_03         | Fish Creek - source to Fish Cree | k Reservoir  |              | 16.47 | Miles |
|----------------------------|----------------------------------|--------------|--------------|-------|-------|
| ESCHERICHIA COLI (E. COLI) |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| PHOSPHORUS, TOTAL          |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| TEMPERATURE                |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| ID17040221SK008_04         | Fish Creek - source to Fish Cree | k Reservoir  |              | 1.36  | Miles |
| ESCHERICHIA COLI (E. COLI) |                                  | <u>12256</u> | Sep 30, 2005 |       | -     |
| PHOSPHORUS, TOTAL          |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| SEDIMENTATION/SILTATION    |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| TEMPERATURE                |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| ID17040221SK014_02         | Muldoon Creek -source to mouth   | I            |              | 86.73 | Miles |
| TEMPERATURE                |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| ID17040221SK014_03         | Muldoon Creek -source to mouth   | l            |              | 24.29 | Miles |
| TEMPERATURE                |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| ID17040221SK014_04         | Muldoon Creek -source to mouth   | I            |              | 3.52  | Miles |
| TEMPERATURE                |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| ID17040221SK022_02         | Dry Creek - source to mouth      |              |              | 39.64 | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| ID17040221SK022_03         | Dry Creek - source to mouth      |              |              | 11.61 | Miles |
| SEDIMENTATION/SILTATION    |                                  | <u>12256</u> | Sep 30, 2005 |       |       |
| ID17040221SK023_02         | Silver Creek - source to mouth   |              |              | 90.95 | Miles |
| TEMPERATURE                |                                  | 12256        | Sep 30, 2005 |       |       |

### Category 4b: Waters have had pollution control requirements other than a TMDL placed on them, and these waters are reasonably expected to attain the water quality standard within a reasonable period of time.

#### 2018/2020 Integrated Report - Category 4b

#### Salmon

| 17060205                | Upper Middle       | Fork Salmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |       |
|-------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ID17060205SL012_02a     | Upper Bear Valley  | Creek and tributaries - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.86                                                                                                                                                 | Miles |
| SEDIMENTATION/SILTATION |                    | 8/31/2020 (RE, DM): In 2010, a CWA Section 319 grant supported the restoration of an Upper Bear Valley Creek tributary –Casner Creek. The Creek Stream Restoration Project was completed in 2013 and included removal of a berm, the installation of 10 biolog structures, and the reve of areas disturbed by the berm removal and biolog installations with set willows, and native seed mix. From 2009 to 2011, USFS used the Geor Road Analysis and Inventory Package (GRAIP) to identify key locations road sediment entered Bear Valley streams. Using this information, the completed numerous road remediation projects to address prioritized s areas. This AU was also monitored by BURP in 2015 and was assesse 2016 IR cycle using that data. The area was impacted by wildfires in 20 2017 (Pioneer and Bearskin fires) and was not monitored in the 2018 B season (as was originally outlined in the 4b plan) –the effects of these f confounded measurement of water quality improvement. During a 2018 survey, Idaho Fish and Game recorded 2 Chinook salmon in this AU.                                                                                                                         | e Casner<br>the<br>getation<br>dge mats,<br>morphic<br>s where<br>USFS<br>ource<br>d in the<br>016 and<br>SURP<br>fires have<br>8 snorkel             |       |
| ID17060205SL012_05      | Bear Valley Creek  | - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.22                                                                                                                                                 | Miles |
| SEDIMENTATION/SILTATION |                    | 8/31/2020 (RE, DM): In 2010, a CWA Section 319 grant supported the restoration of an Upper Bear Valley Creek tributary –Casner Creek. The Creek Stream Restoration Project was completed in 2013 and included removal of a berm, the installation of 10 biolog structures, and the reverse of areas disturbed by the berm removal and biolog installations with serwillows, and native seed mix. From 2009 to 2011, USFS used the Geor Road Analysis and Inventory Package (GRAIP) to identify key locations road sediment entered Bear Valley streams. Using this information, the completed numerous road remediation projects to address prioritized s areas. This AU was also monitored by BURP in 2015 and was assessed 2016 IR cycle using that data. The area was impacted by wildfires in 202017 (Pioneer and Bearskin fires) and was not monitored in the 2018 B season (as was originally outlined in the 4b plan) –the effects of these 1 confounded measurement of water quality improvement. Idaho Fish an performed two snorkel surveys in 2015 and 2018 and recorded 105 and Chinook salmon on 7/12/2015 and 7/13/2015, respectively, and 23 and Chinook salmon on 7/17/2018 (at two locations). | e Casner<br>the<br>getation<br>dge mats,<br>morphic<br>s where<br>USFS<br>ource<br>ed in the<br>016 and<br>5URP<br>fires have<br>d Game<br>d 31<br>45 |       |
| ID17060205SL013_03      | Bearskin Creek - 3 | Brd order (Little Beaver to Elk Creek)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.84                                                                                                                                                  | Miles |
| SEDIMENTATION/SILTATION |                    | 8/31/2020 (RE, DM): In 2010, a CWA Section 319 grant supported the restoration of an Upper Bear Valley Creek tributary –Casner Creek. The Creek Stream Restoration Project was completed in 2013 and included removal of a berm, the installation of 10 biolog structures, and the reverse of areas disturbed by the berm removal and biolog installations with see willows, and native seed mix. From 2009 to 2011, USFS used the Geor Road Analysis and Inventory Package (GRAIP) to identify key locations road sediment entered Bear Valley streams. Using this information, the completed numerous road remediation projects to address prioritized s areas. This AU was also monitored by BURP in 2015 and was assesse 2016 IR cycle using that data. The area was impacted by wildfires in 20 2017 (Pioneer and Bearskin fires) and was not monitored in the 2018 B season (as was originally outlined in the 4b plan) –the effects of these f confounded measurement of water quality improvement.                                                                                                                                                                                                      | e Casner<br>the<br>getation<br>dge mats,<br>morphic<br>s where<br>USFS<br>ource<br>d in the<br>016 and<br>SURP<br>fires have                          |       |

### Salmon

| 17060205                | Upper Middle Fork Salmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ID17060205SL013_04      | Elk Creek - 4th order 8.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Miles |
| SEDIMENTATION/SILTATION | 8/31/2020 (RE, DM): In 2010, a CWA Section 319 grant supported the restoration of an Upper Bear Valley Creek tributary –Casner Creek. The Casner Creek Stream Restoration Project was completed in 2013 and included the removal of a berm, the installation of 10 biolog structures, and the revegetation of areas disturbed by the berm removal and biolog installations with sedge mats, willows, and native seed mix. From 2009 to 2011, USFS used the Geomorphic Road Analysis and Inventory Package (GRAIP) to identify key locations where road sediment entered Bear Valley streams. Using this information, the USFS completed numerous road remediation projects to address prioritized source areas. This AU was also monitored by BURP in 2015 and was assessed in the 2016 IR cycle using that data. The area was impacted by wildfires in 2016 and 2017 (Pioneer and Bearskin fires) and was not monitored in the 2018 BURP season (as was originally outlined in the 4b plan) –the effects of these fires have confounded measurement of water quality improvement. |       |

# Category 4c: Waters failing to meet applicable water quality standards due to other types of pollution (e.g., flow alteration), not a pollutant.

#### 2018/2020 Integrated Report - Category 4c

**Bear River** 

| 16010102                               | Central Bear                                                 |       |       |  |
|----------------------------------------|--------------------------------------------------------------|-------|-------|--|
| ID16010102BR001_05                     | Bear River - Idaho/Wyoming border to railroad bridge         | 25.46 | Miles |  |
| FLOW REGIME MODIFICATIO                | DN                                                           |       | -     |  |
| ID16010102BR002_03                     | Pegram Creek - source to mouth                               | 6.27  | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |  |
| ID16010102BR006_02                     | Preuss Creek - USFS boundary to Geneva Ditch                 | 6.04  | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |  |
| 16010201                               | Bear Lake                                                    |       |       |  |
| ID16010201BR002_05                     | Bear River-railroad bridge (T14N, R45E, Sec. 21) to Ovid Cr. | 57.47 | Miles |  |
| FLOW REGIME MODIFICATIO                | DN                                                           |       |       |  |
| ID16010201BR006_03                     | Lower Stauffer Creek - Spring Creek to Bear River            | 4.14  | Miles |  |
| FLOW REGIME MODIFICATIO                | DN                                                           |       |       |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |  |
| ID16010201BR008_02                     | Co-Op Creek - source to mouth                                | 3.13  | Miles |  |
| FLOW REGIME MODIFICATION               |                                                              |       |       |  |
| ID16010201BR013_02b                    | Upper Paris Creek                                            | 5.48  | Miles |  |
| FLOW REGIME MODIFICATION               |                                                              |       |       |  |
| ID16010201BR018_02b                    | Indian Creek                                                 | 5.77  | Miles |  |
| FLOW REGIME MODIFICATION               |                                                              |       |       |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS |                                                              |       |       |  |
| ID16010201BR022_03a                    | Lower Georgetown Creek - left hand fork to mouth             | 3.91  | Miles |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS |                                                              |       |       |  |
| 16010202                               | Middle Bear                                                  |       |       |  |
| ID16010202BR002_04                     | Cub River - Maple Creek to Border                            | 5.57  | Miles |  |

FLOW REGIME MODIFICATION

### Bear River

| ID16010202BR003_03 Cub River - Sugar Creek to Maple Creek                       | 5.28  | Miles |  |  |  |
|---------------------------------------------------------------------------------|-------|-------|--|--|--|
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR006_06 Bear River-Oneida Narrows Reservoir Dam to Idaho/Utah border | 36.09 | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR007_02a Strawberry Creek                                            | 10.36 | Miles |  |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR009_06 Bear River - Alexander Reservoir Dam to Densmore Creek       | 15.62 | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR009_06a Bear River - Denismore Cr to above Oneida Reservoir         | 21.37 | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR011_03 Trout Creek - source to mouth                                | 3.94  | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR013_02 Densmore Creek - source to mouth                             | 22.88 | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR014_04 Cottonwood Creek - lower Cottonwood Creek (4th order)        | 14.02 | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       | -     |  |  |  |
| ID16010202BR015_04 Battle Creek - source to mouth                               | 16.27 | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |  |  |  |
| ID16010202BR018_02b Swan Lake Creek                                             | 13.79 | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR020_02 Weston Creek - unnamed tributaries                           | 32.2  | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR020_02c upper Weston Creek - FS boundary to reservoir               | 12.19 | Miles |  |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR020_02d Weston Cr - HW to FS boundary and Trail Hollow              | 10.76 | Miles |  |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |
| ID16010202BR020_03 Weston Creek - Dry Canyon to above Weston City               | 8.29  | Miles |  |  |  |
| FLOW REGIME MODIFICATION                                                        |       |       |  |  |  |

### **Bear River**

| ID16010202BR020_04                     | Weston Creek - above Weston City to Bear River          | 4.7   | Miles |  |
|----------------------------------------|---------------------------------------------------------|-------|-------|--|
| FLOW REGIME MODIFICATIO                | N                                                       |       |       |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010202BR021_02                     | Jenkins Hollow (Newton Creek)                           | 14.1  | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010202BR021_02a                    | Steel Canyon                                            | 1.53  | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       | -     |  |
| 16010204                               | Lower Bear-Malad                                        |       |       |  |
| ID16010204BR001_02b                    | Four Mile Canyon                                        | 7.6   | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010204BR001_02d                    | Henderson Creek                                         | 4.98  | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010204BR001_04                     | Malad River - Little Malad River to Idaho/Utah border   | 25.56 | Miles |  |
| FLOW REGIME MODIFICATIO                | DN                                                      |       |       |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010204BR002_02a                    | Campbell Creek                                          | 2.87  | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010204BR006_02                     | Susan Hollow                                            | 4.04  | Miles |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS |                                                         |       |       |  |
| ID16010204BR008_04                     | Little Malad River - Daniels Reservoir Dam to mouth     | 24.55 | Miles |  |
| FLOW REGIME MODIFICATION               |                                                         |       |       |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010204BR010_03                     | middle Wright Creek - Indian Mill Canyon to Dairy Creek | 2.72  | Miles |  |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                        |       |       |  |
| ID16010204BR011_03                     | Dairy Creek - source to mouth                           | 5.41  | Miles |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS |                                                         |       |       |  |
| FLOW REGIME MODIFICATION               |                                                         |       |       |  |
| 16020309                               | Curlew Valley                                           |       |       |  |
| ID16020309BR001_03                     | North Canyon                                            | 6.01  | Miles |  |

FLOW REGIME MODIFICATION
### Bear River

| ID16020309BR001_03a Deep Creek                 | 15.49 | Miles |
|------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATION                       |       |       |
| ID16020309BR002_02a Sheep Creek                | 13.38 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS         |       |       |
| ID16020309BR003_02a Meadow Brook Creek         | 28.99 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS         |       |       |
| ID16020309BR003_03a Rock Creek (Curlew Valley) | 3.71  | Miles |
|                                                |       |       |

### Clearwater

| 17060108                 | Palouse                                                      |       |       |
|--------------------------|--------------------------------------------------------------|-------|-------|
| ID17060108CL001_02       | Cow Creek - source to Idaho/Washington border                | 85.95 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| ID17060108CL001_03       | Cow Creek - source to Idaho/Washington border                | 10.69 | Miles |
| PHYSICAL SUBSTRATE HAB   | SITAT ALTERATIONS                                            |       |       |
| ID17060108CL002_03       | South Fork Palouse River-Gnat Cr. to Idaho/Washington border | 8.25  | Miles |
| PHYSICAL SUBSTRATE HAB   | SITAT ALTERATIONS                                            |       |       |
| FLOW REGIME MODIFICATION | ON                                                           |       |       |
| ID17060108CL003_02       | South Fork Palouse River - source to Gnat Creek; tribs       | 14.51 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | NC                                                           |       |       |
| ID17060108CL003_03       | South Fork Palouse River - source to Gnat Creek              | 1.91  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17060108CL005_02       | Paradise Creek - Urban boundary to Idaho/Washington border   | 11.41 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | NC                                                           |       |       |
| ID17060108CL005_02a      | Paradise Creek - forest habitat boundary to Urban boundary   | 16.91 | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17060108CL005_02b      | Idlers Rest Creek - source to forest habitat boundary        | 5.49  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | NC                                                           |       |       |
| ID17060108CL011a_02      | Flannigan Creek - source to T41N, R05W, Sec. 23              | 18.03 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | ON                                                           |       |       |
| ID17060108CL011a_03      | Flannigan Creek - source to T41N, R05W, Sec. 23              | 3.06  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | ON                                                           |       |       |
| ID17060108CL011b_02      | Flannigan Creek - T41N, R05W, Sec. 23 to mouth               | 2.92  | Miles |
| FLOW REGIME MODIFICATIO  | NC                                                           |       |       |

### Clearwater

| ID17060108CL011b_03 Flannigan Creek - T41N, R05W, Sec. 23 to mouth        | 3.71  | Miles |
|---------------------------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| FLOW REGIME MODIFICATION                                                  |       |       |
| ID17060108CL012_03 Rock Creek-confluence of WF and EF Rock Cr to mouth    | 1.73  | Miles |
| FLOW REGIME MODIFICATION                                                  |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| ID17060108CL013a_02 West Fork Rock Creek - source to T41N, R04W, Sec. 30  | 5.68  | Miles |
| FLOW REGIME MODIFICATION                                                  |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| ID17060108CL013b_03 West Fork Rock Creek - T41N, R04W, Sec. 30 to mouth   | 1.4   | Miles |
| FLOW REGIME MODIFICATION                                                  |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| ID17060108CL014a_02 East Fork Rock Creek - source to T41N, R 04W, Sec. 29 | 2.23  | Miles |
| FLOW REGIME MODIFICATION                                                  |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| ID17060108CL014b_02 East Fork Rock Creek - T41N, R 04W, Sec. 29 to mouth  | 1.66  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| FLOW REGIME MODIFICATION                                                  |       |       |
| ID17060108CL015a_02 Hatter Creek - source to T40N, R04W, Sec. 3           | 17.3  | Miles |
| FLOW REGIME MODIFICATION                                                  |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| ID17060108CL015b_02 Hatter Creek - T40N, R04W, Sec. 3 to mouth            | 20.47 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| FLOW REGIME MODIFICATION                                                  |       |       |
| ID17060108CL015b_03 Hatter Creek - T40N, R04W, Sec. 3 to mouth            | 5.23  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                    |       |       |
| FLOW REGIME MODIFICATION                                                  |       |       |
| ID17060108CL027a_02 Big Creek - source to T42N, R03W, Sec. 08             | 5.23  | Miles |
| FLOW REGIME MODIFICATION                                                  |       |       |

### Clearwater

| ID17060108CL027b_02 Big Creek - T42N, R03W, Sec. 08 to mouth               | 15.49 | Miles |
|----------------------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATION                                                   |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| ID17060108CL029_02 Gold Creek - T42N, R04W, Sec. 28 to mouth               | 1.45  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| FLOW REGIME MODIFICATION                                                   |       |       |
| ID17060108CL029_03 Gold Creek - T42N, R04W, Sec. 28 to mouth               | 1.78  | Miles |
| FLOW REGIME MODIFICATION                                                   |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| ID17060108CL030_02 Gold Creek - source to T42N, R04W, Sec. 28              | 19.96 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| FLOW REGIME MODIFICATION                                                   |       |       |
| ID17060108CL032a_02 Deep Creek - source to T42, R05, Sec. 02               | 23.75 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| FLOW REGIME MODIFICATION                                                   |       |       |
| ID17060108CL032a_03 Deep Creek - source to T42, R05, Sec. 02               | 0.63  | Miles |
| FLOW REGIME MODIFICATION                                                   |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| ID17060108CL032b_02 Deep Creek - T42, R05, Sec. 02 to mouth                | 15.29 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| FLOW REGIME MODIFICATION                                                   |       |       |
| ID17060108CL032b_03 Deep Creek - T42, R05, Sec. 02 to mouth                | 6.18  | Miles |
| FLOW REGIME MODIFICATION                                                   |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| 17060305 South Fork Clearwater                                             |       |       |
| ID17060305CL001_02 South Fork Clearwater River - Butcher Creek to mouth    | 2.8   | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| ID17060305CL003_02 Cottonwood Creek - source to Cottonwood Creek waterfall | 30.32 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| ID17060305CL003_03 Cottonwood Creek - source to Cottonwood Creek waterfall | 0.39  | Miles |
|                                                                            |       |       |

### Clearwater

| ID17060305CL003_04                     | Cottonwood Creek - source to Cottonwood Creek waterfall      | 5.4   | Miles |
|----------------------------------------|--------------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL008_02                     | South Fork Cottonwood Creek - source to mouth                | 24.97 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL008_03                     | South Fork Cottonwood Creek - 3rd order segment              | 5.02  | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL010_02                     | Threemile Creek - source to unnamed tributary                | 36.08 | Miles |
| FLOW REGIME MODIFICATION               | DN                                                           |       |       |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL011a_02                    | Butcher Creek-unnamed tributary (mouth fish barrier)         | 5.94  | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATION               | N                                                            |       |       |
| ID17060305CL011b_02                    | Butcher Creek - fish barrier to source                       | 11.17 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATION               | N                                                            |       |       |
| ID17060305CL012_02                     | South Fork Clearwater River - sidewall tributaries           | 46.75 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL012_02a                    | Schwartz Creek                                               | 44.46 | Miles |
| FLOW REGIME MODIFICATION               | N                                                            |       |       |
| ID17060305CL012_05                     | South Fork Clearwater River - Johns Creek to Butcher Creek   | 22.27 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL022_02                     | Huddleson Creek and tributaries                              | 33.91 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL022_02a                    | Granite Creek                                                | 4.08  | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL022_05                     | South Fork Clearwater River - Tenmile Creek to Johns Creek   | 11.78 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS |                                                              |       |       |
| ID17060305CL030_02                     | South Fork Clearwater River - Crooked River to Tenmile Creek | 28.39 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                             |       |       |
| ID17060305CL030_05                     | South Fork Clearwater River - Crooked River to Tenmile Creek | 11.76 | Miles |
|                                        |                                                              |       |       |

### Clearwater

| ID17060305CL036_02                     | South Fork Clearwater River - tributaries                | 2.49  | Miles |
|----------------------------------------|----------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| ID17060305CL036_05                     | South Fork Clearwater River - 5th order mainstem segment | 3.96  | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| 17060306                               | Clearwater                                               |       |       |
| ID17060306CL003_02                     | Lindsay Creek - 1st and 2nd order tributaries            | 21.1  | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| FLOW REGIME MODIFICATION               | DN                                                       |       |       |
| ID17060306CL003_03                     | Lindsay Creek - 3rd order                                | 3.64  | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| FLOW REGIME MODIFICATION               | DN                                                       |       |       |
| ID17060306CL006_02                     | Sweetwater Creek - source to Webb Creek                  | 18.24 | Miles |
| FLOW REGIME MODIFICATION               | ON                                                       |       |       |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| ID17060306CL006_03                     | Sweetwater Creek - source to Webb Creek                  | 0.22  | Miles |
| FLOW REGIME MODIFICATION               | DN                                                       |       |       |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| ID17060306CL006_04                     | Sweetwater Creek - source to Webb Creek                  | 3.89  | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| FLOW REGIME MODIFICATIO                | DN                                                       |       |       |
| ID17060306CL007_02                     | Webb Creek - source to mouth                             | 9.15  | Miles |
| FLOW REGIME MODIFICATIO                | DN .                                                     |       |       |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| ID17060306CL024_02                     | Lawyer Creek - source to mouth                           | 51.69 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |
| FLOW REGIME MODIFICATIO                | DN                                                       |       |       |
| ID17060306CL024_03                     | Lawyer Creek - source to mouth                           | 9.71  | Miles |
| FLOW REGIME MODIFICATION               |                                                          |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS |                                                          |       |       |
| ID17060306CL031_02                     | Jim Brown Creek - 1st and 2nd Order Tributaries          | 44.61 | Miles |
| PHYSICAL SUBSTRATE HAB                 | ITAT ALTERATIONS                                         |       |       |

### Clearwater

| ID17060306CL031_03       | Jim Brown Creek - 3rd Order                                | 5.51  | Miles |
|--------------------------|------------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| ID17060306CL034_04       | Jim Ford Creek - waterfall (12.5 miles upstream) to mouth  | 8.97  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| ID17060306CL035_02       | Heywood, Wilson Creeks and tributaries                     | 48.65 | Miles |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| ID17060306CL035_03       | Jim Ford Creek - source to Jim Ford Cr waterfall (12.5 mi) | 6.39  | Miles |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| ID17060306CL035_04       | Jim Ford Creek - source to Jim Ford Creek waterfall        | 3.87  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| ID17060306CL036_02       | Grasshopper Creek - source to mouth                        | 19.58 | Miles |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| ID17060306CL036_03       | Grasshopper Creek - source to mouth                        | 4.3   | Miles |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| ID17060306CL037_02       | Winter Creek - Winter Creek waterfall (3.4 miles upstream) | 6.63  | Miles |
| FLOW REGIME MODIFICATIO  | DN                                                         |       |       |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| ID17060306CL037_03       | Winter Creek - waterfall (3.4 miles upstream) to mouth     | 2.41  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| FLOW REGIME MODIFICATION |                                                            |       |       |
| ID17060306CL038_02       | Winter Creek - source to Winter Creek waterfall            | 6.77  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
|                          |                                                            |       |       |

### Clearwater

| ID17060306CL041_02       | Bedrock Creek - source to mouth      | 17.44 | Miles |
|--------------------------|--------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| FLOW REGIME MODIFICATIO  | DN .                                 |       |       |
| ID17060306CL043_02       | Pine Creek - source to mouth         | 20.96 | Miles |
| FLOW REGIME MODIFICATIO  | DN                                   |       |       |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| ID17060306CL044_06       | Potlatch River - 6th Order           | 7.35  | Miles |
| FLOW REGIME MODIFICATIO  | N                                    |       |       |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| ID17060306CL045_05       | Potlatch River - 5th Order           | 18.48 | Miles |
| FLOW REGIME MODIFICATIO  | DN                                   |       |       |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| ID17060306CL046_04       | Cedar Creek - 4th Order              | 5.18  | Miles |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| ID17060306CL048_04       | Potlatch River - 4th Order           | 6.67  | Miles |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| FLOW REGIME MODIFICATIO  | N                                    |       |       |
| ID17060306CL048_05       | Potlatch River - 5th Order           | 7.7   | Miles |
| FLOW REGIME MODIFICATIO  | DN                                   |       |       |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| ID17060306CL049_02       | Potlatch River - headwaters          | 61.69 | Miles |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| FLOW REGIME MODIFICATIO  | N                                    |       |       |
| ID17060306CL049_03       | Potlatch River - 3rd Order           | 5.3   | Miles |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| FLOW REGIME MODIFICATIO  | N                                    |       |       |
| ID17060306CL049_04       | Potlatch River - 4th Order           | 3.71  | Miles |
| PHYSICAL SUBSTRATE HABI  | ITAT ALTERATIONS                     |       |       |
| FLOW REGIME MODIFICATION |                                      |       |       |
| ID17060306CL051_04       | East Fork Potlatch River - 4th Order | 4.73  | Miles |
| FLOW REGIME MODIFICATIO  | DN                                   |       |       |

### Clearwater

| ID17060306CL052_03 Ruby Creek      | a - 3rd Order                      | 2.14  | Miles |
|------------------------------------|------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| FLOW REGIME MODIFICATION           |                                    |       |       |
| ID17060306CL053_02 Moose Cree      | ek - headwaters                    | 15.7  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| FLOW REGIME MODIFICATION           |                                    |       |       |
| ID17060306CL053_03 Moose Cree      | ek - 3rd Order                     | 3.7   | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| FLOW REGIME MODIFICATION           |                                    |       |       |
| ID17060306CL055_02 Pine Creek      | - headwaters                       | 35.94 | Miles |
| FLOW REGIME MODIFICATION           |                                    |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| ID17060306CL055_03 Pine Creek      | - 3rd Order                        | 3.87  | Miles |
| FLOW REGIME MODIFICATION           |                                    |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| ID17060306CL062_02 Middle Potla    | atch Creek - headwaters            | 45.85 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| FLOW REGIME MODIFICATION           |                                    |       |       |
| ID17060306CL062_03 Middle Potla    | atch Creek - 3rd Order             | 14.47 | Miles |
| FLOW REGIME MODIFICATION           |                                    |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| ID17060306CL067_02 Hatwai Cree     | ek - 1st and 2nd Order tributaries | 37.53 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERAT | IONS                               |       |       |
| 17060307 Upper N                   | orth Fork Clearwater               |       |       |
| ID17060307CL001 02a Sneak Cree     | k - source to mouth                | 5.38  | Miles |
|                                    |                                    | 0.00  |       |
|                                    |                                    |       |       |
| 17060308 Lower N                   | lorth Fork Clearwater              |       |       |
| ID17060308CL002_02a Swamp Cre      | ek - 1st and 2nd Order Tributaries | 12.77 | Miles |
| FLOW REGIME MODIFICATION           |                                    |       |       |

### Clearwater

| ID17060308CL002_03a Swamp Creek - 3rd order, Follet Creek to Dworshak Reservoir | 0.72  | Miles |
|---------------------------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATION                                                        |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| ID17060308CL002_04 Elk Creek - Cedar Creek to Dworshak Reservoir                | 7.47  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17060308CL002_04a Long Meadow Creek - unnamed trib to Dworshak Reservoir      | 2.31  | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| ID17060308CL020_04a Breakfast Creek - 4th Order, Stony Cr to Dworshak Reservoir | 1.91  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17060308CL025_02 Breakfast Creek - source to Stony Creek                      | 10.04 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17060308CL028_02 Swamp Creek - source to Dworshak Reservoir                   | 1.79  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17060308CL028_03 Swamp Creek - source to Dworshak Reservoir                   | 3     | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17060308CL029_02 Cranberry Creek - source to Dworshak Reservoir               | 14.26 | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| ID17060308CL030_03a Elk Creek - 3rd Order, Reservoir to Elk Creek Falls         | 3.83  | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| ID17060308CL030_03b Elk Creek - Elk Creek Falls to conflence of Deep Creek      | 2.13  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
|                                                                                 |       |       |

### Clearwater

| ID17060308CL030_04 Elk Creek - confluence of Deep Creek to Cedar Creek     | 3.66  | Miles |
|----------------------------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| FLOW REGIME MODIFICATION                                                   |       |       |
| ID17060308CL034_02 Three Bear, Round Meadow, Oviatt Creeks and tributaries | 58.46 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| FLOW REGIME MODIFICATION                                                   |       |       |
| ID17060308CL034_02a Long Meadow Creek                                      | 1.2   | Miles |
| FLOW REGIME MODIFICATION                                                   |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| ID17060308CL034_03 Long Meadow Creek - 3rd Order                           | 7.7   | Miles |
| FLOW REGIME MODIFICATION                                                   |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |       |       |
| ID17060308CL034_04 Long Meadow Creek - 4th Order                           | 4.4   | Miles |
| FLOW REGIME MODIFICATION                                                   |       |       |

### Panhandle

| 17010104 Lower Kootenai                                                    |          |       |
|----------------------------------------------------------------------------|----------|-------|
| ID17010104PN001_02a Fisher Creek                                           | 6.79     | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |          |       |
| ID17010104PN010_03a Trout Creek - lower portion below branch               | 2.93     | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |          |       |
| ID17010104PN030_03a Cow Creek- lower re-routed portion along road          | 3.37     | Miles |
| FLOW REGIME MODIFICATION                                                   |          |       |
| ID17010104PN036_03 Fleming Creek - lower                                   | 3.49     | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |          |       |
| FLOW REGIME MODIFICATION                                                   |          |       |
| 17010214 Pend Oreille Lake                                                 |          |       |
| ID17010214PN008_02a Poirier Creek and tributaries                          | 21.95    | Miles |
| FLOW REGIME MODIFICATION                                                   |          |       |
| ID17010214PN008_03L Lake San Souci                                         | 30.19    | Acres |
| FLOW REGIME MODIFICATION                                                   |          |       |
| ID17010214PN008_04 Blanchard Lake                                          | 2.93     | Miles |
| FLOW REGIME MODIFICATION                                                   |          |       |
| ID17010214PN008_04L Blanchard Creek Diversion                              | 27.68    | Acres |
| FLOW REGIME MODIFICATION                                                   |          |       |
| ID17010214PN010_03 Brickel Creek - Idaho/Washington border to mouth        | 5.62     | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |          |       |
| ID17010214PN018L_0L Pend Oreille Lake                                      | 80828.61 | Acres |
| FLOW REGIME MODIFICATION                                                   |          |       |
| 17010301 Upper Coeur d Alene                                               |          |       |
| ID17010301PN001_05North Fork Coeur d'Alene River, below Prichard Creek     | 26.28    | Miles |
|                                                                            |          |       |
| FLOW REGIME MODIFICATION                                                   |          |       |
| ID17010301PN030 03 Little NF CDA River - btw Solitaire and Deception Creek | 11.26    | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |          |       |

#### Panhandle

| ID17010301PN030_04       | Little North Fork CDA River below Skookum Creek      | 23.97 | Miles |
|--------------------------|------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| FLOW REGIME MODIFICATION | N                                                    |       |       |
| 17010302                 | South Fork Coeur d Alene                             |       |       |
| ID17010302PN014_02       | Canyon Creek - from Gorge Gulch to South Fork CdA R. | 8.64  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| 17010303                 | Coeur d Alene Lake                                   |       |       |
| ID17010303PN002_02       | Cougar Creek - source to mouth                       | 15.72 | Miles |
| PHYSICAL SUBSTRATE HAB   | SITAT ALTERATIONS                                    |       |       |
| ID17010303PN003_02       | Kid Creek - source to mouth                          | 4.08  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| ID17010303PN004_02       | Mica Creek - source to mouth                         | 24.18 | Miles |
| PHYSICAL SUBSTRATE HAE   | ITAT ALTERATIONS                                     |       |       |
| ID17010303PN004_03       | Mica Creek - source to mouth                         | 1.29  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| ID17010303PN007_06       | Coeur d'Alene River - Latour Creek to mouth          | 32    | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| ID17010303PN020_02       | Fourth of July Creek - source to mouth               | 31.87 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| ID17010303PN020_03       | Fourth of July Creek - source to mouth               | 5.66  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| ID17010303PN029_03       | Wolf Lodge Creek - source to mouth                   | 5.74  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| ID17010303PN031_02       | Marie Creek - source to mouth                        | 19.67 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                     |       |       |
| 17010304                 | St. Joe                                              |       |       |
| ID17010304PN027_02       | 1st and 2nd order streams to St Joe below Bond Creek | 39.43 | Miles |
|                          |                                                      |       |       |

PHYSICAL SUBSTRATE HABITAT ALTERATIONS

ID17010304PN027\_02a 1st and 2nd order to St. Joe River from Bond to Big Creek 35.11 Miles

### Panhandle

| ID17010304PN027_02b 1st and 2nd order to St Joe River between Big and Slate Cr | 42.63 | Miles |
|--------------------------------------------------------------------------------|-------|-------|
|--------------------------------------------------------------------------------|-------|-------|

### Salmon

| 17060201               | Upper Salmon                                     |        |       |
|------------------------|--------------------------------------------------|--------|-------|
| ID17060201SL001_02     | Salmon River - Pennal Gulch to Pahsimeroi River  | 93.3   | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL007_04     | Challis Creek - Darling Creek to mouth           | 3.42   | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL009_03     | Challis Creek - Bear Creek to Darling Creek      | 4.94   | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL009_04     | Challis Creek - Bear Creek to Darling Creek      | 1.5    | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| PHYSICAL SUBSTRATE HAI | BITAT ALTERATIONS                                |        |       |
| ID17060201SL015_03     | Garden Creek - source to mouth                   | 3.92   | Miles |
| PHYSICAL SUBSTRATE HAI | BITAT ALTERATIONS                                |        |       |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL026_02     | Bruno Creek - source to mouth                    | 8.78   | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| PHYSICAL SUBSTRATE HAI | BITAT ALTERATIONS                                |        |       |
| ID17060201SL048_03     | Basin Creek - East Basin Creek to mouth          | 2.36   | Miles |
| PHYSICAL SUBSTRATE HAI | BITAT ALTERATIONS                                |        |       |
| ID17060201SL099_02     | Slate Creek - source to mouth                    | 36.77  | Miles |
| PHYSICAL SUBSTRATE HAI | BITAT ALTERATIONS                                |        |       |
| ID17060201SL124_04     | Road Creek - Corral Basin Creek to mouth         | 4.79   | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL125_02     | Road Creek - source to Corral Basin Creek        | 31.92  | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL131_04     | Warm Spring Creek - Hole-in-Rock Creek to mouth  | 4.29   | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL132_02     | Warm Spring Creek - source to Hole-in-Rock Creek | 104.66 | Miles |
| FLOW REGIME MODIFICATI | ON                                               |        |       |
| ID17060201SL132_03     | Warm Spring Creek - source to Hole-in-Rock Creek | 5.07   | Miles |

### Salmon

| ID17060201SL132_04       | Warm Spring Creek - source to Hole-in-Rock Creek             | 6.72  | Miles |
|--------------------------|--------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATIO  | ON                                                           |       |       |
| ID17060201SL133_02       | Broken Wagon Creek - source to mouth                         | 44.8  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17060201SL133_03       | Broken Wagon Creek - source to mouth                         | 3.17  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| 17060202                 | Pahsimeroi                                                   |       |       |
| ID17060202SL006_02       | Meadow Creek - source to mouth                               | 28.5  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17060202SL007_04       | Pahsimeroi River - Furey Lane (T15S, R22E) to Meadow Creek   | 1.56  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17060202SL009_02       | Grouse Creek - source to mouth                               | 35.97 | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17060202SL010_04       | Pahsimeroi River - Goldburg Creek to Big Creek               | 6.74  | Miles |
| FLOW REGIME MODIFICATIO  | ON                                                           |       |       |
| ID17060202SL011_04       | Pahsimeroi R-Unnamed Trib (T12N,R23E,Sec. 22) to Goldburg Ck | 2.54  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17060202SL017_04       | Pahsimeroi R-Burnt Ck to Unnamed Trib (T12N, R23E, Sec. 22)  | 10.34 | Miles |
| FLOW REGIME MODIFICATIO  | ON                                                           |       |       |
| ID17060202SL031_03       | Big Creek - confluence of North and South Fork Big Creeks    | 13.56 | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17060202SL034_03       | Patterson Creek - Inyo Creek to mouth                        | 13.61 | Miles |
| FLOW REGIME MODIFICATION |                                                              |       |       |
| ID17060202SL034_04       | Patterson Creek - Inyo Creek to mouth                        | 9.65  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060202SL039_03       | Morgan Creek - source to mouth                               | 14.07 | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |

#### 17060203 Middle Salmon-Panther

| D17060203SL038_03 | Dump Creek - Moose Creek to mouth | 5.04 Mi | iles |
|-------------------|-----------------------------------|---------|------|
|-------------------|-----------------------------------|---------|------|

### Salmon

| ID17060203SL042_02       | Salmon River - Williams Creek to Pollard Creek               | 48.86 | Miles |
|--------------------------|--------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| 17060204                 | Lemhi                                                        |       |       |
| ID17060204SL007a_03      | McDevitt Creek - diversion (T19N, R23E, Sec. 36) to mouth    | 2.36  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL026a_02      | Mill Creek - diversion (T16N, R24E, Sec. 22) to mouth        | 10.4  | Miles |
| FLOW REGIME MODIFICATION | ON                                                           |       |       |
| ID17060204SL027_02       | Walter Creek - source to mouth                               | 7.2   | Miles |
| FLOW REGIME MODIFICATION | ON                                                           |       |       |
| ID17060204SL030_05       | Lemhi River (East Branch)-Eighteenmile & Texas Ck Confluence | 10.39 | Miles |
| FLOW REGIME MODIFICATION | ON                                                           |       |       |
| ID17060204SL036_03       | Texas Creek                                                  | 14.93 | Miles |
| FLOW REGIME MODIFICATION | ON                                                           |       |       |
| ID17060204SL041_04       | Eighteenmile Creek - Hawley Creek to mouth                   | 2.21  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL042_03       | Eighteenmile Creek - Clear Creek to Hawley Creek             | 12.62 | Miles |
| FLOW REGIME MODIFICATION | ON                                                           |       |       |
| ID17060204SL043_03       | Eighteenmile Creek - Divide Creek to Clear Creek             | 5.96  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL045_02       | Eighteenmile Creek - source to Divide Creek                  | 29.68 | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL050a_03      | Hawley Creek - diversion (T15N, R27E, Sec. 03) to mouth      | 2.2   | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL051b_02      | Canyon Creek - source to diversion (T16N, R26E, Sec.22)      | 70.12 | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL052a_02      | Little Eightmile Creek                                       | 0.43  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL062a_02      | Sandy Creek - diversion (T20N, R24E, Sec. 17) to mouth       | 2.1   | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17060204SL062b_02      | Sandy Creek - source to diversion (T20N, R24E, Sec. 17)      | 12.33 | Miles |

### Salmon

| ID17060204SL064a_02      | Bohannon Creek - diversion (T21N, R23E, Sec. 22) to mouth  | 1.36  | Miles |
|--------------------------|------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATION | ON                                                         |       |       |
| ID17060204SL064b_02      | Bohannon Creek - source to diversion (T21N, R23E, Sec. 22) | 13.58 | Miles |
| FLOW REGIME MODIFICATIO  | N                                                          |       |       |
| ID17060204SL065a_02      | Geertson Creek - diversion (T21N, R23E, Sec. 20) to mouth  | 11.44 | Miles |
| FLOW REGIME MODIFICATIO  | N                                                          |       |       |
| ID17060204SL065b_02      | Geertson Creek - source to diversion (T21N, R23E, Sec. 20) | 14.71 | Miles |
| FLOW REGIME MODIFICATIO  | N                                                          |       |       |
| ID17060204SL066a_03      | Kirtley Creek - diversion (T21N, R22E, Sec. 02) to mouth   | 2.28  | Miles |
| FLOW REGIME MODIFICATION | N                                                          |       |       |
| 17060205                 | Upper Middle Fork Salmon                                   |       |       |
| ID17060205SL026_02       | Asher Creek - source to mouth                              | 3.34  | Miles |
|                          | N                                                          |       |       |
| ID17060205SL027_02       | Unnamed Tributary - source to mouth (T12N, R11E, Sec. 11)  | 1.62  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                          |       |       |
| 17060207                 | Middle Salmon-Chamberlain                                  |       |       |
| ID17060207SL007_03a      | Warren Creek - 3rd order segment outside roadless area     | 8.68  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| 17060209                 | Lower Salmon                                               |       |       |
| ID17060209SL060_02       | Deep Creek - source to unnamed tributary                   | 28.3  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       | -     |
| FLOW REGIME MODIFICATION | N                                                          |       |       |
| 17060210                 | Little Salmon                                              |       |       |
| ID17060210SL001_05       | Little Salmon River - 5th order                            | 24.88 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                           |       |       |
| ID17060210SL007_04a      | West Branch Goose Creek                                    | 4.38  | Miles |
| FLOW REGIME MODIFICATION | N                                                          |       | -     |
| ID17060210SL007_05       | Little Salmon River - 5th order                            | 16.91 | Miles |
|                          |                                                            |       |       |

#### Salmon

ID17060210SL010\_04 East Branch Goose Creek and 4th order section of Goose Creek 5.45 Miles

### Southwest

| 17050101                | C. J. Strike Reservoir                                       |       |       |
|-------------------------|--------------------------------------------------------------|-------|-------|
| ID17050101SW012_02      | Little Canyon Creek - 1st and 2nd order                      | 31.02 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| 17050102                | Bruneau                                                      |       |       |
| ID17050102SW002_05      | Jacks Creek-Little Jacks Ck to CJ Strike Reservoir           | 12.29 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050102SW009_06      | Bruneau River - 6th order (Hot Creek to mouth)               | 16.9  | Miles |
| HABITAT ASSESSMENT      |                                                              |       |       |
| 17050103                | Middle Snake-Succor                                          |       |       |
| ID17050103SW001_07      | Snake River - Marsing (RM425) to State Line                  | 16.09 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050103SW002_04      | Lower Succor Creek - 4th order (state line to mouth)         | 5.51  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050103SW003_02      | Upper Succor Creek - 1st and 2nd order tributaries           | 68.4  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050103SW003_03      | Upper Succor Creek - 3rd order (Granite Creek to State Line) | 15.7  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050103SW005_03      | Jump Creek - 3rd order                                       | 19.51 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050103SW012_04      | Sinker Creek - 4th order                                     | 15.74 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050103SW014_04      | Castle Creek - lower 4th order (irrigated section)           | 9.21  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050103SW014_05      | Castle Creek - 5th order (Catherine Cr. to Snake River)      | 3.81  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| 17050104                | Upper Owyhee                                                 |       |       |
| ID17050104SW028_02      | Pole Creek - 1st and 2nd order                               | 71.16 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17050104SW028_03      | Pole Creek - 3rd order                                       | 6.4   | Miles |

### Southwest

| ID17050104SW034_02       | Red Canvon Creek - 1st and 2nd order                    | 77 65 | Miles   |
|--------------------------|---------------------------------------------------------|-------|---------|
|                          |                                                         | 11.03 | Wiles   |
|                          | Pad Canvan Craak 4th ardar                              | 2.06  | Mileo   |
| 1017050104500034_04      | Red Canyon Creek - 4th order                            | 2.90  | ivilies |
| FLOW REGIME MODIFICATIO  | DN .                                                    |       |         |
| 17050105                 | South Fork Owyhee                                       |       |         |
| ID17050105SW001_06       | SF Owyhee River - Nevada border to Little Owyhee River  | 19.62 | Miles   |
| FLOW REGIME MODIFICATIO  | DN                                                      |       |         |
| 17050107                 | Middle Owyhee                                           |       |         |
| ID17050107SW004_02       | MF Owyhee River & tributaries - 1st and 2nd order       | 48.02 | Miles   |
| FLOW REGIME MODIFICATIO  | N                                                       |       |         |
| ID17050107SW004_03       | Middle Fork Owyhee River - 3rd order section            | 4.59  | Miles   |
| FLOW REGIME MODIFICATIO  | DN .                                                    |       |         |
| ID17050107SW008_04       | NF Owyhee River & Juniper Creek - 4th order             | 2.32  | Miles   |
| FLOW REGIME MODIFICATIO  | N                                                       |       |         |
| ID17050107SW009_02       | Pleasant Valley Cr. & Tribs - 1st & 2nd order           | 37.74 | Miles   |
| FLOW REGIME MODIFICATIO  | N                                                       |       |         |
| ID17050107SW009_03       | Pleasant Valley Creek - 3rd order section               | 5.68  | Miles   |
| FLOW REGIME MODIFICATIO  | N                                                       |       |         |
| ID17050107SW012_02       | Juniper Creek & tributaries - 1st & 2nd order           | 24.49 | Miles   |
| FLOW REGIME MODIFICATIO  | N                                                       |       |         |
| ID17050107SW012_03       | Juniper Creek - 3rd order section                       | 6.87  | Miles   |
| FLOW REGIME MODIFICATIO  | DN .                                                    |       |         |
| 17050108                 | Jordan                                                  |       |         |
| ID17050108SW001_05       | Jordan Creek - Williams Creek to State Line             | 13.35 | Miles   |
| FLOW REGIME MODIFICATION |                                                         |       |         |
| ID17050108SW013_02       | Rock Creek above Triangle Reservoir - 1st and 2nd order | 63.9  | Miles   |
| FLOW REGIME MODIFICATIO  | DN                                                      |       |         |
| ID17050108SW014_02       | Louisa Creek - entire drainage                          | 13.81 | Miles   |
|                          |                                                         |       |         |

### Southwest

| ID17050108SW015_02 Spring and Meadow Creeks - 1st and 2nd order            | 48.83  | Miles |
|----------------------------------------------------------------------------|--------|-------|
| FLOW REGIME MODIFICATION                                                   |        |       |
| ID17050108SW015_03 Spring and Meadow Creeks - 3rd order sections           | 8.09   | Miles |
| FLOW REGIME MODIFICATION                                                   |        |       |
| ID17050108SW021_02 Cow Creek - 1st and 2nd order                           | 55.14  | Miles |
| FLOW REGIME MODIFICATION                                                   |        |       |
| ID17050108SW021_03 Cow Creek - 3rd order (Wildcat Canyon to Soda Creek)    | 3.42   | Miles |
| FLOW REGIME MODIFICATION                                                   |        |       |
| 17050112 Boise-Mores                                                       |        |       |
| ID17050112SW009_02 Mores Creek - 1st and 2nd order                         | 133.16 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |        |       |
| ID17050112SW009_03 Mores Creek - 3rd order (Hayfork Creek to Elk Creek)    | 12.3   | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |        |       |
| ID17050112SW009_04 Mores Creek - 4th order (Elk Creek to Grimes Creek)     | 8.84   | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |        |       |
| ID17050112SW013_03 Grimes, Clear and Smith Creeks - 3rd order sections     | 8.57   | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |        |       |
| ID17050112SW013_04 Grimes Creek - 4th order (Clear Creek to Granite Creek) | 9.64   | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |        |       |
| ID17050112SW013_05 Grimes Creek - 5th order (Granite Creek to mouth)       | 14.65  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                     |        |       |
| 17050113 South Fork Boise                                                  |        |       |
| ID17050113SW007L_0L Little Camas Reservoir                                 | 965.21 | Acres |
| FLOW REGIME MODIFICATION                                                   |        |       |
| ID17050113SW032_03 Smith Creek - 3rd order (Mule Gulch to SF Boise River)  | 16.45  | Miles |
| FLOW REGIME MODIFICATION                                                   |        |       |
| 17050114 Lower Boise                                                       |        |       |
| ID17050114SW001_06 Boise River - Indian Creek to mouth                     | 44.91  | Miles |
|                                                                            |        |       |

FLOW REGIME MODIFICATION

### Southwest

| ID17050114SW005_06 Boise River - Veterans Memorial Parkway to Star Bridge       | 36.89 | Miles |
|---------------------------------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17050114SW005_06a Boise River-Star to Middleton                               | 11.34 | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| ID17050114SW005_06b Boise River-Middleton to Indian Creek                       | 7.84  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17050114SW010_02 Fivemile, Eightmile, and Ninemile Creeks - 1st and 2nd order | 66.16 | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17050114SW011a_06 Boise River - Diversion Dam to Veterans Memorial Parkway    | 22.74 | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |       |       |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17050114SW011b_06 Boise River - Lucky Peak Dam to Diversion Dam               | 2.31  | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| 17050123 North Fork Payette                                                     |       |       |
| ID17050123SW001_06 North Fork Payette River - Cascade to Smiths Ferry           | 23.21 | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17050123SW001_06a North Fork Payette River - Smiths Ferry to Banks            | 19.07 | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17050123SW011_03 Boulder Creek - 3rd order (Louie Creek to mouth)             | 11.55 | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| ID17050123SW012_03 Lake Fork - Little Payette Lake to Cascade Reservoir         | 19.53 | Miles |
| FLOW REGIME MODIFICATION                                                        |       |       |
| 17050201 Brownlee Reservoir                                                     |       |       |

FLOW REGIME MODIFICATION

ID17050201SW007\_03 Warm Springs Creek - 3rd order

5.31

Miles

# Upper Snake

| 17040104                | Palisades                                                 |       |       |
|-------------------------|-----------------------------------------------------------|-------|-------|
| ID17040104SK001_06      | Snake River                                               | 21.98 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                        |       |       |
| ID17040104SK002_03      | Antelope Creek - source to mouth                          | 5.95  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                        |       |       |
| ID17040104SK003_06      | Snake River - Fall Creek to Black Canyon Creek            | 29.06 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                        |       |       |
| ID17040104SK008_06      | Snake River - Palisades Reservoir Dam to Fall Creek       | 16.82 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                        |       |       |
| ID17040104SK026_02      | Little Elk Creek - source to Palisades Reservoir          | 9.67  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                        |       |       |
| 17040105                | Salt                                                      |       |       |
| ID17040105SK001_02b     | Newswander Canyon                                         | 4.96  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                          |       |       |
| ID17040105SK003_02d     | Houtz Creek                                               | 1.13  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                          |       |       |
| ID17040105SK003_02j     | Haderlie Creek                                            | 8.65  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                          |       |       |
| ID17040105SK007_02c     | Smoky Creek                                               | 10.78 | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                          |       |       |
| ID17040105SK007_03      | Tygee Creek - source to mouth                             | 5.55  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                        |       |       |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                          |       |       |
| 17040201                | Idaho Falls                                               |       |       |
| ID17040201SK013_06      | Snake River - river mile 856 to Dry Bed Creek             | 6.98  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                        |       |       |
| 17040203                | Lower Henrys                                              |       |       |
| ID17040204SK002 05      | North Fork Teton River - Teton River Forks to Henrys Fork | 18.75 | Miles |
|                         |                                                           |       |       |

# Upper Snake

| 17040204                 | Teton                                                        |       |       |
|--------------------------|--------------------------------------------------------------|-------|-------|
| ID17040204SK002_05       | North Fork Teton River - Teton River Forks to Henrys Fork    | 18.75 | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17040204SK014_04       | Teton River - Felt Dam outlet to Milk Creek                  | 1.66  | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK015_04       | Teton River - Felt Dam pool                                  | 4.12  | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK016_04       | Teton River - Highway 33 bridge to Felt Dam pool             | 3.26  | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK017_04       | Teton River                                                  | 13.67 | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK019_02       | Packsaddle Creek                                             | 14.59 | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17040204SK020_04       | Teton River                                                  | 15.72 | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK021_03       | Horseshoe Creek                                              | 4.81  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17040204SK025_02       | Mahogany Creek                                               | 6.48  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17040204SK026_02       | Teton River - Tributaries between Trail Creek to Teton Creek | 23.5  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17040204SK026_04       | Teton River - Trail Creek to Teton Creek                     | 5.63  | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK028_03       | Teton River                                                  | 2.6   | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK032_02       | Drake Creek - source to mouth                                | 5.43  | Miles |
| PHYSICAL SUBSTRATE HAB   | BITAT ALTERATIONS                                            |       |       |
| ID17040204SK041_02       | Fox Creek                                                    | 7.99  | Miles |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17040204SK042_02       | Fox Creek                                                    | 0.91  | Miles |
|                          |                                                              |       |       |

# Upper Snake

| ID17040204SK056_02      | Spring Creek - source to North Leigh Creek, including spring | 24.21 | Miles |
|-------------------------|--------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| 17040205                | Willow                                                       |       |       |
| ID17040205SK006_02      | Birch Creek - source to mouth                                | 14.12 | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO | N                                                            |       |       |
| ID17040205SK006_03      | Birch Creek - source to mouth                                | 1.01  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17040205SK015_02      | Long Valley Creek - source to mouth                          | 22.3  | Miles |
| FLOW REGIME MODIFICATIO | DN .                                                         |       |       |
| 17040206                | American Falls                                               |       |       |
| ID17040206SK002_03      | Bannock Creek - source to American Falls Reservoir           | 14.24 | Miles |
| FLOW REGIME MODIFICATIO | N                                                            |       |       |
| ID17040206SK010_04      | Rattlesnake Creek - lower                                    | 1.27  | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17040206SK024_02a     | McTucker Creek                                               | 2.13  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                             |       |       |
| 17040207                | Blackfoot                                                    |       |       |
| ID17040207SK002_02b     | Deadman Creek - Blackfoot River tributary                    | 1.06  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                             |       |       |
| ID17040207SK002_05      | Blackfoot River - Blackfoot Reservoir Dam to Fort Hall Main  | 65.16 | Miles |
| FLOW REGIME MODIFICATIO | DN                                                           |       |       |
| ID17040207SK005_02a     | Grave Creek - upper (Blackfoot River tributary)              | 3.95  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                             |       |       |
| ID17040207SK005_02d     | Coyote Creek (Blackfoot River tributary)                     | 1.23  | Miles |
| PHYSICAL SUBSTRATE HAB  | ITAT ALTERATIONS                                             |       |       |
| ID17040207SK005_03      | Grave Creek - West Creek to Blackfoot River                  | 5.49  | Miles |

# Upper Snake

| ID17040207SK006_02a Chicken Creek - headwaters to Corral Creek (Blackfoot River) | 6.42  | Miles |
|----------------------------------------------------------------------------------|-------|-------|
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK006_02b Bear Creek - headwaters to Corral Creek (Blackfoot River)    | 3.85  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK006_03 Corral Creek - middle                                         | 9.22  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK007_02 Grizzly Creek - source to mouth                               | 16.72 | Miles |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                            |       |       |
| ID17040207SK007_02a Sawmill Creek - headwaters to Grizzly Creek, Blackfoot River | 7.46  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK007_03 Grizzly Creek - source to mouth                               | 4.54  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK008_02 Thompson Creek - upper (Blackfoot River tributary)            | 10.7  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK009_02a Collett Creek - headwaters to Blackfoot Reservoir            | 3.98  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK009_03 Little Blackfoot River                                        | 7.56  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| FLOW REGIME MODIFICATION                                                         |       |       |
| ID17040207SK010_02a State Land Creek - headwaters to Blackfoot River             | 9.08  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK011_03 Trail Creek - source to mouth (Below Findlayson Ranch)        | 7.85  | Miles |
| FLOW REGIME MODIFICATION                                                         |       |       |
| ID17040207SK012_02b Goodheart Creek                                              | 7.54  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK012_03 Slug Creek - source to mouth                                  | 4.8   | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                           |       |       |
| ID17040207SK012_03a lower Johnson Creek                                          | 2.9   | Miles |
|                                                                                  |       |       |

# Upper Snake

| ID17040207SK012_04 Slug Creek - source to mouth                             | 18.61 | Miles |
|-----------------------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATION                                                    |       |       |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK013_02a Dry Valley Creek                                        | 6.43  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK015_02a East Mill Creek                                         | 2.44  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK016_02e Cabin Creek                                             | 3.42  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK018_02e Lanes Creek - FS boundary to Lander Creek               | 3.13  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK018_03 Lanes Creek - Lander Creek to Chippy Creek               | 3.65  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK018_04 Lanes Creek - Chippy Creek to Blackfoot River            | 9.41  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK019_02b Bacon Creek - below FS boundary                         | 3.52  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK019_03 Bacon Creek - below FS boundary                          | 2.03  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK019_04 Bacon Creek - below FS boundary                          | 4.62  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK021_03 Chippy Creek - lower (Blackfoot River tributary)         | 4.61  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK022_03 Sheep Creek - below confluence of South Fork Sheep Creek | 2.55  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK023_02a Rasmussen Creek                                         | 6.27  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK023_02b Angus Creek - upper, headwaters to Rasumussen Creek     | 7.81  | Miles |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                      |       |       |
| ID17040207SK023_04 Lower Angus Creek - Rasmussen Creek to Blackfoot River   | 3.46  | Miles |

### Upper Snake

| ID17040207SK025_02c Clarks Cut - Sheep Creek to Grays Lake                      | 1.92   | Miles |  |  |
|---------------------------------------------------------------------------------|--------|-------|--|--|
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040207SK025_03b Crooked Creek (Meadow Cr/Blackfoot River tributary)         | 2.13   | Miles |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040207SK030_03 Wolverine Creek - Jones Creek to Mouth                       | 2.55   | Miles |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |
| 17040208 Portneuf                                                               |        |       |  |  |
| ID17040208SK001_05 Portneuf River - Marsh Creek to American Falls Reservoir     | 24.46  | Miles |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040208SK006_03a Marsh Creek - Rt Fk to Red Rock Pass                        | 3.78   | Miles |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040208SK006_04 Lower Marsh Creek                                            | 17.69  | Miles |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |
| ID17040208SK006_04a Lower Middle Marsh Creek                                    | 19.76  | Miles |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040208SK010_02b Garden Creek - lower                                        | 7.65   | Miles |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040208SK014_02 Cherry Creek - ephemeral tributaries                         | 17.64  | Miles |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040208SK014_02b Cherry Creek                                                | 5.83   | Miles |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |
| ID17040208SK016_02 Portneuf R - 2nd order tribs-Chesterfield Dam to Marsh Creek | 162.63 | Miles |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |
| PHYSICAL SUBSTRATE HABITAT ALTERATIONS                                          |        |       |  |  |
| ID17040208SK016_03 Portneuf River- Chesterfield Reservoir to Toponce Creek      | 5.52   | Miles |  |  |
| FLOW REGIME MODIFICATION                                                        |        |       |  |  |

# Upper Snake

| ID17040208SK016_04       | Portneuf River- hist. channel, Toponce to Twentyfour Mile Ck | 2.82   | Miles |  |
|--------------------------|--------------------------------------------------------------|--------|-------|--|
| FLOW REGIME MODIFICATION |                                                              |        |       |  |
| ID17040208SK016_05       | Portneuf River- Twentyfour Mile Creek to Marsh Creek         | 52.21  | Miles |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| ID17040208SK017_02c      | Beaverdam Creek                                              | 3.84   | Miles |  |
| PHYSICAL SUBSTRATE HAE   | BITAT ALTERATIONS                                            |        |       |  |
| ID17040208SK018_02a      | Twentyfour Mile Creek                                        | 1.17   | Miles |  |
| PHYSICAL SUBSTRATE HAE   | BITAT ALTERATIONS                                            |        |       |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| ID17040208SK024_03       | lower Pocatello Creek                                        | 2.91   | Miles |  |
| PHYSICAL SUBSTRATE HAE   | BITAT ALTERATIONS                                            |        |       |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| ID17040208SK024_03a      | middle Pocatello Creek - Fks to Outback Driving Range        | 2.02   | Miles |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| PHYSICAL SUBSTRATE HAE   | BITAT ALTERATIONS                                            |        |       |  |
| 17040209                 | Lake Walcott                                                 |        |       |  |
| ID17040209SK011_07       | Snake River - American Falls Reservoir Dam to Rock Creek     | 13.33  | Miles |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| 17040210                 | Raft                                                         |        |       |  |
| ID17040210SK001 05       | Raft River - Heglar Canyon Creek to mouth                    | 18.44  | Miles |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| ID17040210SK002_02       | Raft River - Cassia Creek to Heglar Canyon Creek             | 166.91 | Miles |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| ID17040210SK002_05       | Raft River - Cassia Creek to Heglar Canyon Creek             | 19.5   | Miles |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| ID17040210SK003_04       | Cassia Creek - Conner Creek to mouth                         | 12.76  | Miles |  |
| PHYSICAL SUBSTRATE HAE   | PHYSICAL SUBSTRATE HABITAT ALTERATIONS                       |        |       |  |
| ID17040210SK008_04       | Raft River - Cottonwood Creek to Cassia Creek                | 19.86  | Miles |  |
| FLOW REGIME MODIFICATI   | ON                                                           |        |       |  |
| ID17040210SK010_04       | Raft River                                                   | 19.1   | Miles |  |
|                          |                                                              |        |       |  |

### Upper Snake

| ID17040210SK013_04       | Raft River - Idaho/Utah border to Edwards Creek          | 8.32    | Miles |
|--------------------------|----------------------------------------------------------|---------|-------|
| FLOW REGIME MODIFICATION | N                                                        |         |       |
| ID17040210SK019_02       | Sublett Creek - Sublett Reservoir Dam to mouth           | 51.51   | Miles |
| FLOW REGIME MODIFICATIO  | N                                                        |         |       |
| ID17040210SK020_0L       | Sublett Reservoir                                        | 79.91   | Acres |
| FLOW REGIME MODIFICATION | ИС                                                       |         |       |
| 17040211                 | Goose                                                    |         |       |
| ID17040211SK000_02A      | Little Cottonwood Creek                                  | 63.28   | Miles |
| FLOW REGIME MODIFICATION | N                                                        |         |       |
| ID17040211SK002L_0L      | Lower Goose Creek Reservoir                              | 1005.99 | Acres |
| FLOW REGIME MODIFICATION | N                                                        |         | -     |
| ID17040211SK003_04a      | Trapper Creek                                            | 0.34    | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                         |         |       |
| 17040212                 | Upper Snake-Rock                                         |         |       |
| ID17040212SK000_02       | 1st and 2nd order tribs to Yahoo and Deep Creek          | 391.97  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                        |         |       |
| ID17040212SK001_07       | Snake River - Lower Salmon Falls to Clover Creek         | 26.68   | Miles |
| FLOW REGIME MODIFICATION | N                                                        |         |       |
| ID17040212SK005_07       | Snake River - Box Canyon Creek to Lower Salmon Falls     | 16.51   | Miles |
| FLOW REGIME MODIFICATION | N                                                        |         |       |
| ID17040212SK007_02       | 2nd order segments of Briggs Creeks and Cedar Draw       | 31.06   | Miles |
| FLOW REGIME MODIFICATION | N                                                        |         |       |
| ID17040212SK007_07       | Snake River - Rock Creek to Box Canyon Creek             | 18.3    | Miles |
| FLOW REGIME MODIFICATION | ON                                                       |         |       |
| ID17040212SK010_03       | Mud Creek - Deep Creek Road (T09S, R14E) to mouth        | 1.07    | Miles |
| FLOW REGIME MODIFICATION | ON .                                                     |         |       |
| ID17040212SK012_03       | Cedar Draw - source to mouth                             | 2.93    | Miles |
| FLOW REGIME MODIFICATION | N                                                        |         |       |
| ID17040212SK013_04       | Rock Creek -river mile 25 (T11S, R18E, Sec. 36) to mouth | 4.63    | Miles |
|                          |                                                          |         |       |

### Upper Snake

| ID17040212SK013_05      | Rock Creek -river mile 25 (T11S, R18E, Sec. 36) to mouth   | 20.19  | Miles |  |
|-------------------------|------------------------------------------------------------|--------|-------|--|
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK014_02      | North/Dry Cottonwood Creek - source to mouth               | 37.64  | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK014_04      | Cottonwood Creek - 4th order segment                       | 6.26   | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK015_03      | McMullen Creek - source to mouth                           | 9.41   | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK016_04      | Rock Creek                                                 | 8.31   | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK019_07      | Snake River - Twin Falls to Rock Creek                     | 12.58  | Miles |  |
| FLOW REGIME MODIFICATIO | ИС                                                         |        |       |  |
| ID17040212SK020_07      | Snake River - Milner Dam to Twin Falls                     | 21.31  | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK022_03      | Dry Creek - source to mouth                                | 9.85   | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK023_02      | West Fork Dry Creek - source to mouth                      | 10.72  | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK031_02      | Sand Springs                                               | 4.6    | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK033_02      | Billingsley Creek - source to mouth                        | 8.13   | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |
| ID17040212SK034_04      | Clover Creek - Pioneer Reservoir Dam outlet to Snake River | 10.1   | Miles |  |
| FLOW REGIME MODIFICATIO | ИС                                                         |        |       |  |
| ID17040212SK035_04      | Pioneer Reservoir                                          | 228.92 | Acres |  |
| FLOW REGIME MODIFICATIO | FLOW REGIME MODIFICATION                                   |        |       |  |
| ID17040212SK040_03      | Calf Creek - source to mouth                               | 6.57   | Miles |  |
| FLOW REGIME MODIFICATIO | N                                                          |        |       |  |

#### 17040213 Salmon Falls

| ID17040212SK000_02 | 1st and 2nd order tribs to Yahoo and Deep Creek | 391.97 | Miles |
|--------------------|-------------------------------------------------|--------|-------|
|                    |                                                 |        |       |

# Upper Snake

| ID17040213SK000_04       | Cedar Creek-reservoir to Salmon Falls Creek                  | 9.1   | Miles |
|--------------------------|--------------------------------------------------------------|-------|-------|
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| 17040214                 | Beaver-Camas                                                 |       |       |
| ID17040214SK002_05       | Camas Creek - Spring Creek to Beaver Creek                   | 40.87 | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| ID17040214SK003_05       | Beaver Creek - canal (T09N, R36E) to mouth                   | 10.56 | Miles |
| FLOW REGIME MODIFICATIO  | ON                                                           |       |       |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| ID17040214SK015_05       | Beaver Creek - Rattlesnake Creek to Dry Creek                | 2.9   | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| 17040215                 | Medicine Lodge                                               |       |       |
| ID17040215SK012_03       | Irving Creek - source to mouth                               | 2.56  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| 17040216                 | Birch                                                        |       |       |
| ID17040216SK001_04       | Birch Creek - Reno Ditch to playas                           | 24.64 | Miles |
| FLOW REGIME MODIFICATION | ON                                                           |       |       |
| 17040217                 | Little Lost                                                  |       |       |
| ID17040217SK022_03       | Wet Creek - Squaw Creek to mouth                             | 8.36  | Miles |
| FLOW REGIME MODIFICATIO  | N                                                            |       |       |
| 17040218                 | Big Lost                                                     |       |       |
| ID17040218SK002_06       | Big Lost River-Spring Creek to Big Lost River Sinks (playas) | 72.19 | Miles |
| FLOW REGIME MODIFICATIO  | DN .                                                         |       |       |
| ID17040218SK003_06       | Spring Creek - Lower Pass Creek to Big Lost River            | 17.1  | Miles |
| PHYSICAL SUBSTRATE HAB   | ITAT ALTERATIONS                                             |       |       |
| FLOW REGIME MODIFICATION | N                                                            |       |       |
| ID17040218SK020_03       | Willow Creek - source to mouth                               | 4.05  | Miles |

### Upper Snake

| ID17040218SK024_05       | Big Lost River - Burnt Creek to Thousand Springs Creek      | 18.99   | Miles |
|--------------------------|-------------------------------------------------------------|---------|-------|
| FLOW REGIME MODIFICATION |                                                             |         |       |
| ID17040218SK046_02       | Antelope Creek - Spring Creek to mouth                      | 49.58   | Miles |
| FLOW REGIME MODIFICATION | N                                                           |         |       |
| ID17040218SK047_04       | Antelope Creek - Dry Fork Creek to Spring Creek             | 3.56    | Miles |
| FLOW REGIME MODIFICATION | N                                                           |         |       |
| 17040219                 | Big Wood                                                    |         |       |
| ID17040219SK004_05       | Big Wood River - Seamans Creek to Magic Reservoir           | 39.26   | Miles |
| FLOW REGIME MODIFICATION | N                                                           |         |       |
| ID17040219SK007_05       | Big Wood River - North Fork Big Wood River to Seamans Creek | 28.87   | Miles |
| FLOW REGIME MODIFICATION | N                                                           |         |       |
| ID17040219SK008_02A      | A Quigley Creek                                             | 9.62    | Miles |
| FLOW REGIME MODIFICATIO  | N                                                           |         |       |
| ID17040219SK027_03       | Croy Creek - source to mouth                                | 8.36    | Miles |
| FLOW REGIME MODIFICATIO  | ON                                                          |         |       |
| ID17040219SK030_03       | Black Canyon Creek - source to mouth                        | 24.17   | Miles |
| FLOW REGIME MODIFICATION | NC                                                          |         |       |
| 17040220                 | Camas                                                       |         |       |
| ID17040220SK011_03       | Soldier Creek - Wardrop Creek to mouth                      | 12.72   | Miles |
| FLOW REGIME MODIFICATION | ON                                                          |         |       |
| ID17040220SK023L_0L      | Mormon Reservoir                                            | 1583.81 | Acres |
| FLOW REGIME MODIFICATION | N                                                           |         |       |
| ID17040220SK025_02       | McKinney Creek - source to Mormon Reservoir                 | 17.49   | Miles |
| FLOW REGIME MODIFICATION | ON                                                          |         |       |
| 17040221                 | Little Wood                                                 |         |       |
| ID17040221SK001_05       | Little Wood River                                           | 26.86   | Miles |
| FLOW REGIME MODIFICATION | N                                                           |         |       |
| ID17040221SK001_05a      | Little Wood River                                           | 29.69   | Miles |

### Upper Snake

| ID17040221SK001_05b Little Wood River                                           | 5.66   | Miles |
|---------------------------------------------------------------------------------|--------|-------|
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK002_05 Little Wood River                                            | 25.8   | Miles |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK003_05 Little Wood River - West Canal (north) to West Canal (south) | 15.67  | Miles |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK006_03 Fish Creek - Fish Creek Reservoir Dam to mouth               | 2.68   | Miles |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK006_04 Fish Creek - Fish Creek Reservoir Dam to mouth               | 16.6   | Miles |
| FLOW REGIME MODIFICATION                                                        |        | -     |
| ID17040221SK007L_0L Fish Creek Reservoir                                        | 349.53 | Acres |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK008_04 Fish Creek - source to Fish Creek Reservoir                  | 1.36   | Miles |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK009_03 West Fork Fish Creek - source to Fish Creek Reservoir        | 3.33   | Miles |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK010_05 Little Wood River - Little Wood River Reservoir Dam to Carey | 4.31   | Miles |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK012L_0L Little Wood River Reservoir                                 | 598.94 | Acres |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK022_02 Dry Creek - source to mouth                                  | 39.64  | Miles |
| FLOW REGIME MODIFICATION                                                        |        |       |
| ID17040221SK022_03 Dry Creek - source to mouth                                  | 11.61  | Miles |
|                                                                                 |        |       |

# Category 5 (§ 303(d) List): Waters do not meet applicable water quality standards for one or more beneficial uses due to one or more pollutants and a TMDL is needed.

#### 2018/2020 Integrated Report - Category 5 (§ 303(d) list)

**Bear River** 

| 16010102 Central Bear                        |                                                                                                                                                                                                                                                                      |                                                                              |                                       |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|
| ID16010102BR002_03 Pegram Creek - source     | to mouth                                                                                                                                                                                                                                                             | 6.27                                                                         | Miles                                 |
| SEDIMENTATION/SILTATION                      |                                                                                                                                                                                                                                                                      |                                                                              |                                       |
| ID16010102BR007_02a Giraffe Creek - headwat  | ers to WY line                                                                                                                                                                                                                                                       | 6.46                                                                         | Miles                                 |
| SEDIMENTATION/SILTATION                      | 7/14/17 (HH): All particles were silt and clay in 2015 Wolma<br>site photos, water appears turbid and no woody riparian ver<br>Activities observed that may contribute to excess sediment<br>and grazing. Site comments indicate "cattle everywhere<br>muddy water". | an Pebble Count<br>getation is obser<br>ation include rec<br>extremely opaq  | t. In<br>rved.<br>creation<br>jue and |
| ID16010102BR008_02 Sheep Creek - source to   | mouth                                                                                                                                                                                                                                                                | 22.42                                                                        | Miles                                 |
| ESCHERICHIA COLI (E. COLI)                   | 6/11/2019 (RE): Six E. coli samples collected 8/30/2017 thr<br>geometric mean of 742.1 cfu/100 mL, which exceeds the 12<br>criterion, and indicates non-support of Secondary Contact F                                                                               | ough 9/26/2017<br>26 cfu/100 mL<br>Recreation.                               | had a                                 |
| 16010201 Bear Lake                           |                                                                                                                                                                                                                                                                      |                                                                              |                                       |
| ID16010201BR002_02 Bennington Canyon and     | unnamed tributaries                                                                                                                                                                                                                                                  | 182.09                                                                       | Miles                                 |
| SEDIMENTATION/SILTATION                      |                                                                                                                                                                                                                                                                      |                                                                              |                                       |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS        |                                                                                                                                                                                                                                                                      |                                                                              |                                       |
| ID16010201BR002_02b Wood Canyon Creek - h    | eadwaters to groundwater                                                                                                                                                                                                                                             | 7.24                                                                         | Miles                                 |
| SEDIMENTATION/SILTATION                      | 6/13/2019 (RE, JC): BURP site 2016SPOCA027 received a 1.50, indicating cold water aquatic life is not supported (Ida 6.4.3). The Wolman Pebble Count from 2016SPOCA027 in sand made up 60% of particles in riffles and that silt, sand, 73% of particles in riffles. | i site condition r<br>ho's WBAG III, s<br>idicated that silt<br>and VFP made | ating of<br>section<br>and<br>up      |
| ID16010201BR002_02d Dunns Creek              |                                                                                                                                                                                                                                                                      | 10.5                                                                         | Miles                                 |
| CAUSE UNKNOWN                                |                                                                                                                                                                                                                                                                      |                                                                              |                                       |
| ID16010201BR002_05 Bear River-railroad bridg | ge (T14N, R45E, Sec. 21) to Ovid Cr.                                                                                                                                                                                                                                 | 57.47                                                                        | Miles                                 |
| TEMPERATURE                                  | Exceeded State Water Quality Standards for salmonid span<br>aquatic life. See temperature data in IDASA.                                                                                                                                                             | wning and cold v                                                             | water                                 |
| ID16010201BR002_06 Bear River - Ovid Creek   | confluence to Alexander Reservoir                                                                                                                                                                                                                                    | 44.09                                                                        | Miles                                 |
| TEMPERATURE                                  | Exceeded State Water Quality Standards for salmonid space aquatic life. See temperature data in IDASA.                                                                                                                                                               | wning and cold v                                                             | water                                 |
| ID16010201BR006_02d Stauffer Creek - Beaver  | Cr to Spring Cr                                                                                                                                                                                                                                                      | 5.25                                                                         | Miles                                 |

ESCHERICHIA COLI (E. COLI)
### **Bear River**

| ID16010201BR006_02e Spring Creek              |                                                                                                                                                                               | 5.53                                                             | Miles        |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|
| COMBINED BIOTA/HABITAT BIOASSESSMENTS         |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR010_02a Copenhagen Creek          |                                                                                                                                                                               | 12.33                                                            | Miles        |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS         |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR010_02b Emigration Creek - HW     | to North Creek                                                                                                                                                                | 7.55                                                             | Miles        |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS         |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR011_03a Middle Mill Creek         |                                                                                                                                                                               | 1.99                                                             | Miles        |
| FECAL COLIFORM                                |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR013_02a Sleight Canyon            |                                                                                                                                                                               | 11.46                                                            | Miles        |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS         |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR014_03 Bloomington Creek - low    | ver                                                                                                                                                                           | 14.92                                                            | Miles        |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS         |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR014_03a Bloomington Creek - abo   | ove USFS boundary                                                                                                                                                             | 2.57                                                             | Miles        |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS         |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR016_02a St Charles Creek - head   | waters to Snowslide Canyon                                                                                                                                                    | 15.62                                                            | Miles        |
| TEMPERATURE                                   | Exceeded State Water Quality Standards for salmonid s temperature data in IDASA.                                                                                              | pawning. See                                                     |              |
| ID16010201BR016_03 St. Charles Creek - Little | Creek to Spring Creek                                                                                                                                                         | 2.75                                                             | Miles        |
| TEMPERATURE                                   | Exceeded state Water Quality Standards for salmonid s documentation in IDASA.                                                                                                 | pawning. See                                                     |              |
| ID16010201BR016_03a St Charles Creek - Little | Creek to Bear Lake                                                                                                                                                            | 2.67                                                             | Miles        |
| TEMPERATURE                                   | Exceeded state Water Quality Standards for salmonid s documentation in IDASA.                                                                                                 | pawning. See                                                     |              |
| ID16010201BR016_03b St Charles Creek - Snow   | vslide Canyon to Little Creek                                                                                                                                                 | 9.2                                                              | Miles        |
| TEMPERATURE                                   | 10/27/2014 (Greg Madenka) - Water temperature monito<br>6/9/2001 - 11/7/2001 indicated spring salmonid spawnin<br>19% of the spring salmonid spawning season which is A       | oring records from<br>g criteria was exce<br>pril 15 through Jul | eded<br>y 1. |
| ID16010201BR018_02b Indian Creek              |                                                                                                                                                                               | 5.77                                                             | Miles        |
| ESCHERICHIA COLI (E. COLI)                    | 6/11/2019 (RE): Five E. coli samples collected 8/30/201<br>geometric mean of 624.7 cfu/100 mL, which exceeds the<br>criterion, and indicates non-support of Primary Contact F | 7 through 9/19/201<br>e 126 cfu/100 mL<br>Recreation.            | 17 had a     |
| SEDIMENTATION/SILTATION                       |                                                                                                                                                                               |                                                                  |              |
| ID16010201BR020_02 Montpelier Creek Tributa   | aries - source to mouth                                                                                                                                                       | 32.79                                                            | Miles        |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS         |                                                                                                                                                                               |                                                                  |              |
| ESCHERICHIA COLI (E. COLI)                    | The five-sample geometric mean collected 9/14/2004 ha                                                                                                                         | ad a value >2,400                                                |              |

The five-sample geometric mean collected 9/14/2004 had a value >2,400 cfu/100mL, which is greater than the 126 cfu/100mL criterion value. Therefore, the recreational use of this water body is considered impaired by bacteria.

## Bear River

| ID16010201BR020_02a Little Beaver Creek    |                                                                                                                                                                                                        | 3.64                                                                                                               | Miles   |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010201BR020_02b Whiskey Creek - head   | waters to Montpelier Creek                                                                                                                                                                             | 5.39                                                                                                               | Miles   |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS      |                                                                                                                                                                                                        |                                                                                                                    |         |
| ESCHERICHIA COLI (E. COLI)                 | 6/11/2019 (RE): Five E. coli samples collected 8/2<br>geometric mean of 644.6 cfu/100 mL, which exce<br>criterion, and indicates non-support of Secondary                                              | 28/2017 through 9/14/201<br>eds the 126 cfu/100 mL<br>Contact Recreation.                                          | 7 had a |
| ID16010201BR020_02d Home Canyon            |                                                                                                                                                                                                        | 13.19                                                                                                              | Miles   |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010201BR020_02e Montpelier Creek - hea | dwaters to Whiskey Creek                                                                                                                                                                               | 4.11                                                                                                               | Miles   |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010201BR020_03 Montpelier Creek - lowe | er                                                                                                                                                                                                     | 5.3                                                                                                                | Miles   |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS      |                                                                                                                                                                                                        |                                                                                                                    |         |
| ESCHERICHIA COLI (E. COLI)                 | See DEQ BURP bacteria data. Failed Geometric                                                                                                                                                           | mean in 2004.                                                                                                      |         |
| SEDIMENTATION/SILTATION                    |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010201BR020_03a Middle Montpelier Cree | k                                                                                                                                                                                                      | 8.92                                                                                                               | Miles   |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010201BR020_03b Montpelier Creek       |                                                                                                                                                                                                        | 4.4                                                                                                                | Miles   |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010201BR022_02b Upper Georgetown Cre   | eek - headwaters to left hand fork                                                                                                                                                                     | 10.86                                                                                                              | Miles   |
| SELENIUM                                   | Se listed based on DEQ data. See DEQ 2006 Se<br>Phosphate Mining Resource Area.                                                                                                                        | enium Project Southeast                                                                                            | Idaho   |
| ID16010201BR022_03a Lower Georgetown Cre   | eek - left hand fork to mouth                                                                                                                                                                          | 3.91                                                                                                               | Miles   |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| 16010202 Middle Bear                       |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010202BR003_02b Deep Creek             |                                                                                                                                                                                                        | 4.91                                                                                                               | Miles   |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010202BR003_03 Cub River - Sugar Cree  | ek to Maple Creek                                                                                                                                                                                      | 5.28                                                                                                               | Miles   |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                        |                                                                                                                    |         |
| ID16010202BR005_01L Foster Reservoir       |                                                                                                                                                                                                        | 131.7                                                                                                              | Acres   |
| MERCURY                                    | 2/18/2010 (NED) - Mercury listing based on the D<br>and Selenium in Fish Tissue from Idaho Lakes ar<br>Assessment" (Essig and Kostermann, May 2008)<br>mg/kg, which exceeds the human health criterion | EQ report, "Arsenic, Merc<br>Id Reservoirs: A Statewide<br>. A Mercury level of 0.389<br>of 0.3 mg/kg, was reporte | ed.     |

### Bear River

| ID16010202BR005_02L Glendale Reservoir     |                                                                                                                                                                                                                       | 203.11                                                                                             | Acres                  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|
| MERCURY                                    | 2/18/2010 (NED) - Mercury listing based on the DEQ<br>and Selenium in Fish Tissue from Idaho Lakes and R<br>Assessment" (Essig and Kostermann, May 2008). A I<br>mg/kg, which exceeds the human health criterion of 0 | report, "Arsenic, Merc<br>eservoirs: A Statewid<br>Mercury level of 0.565<br>.3 mg/kg, was reporte | cury,<br>e<br>5<br>ed. |
| ID16010202BR006_06 Bear River-Oneida Nar   | rows Reservoir Dam to Idaho/Utah border                                                                                                                                                                               | 36.09                                                                                              | Miles                  |
| TEMPERATURE                                | Exceeded State Water Quality Standards for salmonic aquatic life. See temperature data in IDASA.                                                                                                                      | d spawning and cold v                                                                              | water                  |
| ID16010202BR009_02b Alder Creek - headwate | ers to mouth                                                                                                                                                                                                          | 17.72                                                                                              | Miles                  |
| FECAL COLIFORM                             |                                                                                                                                                                                                                       |                                                                                                    |                        |
| ID16010202BR009_06 Bear River - Alexander  | Reservoir Dam to Densmore Creek                                                                                                                                                                                       | 15.62                                                                                              | Miles                  |
| TEMPERATURE                                | Exceeded State Water Quality Standards for salmonic aquatic life. See temperature data in IDASA.                                                                                                                      | d spawning and cold v                                                                              | water                  |
| ID16010202BR009_06a Bear River - Denismore | e Cr to above Oneida Reservoir                                                                                                                                                                                        | 21.37                                                                                              | Miles                  |
| TEMPERATURE                                | Exceeded State Water Quality Standards for salmonic aquatic life. See temperature data in IDASA.                                                                                                                      | d spawning and cold v                                                                              | water                  |
| ID16010202BR014_02c Shingle Creek          |                                                                                                                                                                                                                       | 10.48                                                                                              | Miles                  |
| ESCHERICHIA COLI (E. COLI)                 | 10/6/2015 (NED) - The five-sample geometric mean E<br>Shingle Creek in 2002 had a value of 385 cfu/100mL,<br>126 cfu/100mL criterion value.                                                                           | . coli samples collect<br>which is greater than                                                    | ted on<br>I the        |
| SEDIMENTATION/SILTATION                    | 4/7/17 (HH): 2015 BURP site had 52% bank stability,<br>made up 85% of particles in riffles. These data indica<br>is impacting cold water aquatic life and salmonid space                                              | and fine sediments <<br>te that excess sedime<br>wning in this AU.                                 | 6 mm<br>entation       |
| ID16010202BR014_03a Shingle Creek          |                                                                                                                                                                                                                       | 0.84                                                                                               | Miles                  |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                                       |                                                                                                    |                        |
| ID16010202BR018_02b Swan Lake Creek        |                                                                                                                                                                                                                       | 13.79                                                                                              | Miles                  |
| FECAL COLIFORM                             | The five-sample geometric mean E. coli sample had a which greater than the 126 cfu/100mL criterion value. use of this water body is considered impaired by bact                                                       | a value of 4,937 cfu/10<br>Therefore, the recrea<br>eria.                                          | 00mL,<br>ational       |
| SEDIMENTATION/SILTATION                    |                                                                                                                                                                                                                       |                                                                                                    |                        |
| ID16010202BR019_02 Fivemile Creek - source | e to Dayton                                                                                                                                                                                                           | 9.51                                                                                               | Miles                  |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                                       |                                                                                                    |                        |
| ID16010202BR019_02a Fivemile Creek - Dayto | n to mouth                                                                                                                                                                                                            | 5.71                                                                                               | Miles                  |
| ESCHERICHIA COLI (E. COLI)                 |                                                                                                                                                                                                                       |                                                                                                    |                        |
| ID16010202BR020_02L Weston Creek Reserve   | bir                                                                                                                                                                                                                   | 111.42                                                                                             | Acres                  |
| MERCURY                                    | 2/18/2010 - (NED) Mercury listing based on the DEQ<br>and Selenium in Fish Tissue from Idaho Lakes and R<br>Assessment" (Essig and Kostermann, May 2008). A I<br>mg/kg, which exceeds the human health criterion of 0 | report, "Arsenic, Merc<br>eservoirs: A Statewid<br>Mercury level of 0.379<br>.3 mg/kg, was reporte | cury,<br>e<br>)<br>ed. |
| ID16010202BR021_02 Jenkins Hollow (Newton  | n Creek)                                                                                                                                                                                                              | 14.1                                                                                               | Miles                  |

SEDIMENTATION/SILTATION

# Bear River

| ID16010202BR021_02a Steel Canyon                                                                                                                                             | 1.53                                                                              | Miles    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------|
| SEDIMENTATION/SILTATION                                                                                                                                                      |                                                                                   |          |
| 16010203 Little Bear-Logan                                                                                                                                                   |                                                                                   |          |
| ID16010203BR001_02a Beaver Creek                                                                                                                                             | 10.55                                                                             | Miles    |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                        |                                                                                   |          |
| 16010204 Lower Bear-Malad                                                                                                                                                    |                                                                                   |          |
| ID16010204BR001_02b Four Mile Canyon                                                                                                                                         | 7.6                                                                               | Miles    |
| SEDIMENTATION/SILTATION                                                                                                                                                      |                                                                                   |          |
| ID16010204BR001_02c West Cherry Creek - Malad River tributary                                                                                                                | 4.52                                                                              | Miles    |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                        |                                                                                   |          |
| ESCHERICHIA COLI (E. COLI) 6/11/2019 (RE): Five E. coli samples collected<br>geometric mean of 969.6 cfu/100 mL, which ex<br>criterion, and indicates non-support of Seconda | 8/24/2017 through 9/24/20<br>xceeds the 126 cfu/100 mL<br>ary Contact Recreation. | 17 had a |
| ID16010204BR001_02d Henderson Creek                                                                                                                                          | 4.98                                                                              | Miles    |
| SEDIMENTATION/SILTATION                                                                                                                                                      |                                                                                   |          |
| ID16010204BR002_02 Devil Creek - Devil Creek Reservoir Dam to mouth                                                                                                          | 10.24                                                                             | Miles    |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                   |                                                                                   |          |
| ID16010204BR002_02a Campbell Creek                                                                                                                                           | 2.87                                                                              | Miles    |
| FECAL COLIFORM                                                                                                                                                               |                                                                                   |          |
| ID16010204BR002_03 Devil Creek - Devil Creek Reservoir Dam to mouth                                                                                                          | 25.63                                                                             | Miles    |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                   |                                                                                   |          |
| ID16010204BR004_02 Devil Creek - source to Devil Creek Reservoir                                                                                                             | 14.36                                                                             | Miles    |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                   |                                                                                   |          |
| ID16010204BR006_02a First Creek                                                                                                                                              | 8.65                                                                              | Miles    |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                   |                                                                                   |          |
| ID16010204BR007_02a Third Creek - headwaters to Deep Creek                                                                                                                   | 12.91                                                                             | Miles    |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                   |                                                                                   |          |
| ID16010204BR010_02b Upper Wright Creek - headwaters to Indian Mill Canyon                                                                                                    | 8.86                                                                              | Miles    |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                   |                                                                                   |          |
| ID16010204BR010_03 middle Wright Creek - Indian Mill Canyon to Dairy Creek                                                                                                   | 2.72                                                                              | Miles    |
| FECAL COLIFORM                                                                                                                                                               |                                                                                   |          |
| ID16010204BR010_04 Wright Creek - Dairy Creek to Daniels Reservoir                                                                                                           | 4.16                                                                              | Miles    |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                   |                                                                                   |          |

## Bear River

| ID16010204BR011_03       | Dairy Creek - source to mouth | 5.41  | Miles |
|--------------------------|-------------------------------|-------|-------|
| SEDIMENTATION/SILTATION  | I                             |       |       |
| 16020309                 | Curlew Valley                 |       |       |
| ID16020309BR003_02       | Rock Creek - source to mouth  | 61.83 | Miles |
| SEDIMENTATION/SIL TATION |                               |       |       |

## Clearwater

| 17060108                 | Palouse                  |                                                                                                                                                                                        |                                                                          |                                     |
|--------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|
| ID17060108CL020_02       | Big Sand Creek - source  | e to mouth                                                                                                                                                                             | 13.72                                                                    | Miles                               |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                                                                                                                        |                                                                          |                                     |
| ID17060108CL021_02       | North Fork Palouse Rive  | er - source to mouth                                                                                                                                                                   | 13.96                                                                    | Miles                               |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                                                                                                                        |                                                                          |                                     |
| 17060303                 | Lochsa                   |                                                                                                                                                                                        |                                                                          |                                     |
| ID17060303CL001_05       | Lochsa River - Deadmai   | n Creek to mouth                                                                                                                                                                       | 10.4                                                                     | Miles                               |
| TEMPERATURE              |                          |                                                                                                                                                                                        |                                                                          |                                     |
| ID17060303CL003_05       | Lochsa River - Old Man   | Creek to Deadman Creek                                                                                                                                                                 | 6.96                                                                     | Miles                               |
| TEMPERATURE              |                          |                                                                                                                                                                                        |                                                                          |                                     |
| ID17060303CL008_05       | Lochsa River - Fish Cree | ek to Old Man Creek                                                                                                                                                                    | 6.93                                                                     | Miles                               |
| TEMPERATURE              |                          |                                                                                                                                                                                        |                                                                          |                                     |
| ID17060303CL009_05       | Lochsa River - Indian Gi | rave Creek to Fish Creek                                                                                                                                                               | 19.65                                                                    | Miles                               |
| TEMPERATURE              |                          |                                                                                                                                                                                        |                                                                          |                                     |
| ID17060303CL013_05       | Lochsa River- Warm Sp    | rings Creek to Indian Grave Creek                                                                                                                                                      | 11.96                                                                    | Miles                               |
| TEMPERATURE              |                          |                                                                                                                                                                                        |                                                                          |                                     |
| ID17060303CL020_05       | Lochsa River - confluen  | ce of Crooked Fork, White Sand Creek,                                                                                                                                                  | 13.11                                                                    | Miles                               |
| TEMPERATURE              |                          |                                                                                                                                                                                        |                                                                          |                                     |
| 17060304                 | Middle Fork Clea         | rwater                                                                                                                                                                                 |                                                                          |                                     |
| ID17060304CL005_02       | Kay Creek - source to m  | outh                                                                                                                                                                                   | 8.58                                                                     | Miles                               |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                                                                                                                        |                                                                          |                                     |
| 17060305                 | South Fork Clear         | water                                                                                                                                                                                  |                                                                          |                                     |
| ID17060305CL003_04       | Cottonwood Creek - sou   | rce to Cottonwood Creek waterfall                                                                                                                                                      | 5.4                                                                      | Miles                               |
| ESCHERICHIA COLI (E. COL | 1)                       | 11/4/2019 (JW): Geometric mean E. coli concentrati<br>boundary were 88.1 mpn/100 mL in April-May 2019,<br>Aug-Sept 2019. The Aug-Sept 2019 geomean excee<br>standard (126 mpn/100 mL). | ons measured at the tr<br>and 210.9 mpn/100 m<br>ded the E. coli water c | ibal<br>L in<br><sub>l</sub> uality |
| ID17060305CL006_03       | Stockney Creek - source  | e to mouth                                                                                                                                                                             | 6.44                                                                     | Miles                               |
| ESCHERICHIA COLI (E. COL | 1)                       | 11/4/2019 (JW): The geometric mean E. coli concen<br>in April-May 2019 (149.8 mpn/100 mL) exceeded the<br>(126 mpn/100 mL).                                                            | tration measured at Ku<br>E. coli water quality s                        | ube Rd<br>tandard                   |
| ID17060305CL007_03       | Shebang Creek - source   | e to mouth                                                                                                                                                                             | 7.72                                                                     | Miles                               |
| ESCHERICHIA COLI (E. COL | 1)                       | 11/4/2019 (JW): The geometric mean E. coli concen<br>in April-May 2019 (519.8 mpn/100 mL) exceeded the<br>(126 mpn/100 mL).                                                            | tration measured at Ku<br>E. coli water quality s                        | ube Rd<br>tandard                   |

## Clearwater

| ID17060305CL081_02        | Sally Ann Creek - source | e to and inc. Wall Creek                                                                                                 | 17.73                                    | Miles         |
|---------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|
| ESCHERICHIA COLI (E. COLI | )                        | 11/5/2019 (JW): A geometric mean E. coli concentration<br>(1019.5 mpn/100 mL) exceeded the E. coli water quality<br>mL). | n measured in July<br>y standard (126 mp | 2017<br>n/100 |
| 17060306                  | Clearwater               |                                                                                                                          |                                          |               |
| ID17060306CL006_02        | Sweetwater Creek - sou   | rce to Webb Creek                                                                                                        | 18.24                                    | Miles         |
| CAUSE UNKNOWN             |                          | Pesticides, Nutrients Suspected Impairment Low DO du<br>Enrichment                                                       | ue to suspected Org                      | ganic         |
| SEDIMENTATION/SILTATION   |                          |                                                                                                                          |                                          |               |
| TEMPERATURE               |                          |                                                                                                                          |                                          |               |
| ID17060306CL006_03        | Sweetwater Creek - sou   | rce to Webb Creek                                                                                                        | 0.22                                     | Miles         |
| FECAL COLIFORM            |                          |                                                                                                                          |                                          |               |
| SEDIMENTATION/SILTATION   |                          |                                                                                                                          |                                          |               |
| CAUSE UNKNOWN             |                          | Pesticides, Nutrients Suspected Impairment;Low DO du<br>Enrichment                                                       | ue to suspected Org                      | ganic         |
| TEMPERATURE               |                          |                                                                                                                          |                                          |               |
| ID17060306CL006_04        | Sweetwater Creek - sou   | rce to Webb Creek                                                                                                        | 3.89                                     | Miles         |
| TEMPERATURE               |                          |                                                                                                                          |                                          |               |
| SEDIMENTATION/SILTATION   |                          |                                                                                                                          |                                          |               |
| FECAL COLIFORM            |                          |                                                                                                                          |                                          |               |
| CAUSE UNKNOWN             |                          | Pesticides, Nutrients Suspected ImpairmentLow DO du<br>Enrichment                                                        | e to suspected Org                       | anic          |
| ID17060306CL007_02        | Webb Creek - source to   | mouth                                                                                                                    | 9.15                                     | Miles         |
| CAUSE UNKNOWN             |                          | Nutrients Suspected Impairment Low DO due to suspect                                                                     | cted Organic Enrich                      | ment          |
| TEMPERATURE               |                          |                                                                                                                          |                                          |               |
| SEDIMENTATION/SILTATION   |                          |                                                                                                                          |                                          |               |
| FECAL COLIFORM            |                          |                                                                                                                          |                                          |               |
| ID17060306CL011_02        | Mission Creek - source t | o mouth                                                                                                                  | 17.1                                     | Miles         |
| COMBINED BIOTA/HABITAT I  | BIOASSESSMENTS           |                                                                                                                          |                                          |               |
| ID17060306CL024_02        | Lawyer Creek - source to | o mouth                                                                                                                  | 51.69                                    | Miles         |
| OIL AND GREASE            |                          |                                                                                                                          |                                          |               |
| SEDIMENTATION/SILTATION   |                          |                                                                                                                          |                                          |               |
| TEMPERATURE               |                          |                                                                                                                          |                                          |               |
| DISSOLVED OXYGEN          |                          |                                                                                                                          |                                          |               |
| AMMONIA, UN-IONIZED       |                          |                                                                                                                          |                                          |               |
| NUTRIENT/EUTROPHICATIO    | N BIOLOGICAL INDICATORS  |                                                                                                                          |                                          |               |

### Clearwater

| ID17060306CL024_03        | Lawyer Creek - source to mouth                       | 9.71                | Miles |
|---------------------------|------------------------------------------------------|---------------------|-------|
| OIL AND GREASE            |                                                      |                     |       |
| SEDIMENTATION/SILTATION   | I                                                    |                     |       |
| ESCHERICHIA COLI (E. COLI | )                                                    |                     |       |
| CAUSE UNKNOWN             | Nutrients Suspected ImpairmentLow DO due to suspect  | ted Organic Enrich  | ment  |
| AMMONIA, UN-IONIZED       |                                                      |                     |       |
| TEMPERATURE               |                                                      |                     |       |
| ID17060306CL029_03        | Eldorado Creek - 3rd Order                           | 6.46                | Miles |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                       |                     |       |
| ID17060306CL039_03        | Orofino Creek, including Rhodes, Cow Creek           | 11.41               | Miles |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                       |                     |       |
| TEMPERATURE               |                                                      |                     |       |
| ID17060306CL039_04        | Orofino Creek - source to mouth                      | 25.45               | Miles |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                       |                     |       |
| ID17060306CL040_02a       | Whiskey Creek                                        | 20.8                | Miles |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                       |                     |       |
| ID17060306CL041_02        | Bedrock Creek - source to mouth                      | 17.44               | Miles |
| SEDIMENTATION/SILTATION   | I                                                    |                     |       |
| OIL AND GREASE            |                                                      |                     |       |
| CAUSE UNKNOWN             | Nutrients Suspected Impairment Low DO due to suspect | cted Organic Enrich | nment |
| TEMPERATURE               |                                                      |                     |       |
| AMMONIA, UN-IONIZED       |                                                      |                     |       |
| FECAL COLIFORM            |                                                      |                     |       |
| ID17060306CL041_03        | Bedrock Creek - source to mouth                      | 2.71                | Miles |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                       |                     |       |
| ID17060306CL043_02        | Pine Creek - source to mouth                         | 20.96               | Miles |
| SEDIMENTATION/SILTATION   | I                                                    |                     |       |
| TEMPERATURE               |                                                      |                     |       |
| FECAL COLIFORM            |                                                      |                     |       |
| CAUSE UNKNOWN             | Nutrients Suspected Impairment Low DO due to suspec  | cted Organic Enrich | nment |

### Clearwater

| ID17060306CL043_03      | Pine Creek - source to mouth                                 | 4.42  | Miles |
|-------------------------|--------------------------------------------------------------|-------|-------|
| SEDIMENTATION/SILTATION | l                                                            |       |       |
| CAUSE UNKNOWN           | Nutrients Suspected Impairment                               |       |       |
| OIL AND GREASE          |                                                              |       |       |
| AMMONIA, UN-IONIZED     |                                                              |       |       |
| ID17060306CL057_03      | East Fork Big Bear Creek - source to mouth                   | 3.48  | Miles |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                               |       |       |
| ID17060306CL066_02      | Catholic Creek - source to mouth                             | 1.72  | Miles |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                               |       |       |
| 17060307                | Lipper North Fork Clearwater                                 |       |       |
|                         |                                                              |       |       |
| ID17060307CL028_03      | Moose Creek - Osier Creek to mouth                           | 2.27  | Miles |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                               |       |       |
| 17060308                | Lower North Fork Clearwater                                  |       |       |
| ID17060308CL031_02      | Bull Run Creek - conf. of Squaw and Shattuck Creeks to mouth | 7.44  | Miles |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                               |       |       |
| ID17060308CL031_03      | Bull Run Creek - conf. of Squaw and Shattuck Creeks to mouth | 4.99  | Miles |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                               |       |       |
| ID17060308CL032_02      | Shattuck Creek - source to mouth                             | 8.08  | Miles |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                               |       |       |
| ID17060308CL033_02      | Squaw Creek - source to mouth                                | 18.29 | Miles |
|                         |                                                              |       |       |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                               |       |       |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| 17010104                | Lower Kootenai           |                                                                                                                                                                                                                       |                                                                                                          |                        |
|-------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|
| ID17010104PN001_02a     | Fisher Creek             |                                                                                                                                                                                                                       | 6.79                                                                                                     | Miles                  |
| TEMPERATURE             |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN001_08      | Kootenai River - Shorty  | s Island to the Id/Canadian border                                                                                                                                                                                    | 36.89                                                                                                    | Miles                  |
| TEMPERATURE             |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN004_02      | Blue Joe Creek - source  | e to Idaho/Canadian border                                                                                                                                                                                            | 15.43                                                                                                    | Miles                  |
| ZINC                    |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| LEAD                    |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| CADMIUM                 |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN009_03      | Parker Creek - lower po  | rtion, agricultural area                                                                                                                                                                                              | 0.64                                                                                                     | Miles                  |
| BENTHIC MACROINVERTEB   | RATES BIOASSESSMENTS     |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN010_03a     | Trout Creek - lower port | ion below branch                                                                                                                                                                                                      | 2.93                                                                                                     | Miles                  |
| TEMPERATURE             |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| SEDIMENTATION/SILTATION |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN012_08      | Kootenai River - Deep C  | Creek to and including Shorty's Island                                                                                                                                                                                | 5.74                                                                                                     | Miles                  |
| TEMPERATURE             |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN023_0L      | McArthur Lake            |                                                                                                                                                                                                                       | 336.47                                                                                                   | Acres                  |
| MERCURY                 |                          | 2/18/2010 (NED) - Mercury listing based on the DE<br>and Selenium in Fish Tissue from Idaho Lakes and<br>Assessment" (Essig and Kostermann, May 2008). <i>A</i><br>mg/kg, which exceeds the human health criterion of | Q report, "Arsenic, Mero<br>Reservoirs: A Statewid<br>A Mercury level of 0.650<br>0.3 mg/kg, was reporte | cury,<br>e<br>)<br>ed. |
| ID17010104PN024_03      | Dodge Creek              |                                                                                                                                                                                                                       | 0.45                                                                                                     | Miles                  |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS           |                                                                                                                                                                                                                       |                                                                                                          |                        |
| TEMPERATURE             |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN027_03      | Brown Creek - lower, Tv  | ventymile Creek to Deep Creek                                                                                                                                                                                         | 2.37                                                                                                     | Miles                  |
| TEMPERATURE             |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |
| BENTHIC MACROINVERTEB   | RATES BIOASSESSMENTS     |                                                                                                                                                                                                                       |                                                                                                          |                        |
| ID17010104PN029_08      | Kootenai River - Moyie I | River to Deep Creek                                                                                                                                                                                                   | 13.17                                                                                                    | Miles                  |
|                         |                          |                                                                                                                                                                                                                       |                                                                                                          |                        |

TEMPERATURE

| ID17010104PN031_08     | Kootenai River - Idaho/M  | Iontana to Moyie River                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.78                                                                                                                                                                    | Miles                                             |
|------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| TEMPERATURE            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                   |
| SELENIUM<br>17010105   | Moyie                     | 9/8/2020 (CN, RE): The U.S. Geological Survey (USGS<br>during the 2018/2020 Integrated Report public commer<br>collected in September 2019 and downstream of USGS<br>(within Idaho). The average selenium concentration in t<br>nine mountain whitefish was 20.4 mg/kg dry weight, wh<br>mg/kg selenium egg-ovary criterion element (IDAPA 58<br>footnote I). Selenium has now been added as a cause of<br>water aquatic life beneficial use for AU ID17010104PN0 | submitted seleniu<br>it period. Data were<br>gaging station 123<br>he eggs and ovaries<br>ich exceeded the 15<br>0.01.02.210.01a, Tal<br>of impairment to the<br>031_08. | m data<br>05000<br>s of<br>5.1<br>ble 1<br>e cold |
| ID17010105PN001 05     | Movie River - Movie Fall  | ls Dam to Kootenai River                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.88                                                                                                                                                                     | Miles                                             |
| TEMPERATURE            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                   |
| 17010213               | l ower Clark Fork         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                   |
|                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          | N A'll a a                                        |
| 1D17010213PN001_08     | Clark Fork River Delta -  | Mosquito Creek to Pend Orellie Lake                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                       | Milles                                            |
|                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 15                                                                                                                                                                     |                                                   |
| 1D17010213PN003_08     | Clark Fork River - Cabir  | let Gorge Dam to Mosquito Creek                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.45                                                                                                                                                                     | Miles                                             |
|                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                   |
| ID17010213PN005_08     | Clark Fork River - Idaho  | /Montana border to Cabinet Gorge Dam                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.55                                                                                                                                                                     | Miles                                             |
| TEMPERATURE            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                   |
| ID17010213PN021_02     | Spring Creek - Headwat    | ters to Lightning Creek                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.31                                                                                                                                                                    | Miles                                             |
| COMBINED BIOTA/HABITAT | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                   |
| 17010214               | Pend Oreille Lak          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                                   |
| ID17010214PN001_08     | Pend Oreille River - Prie | est River to Albeni Falls Dam                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                        | Miles                                             |
| DISSOLVED GAS SUPERSAT | TURATION                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                   |
| TEMPERATURE            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                   |
| ID17010214PN002_02a    | Unnamed trib. to Syring   | a Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.11                                                                                                                                                                     | Miles                                             |
| COMBINED BIOTA/HABITAT | BIOASSESSMENTS            | 10/15/2014 (K. Larson) - The 2012 BURP data indicate<br>Support (ALUS) is "Not Full Support", although the caus<br>been established. Therefore, the cause of impairment is<br>Bioassessments".                                                                                                                                                                                                                                                                    | ⇒ that Aquatic Life U<br>se of impairment ha<br>s "Combined Biota/ł                                                                                                      | lse<br>is not<br>Habitat                          |
| ID17010214PN002_03     | Lower Hornby Creek        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.89                                                                                                                                                                     | Miles                                             |
| COMBINED BIOTA/HABITAT | BIOASSESSMENTS            | 10/152014 (K. Larson) - The 2012 BURP data indicate<br>Support (ALUS) is "Not Full Support", although the caus<br>been established. Therefore, the cause of impairment is<br>Bioassessments".                                                                                                                                                                                                                                                                     | that Aquatic Life Us<br>se of impairment ha<br>s "Combined Biota/ł                                                                                                       | e<br>s not<br>Habitat                             |

## Panhandle

| ID17010214PN002_08        | Pend Oreille River - Pen | d Oreille Lake to Priest River                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.79                                                                                                                | Miles      |
|---------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------|
| DISSOLVED GAS SUPERSAT    | TURATION                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |            |
| TEMPERATURE               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |            |
| ID17010214PN003_02        | Hoodoo Creek - source    | to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51.82                                                                                                                | Miles      |
| ESCHERICHIA COLI (E. COLI | )                        | 1/29/2010 (R. Steed, K. Stromberg, K. Keith, T. Clyne, R. Wi<br>Escherichia coliform sample exceed Idaho Water Quality Sta<br>criteria. Geomean in 2005 was 1300 cfu/100mL.                                                                                                                                                                                                                                                                    | therow) - 2006 E<br>ndards numeric                                                                                   | 3URP       |
| ID17010214PN010_03        | Brickel Creek - Idaho/W  | ashington border to mouth                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.62                                                                                                                 | Miles      |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           | 12/15/2009 (R.Steed, K. Keith, T. Herron, J. Bergquist, G. Per<br>portion of Brickle Creek has been straightened and otherwise<br>modification has greatly contributed to the poor habitat condit<br>making it impossible to collect macroinvertebrates. It would be<br>expect to get passing bug scores from habitat alone, or evalue<br>body. Other water quality issues are likely to exist upstream a<br>identification should be pursued. | ettit) - The lower<br>e modified. This<br>tions that exist,<br>se unreasonable<br>late as a lotic wa<br>and stressor | to<br>ater |
| ID17010214PN011_03        | Unnamed Tributary to Je  | ewel Lake                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.83                                                                                                                 | Miles      |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           | 10/16/2014 (K. Larson) - The 2012 BURP data indicate that A Support (ALUS) is "Not Full Support", although the cause of i been established.                                                                                                                                                                                                                                                                                                    | Aquatic Life Use<br>Impairment has                                                                                   | not        |
| ID17010214PN017_0L        | Shepard Lake             |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.18                                                                                                                | Acres      |
| MERCURY                   |                          | 3/15/2010 (NED) - Mercury listing based on the DEQ report,<br>and Selenium in Fish Tissue from Idaho Lakes and Reservoi<br>Assessment" (Essig and Kostermann, May 2008). A Mercury<br>mg/kg, which exceeds the human health criterion of 0.3 mg/k                                                                                                                                                                                              | "Arsenic, Mercu<br>rs: A Statewide<br>level of 0.586<br>.g, was reported                                             | ry,        |

| ID17010214PN018_02b Boyer Slough      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Miles                                                                                              |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| NITROGEN, TOTAL                       | 11/3/2014 (K. Larson and R. Steed) - Based on Tier<br>during the summer of 2014, it was determined that to<br>nitrogen are responsible for the biological impairmen<br>concentrations to be 3-4 times the concentrations ob<br>receiving water (Kootenai Bay of Pend Oreille Lake).<br>concentrations were an order of magnitude greater th<br>nitrogen concentrations were 3-4 times that observed<br>Panhandle of Idaho. Nonpoint sources of the total ph<br>are runoff from a subdivision adjacent to Boyer Sloug<br>ranchettes on tributaries to Boyer Slough. Point sour<br>pollution is from the Kootenai-Ponderay Wastewater<br>pathway of nitrogen and phosphorus pollution into Bo<br>of nonpoint sources into tributaries and directly into E<br>discharge from the wastewater treatment plant. The I<br>phosphorus impair the recreation beneficial use due<br>producing blue-green algae. The high concentrations<br>impairs the aquatic life use due to the dominance of<br>growth dominated by algae species that are not cons<br>macroinvertebrates. | I data collected by DEC<br>tal phosphorus and tot<br>t. The data showed<br>served in the Boyer Slo<br>Total phosphorus<br>an other streams and<br>d in other streams and<br>d in other streams and total nitre<br>gh and from agriculture<br>ce nitrogen and phosph<br>Treatment Plant. The<br>oyer Slough is through<br>Boyer Slough and direct<br>high concentrations of<br>to excess growth of tox<br>of nitrogen and phosph<br>epiphytic and periphytic<br>umed by fish or | al<br>bugh's<br>total<br>e<br>ogen<br>and<br>norus<br>runoff<br>t<br>tin-<br>horus<br>c algae      |
| PHOSPHORUS, TOTAL                     | 11/3/2014 (K. Larson and R. Steed) - Based on Tier<br>during the summer of 2014, it was determined that to<br>nitrogen are responsible for the biological impairmen<br>concentrations to be 3-4 times the concentrations ob<br>receiving water (Kootenai Bay of Pend Oreille Lake).<br>concentrations were an order of magnitude greater th<br>nitrogen concentrations were 3-4 times that observed<br>Panhandle of Idaho. Nonpoint sources of the total ph<br>are runoff from a subdivision adjacent to Boyer Sloug<br>ranchettes on tributaries to Boyer Slough. Point sour<br>pollution is from the Kootenai-Ponderay Wastewater<br>pathway of nitrogen and phosphorus pollution into Be<br>of nonpoint sources into tributaries and directly into E<br>discharge from the wastewater treatment plant. The<br>phosphorus impair the recreation beneficial use due<br>producing blue-green algae. The high concentrations<br>impairs the aquatic life use due to the dominance of<br>growth dominated by algae species that are not cons<br>macroinvertebrates.   | I data collected by DEC<br>tal phosphorus and tot<br>t. The data showed<br>served in the Boyer Slo<br>Total phosphorus<br>nan other streams and<br>d in other streams and total nitre<br>the streams and total nitre<br>the stream and phosphorus<br>Treatment Plant. The<br>Boyer Slough is through<br>Sover Slough and direct<br>nigh concentrations of<br>to excess growth of tox<br>of nitrogen and phosphorus<br>epiphytic and periphytic<br>sumed by fish or             | Q<br>al<br>bugh's<br>total<br>e<br>ogen<br>and<br>norus<br>runoff<br>t<br>tin-<br>horus<br>c algae |
| AMMONIA-NITROGEN                      | 02/2020 (B. Steed): Routine monitoring by DEQ CDA<br>Quality Standard criteria exceedances for total amore<br>Slough (Whiskey Jack Bridge, and Lower West Arm)<br>conditions with and without presence of juvenile your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CRO indicates Idaho<br>onia at two sites in Boy<br>. Exceedences are for<br>ng-of-year.                                                                                                                                                                                                                                                                                                                                                                                        | Water<br>er                                                                                        |
| ID17010214PN018L_0L Pend Oreille Lake |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80828.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acres                                                                                              |
| MERCURY                               | 2/18/2010 (NED) - Mercury listing based on the DEQ<br>and Selenium in Fish Tissue from Idaho Lakes and F<br>Assessment" (Essig and Kostermann, May 2008). A<br>mg/kg, which exceeds the human health criterion of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | report, "Arsenic, Merc<br>Reservoirs: A Statewide<br>Mercury level of 0.611<br>0.3 mg/kg, was reporte                                                                                                                                                                                                                                                                                                                                                                          | ury,<br>e<br>d.                                                                                    |
| ID17010214PN022_02 West Gold Creek    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Miles                                                                                              |
| SEDIMENTATION/SILTATION               | Sediment TMDL developed for Gold Creek did not in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | clude West Gold Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                          | κ.                                                                                                 |
| ID17010214PN038_02 Sand Creek - head  | lwaters to Pack River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Miles                                                                                              |
| ESCHERICHIA COLI (E. COLI)            | 1/7/2010 (R. Steed, T. Clyne, and K. Stromberg) - E.<br>BURP site 2005SCDAA023 had a geometric mean o<br>greater than the 126 cfu/100mL criterion value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | coli data collected in 20<br>f 346 cfu/100mL, which                                                                                                                                                                                                                                                                                                                                                                                                                            | 005 at<br>n is                                                                                     |

| ID17010214PN045_02        | Caribou Creek - Headwa    | aters to Pack R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.97                                                                                                                                                                    | Miles                                     |
|---------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| TEMPERATURE               |                           | 12/11/2019 (CN) External temperature logger data submitted to<br>Water Quality Council, for site Caribou Creek 1, indicates a co-<br>exceedance in the temperature criteria for bull trout. Cold water<br>salmonid spawning for this AU remains "not supporting". 12/17<br>by K. Larson DEQ-CRO: The temperature impairment associa<br>aquatic life and salmonid spawning beneficial use will remain to<br>under a review of the 2007 Pend Oreille Lake Tributaries Tem<br>Maximum Daily Loads: Addendum to the Pend Oreille Lake St<br>Assessment and TMDL. The AU was assessed following the<br>in the Water Body Assessment Guidance, third edition, October | by the Pack Riv<br>intinued<br>r aquatic life al<br>7/2019 Assessi<br>ted with cold w<br>until it is evaluta<br>perature Total<br>Jbbasin<br>guidance provid<br>er 2016. | rer<br>nd<br>ment<br>rater<br>ated<br>ded |
| ID17010214PN054_03        | Syringa Creek-Lower, 3r   | d order portion to Pend Oreille River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.92                                                                                                                                                                     | Miles                                     |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                           |
| ID17010214PN058_02        | Johnson Creek - headwa    | aters to Pend Oreille River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.24                                                                                                                                                                    | Miles                                     |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                           |
| ID17010214PN059_03        | Riley Creek - Lower, to F | Pend Oreille R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.04                                                                                                                                                                     | Miles                                     |
| ESCHERICHIA COLI (E. COLI | )                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                           |
| 17010215                  | Priest                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                           |
| ID17010215PN002_03        | Big Creek - source to me  | buth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.59                                                                                                                                                                     | Miles                                     |
| TEMPERATURE               |                           | 12/30/2019 (KL) Salmonid Spawning is not supporting based of<br>collected by the Kalispel Tribe in 2017 that exceeds the temper<br>Assessment information is in attached documents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | off temperature<br>rature criteria.                                                                                                                                      | data                                      |
| ID17010215PN005_05        | Lower Priest River - Prie | st Lake to Upper West Branch Priest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.78                                                                                                                                                                     | Miles                                     |
| TEMPERATURE               |                           | 10/13/17 (R. Steed): Temperature logger data collected by the 2014 and 2015 show that criteria is exceeded. 12/23/2019 (CN temperature logger data submitted by the Kalispel Tribe, for si continued exceedances in the temperature criteria. Cold water salmonid spawning for this AU remains "not supporting". Asset is in attached documents.                                                                                                                                                                                                                                                                                                                | Kalispel Tribe<br>I): External<br>te OUT1, indica<br>aquatic life an<br>ssment informa                                                                                   | in<br>ate<br>d<br>ation                   |
| ID17010215PN027_03        | Upper West Branch Prie    | st River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.06                                                                                                                                                                     | Miles                                     |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |                                           |
| ID17010215PN029_03        | Quartz Creek - source to  | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.2                                                                                                                                                                      | Miles                                     |
| TEMPERATURE               |                           | 12/31/2019 (KL): Temperature logger data collected by the Ka indicate exceedances in numeric temperature criteria for salm this beneficial use is "not supporting". Assessment information documents.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lispel Tribe in 2<br>onid spawning,<br>i is in attached                                                                                                                  | 2017<br>so                                |

| 17010216               | Pend Oreille          |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
|------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| ID17010216PN002_08     | Pend Oreille River    | - Albeni Falls Dam to Idaho/Washington                                                                                                                                                                                                                                                                                                                          | 3.8                                                                                                                                                        | Miles                              |
| TEMPERATURE            |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| DISSOLVED GAS SUPERSAT | FURATION              | The pollutant "Total Phosphorus" was added as a ca<br>2008 Integrated Report. The assessment was base<br>the time. Monitoring conducted by IDEQ during the<br>reveal any evidence of beneficial use impairment re-<br>Monitoring results conflict with the Total Phosphorus<br>IDEQ is removing TP from the integrated report and<br>Pend Oreille River status. | ause of impairment on<br>ed on available informat<br>summer of 2009 did no<br>sulting from excess TP<br>s (TP) cause added in 2<br>will continue to evalua | the<br>ion at<br>ot<br>2008.<br>te |
| 17010301               | Upper Coeur           | d'Alene                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |                                    |
| ID17010301PN003_02     | Beaver Creek - He     | adwaters and tributaries                                                                                                                                                                                                                                                                                                                                        | 44.89                                                                                                                                                      | Miles                              |
| CADMIUM                |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ZINC                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ID17010301PN003_03     | Beaver Creek- belo    | w White Creek                                                                                                                                                                                                                                                                                                                                                   | 3.7                                                                                                                                                        | Miles                              |
| ZINC                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| LEAD                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| CADMIUM                |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ID17010301PN004_02     | Prichard Cr., tributa | aries between Butte Gulch and Eagle Cr.                                                                                                                                                                                                                                                                                                                         | 4.17                                                                                                                                                       | Miles                              |
| ZINC                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ID17010301PN004_03     | Prichard Creek - be   | etween Butte Gulch and Eagle Creek                                                                                                                                                                                                                                                                                                                              | 5.45                                                                                                                                                       | Miles                              |
| COPPER                 |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ZINC                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| LEAD                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| CADMIUM                |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ARSENIC                |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ID17010301PN004_04     | Prichard Creek bel    | ow Eagle Creek                                                                                                                                                                                                                                                                                                                                                  | 2.94                                                                                                                                                       | Miles                              |
| ZINC                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| LEAD                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| CADMIUM                |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| ID17010301PN005_02     | Prichard Creek -he    | adwaters and tributaries above Butte Gulch                                                                                                                                                                                                                                                                                                                      | 24.34                                                                                                                                                      | Miles                              |
| CADMIUM                |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
| LEAD                   |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |
|                        |                       |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                    |

ZINC

## Panhandle

| ID17010301PN005_03      | Prichard Creek - between Barton Gulch to Butte Gulch         | 1.98 | Miles |
|-------------------------|--------------------------------------------------------------|------|-------|
| LEAD                    |                                                              |      |       |
| ZINC                    |                                                              |      |       |
| CADMIUM                 |                                                              |      |       |
| 17010302                | South Fork Coeur d'Alene                                     |      |       |
| ID17010302PN001_02      | South Fork Coeur d'Alene River - Tributaries below Placer Cr | 62.8 | Miles |
| CADMIUM                 |                                                              |      |       |
| ZINC                    |                                                              |      |       |
| LEAD                    |                                                              |      |       |
| TEMPERATURE             |                                                              |      |       |
| ID17010302PN001_03      | South Fork Coeur d' Alene River-btw Placer Cr. and Big Cr.   | 7.6  | Miles |
| CADMIUM                 |                                                              |      |       |
| LEAD                    |                                                              |      |       |
| ZINC                    |                                                              |      |       |
| ID17010302PN001_03a     | South Fork Coeur d'Alene River-Canyon Creek to Placer Creek  | 0.85 | Miles |
| CADMIUM                 |                                                              |      | -     |
| LEAD                    |                                                              |      |       |
| ZINC                    |                                                              |      |       |
| ID17010302PN001_04      | South Fork Coeur d'Alene River - btw Big Cr and Pine Cr      | 9.96 | Miles |
| CADMIUM                 |                                                              |      |       |
| LEAD                    |                                                              |      |       |
| ZINC                    |                                                              |      |       |
| ID17010302PN001_05      | South Fork Coeur d'Alene River - btw Pine Cr and CdA River   | 2.23 | Miles |
| CADMIUM                 |                                                              |      |       |
| LEAD                    |                                                              |      |       |
| TEMPERATURE             |                                                              |      |       |
| ZINC                    |                                                              |      |       |
| ID17010302PN002_04      | Pine Creek - East Fork Pine Creek to South Fork CdA River    | 5.31 | Miles |
| CADMIUM                 |                                                              |      |       |
| LEAD                    |                                                              |      |       |
| ZINC                    |                                                              |      |       |
| ID17010302PN003_03      | Pine Creek - btw West Fork Pine Cr and East Fork Pine Cr     | 5.95 | Miles |
| SEDIMENTATION/SILTATION |                                                              |      | -     |

### Panhandle

| ID17010302PN004_02       | East Fork Pine Creek he  | eadwaters and tributaries                                                                                                                                                                                                                                                                                                                                    | 22.54                                                                                                                   | Miles                                   |
|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| CADMIUM                  |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ZINC                     |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| LEAD                     |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN004_03       | East Fork Pine Creek be  | elow Douglas Creek                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                       | Miles                                   |
| ZINC                     |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| LEAD                     |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| CADMIUM                  |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN006_02       | Government Gulch         |                                                                                                                                                                                                                                                                                                                                                              | 3.54                                                                                                                    | Miles                                   |
| CADMIUM                  |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| LEAD                     |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ZINC                     |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN007a_02      | Big Creek headwaters a   | nd tributaries                                                                                                                                                                                                                                                                                                                                               | 22.76                                                                                                                   | Miles                                   |
| TEMPERATURE              |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN007a_03      | Big Creek btw Ink Creek  | and mining impact area                                                                                                                                                                                                                                                                                                                                       | 4.63                                                                                                                    | Miles                                   |
| TEMPERATURE              |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN007b_03      | Big Creek btw mining im  | pact area and South Fork CdA River                                                                                                                                                                                                                                                                                                                           | 2.54                                                                                                                    | Miles                                   |
| COMBINED BIOTA/HABITAT E | 3IOASSESSMENTS           | 5/04/17 (K Van de Riet) cold water aquatic life and salm<br>designated uses. Cold water aquatic life is confirmed as<br>the 2014 fish sample consisting of 100% cold water fish<br>cold water aquatic life and salmonid spawning are not fu<br>WBAG3. Since the specific cause of impairment has no<br>cause of impairment is Combined Biota/Habitat Bioasse | onid spawning are<br>an existing use ba<br>taxa. BURP data in<br>ally supported acco<br>t been determined,<br>essments. | ased on<br>ndicate<br>rding to<br>, the |
| ID17010302PN009a_02      | Lake Creek headwaters    | to mining impact area                                                                                                                                                                                                                                                                                                                                        | 1.88                                                                                                                    | Miles                                   |
| TEMPERATURE              |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN009b_02      | Lake Creek from mining   | impact area to South Fork CdA River                                                                                                                                                                                                                                                                                                                          | 1.54                                                                                                                    | Miles                                   |
| COMBINED BIOTA/HABITAT E | IOASSESSMENTS            | 5/05/2017 (K Van de Riet): Cold water aquatic life and s<br>designated uses. 2014 BURP data indicate cold water a<br>spawning are not fully supported according to WBAG3.<br>of impairment has not been determined, the cause of im<br>Biota/Habitat Bioassessments.                                                                                         | almonid spawning<br>iquatic life and saln<br>Since the specific o<br>ipairment is Combi                                 | are<br>nonid<br>cause<br>ned            |
| ID17010302PN010_02       | Placer Creek and tributa | ries                                                                                                                                                                                                                                                                                                                                                         | 17.61                                                                                                                   | Miles                                   |
| TEMPERATURE              |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN011_03       | South Fork Coeur d'Aler  | ne R btw Daisy Gul and Canyon Cr                                                                                                                                                                                                                                                                                                                             | 9.48                                                                                                                    | Miles                                   |
| COMBINED BIOTA/HABITAT E | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |
| ID17010302PN013_02       | South Fork Coeur d'Aler  | e R. headwaters and tributaries                                                                                                                                                                                                                                                                                                                              | 10.26                                                                                                                   | Miles                                   |
|                          |                          |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |                                         |

TEMPERATURE

#### Panhandle

| ID17010302PN014_02 | Canyon Creek - from Gorge Gulch to South Fork CdA R.        | 8.64  | Miles |
|--------------------|-------------------------------------------------------------|-------|-------|
| CADMIUM            |                                                             |       |       |
| LEAD               |                                                             |       |       |
| TEMPERATURE        |                                                             |       |       |
| ZINC               | 2004 BURP data indicate ALUS = not supporting.              |       |       |
| ID17010302PN015_02 | Canyon Creek from headwaters to Gorge Gulch                 | 4.08  | Miles |
| TEMPERATURE        |                                                             |       |       |
| ZINC               |                                                             |       |       |
| LEAD               |                                                             |       |       |
| CADMIUM            |                                                             |       |       |
| ID17010302PN016_02 | Ninemile Creek and tribs except Ninemile Cr above East Fork | 9.32  | Miles |
| CADMIUM            |                                                             |       |       |
| LEAD               |                                                             |       |       |
| TEMPERATURE        |                                                             |       |       |
| ZINC               |                                                             |       |       |
| ID17010302PN017_02 | Ninemile Creek above East Fork Ninemile Creek               | 1.79  | Miles |
| CADMIUM            |                                                             |       |       |
| LEAD               |                                                             |       |       |
| ZINC               |                                                             |       |       |
| ID17010302PN018_02 | Moon Creek headwaters and tribs except West Fork Moon Cr    | 4.64  | Miles |
| CADMIUM            |                                                             |       |       |
| LEAD               |                                                             |       |       |
| TEMPERATURE        |                                                             |       |       |
| ZINC               |                                                             |       |       |
| ID17010302PN018_03 | Moon Creek btw West Fork Moon and South Fork CDA River      | 1.76  | Miles |
| ZINC               |                                                             |       |       |
| CADMIUM            |                                                             |       |       |
| TEMPERATURE        |                                                             |       |       |
| LEAD               |                                                             |       |       |
| ID17010302PN020_02 | Bear Creek headwaters and tributaries                       | 13.64 | Miles |
| TEMPERATURE        |                                                             |       |       |
| ID17010302PN020_03 | Bear Creek, lower                                           | 2.12  | Miles |
|                    |                                                             |       |       |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| 17010303                   | Coeur d'Alene La         | ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                            |
|----------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| ID17010303PN001L_0L        | Coeur d'Alene Lake       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2977.37                                                                                                                                                                                                                                       | Acres                                                      |
| MERCURY                    |                          | 12/17/19 (KV, RS, CN): Fish tissue data collected 6/16/16-8<br>Final QAPP Coeur d'Alene Basin Fish Tissue Sampling May<br>(2016BFK1249).In the northern lake, 4 of 30 samples excee<br>central lake, 7 of 40 samples exceeded 0.3 mg/kg. The high<br>0.798 mg/kg in a bass sample from the central lake. These<br>updated human health advisory from IFCAP and Idaho Depi<br>finalized in 2019. Since the water quality numeric criterion is<br>designated uses primary contact recreation, cold water aqua<br>spawning are not supported due to mercury.                                                                                                                                                                                                                                                                                     | /17/16 according<br>2016<br>ded 0.3 mg/kg. I<br>est concentration<br>data informed an<br>Health and We<br>exceeded, the<br>atic life, and salm                                                                                                | ן to<br>n the<br>n was<br>ו<br>elfare                      |
| LEAD                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                            |
| CADMIUM                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                            |
| ZINC                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               |                                                            |
| ID17010303PN005_02         | Fighting Creek - headwa  | ters to Tribal boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.85                                                                                                                                                                                                                                         | Miles                                                      |
| ESCHERICHIA COLI (E. COLI) |                          | 2010 (R. Steed, K. Keith) - In 2008, Bellgrove Creek was BU<br>for beneficial use support, and results from the process con-<br>are not supported. Just above the sampling site is a confine<br>operation that has been documented through enforcement a<br>primary source of the high E. coli. Visual observations during<br>events showed gully erosion from the property into Bellgrove                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IRP'd and asses<br>cluded beneficial<br>d elk feeding<br>ictions to be the<br>g both rain-on-sr<br>e Creek.                                                                                                                                   | sed<br>uses<br>now                                         |
| SEDIMENTATION/SILTATION    |                          | 2010 (R. Steed, K. Keith) - In 2008, Bellgrove Creek was BL<br>for beneficial use support, and results from the process con-<br>are not supported. The creek is currently listed on Idaho's 2<br>as impaired for E. coli. Just above the sampling site is a cor-<br>operation that has been documented to be the primary sour-<br>Visual observations during both rain-on-snow events showe<br>the property into Bellgrove Creek. These observations, alone<br>exceedances, make it reasonable to conclude that this facili<br>sediment observed during monitoring. This information and<br>recent failing BURP scores and instantaneous turbidity exceed<br>data from other creeks in the area lead to the recommendat<br>Creek be listed on Idaho's 2010 Integrated Report for impain<br>Water Aquatic Life beneficial use due to sediment. | IRP'd and asses<br>cluded beneficial<br>008 Integrated R<br>fined elk feeding<br>ce of the high E.<br>d gully erosion fr<br>g with E. coli<br>ty is contributing<br>the combination<br>edences based<br>ion that Bellgrow<br>ment of the Colo | sed<br>uses<br>eport<br>coli.<br>om<br>to<br>of<br>on<br>e |
| ID17010303PN007_06         | Coeur d'Alene River - La | tour Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32                                                                                                                                                                                                                                            | Miles                                                      |

ZINC

SEDIMENTATION/SILTATION

LEAD

TEMPERATURE

CADMIUM

| ID17010303PN008L_0L Anderson Lake         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 541.35                                                                                                                                                                                                                                                 | Acres                                                                        |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| LEAD                                      | 2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Off<br>monitoring on the Coeur d'Alene River lateral lakes on Aug<br>Dissolved lead concentration in the photic zone of Anderson<br>and it was 5.83 ug/L in the anoxic zone. Both values excee<br>quality criteria for aquatic life for lead of 0.54 ug/L at a hard<br>mg/L (the hardness in Anderson Lake was 23.9 mg/L and 2<br>zone and anoxic zone, respectively). No dissolved oxygen<br>exceedances were observed in Anderson Lake. Due to the<br>exceedances, Anderson Lake was listed as impaired for lead<br>beneficial use.                                                                                                                                                                                                                                                   | ice conducted<br>ust 29-31, 2011.<br>In Lake was 4.80<br>In Lake was 4.80<br>In the chronic wat<br>ness less than 25<br>4.6 mg/L in the p<br>water quality star<br>above described<br>ad for the aquatic                                               | ug/L<br>ter<br>5<br>bhotic<br>ndard<br>1<br>life                             |
| ID17010303PN009L_0L Black Lake            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201.72                                                                                                                                                                                                                                                 | Acres                                                                        |
| LEAD                                      | 2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Off<br>monitoring on the Coeur d'Alene River lateral lakes on Aug<br>Dissolved lead concentration in the photic zone of Black La<br>which exceeded the chronic water quality criteria for aquatic<br>ug/L at the hardness observed in the photic zone in Black L<br>Dissolved lead concentration in the anoxic zone of Black La<br>which exceeded the chronic water quality criteria for aquatic<br>ug/L at the hardness observed in the anoxic zone in Black La<br>which exceeded the chronic water quality criteria for aquatic<br>ug/L at the hardness observed in the anoxic zone in Black L<br>dissolved oxygen water quality standard exceedances were<br>Lake.                                                                                                                   | ice conducted<br>ust 29-31 2011.<br>ke was 8.14 ug/L<br>; life for lead of 0.<br>ake (25.7 mg/L).<br>ke was 4.70 ug/L<br>; life for lead of 0.<br>.ake (30.6 mg/L).<br>observed in Blac                                                                | -<br>.56<br>-<br>.68<br>. No<br>ck                                           |
| ID17010303PN010L_0L Cave & Medicine Lakes | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 987.47                                                                                                                                                                                                                                                 | Acres                                                                        |
| LEAD                                      | 2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Off<br>monitoring on the Coeur d'Alene River lateral lakes on Aug<br>Dissolved lead concentration in the photic zone of Medicine<br>and it was 2.80 ug/L in the anoxic zone. Both values exceed<br>quality criteria for aquatic life for lead of 0.54 ug/L at a hard<br>mg/L (the hardness in Medicine Lake was 15.6 mg/L and 14<br>zone and anoxic zone, respectively). No dissolved oxygen v<br>exceedances were observed in Medicine Lake. Dissolved le<br>the photic zone of Cave Lake was 0.87 ug/L and it was 1.30<br>zone. Both values exceed the chronic water quality criteria<br>of 0.54 ug/L at a hardness less than 25 mg/L (the hardness<br>16.5 mg/L and 16.9 mg/L in the photic zone and anoxic zon<br>dissolved oxygen water quality standard exceedances were<br>Lake. | ice conducted<br>ust 29-31 2011.<br>Lake was 6.62 u<br>d the chronic water<br>ness less than 25<br>4.7 mg/L in the pf<br>vater quality stan-<br>ad concentration<br>) ug/L in the anox<br>for aquatic life fo<br>in Cave Lake wa<br>le, respectively). | ug/L<br>er<br>5<br>hotic<br>dard<br>n in<br>kic<br>or lead<br>as<br>No<br>ye |
| ZINC                                      | 2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Off<br>monitoring on the Coeur d'Alene River lateral lakes on Aug<br>Dissolved zinc concentration in the anoxic zone was 38.6 u<br>the chronic water quality criteria for aquatic life for zinc of 3<br>less than 25 ug/L. No dissolved oxygen water quality standa<br>observed in Medicine Lake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ice conducted<br>ust 29-31 2011.<br>g/L, which exceed<br>5 ug/L at a hardn<br>ard exceedances                                                                                                                                                          | ded<br>ess<br>were                                                           |
| ID17010303PN016_06 Coeur d'Alene River-Sc | outh Fork Coeur d'Alene River to Latour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.29                                                                                                                                                                                                                                                   | Miles                                                                        |
| CADMIUM                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        |                                                                              |
| LEAD                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        |                                                                              |

TEMPERATURE

ZINC

| ID17010303PN022L_0L                | Killarney Lake           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 498.72                                                                                                                                                                                                                                                                            | Acres                                                                         |
|------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| LEAD                               |                          | 2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Offic<br>monitoring on the Coeur d'Alene River lateral lakes on Augus<br>Dissolved lead concentration in the photic zone of Killarney L<br>which exceeded the chronic water quality criteria for aquatic<br>ug/L at the hardness observed in the photic zone of Killarney<br>No dissolved oxygen water quality standard exceedances we<br>Killarney Lake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e conducted<br>st 29-31, 2011.<br>ake was 0.69 u<br>life for lead of 0.<br>lake (25.2 mg/L<br>re observed in                                                                                                                                                                      | g/L,<br>55<br>_).                                                             |
| MERCURY                            |                          | 3/20/17 (R. Steed): Data supplied by EPA Region 10 confirm<br>methyl mercury in Fish Tissue in concentrations that exceed<br>01/15/2020 (KV, RS, CN): Fish tissue data collected 6/16/16.<br>Final QAPP Coeur d'Alene Basin Fish Tissue Sampling May<br>(2016BFK1249). There were 3 of 26 samples that exceeded<br>highest concentration was 0.941 mg/kg in a bass sample. Th<br>updated human health advisory from IFCAP and Idaho Dept.<br>finalized in 2019. Since the water quality numeric criterion is<br>existing uses primary contact recreation and cold water aqua<br>supporting due to mercury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the presence o<br>Idaho toxics crit<br>8/17/16 accordi<br>2016<br>0.3 mg/kg. The<br>tese data inform<br>Health and We<br>exceeded, the<br>tic life are not                                                                                                                        | f<br>eeria.<br>ing to<br>ed an<br>Ifare                                       |
| ID17010303PN023L_0L                | Swan Lake                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 435.22                                                                                                                                                                                                                                                                            | Acres                                                                         |
| MERCURY                            |                          | 12/17/19 (KV, RS, CN): Fish tissue data collected 6/16/16-8/<br>Final QAPP Coeur d'Alene Basin Fish Tissue Sampling May<br>(2016BFK1249). There were 5 out of 40 samples that exceed<br>highest concentration was 0.753 mg/kg in a bass sample. Th<br>updated human health advisory from IFCAP and Idaho Dept.<br>finalized in 2019. Since the water quality numeric criterion is<br>existing uses primary contact recreation and cold water aqua<br>supporting due to mercury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17/16 according<br>2016<br>ded 0.3 mg/kg. T<br>lese data inform<br>Health and We<br>exceeded, the<br>tic life are not                                                                                                                                                             | to<br>Fhe<br>ed an<br>Ifare                                                   |
| ID17010303PN025L_0L                | Thompson Lake            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.6                                                                                                                                                                                                                                                                             | Acres                                                                         |
| MERCURY                            |                          | 01/15/2020 (KV, RS, CN): Fish tissue data collected 6/16/16-<br>Final QAPP Coeur d'Alene Basin Fish Tissue Sampling May<br>(2016BFK1249). There were 2 out of 32 samples that exceen<br>highest concentration was 0.472 mg/kg in a bass sample. Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -8/17/16 accordi<br>2016<br>ded 0.3 mg/kg. 1<br>lese data inform                                                                                                                                                                                                                  | ng to<br>The<br>ed an                                                         |
|                                    |                          | updated human health advisory from IFCAP and Idaho Dept.<br>finalized in 2019. Since the water quality numeric criterion is<br>existing uses primary contact recreation and cold water aqua<br>supporting due to mercury.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Health and We<br>exceeded, the<br>tic life are not                                                                                                                                                                                                                                | lfare                                                                         |
| ZINC                               |                          | updated human health advisory from IFCAP and Idaho Dept.<br>finalized in 2019. Since the water quality numeric criterion is<br>existing uses primary contact recreation and cold water aqua<br>supporting due to mercury.<br>2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Offic<br>monitoring on the Coeur d'Alene River lateral lakes on Augus<br>Dissolved zinc concentration in the photic zone of Thompson<br>and it was 54.0 ug/L in the anoxic zone. The anoxic zone sar<br>chronic water quality criteria for aquatic life for zinc of 36 ug/L<br>than 25 mg/L. No dissolved oxygen water quality standard ex<br>observed in Thompson Lake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Health and We<br>exceeded, the<br>tic life are not<br>e conducted<br>st 29-31, 2011.<br>Lake was 34.6<br>nple exceeded t<br>at a hardness<br>acceedances were                                                                                                                     | ug/L,<br>he<br>less<br>e                                                      |
| ZINC<br>LEAD                       |                          | updated human health advisory from IFCAP and Idaho Dept.<br>finalized in 2019. Since the water quality numeric criterion is<br>existing uses primary contact recreation and cold water aqua<br>supporting due to mercury.<br>2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Office<br>monitoring on the Coeur d'Alene River lateral lakes on Augus<br>Dissolved zinc concentration in the photic zone of Thompson<br>and it was 54.0 ug/L in the anoxic zone. The anoxic zone sar<br>chronic water quality criteria for aquatic life for zinc of 36 ug/L<br>than 25 mg/L. No dissolved oxygen water quality standard ex<br>observed in Thompson Lake.<br>2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Office<br>monitoring on the Coeur d'Alene River lateral lakes on Augus<br>Dissolved lead concentration in the photic zone of Thompsor<br>in the photic zone, and it was 4.30 in the anoxic zone. Both v<br>water quality criteria for aquatic life for lead of 0.54 ug/L at a<br>25 mg/L (the hardness in Thompson Lake was 23.1 mg/L an<br>photic zone and anoxic zone, respectively). No dissolved oxy<br>standard exceedances were observed in Thompson Lake. | Health and We<br>exceeded, the<br>tic life are not<br>29-31, 2011.<br>Lake was 34.6<br>nple exceeded t<br>at a hardness<br>acceedances were<br>e conducted<br>at 29-31, 2011.<br>Lake was 3.20<br>alues exceed ch<br>hardness less th<br>d 23.5 mg/L in th<br>gen water qualit    | ug/L,<br>he<br>less<br>e<br>ug/L<br>nronic<br>nan<br>he<br>ly                 |
| ZINC<br>LEAD<br>ID17010303PN034_03 | Fernan Creek - source to | updated human health advisory from IFCAP and Idaho Dept.<br>finalized in 2019. Since the water quality numeric criterion is<br>existing uses primary contact recreation and cold water aqua<br>supporting due to mercury.<br>2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Office<br>monitoring on the Coeur d'Alene River lateral lakes on Augus<br>Dissolved zinc concentration in the photic zone of Thompson<br>and it was 54.0 ug/L in the anoxic zone. The anoxic zone sar<br>chronic water quality criteria for aquatic life for zinc of 36 ug/I<br>than 25 mg/L. No dissolved oxygen water quality standard ex<br>observed in Thompson Lake.<br>2012 (K. Keith and R. Steed) - Coeur d' Alene Regional Office<br>monitoring on the Coeur d'Alene River lateral lakes on Augus<br>Dissolved lead concentration in the photic zone of Thompsor<br>in the photic zone, and it was 4.30 in the anoxic zone. Both v<br>water quality criteria for aquatic life for lead of 0.54 ug/L at a<br>25 mg/L (the hardness in Thompson Lake was 23.1 mg/L an<br>photic zone and anoxic zone, respectively). No dissolved oxy<br>standard exceedances were observed in Thompson Lake. | Health and We<br>exceeded, the<br>tic life are not<br>at 29-31, 2011.<br>Lake was 34.6<br>nple exceeded t<br>at a hardness<br>acceedances were<br>e conducted<br>at 29-31, 2011.<br>Lake was 3.20<br>alues exceed ch<br>hardness less th<br>d 23.5 mg/L in th<br>gen water qualit | ug/L,<br>he<br>less<br>e<br>ug/L<br>nronic<br>nan<br>he<br>ty<br><b>Miles</b> |

3/17/2015 (KL) - There is excessive erosion/sedimentation and bedload aggradation to Fernan Creek. Also contributing to excess sediment is the significant channel bank erosion and midstream channel deposition due to the over widening of Fernan Creek.

| 17010304                  | St. Joe                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                          |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|
| ID17010304PN013_03        | Tyson Creek - source to mouth                                                                                                                                                                                                                                                                                                      | 2.14                                                                                                                    | Miles                    |
| ESCHERICHIA COLI (E. COLI | )                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                          |
| ID17010304PN022_02        | Olson Creek - source to mouth                                                                                                                                                                                                                                                                                                      | 12.76                                                                                                                   | Miles                    |
| TEMPERATURE               |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |
| ID17010304PN024_03        | Renfro Creek - locally known as Davis Creek                                                                                                                                                                                                                                                                                        | 1.22                                                                                                                    | Miles                    |
| ESCHERICHIA COLI (E. COLI | )                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                          |
| ID17010304PN041_02a       | Sherlock Creek                                                                                                                                                                                                                                                                                                                     | 2.23                                                                                                                    | Miles                    |
| SEDIMENTATION/SILTATION   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |
| ID17010304PN041_02i       | St Joe River 2nd order above Yankee Bar                                                                                                                                                                                                                                                                                            | 4.81                                                                                                                    | Miles                    |
| TEMPERATURE               | 12/12/2017 (CN): This AU was included in the "St. Joe<br>Temperature Total Maximum Daily Loads Addendum to<br>Subbasin Assessment and Total Maximum Daily Loads<br>Subbasin Assessment and Total Maximum Daily Loads<br>Meeting Total Maximum Daily Load Targets" approved<br>2011. The recommendation in Table 23 is to move to c | River Subbasin<br>o the St. Joe River<br>s and St. Maries Riv<br>s, Appendix A. Wate<br>by EPA on Decemb<br>category 2. | er<br>ersheds<br>per 5,  |
| ID17010304PN041_02j       | 1st order tribs to the 2nd order portion of St. Joe River                                                                                                                                                                                                                                                                          | 19.24                                                                                                                   | Miles                    |
| TEMPERATURE               | 12/12/2017 (CN): This AU was included in the "St. Joe<br>Temperature Total Maximum Daily Loads Addendum to<br>Subbasin Assessment and Total Maximum Daily Loads<br>Subbasin Assessment and Total Maximum Daily Loads<br>Meeting Total Maximum Daily Load Targets" approved<br>2011. The recommendation in Table 23 is to move to c | River Subbasin<br>o the St. Joe River<br>s and St. Maries Riv<br>s, Appendix A. Wate<br>by EPA on Decemb<br>category 2. | 'er<br>∌rsheds<br>ber 5, |
| 17010305                  | Upper Spokane                                                                                                                                                                                                                                                                                                                      |                                                                                                                         |                          |
| ID17010305PN002_02        | Cable Creek - source to Idaho/Washington border                                                                                                                                                                                                                                                                                    | 12.05                                                                                                                   | Miles                    |
| ESCHERICHIA COLI (E. COLI | )                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                          |
| ID17010305PN003_04        | Spokane River - Post Falls Dam to Idaho/Washington border                                                                                                                                                                                                                                                                          | 5.67                                                                                                                    | Miles                    |
| LEAD                      |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |
| PHOSPHORUS, TOTAL         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |
| ZINC                      |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |
| ID17010305PN004_04        | Spokane River - Coeur d'Alene Lake to Post Falls Dam                                                                                                                                                                                                                                                                               | 9.04                                                                                                                    | Miles                    |
| PHOSPHORUS, TOTAL         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |
| ZINC                      |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |
|                           |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                          |

LEAD

| ID17010305PN008_02     | Mokins Creek - source to | o mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.82                                                                                                                                              | Miles                                                       |
|------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| TEMPERATURE            |                          | 1/19/2010 (R. Steed, K. Keith, T. Clyne, and K. Stromberg) - were submitted by U.S. Forest Service, Idaho Panhandle Nati<br>d'Alene River Ranger District as response to DEQ request for<br>were assessed as Tier 1 by K. Stromberg and K. Duncan (DE<br>The analysis can be found in a report attached and data are a<br>Regional Office. Salmonid spawning as existing beneficial use<br>USFS staff. Temperature data in this AU exceeded Idaho wat<br>for salmonid spawning criteria. Based on WBAGII, we conclud<br>supporting for cold water aquatic life and salmonid spawning.    | Femperature da<br>onal Forests, (<br>data. These da<br>Q intern) in 20<br>vailable at CD,<br>a was confirme<br>er quality stand<br>ded this AU no | ata<br>Coeur<br>ata<br>09.<br>A<br>d by<br>dards<br>t fully |
| ID17010305PN009_02     | Nilsen Creek - source to | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.08                                                                                                                                              | Miles                                                       |
| TEMPERATURE            |                          | 1/19/2010 (R. Steed, K. Keith, T. Clyne, and K. Stromberg) - were submitted by U.S. Forest Service, Idaho Panhandle Nati<br>d'Alene River Ranger District as response to DEQ request for<br>were assessed as Tier 1 by K. Stromberg and K. Duncan (DE<br>The analysis can be found in a report attached and data are a<br>Regional Office. Salmonid spawning as existing beneficial use<br>USFS staff. Temperature data in this AU exceeded Idaho wat<br>for salmonid spawning criteria. Based on WBAGII, we conclud<br>supporting for cold water aquatic life and salmonid spawning.    | Femperature da<br>onal Forests, C<br>data. These da<br>Q intern) in 20<br>vailable at CD/<br>was confirme<br>er quality stand<br>ded this AU no   | ata<br>Coeur<br>ata<br>09.<br>A<br>d by<br>Jards<br>t fully |
| ID17010305PN010_02     | Tributaries to Hayden Cr | eek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.25                                                                                                                                             | Miles                                                       |
| TEMPERATURE            |                          | 1/19/2010 (R. Steed, K. Keith, T. Clyne, and K. Stromberg) -<br>were submitted by U.S. Forest Service, Idaho Panhandle Nati<br>d'Alene River Ranger District as response to DEQ request for<br>were assessed as Tier 1 by K. Stromberg and K. Duncan (DE<br>The analysis can be found in a report attached and data are a<br>Regional Office. Salmonid spawning as existing beneficial use<br>USFS staff. Temperature data in this AU exceeded Idaho wat<br>for salmonid spawning criteria. Based on WBAGII, we conclud<br>supporting for cold water aquatic life and salmonid spawning. | Femperature da<br>onal Forests, (<br>data. These da<br>Q intern) in 20<br>vailable at CD,<br>⇒ was confirme<br>er quality stand<br>ded this AU no | ata<br>Coeur<br>ata<br>09.<br>A<br>d by<br>dards<br>t fully |
| ID17010305PN010_03     | Hayden Creek -source to  | o mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.04                                                                                                                                              | Miles                                                       |
| TEMPERATURE            |                          | 1/19/2010 (R. Steed, K. Keith, T. Clyne, and K. Stromberg) -<br>were submitted by U.S. Forest Service, Idaho Panhandle Nati<br>d'Alene River Ranger District as response to DEQ request for<br>were assessed as Tier 1 by K. Stromberg and K. Duncan (DE<br>The analysis can be found in a report attached and data are a<br>Regional Office. Salmonid spawning as existing beneficial use<br>USFS staff. Temperature data in this AU exceeded Idaho wat<br>for salmonid spawning criteria. Based on WBAGII, we conclud<br>supporting for cold water aquatic life and salmonid spawning. | Femperature da<br>onal Forests, C<br>data. These da<br>Q intern) in 20<br>vailable at CD,<br>a was confirme<br>er quality stand<br>ded this AU no | ata<br>Coeur<br>ata<br>09.<br>A<br>d by<br>dards<br>t fully |
| ID17010305PN011_02     | Sage Creek and Lewelle   | n Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.69                                                                                                                                             | Miles                                                       |
| COMBINED BIOTA/HABITAT | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |                                                             |
| ID17010305PN012_03     | Rathdrum Creek - Twin I  | Lakes to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.47                                                                                                                                              | Miles                                                       |
| COMBINED BIOTA/HABITAT | BIOASSESSMENTS           | 1/7/2010 (R. Steed) - This AU was previously assessed as co<br>and secondary contact recreation in the "Fully Supporting" cat<br>BURP cold water aquatic life suggests "Not Fully Supporting"<br>performed following the WBAG II protocol, and this AU is in the<br>Supporting category for cold water aquatic life and in the Fully<br>category for SCR. The cause of impairment is unknown at this<br>Stressor Identification study should be conducted.                                                                                                                               | ld water aquati<br>egory. The 200<br>Assessment<br>ie Not Fully<br>Supporting<br>s time and a                                                     | c life<br>08<br>was                                         |

| ID17010305PN017_02 Lost Lake, Howell, and  | Lost Creeks - source to mouth                                                                                                                                                                                                                                                                                                                                               | 13.25                                                                                                                  | Miles                                       |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| COMBINED BIOTA/HABITAT BIOASSESSMENTS      | 1/7/2010 (R. Steed) - This AU was previously unassessed.<br>suggests "NFS". Assessment was performed following the<br>this AU is in the Not Full Support category for COLD and in<br>category for SCR. The cause of impairment is unknown at<br>Stressor Identification study should be conducted.                                                                          | The 2006 BURF<br>WBAG II protoc<br>the Full Support<br>this time and a                                                 | ol, and                                     |
| ESCHERICHIA COLI (E. COLI)                 | 1/29/2010 (R. Steed) - 2006 BURP Escherichia coli sample<br>Quality Standards numeric criteria. The Geomean was 293                                                                                                                                                                                                                                                         | exceed Idaho V<br>cfu/100mL.                                                                                           | Vater                                       |
| ID17010305PN018_02 Hauser Creek - upper    |                                                                                                                                                                                                                                                                                                                                                                             | 15.33                                                                                                                  | Miles                                       |
| ESCHERICHIA COLI (E. COLI)                 | 1/7/2010 (R. Steed) - This AU was previously NFS for prima<br>The 2006 BURP ALUS suggests "NFS". Assessment was<br>the WBAG II protocol, and this AU is in the Full Support cat<br>aquatic life and remains in the Not Full Support category for<br>recreation. The cause of impairment remains e. coli. MST n<br>summer of 2009 by Coeur d' Alene Regional Office confirms | ary contact recre<br>performed follow<br>egory for cold w<br>primary contact<br>nonitoring during<br>s high bacteria c | ation.<br>/ing<br>ater<br>t<br>J<br>counts. |
| ID17010305PN018 03 Hauser Creek - lower, r | nainstem portion                                                                                                                                                                                                                                                                                                                                                            | 2.65                                                                                                                   | Miles                                       |

ESCHERICHIA COLI (E. COLI)

| 17060101                | Hells Canyon                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                        |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| ID17060101SL003_08      | Snake River - Hells Canyon Dam to Sheep Creek                                                                                                                                                                                                                                                                                                                                               | 17.93                                                                                                                                        | Miles                                  |
| MERCURY                 | 9/18/2014 (HS) - Mercury data submitted by Idaho Po<br>concentration in smallmouth bass >200mm of 0.328 r<br>human health criterion of 0.3 mg/kg.                                                                                                                                                                                                                                           | wer had a mean mer<br>ng/kg, which exceed                                                                                                    | rcury<br>s the                         |
| ID17060101SL004_03      | Deep Creek - 3rd order (Lake Creek to mouth)                                                                                                                                                                                                                                                                                                                                                | 6.78                                                                                                                                         | Miles                                  |
| COPPER                  | 12/30/2014 (NED and HS) - DEQ visited Deep Creek<br>metal samples from below the Red Ledge Mine. Resu<br>concentrations to be exceeding both the acute and ch<br>for aquatic life on three out of four visits. The highest<br>concentration measured on October 2, 2014 was 72 r<br>hardness of 48 mg/L, both the acute and chronic crite<br>microgram/L and 6.1 microgram/L, respectively. | four times in 2014 to<br>ilts showed dissolved<br>ironic water quality or<br>dissolved copper<br>nicrogram/L. With a<br>irion was exceeded a | collect<br>l copper<br>iteria<br>t 8.5 |
| ID17060101SL018_02      | Kurry Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                               | 12.96                                                                                                                                        | Miles                                  |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                        |
| ID17060101SL020_03      | Big Canyon Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                          | 3.76                                                                                                                                         | Miles                                  |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                        |
| 17060103                | Lower Snake-Asotin                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |                                        |
| ID17060103SL001_08      | Snake River                                                                                                                                                                                                                                                                                                                                                                                 | 6.26                                                                                                                                         | Miles                                  |
| TEMPERATURE             |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                        |
| ID17060103SL004_08      | Snake River - Salmon River to Cottonwood Creek                                                                                                                                                                                                                                                                                                                                              | 7.12                                                                                                                                         | Miles                                  |
| TEMPERATURE             |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                        |
| 17060201                | Upper Salmon                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                        |
| ID17060201SL048_03      | Basin Creek - East Basin Creek to mouth                                                                                                                                                                                                                                                                                                                                                     | 2.36                                                                                                                                         | Miles                                  |
| SEDIMENTATION/SILTATION | N                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                        |
| ID17060201SL085_03      | Pole Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                                | 5.15                                                                                                                                         | Miles                                  |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                        |
| ID17060201SL089_02      | Williams Creek - source to mouth                                                                                                                                                                                                                                                                                                                                                            | 12.88                                                                                                                                        | Miles                                  |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                        |
| ID17060201SL103_02      | East Fork Salmon River - Germania Creek to Herd Creek                                                                                                                                                                                                                                                                                                                                       | 59.92                                                                                                                                        | Miles                                  |
| COMBINED BIOTA/HABITAT  | BIOASSESSMENTS                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                        |
| 17060202                | Pahsimeroi                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                        |
| ID17060202SL003_03      | Lawson Creek-confluence of North and South Fork Lawson Creek                                                                                                                                                                                                                                                                                                                                | 1.82                                                                                                                                         | Miles                                  |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| ID17060202SL005_02                                                                           | South Fork Lawson Cree                                                      | ek - source to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.91                                                                                                                                                                                                             | Miles                                   |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| COMBINED BIOTA/HABITAT                                                                       | BIOASSESSMENTS                                                              | 8/7/2015 (MH and NED) - Evidence indicates that wa<br>infrequently and sinks rapidly into the alluvium when<br>based on a single Beneficial Use Reconnaissance P<br>1997. The determining factor was a borderline SMI s<br>limitations appear to be the primary impairment; how<br>potential impairments are lacking. Combined biota/h<br>remain in Category 5 until conclusive data is collected<br>stressors and/or pollutants (if any) in South Fork Law | ater exists in this reach<br>present. It was original li<br>rogram (BURP) score in<br>score. Natural water<br>vever, data identifying oth<br>abitat bioassessments wi<br>ed to determine the poten<br>vson Creek. | sted<br>er<br>ill<br>tial               |
| ID17060202SL023_03                                                                           | Burnt Creek - Long Cree                                                     | ek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.06                                                                                                                                                                                                              | Miles                                   |
| COMBINED BIOTA/HABITAT                                                                       | BIOASSESSMENTS                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   |                                         |
| ID17060202SL024_02                                                                           | Burnt Creek - source to                                                     | Long Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.23                                                                                                                                                                                                             | Miles                                   |
| COMBINED BIOTA/HABITAT                                                                       | BIOASSESSMENTS                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   |                                         |
| ID17060202SL029_02                                                                           | Donkey Creek - source                                                       | to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.56                                                                                                                                                                                                             | Miles                                   |
| COMBINED BIOTA/HABITAT                                                                       | BIOASSESSMENTS                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   |                                         |
| ID17060202SL035_02                                                                           | Patterson Creek - sourc                                                     | e to and including Inyo Creek                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.36                                                                                                                                                                                                             | Miles                                   |
| COMBINED BIOTA/HABITAT                                                                       | BIOASSESSMENTS                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   |                                         |
| 17060203                                                                                     | Middle Salmon-P                                                             | anther                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                   |                                         |
| ID17060203SL001_07                                                                           | Salmon River - Panther                                                      | Creek to Middle Fork Salmon River                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.85                                                                                                                                                                                                             | Miles                                   |
| TEMPERATURE                                                                                  |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   |                                         |
| ID17060203SL002_05                                                                           | Panther Creek - Big Dee                                                     | er Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.98                                                                                                                                                                                                             | Miles                                   |
| TEMPERATURE                                                                                  |                                                                             | 8/22/17 (TS, JW): Temperature logger data collected exceedances of salmonid spawning temperature crit                                                                                                                                                                                                                                                                                                                                                       | d in 2015 showed<br>eria.                                                                                                                                                                                         |                                         |
| ID17060203SL005_03                                                                           | Big Deer Creek - South                                                      | Fork Big Deer Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.98                                                                                                                                                                                                              | Miles                                   |
| COPPER                                                                                       |                                                                             | This stream is impacted by the Blackbird Mine. It is still exhibits exceedances of the copper standard. D contacting the Blackbird Mine Project officer at the lo office at 208.528.2650.                                                                                                                                                                                                                                                                   | actively being remediated<br>ata can be reviewed by<br>daho Falls regional DEQ                                                                                                                                    | d but                                   |
| ID17060203SL007_02                                                                           | South Fork Big Deer Cre                                                     | eek - Bucktail Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.52                                                                                                                                                                                                              | Miles                                   |
| ESCHERICHIA COLI (E. COL                                                                     | 1)                                                                          | 8/24/17 (TS, JW): The geometric mean of five E. col<br>was 1003 cfu/100 mL, which exceeds the 126 cfu/10                                                                                                                                                                                                                                                                                                                                                    | li samples collected in 20<br>00 mL E. coli criterion.                                                                                                                                                            | 13                                      |
| COPPER                                                                                       |                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |                                         |
|                                                                                              |                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |                                         |
| ID17060203SL010_05                                                                           | Panther Creek - Napias                                                      | Creek to Big Deer Creek                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.08                                                                                                                                                                                                              | Miles                                   |
| ID17060203SL010_05                                                                           | Panther Creek - Napias                                                      | Creek to Big Deer Creek<br>12/27/2019 (AB) Temperature logger data from adja<br>downstream) show exceedances of salmonid spawn                                                                                                                                                                                                                                                                                                                              | 6.08<br>acent AUs (both upstream<br>ing temperature criteria.                                                                                                                                                     | Miles<br>and                            |
| ID17060203SL010_05<br>TEMPERATURE<br>ID17060203SL011_04                                      | Panther Creek - Napias<br>Panther Creek - Blackbi                           | Creek to Big Deer Creek<br>12/27/2019 (AB) Temperature logger data from adja<br>downstream) show exceedances of salmonid spawn<br>rd Creek to Napias Creek                                                                                                                                                                                                                                                                                                  | 6.08<br>acent AUs (both upstream<br>ing temperature criteria.<br>5.5                                                                                                                                              | Miles<br>n and<br>Miles                 |
| ID17060203SL010_05<br>TEMPERATURE<br>ID17060203SL011_04<br>TEMPERATURE                       | Panther Creek - Napias<br>Panther Creek - Blackbi                           | Creek to Big Deer Creek<br>12/27/2019 (AB) Temperature logger data from adja<br>downstream) show exceedances of salmonid spawn<br>rd Creek to Napias Creek<br>8/22/17 (TS, JW): Temperature logger data collected<br>of salmonid spawning temperature criteria.                                                                                                                                                                                             | 6.08<br>acent AUs (both upstream<br>ing temperature criteria.<br>5.5<br>d in 2015 show exceedan                                                                                                                   | Miles<br>n and<br>Miles<br>ces          |
| ID17060203SL010_05<br>TEMPERATURE<br>ID17060203SL011_04<br>TEMPERATURE<br>ID17060203SL014_03 | Panther Creek - Napias<br>Panther Creek - Blackbi<br>Panther Creek - Porphy | Creek to Big Deer Creek<br>12/27/2019 (AB) Temperature logger data from adja<br>downstream) show exceedances of salmonid spawn<br>rd Creek to Napias Creek<br>8/22/17 (TS, JW): Temperature logger data collected<br>of salmonid spawning temperature criteria.<br>ry Creek to Blackbird Creek                                                                                                                                                              | 6.08<br>acent AUs (both upstream<br>ing temperature criteria.<br>5.5<br>d in 2015 show exceedan<br>1.89                                                                                                           | Miles<br>n and<br>Miles<br>ces<br>Miles |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| ID17060203SL014_04     | Panther Creek - Porphyr  | y Creek to Blackbird Creek                                                                                                                              | 4.76                       | Miles    |
|------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|
| TEMPERATURE            |                          | 8/22/17 (TS, JW): Temperature logger data collected in 2018 exceedances of salmonid spawning temperature criteria.                                      | 5 indicate                 |          |
| ID17060203SL017_03     | Panther Creek - source t | o Porphyry Creek                                                                                                                                        | 11.6                       | Miles    |
| TEMPERATURE            |                          | 8/22/15 (TS, JW): Temperature logger data collected in 201<br>of cold water aquatic life and salmonid spawning temperatur                               | 5 show exce<br>e criteria. | edances  |
| ID17060203SL024_03     | Napias Creek - Arnett Cr | eek to and including Moccasin Creek                                                                                                                     | 5.51                       | Miles    |
| COMBINED BIOTA/HABITAT | BIOASSESSMENTS           |                                                                                                                                                         |                            |          |
| ID17060203SL029_07     | Salmon River - Indian Cr | eek to Panther Creek                                                                                                                                    | 17.89                      | Miles    |
| TEMPERATURE            |                          | 8/22/17 (TS, JW): Temperature logger data collected in 201<br>of cold water aquatic life and salmonid spawning temperatur                               | 5 show exce<br>e criteria. | edances  |
| ID17060203SL032_07     | Salmon River - North For | k Salmon Creek to Indian Creek                                                                                                                          | 11.8                       | Miles    |
| TEMPERATURE            |                          |                                                                                                                                                         |                            |          |
| ID17060203SL039_07     | Salmon River - Carmen    | Creek to North Fork Salmon River                                                                                                                        | 16.11                      | Miles    |
| TEMPERATURE            |                          | 12/12/2019 (AB): Temperature logger data gathered in 2013 exceedances of the salmonid spawning temperature criteria; is therefore not fully supporting. | captured<br>Salmonid S     | Spawning |
| ID17060203SL041_07     | Salmon River - Pollard C | reek to Carmen Creek                                                                                                                                    | 5.94                       | Miles    |
| TEMPERATURE            |                          | 12/12/2019 (AB): Temperature logger data gathered in 2013 exceedances of the salmonid spawning temperature criteria; is therefore not fully supporting. | captured<br>Salmonid S     | Spawning |
| ID17060203SL042_06     | Salmon River - Williams  | Creek to Pollard Creek                                                                                                                                  | 8.92                       | Miles    |
| TEMPERATURE            |                          | 12/12/2019 (AB): Temperature logger data gathered in 2013 exceedances of the salmonid spawning temperature criteria; is therefore not fully supporting. | captured<br>Salmonid S     | Spawning |
| ID17060203SL046_06     | Salmon River - Twelvem   | ile Creek to Williams Creek                                                                                                                             | 6.39                       | Miles    |
| TEMPERATURE            |                          | 12/12/2019 (AB): Temperature logger data gathered in 2013 exceedances of the salmonid spawning temperature criteria; is therefore not fully supporting. | captured<br>Salmonid S     | Spawning |
| ID17060203SL047_06     | Salmon River - Iron Cree | k to Twelvemile Creek                                                                                                                                   | 12.64                      | Miles    |
| TEMPERATURE            |                          | 12/12/2019 (AB): Temperature logger data gathered in 2013 exceedances of the salmonid spawning temperature criteria; is therefore not fully supporting. | captured<br>Salmonid S     | Spawning |
| ID17060203SL053_06     | Salmon River - Pahsime   | roi River to Iron Creek                                                                                                                                 | 18.89                      | Miles    |
| TEMPERATURE            |                          | 12/12/2019 (AB): Temperature logger data gathered in 2013 exceedances of the salmonid spawning temperature criteria; is therefore not fully supporting. | captured<br>Salmonid S     | Spawning |

| 17060204                   | Lemhi                   |                                                                                                                                                                                                                                                 |                                                                      |                              |
|----------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|
| ID17060204SL011_04         | Basin Creek             |                                                                                                                                                                                                                                                 | 1.71                                                                 | Miles                        |
| ESCHERICHIA COLI (E. COLI) | )                       | 12/05/2019 (AB) The geometric mean E.coli concentration<br>samples collected from 8/29-9/25/2017 was 291.6 MPN/10<br>bacteria criterion of 126 E.coli organisms per 100 mL and in<br>Contact Recreation is not supported (Idaho's WBAG III, see | calculated from<br>0ml, which exce<br>ndicates Secon<br>ction 7.2).  | i five<br>eeds the<br>dary   |
| ID17060204SL030_05         | Lemhi River (East Brand | ch)-Eighteenmile & Texas Ck Confluence                                                                                                                                                                                                          | 10.39                                                                | Miles                        |
| ESCHERICHIA COLI (E. COLI) | )                       | 12/03/2019 (AB) The geometric mean E.coli concentration samples collected from 8/17-9/14/2016 was 263.4 MPN/10 bacteria criterion of 126 E.coli organisms per 100 mL and in Contact Recreation is not supported (Idaho's WBAG III, see          | calculated from<br>0ml, which exce<br>ndicates Primar<br>ction 7.2). | i five<br>eeds the<br>Ƴ      |
| ID17060204SL036_03         | Texas Creek             |                                                                                                                                                                                                                                                 | 14.93                                                                | Miles                        |
| COMBINED BIOTA/HABITAT E   | BIOASSESSMENTS          |                                                                                                                                                                                                                                                 |                                                                      |                              |
| ESCHERICHIA COLI (E. COLI) | )                       | 10/30/2019 (AB) The geometric mean E.coli concentration<br>samples collected from 8/29-9/25/2017 was 643.8 MPN/10<br>bacteria criterion of 126 E.coli organisms per 100 mL and in<br>Contact Recreation is not supported (Idaho's WBAG III, see | calculated from<br>0ml, which exce<br>ndicates Secon<br>ction 7.2).  | i five<br>eeds the<br>dary   |
| SEDIMENTATION/SILTATION    |                         |                                                                                                                                                                                                                                                 |                                                                      |                              |
| ID17060204SL041_04         | Eighteenmile Creek - Ha | awley Creek to mouth                                                                                                                                                                                                                            | 2.21                                                                 | Miles                        |
| ESCHERICHIA COLI (E. COLI) | )                       | 11/13/2019 (AB) The geometric mean E.coli concentration<br>samples collected from 8/17-9/14/2016 was 542.4 MPN/10<br>bacteria criterion of 126 E.coli organisms per 100 mL and<br>Contact Recreation is not supported (Idaho's WBAG III, see    | calculated from<br>0ml, which exce<br>indicates Secor<br>ction 7.2). | five<br>five<br>the<br>ndary |
| ID17060204SL051b_03        | Canyon Creek - source   | to diversion (T16N, R26E, Sec.22)                                                                                                                                                                                                               | 8.81                                                                 | Miles                        |
| ESCHERICHIA COLI (E. COLI) | )                       |                                                                                                                                                                                                                                                 |                                                                      |                              |
| ID17060204SL058_04         | Agency Creek - source   | to Cow Creek                                                                                                                                                                                                                                    | 4.01                                                                 | Miles                        |
| ESCHERICHIA COLI (E. COLI) | )                       | 12/05/2019 (AB) The geometric mean E.coli concentration<br>samples collected from 8/29-9/25/2017 was 141.8 MPN/10<br>bacteria criterion of 126 E.coli organisms per 100 mL and in<br>Contact Recreation is not supported (Idaho's WBAG III, see | calculated from<br>0ml, which exce<br>ndicates Secon<br>ction 7.2).  | i five<br>eeds the<br>dary   |
| 17060205                   | Upper Middle For        | rk Salmon                                                                                                                                                                                                                                       |                                                                      |                              |
| ID17060205SL012_05         | Bear Valley Creek - 5th | order                                                                                                                                                                                                                                           | 11.22                                                                | Miles                        |
| TEMPERATURE                |                         |                                                                                                                                                                                                                                                 |                                                                      | -                            |
| ID17060205SL025_02         | Knapp Creek - source to | o mouth                                                                                                                                                                                                                                         | 28.1                                                                 | Miles                        |
| COMBINED BIOTA/HABITAT E   | BIOASSESSMENTS          |                                                                                                                                                                                                                                                 |                                                                      |                              |
| 17060206                   | Lower Middle Fo         | rk Salmon                                                                                                                                                                                                                                       |                                                                      |                              |
| ID17060206SL024_03         | West Fork Camas Cree    | k - source to mouth                                                                                                                                                                                                                             | 5.21                                                                 | Miles                        |
| COMBINED BIOTA/HABITAT E   | BIOASSESSMENTS          |                                                                                                                                                                                                                                                 |                                                                      |                              |

| 17060208                | South Fork Salm          | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |
|-------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| ID17060208SL023_02      | East Fork of the South F | Fork Salmon River - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.16                                                                                                                                                                                                                                                                                                                                                   | Miles                                                                                                                                   |
| ARSENIC                 |                          | 1/29/2013 (NED) - Based on data collected by USGS be<br>and August 2012 at the gage station located in the 2nd of<br>Fork of the South Fork of the Salmon River (station 1331<br>arsenic samples exceeded Idaho's human health criterio<br>consumption of water and organisms. The sample result<br>micrograms/L, 10/17/2011 - 10.2 micrograms/L, 12/14/2<br>micrograms/L, 8/28/2012 - 11.9 micrograms/L Although<br>the BURP data collected in 2004 and 2008 were greater<br>to DEQ's Water Body Assessment Guidance is consider<br>AU is being listed due to a numeric exceedance. 6/9/201<br>data collected by USGS between September 2011 and A<br>arsenic samples to be exceeding Idaho's human health of<br>micrograms/L for consumption of fish. Therefore, second<br>impaired for arsenic.                                                                                                                                                                                     | tween September<br>order portion of the<br>0800), 4 of 6 unfil<br>n of 10 microgram<br>s were: 9/19/201<br>2011 - 11.9<br>the average scor<br>than 2, which acc<br>ed fully supporting<br>5 (Hawk Stone) -<br>tugust 2012 show<br>criterion of 10<br>lary contact recrea                                                                                | 2011<br>e East<br>ttered<br>ns/L for<br>1 - 11.8<br>res of<br>ording<br>g, this<br>The<br>s<br>ation is                                 |
| ID17060208SL023_03      | East Fork of the South F | Fork of the Salmon River - 3rd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.53                                                                                                                                                                                                                                                                                                                                                    | Miles                                                                                                                                   |
| ANTIMONY                |                          | 1/29/2013 (NED) - Based on data collected by USGS be<br>and August 2012 at two gage stations located in the 3rd<br>Fork of the South Fork of the Salmon River (stations 133<br>of 8 unfiltered antimony samples exceeded Idaho's huma<br>micrograms/L (for water and organisms) at gage station<br>gage station 13311250. The sample results at gage stati<br>9/22/2011 - 6.0 micrograms/L 9/22/2011 - 6.0 microgram<br>micrograms/L 12/14/2012 - 13.3 micrograms/L 5/18/2012<br>8/28/2012 - 6.25 micrograms/L The sample results at ga<br>were: 9/21/2011 - 25.2 micrograms/L 9/22/2011 - 25.0 m<br>10/18/2011 - 25.7 micrograms/L 12/15/2012 - 27 microgr<br>micrograms/L 6/14/2012 - 11.3 micrograms/L 8/29/2012                                                                                                                                                                                                                                                                    | tween September<br>order portion of th<br>11000 and 13311<br>an health criterion<br>13311000 and 7 c<br>on 13311000 wer<br>s/L 10/18/2011 -<br>2 - 10.3 microgram<br>age station 133112<br>nicrograms/L<br>rams/L 5/18/2012<br>- 25.5 micrograms                                                                                                        | 2011<br>ee East<br>250), 6<br>of 5.6<br>of 7 at<br>e:<br>10.1<br>ns/L<br>250<br>- 16.6<br>s/L.                                          |
| ARSENIC                 |                          | 1/29/2013 (NED) - Based on data collected by USGS be<br>and August 2012 at two gage stations located in the 3rd<br>Fork of the South Fork of the Salmon River (stations 133<br>of 8 unfiltered arsenic samples exceeded Idaho's human<br>microgram/L (for consumption of water and organisms) a<br>and 7 of 7 at gage station 13311250. The sample results<br>13311000 were: 9/20/2011 - 32.4 microgram/L, 9/22/20<br>9/22/2011 - 33.0 microgram/L, 10/18/2011 - 22.3 microgr<br>microgram/L, 5/18/2012 - 15.9 microgram/L, 6/13/2012 -<br>8/28/2012 - 32.9 microgram/L. The sample results at gag<br>were: 9/21/2011 - 72.0 microgram/L, 9/22/2011 - 78.0 m<br>54.0 microgram/L, 12/15/2012 - 62.9 microgram/L, 5/18//<br>6/14/2012 - 22.4 microgram/L, 8/29/2012 - 70.8 microgra<br>Stone) - The data collected by USGS between Septemb<br>shows arsenic samples to be exceeding Idaho's human I<br>microgram/L for consumption of fish. Therefore, seconda<br>impaired for arsenic. | tween September<br>order portion of th<br>11000 and 13311<br>health criterion of<br>t gage station<br>11 - 31.0 microgra<br>ram/L, 12/14/2012<br>13.0 microgram/L<br>e station 133112<br>icrogram/L, 10/18<br>2012 - 26.5 microgram/L, 10/18<br>2012 - 26.5 microgram/L, 6/9/2015 (Ha<br>er 2011 and Augu<br>health criterion of<br>any contact recreat | 2011<br>le East<br>250), 8<br>f 10<br>311000<br>lm/L,<br>2 - 23.7<br>.,<br>50<br>b/2011 -<br>gram/L,<br>awk<br>st 2012<br>10<br>tion is |
| ID17060208SL023_05      | East Fork South Fork S   | almon River - 5th order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.47                                                                                                                                                                                                                                                                                                                                                   | Miles                                                                                                                                   |
| SEDIMENTATION/SILTATION | N                        | 3/8/2013 (HS and NED) - This sediment impairment was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | not addressed by                                                                                                                                                                                                                                                                                                                                        | any of                                                                                                                                  |

| D17060208SL023_05      | East Fork South Fork Salmon River - 5th order                                                                                                                                                                                                                                                                                                         | 14.47                                                                                                                                              | IVIIIes                                        |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| EDIMENTATION/SILTATION | 3/8/2013 (HS and NED) - This sediment impairment<br>the South Fork Salmon River TMDL documents. Acc<br>of the South Fork Salmon River Subbasin TMDL, pa<br>have clearly contributed large amounts of sediment t<br>permit, DEQ will conduct additional work on determin<br>AU. Due to the lack of information, no changes are r<br>Integrated Report. | was not addressed by<br>cording to the five year<br>ge 26, "Mass wasting e<br>to this AU." When reso<br>ning sediment sources<br>ecommended to the | any of<br>review<br>events<br>urces<br>to this |

| ID17060208SL029_03  | Sugar Creek - 3rd order  | (Cane Creek to mouth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.79                                                                                                                                                                                   | Miles                                                             |
|---------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| ARSENIC             |                          | 1/29/2013 (NED) - Based on data collected by USGS betwee<br>and August 2012 at the gage site located in the 3rd order por<br>(station 13311450), 4 of 6 unfiltered arsenic samples exceede<br>health criterion of 10 $\mu$ g/L for consumption of fish. The sample<br>9/21/2011 - 22.5 $\mu$ g/L, 10/18/2011 - 20.4 $\mu$ g/L, 12/15/2011 - 3<br>8/29/2012 - 20.7 $\mu$ g/L. Although the average scores of the BL<br>2004 and 2007 were greater than 2, which according to DEQ'<br>Assessment Guidance this AU is considered fully supporting,<br>listed due to an arsenic numeric exceedance.                                                                                      | n September 2<br>tion of Sugar C<br>d Idaho's hum<br>e results were:<br>2.7 µg/L,<br>IRP data collec<br>s Water Body<br>this AU is bein                                                | 011<br>reek<br>an<br>xted in                                      |
| MERCURY             |                          | 1/29/2013 (NED) - The aquatic life chronic criterion in effect for<br>purposes of the Clean Water Act is 0.012 $\mu$ g/L; as set by EP/<br>2008 letter, disapproving DEQ's removal of mercury acute an<br>aquatic life criteria. Based on the data collected by USGS bet<br>2011 and November 2012 at gage station 13311450, and app<br>criterion above, 5 of 6 unfiltered mercury samples are exceed<br>0.017 $\mu$ g/L, 5/18/2012 - 0.76 $\mu$ g/L, 6/14/2012 - 0.1 $\mu$ g/L, 8/29/<br>11/7/2012 - 0.041 $\mu$ g/L.                                                                                                                                                               | or Idaho's wate<br>A's December 1<br>d chronic fresh<br>ween Septemb<br>olying the 0.012<br>ed. 9/21/2011<br>'2012 - 0.02 µg                                                           | rs for<br>12,<br>water<br>≫er<br>2 µg/L<br>-<br>/L,               |
| 17060209            | Lower Salmon             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                   |
| ID17060209SL008_07  | Salmon River - Slate Cr  | eek to Rice Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.88                                                                                                                                                                                  | Miles                                                             |
| MERCURY             |                          | The Me-Hg human health criterion is protective of aquatic life<br>relying on the Me-Hg criterion to protect aquatic life, for 303(d<br>human health use is impaired aquatic life use will be assumed<br>well. (2008 Integrated Principals & Policies Document page 2<br>0.3 mg Me-Hg per Kg of fish tissue (wet weight) is set at a lev<br>general public from adverse effects during a lifetime of expos<br>(303(d)) listing for this assessment unit is based on USGS me<br>(2004-2007) single species 10 fish composite samples. Resu<br>Hg/Kg. The data were evaluated following the 2008 Integra<br>Principals & Policies Document; page 28 for recreational use<br>impairment. | Since Idaho i<br>) listing purpos<br>d to be impaire<br>27). The value<br>rel to protect th<br>ure. The Sectic<br>ethyl Hg data L<br>ilts are 0.4 mg<br>ted Report<br>and aquatic life | s<br>.es, if<br>d as<br>e of<br>e<br>on 5<br>JSGS<br>Me-<br>e use |
| 101706020051 057 02 | John's Creek - 1st and " | 2nd order tributaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113                                                                                                                                                                                    | Miles                                                             |

| ID17060209SL057_02 John's Creek - 1st and | 2nd order tributaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.3                                                                                                                                                                             | IVIIIes                                           |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| COMBINED BIOTA/HABITAT BIOASSESSMENTS     | 3/2010 (CB) - During the development of the Lower Salmon<br>Canyon Tributaries Assessments and TMDLs, an analysis of<br>macroinvertebrate community from a 2008 BURP survey wi<br>identified pollutant tolerant taxa that are able to occupy habi<br>oxygen and high nutrient concentrations. Additionally, visible<br>observed during site visits, and nuisance vegetation growthe<br>stream. This implies that impairment to the cold water aquai<br>may be a result of excessive nutrient loading. Lack of nutrie<br>ability to adequately calculate loads and any necessary load<br>additional information, refer to page xxiv of the TMDL. | River and Hells<br>f the dominant b<br>hin John's Cree<br>ats with low dist<br>slime growths b<br>are occurring in<br>ic life beneficial<br>th data restricts<br>reductions. For | penthic<br>k<br>solved<br>were<br>n<br>use<br>the |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                  |                                                   |

4.5

Miles

ID17060209SL062\_03w Deer Creek - upstream from waterfall

SEDIMENTATION/SILTATION

### Southwest

| 17050101 C.J. Strike Reservoir                                                                                                                                                                                   |                                                                        |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|
| ID17050101SW003_03 Browns Creek - 3rd order                                                                                                                                                                      | 4.21                                                                   | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW003_04 Browns Creek - 4th order                                                                                                                                                                      | 4.06                                                                   | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW004_02 Browns Creek - 1st and 2nd order tributaries                                                                                                                                                  | 63.59                                                                  | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW004_03 Browns Creek - 3rd order                                                                                                                                                                      | 15.75                                                                  | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW006_02 Sailor Creek - 1st and 2nd order                                                                                                                                                              | 267.35                                                                 | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW006_03 Sailor Creek - 3rd order                                                                                                                                                                      | 34.53                                                                  | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW006_04 Sailor Creek - 4th order                                                                                                                                                                      | 22.85                                                                  | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW008_02 Deadman Creek - 1st and 2nd order                                                                                                                                                             | 92.69                                                                  | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW008_03 Deadman Creek - 3rd order                                                                                                                                                                     | 38.45                                                                  | Miles             |
| SEDIMENTATION/SILTATION                                                                                                                                                                                          |                                                                        |                   |
| ID17050101SW010_03 King Hill Creek - 3rd order (West Fork to mouth)                                                                                                                                              | 11.41                                                                  | Miles             |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                                                            |                                                                        |                   |
| ID17050101SW011_02 West Fork King Hill Creek - entire drainage                                                                                                                                                   | 29.41                                                                  | Miles             |
| TEMPERATURE                                                                                                                                                                                                      |                                                                        |                   |
| ID17050101SW019_02a Rattlesnake Creek above Mountain Home Reservoir                                                                                                                                              | 28.91                                                                  | Miles             |
| ESCHERICHIA COLI (E. COLI)<br>9/18/2014 (HS) - A 5-sample geometric mean of 409<br>the US20 crossing. This result is greater than the 12<br>therefore the recreational use of this water body is co<br>bacteria. | efu/100mL was colled<br>6 cfu/100mL criterion<br>onsidered impaired by | cted at<br>value, |
| ID17050101SW024_03 Long Tom Creek - 3rd order                                                                                                                                                                    | 10.5                                                                   | Miles             |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                                                            |                                                                        |                   |
| 17050102 Bruneau                                                                                                                                                                                                 |                                                                        |                   |

| ID17050102SW002_05 Jacks Creek-Little Jacks Ck to CJ Strike Reservoir 12.29 Mile |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

TEMPERATURE

## Southwest

| ID17050102SW004_05 Big Jacks      | Creek - upper                   | <sup>r</sup> 5th order                                                                                                                                                                                                                                                             | 24.09                                                                                                                    | Miles                               |
|-----------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| COMBINED BIOTA/HABITAT BIOASSESSI | MENTS                           |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW009_06 Bruneau F      | River - 6th orde                | er (Hot Creek to mouth)                                                                                                                                                                                                                                                            | 16.9                                                                                                                     | Miles                               |
| TEMPERATURE                       |                                 | (HS) - Temperature was listed based on the Brunea<br>and TMDL, approved March 13, 2001. For additiona<br>the TMDL.                                                                                                                                                                 | u River Subbasin Asses<br>I information refer to page                                                                    | sment<br>ge 3 of                    |
| ID17050102SW014_04 Sheep Cro      | eek - 4th ordei                 | r                                                                                                                                                                                                                                                                                  | 25.48                                                                                                                    | Miles                               |
| COMBINED BIOTA/HABITAT BIOASSESSI | MENTS                           |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW015_02L Grasmere      | Reservoir                       |                                                                                                                                                                                                                                                                                    | 114.35                                                                                                                   | Acres                               |
| MERCURY                           |                                 | 2/16/2010 (NED) - Mercury listing based on the DEC<br>and Selenium in Fish Tissue from Idaho Lakes and<br>Assessment" (Essig and Kostermann, May 2008). A<br>mg/kg, which exceeds the human health criterion of                                                                    | Q report, "Arsenic, Merci<br>Reservoirs: A Statewide<br>Mercury level of 0.319<br>0.3 mg/kg, was reporte                 | ury,<br>:<br>d.                     |
| ID17050102SW016_04 Marys Cre      | ek - 4th order                  |                                                                                                                                                                                                                                                                                    | 29.4                                                                                                                     | Miles                               |
| COMBINED BIOTA/HABITAT BIOASSESSI | MENTS                           |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW017_02 Bull Creek     | <ul> <li>1st and 2nd</li> </ul> | l order tributaries                                                                                                                                                                                                                                                                | 29.36                                                                                                                    | Miles                               |
| COMBINED BIOTA/HABITAT BIOASSESS  | MENTS                           | 2/4/2015 (HS) -The 2004 BURP data indicated that i<br>aquatic life use support. This support status was cor<br>which had good bugs and habitat, but poor fish. This<br>community being comprised entirely of bridgelip suc<br>remain in Category 5 for combined biota/habitat bioa | this reach does not supp<br>offirmed by 2012 BURP<br>is was evidenced by the<br>kers. Therefore, this AL<br>assessments. | oort its<br>data,<br>fish<br>I will |
| ID17050102SW018_02 Pole Cree      | k - 1st and 2n                  | d order                                                                                                                                                                                                                                                                            | 33.04                                                                                                                    | Miles                               |
| COMBINED BIOTA/HABITAT BIOASSESS  | MENTS                           |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW019_02 Cat Creek      | c - 1st and 2nd                 | order                                                                                                                                                                                                                                                                              | 17.79                                                                                                                    | Miles                               |
| COMBINED BIOTA/HABITAT BIOASSESS  | MENTS                           |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW022_02 Cougar C       | reek - 1st and                  | 2nd order                                                                                                                                                                                                                                                                          | 40.78                                                                                                                    | Miles                               |
| SEDIMENTATION/SILTATION           |                                 |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW022_03 Cougar C       | reek - 3rd orde                 | er                                                                                                                                                                                                                                                                                 | 20.02                                                                                                                    | Miles                               |
| SEDIMENTATION/SILTATION           |                                 |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW023_02 Dorsey Ci      | eek - 1st and                   | 2nd order                                                                                                                                                                                                                                                                          | 33.22                                                                                                                    | Miles                               |
| COMBINED BIOTA/HABITAT BIOASSESS  | MENTS                           |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW025_02 Poison Cr      | eek - 1st and                   | 2nd order                                                                                                                                                                                                                                                                          | 60.67                                                                                                                    | Miles                               |
| SEDIMENTATION/SILTATION           |                                 |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW025_03 Poison Cr      | eek - 3rd orde                  | r                                                                                                                                                                                                                                                                                  | 16.66                                                                                                                    | Miles                               |
| SEDIMENTATION/SILTATION           |                                 |                                                                                                                                                                                                                                                                                    |                                                                                                                          |                                     |
| ID17050102SW028_04 Clover Cr      | eek - 4th order                 | r (Deadwood Creek to Buck Flat Draw)                                                                                                                                                                                                                                               | 29.63                                                                                                                    | Miles                               |
| TEMPERATURE                       |                                 | This was part of EPA's 1998 303(d) list temperature                                                                                                                                                                                                                                | addition. Hawk 2/1/10                                                                                                    |                                     |

### Southwest

| ID17050102SW028_05 Clover Creek (East Fork   | Bruneau River) - 5th order                                                                                                                                                                                                                     | 24.75                                            | Miles              |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|
| TEMPERATURE                                  |                                                                                                                                                                                                                                                |                                                  |                    |
| ID17050102SW030_02 Big Flat Creek - 1st and  | 2nd order                                                                                                                                                                                                                                      | 49.22                                            | Miles              |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS        |                                                                                                                                                                                                                                                |                                                  |                    |
| ID17050102SW030_04 Big Flat Creek - 4th orde | er                                                                                                                                                                                                                                             | 3.56                                             | Miles              |
| ESCHERICHIA COLI (E. COLI)                   | 12/30/19 (DM): 2018 geomean data submitted by the BLM J that E. coli levels exceed the 126 cfu/100 mL water quality c the recreation use is not fully supported .                                                                              | arbidge office<br>riterion. Theref               | shows<br>fore,     |
| ID17050102SW031_03 Three Creek - 3rd order   |                                                                                                                                                                                                                                                | 6.99                                             | Miles              |
| ESCHERICHIA COLI (E. COLI)                   | 12/30/19 (DM): Secondary Contact Recreation is presumed immersion/ingestion of water. 2018 geomean data submitte Jarbidge office shows that E. coli levels exceed the 126 cfu/ criterion. Therefore, the recreation use is not fully supported | due to unlikelil<br>d by the BLM<br>100 mL water | hood of<br>quality |
| ID17050102SW033_02 Deer Creek - 1st and 2n   | d order                                                                                                                                                                                                                                        | 18.43                                            | Miles              |
| ESCHERICHIA COLI (E. COLI)                   |                                                                                                                                                                                                                                                |                                                  |                    |
| ID17050102SW034_03 Deadwood Creek - 3rd c    | order                                                                                                                                                                                                                                          | 4.1                                              | Miles              |
| ESCHERICHIA COLI (E. COLI)                   | 12/30/19 (DM): 2018 geomean data submitted by the BLM J that E. coli levels exceed the 126 cfu/100 mL water quality c the contact recreation use is not fully supported.                                                                       | arbidge office<br>riterion. There                | shows<br>fore,     |

#### 17050103 Middle Snake-Succor

| ID17050103SW001_07 | Snake River - Marsing (RM425) to State Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Miles                                                                                                                                                                         |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEMPERATURE        | From 2004 TMDL, page 70: The Snake River is desi<br>life, but supports a primarily warm and cool water fisl<br>above the cold water aquatic life temperature standa<br>July and August. The maximum weekly average tem<br>of August 1997 was 23 degrees C. Figure 2.4 July 14<br>Snake River at Walters Ferry In 1992, a drought yea<br>of 29 degrees C was reached downstream of Swan F<br>following several days of extremely hot weather, inst<br>exceeded 26 degrees C below Swan Falls Dam. The<br>large fish kill of mountain whitefish (Figure 2.4). This<br>days of extremely hot weather and water temperature<br>picture is not meant to imply that these fish kills occu<br>necessarily representative of conditions in the tributa<br>Whitefish are subject to lethal effects at temperature<br>Idaho Power study on the habitat of the Snake River<br>kills are common in the Swan Falls area in the summ<br>elevated temperatures (IPC 2002). As shown in Figu<br>exceeds the cold water maximum daily average temµ<br>(USGS 2000). The Snake River is proposed for temp<br>303(d) list. A TMDL is not being written at this time in | gnated for cold water a<br>nery. Elevated temper<br>rd are typically observ<br>perature during the firs<br>4, 2002: Fish kill on the<br>r, an instantaneous ma<br>Falls Dam. In early Jul<br>antaneous temperatur<br>se temperatures resul<br>event occurred after s<br>es >26 degrees Celsiu<br>ir on an annual basis,<br>ries to the Snake Rive<br>s above 26 degrees C<br>Plain states that white<br>her and are primarily d<br>re 2.5, the Snake Rive<br>perature of 19 degrees<br>perature listing on the<br>s order to allow time to | aquatic<br>atures<br>ed in<br>st week<br>e<br>aximum<br>y 2002,<br>es<br>ted in a<br>several<br>is. This<br>nor is it<br>er.<br>. An<br>effish<br>ue to<br>er<br>c<br>section |

adequately assess the thermal site potential of the river.

# Southwest

| ID17050103SW001_07a Snake River - State line to Boise River  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       | Miles                                                                                                                              |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| TEMPERATURE                                                  | From 2004 TMDL, page 70: The Snake River is designated for<br>life, but supports a primarily warm and cool water fishery. Elev<br>above the cold water aquatic life temperature standard are typ<br>July and August. The maximum weekly average temperature<br>of August 1997 was 23 degrees C. Figure 2.4 July 14, 2002: F<br>Snake River at Walters Ferry In 1992, a drought year, an insta<br>of 29 degrees C was reached downstream of Swan Falls Dam<br>following several days of extremely hot weather, instantaneou<br>exceeded 26 degrees C below Swan Falls Dam. These tempe<br>large fish kill of mountain whitefish (Figure 2.4). This event oc<br>days of extremely hot weather and water temperatures >26 de<br>picture is not meant to imply that these fish kills occur on an a<br>necessarily representative of conditions in the tributaries to th<br>Whitefish are subject to lethal effects at temperatures above 2<br>Idaho Power study on the habitat of the Snake River Plain sta<br>kills are common in the Swan Falls area in the summer and a<br>elevated temperatures (IPC 2002). As shown in Figure 2.5, th<br>exceeds the cold water maximum daily average temperature of<br>(USGS 2000). The Snake River is proposed for temperature I<br>303(d) list. A TMDL is not being written at this time in order to<br>adequately assess the thermal site potential of the river.                                                                                                                                                                                                                            | r cold water ac<br>vated temperat<br>bically observed<br>during the first<br>Fish kill on the<br>antaneous may<br>n. In early July<br>s temperatures<br>reatures resulte<br>curred after se<br>egrees Celsius<br>innual basis, ni<br>e Snake River.<br>26 degrees C<br>tes that whitefi<br>re primarily dure<br>e Snake River<br>of 19 degrees C<br>asting on the se<br>allow time to | juatic<br>ures<br>d in<br>week<br>dimum<br>2002,<br>s<br>ed in a<br>veral<br>. This<br>or is it<br>An<br>sh<br>e to<br>C<br>ection |
| ID17050103SW002_04 Lower Succor Creek - 4                    | th order (state line to mouth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.51                                                                                                                                                                                                                                                                                                                                                                                  | Miles                                                                                                                              |
| TEMPERATURE                                                  | 9/19/2014 (HS) - Temperature data submitted by Idaho Powe maximum daily average of 21.7 degrees C and a maximum te degrees C, which exceed the water quality criteria of 19 degree degrees C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r showed a<br>emperature of 2<br>ees C and 22                                                                                                                                                                                                                                                                                                                                         | 26.0                                                                                                                               |
| ID17050103SW006_07 Snake River - C.J. Strik                  | e Dam to Castle Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.84                                                                                                                                                                                                                                                                                                                                                                                 | Miles                                                                                                                              |
| TEMPERATURE                                                  | From 2004 TMDL, page 70: The Snake River is designated for cold water aquatic life, but supports a primarily warm and cool water fishery. Elevated temperatures above the cold water aquatic life temperature standard are typically observed in July and August. The maximum weekly average temperature during the first week of August 1997 was 23 degrees C. Figure 2.4 July 14, 2002: Fish kill on the Snake River at Walters Ferry In 1992, a drought year, an instantaneous maximum of 29 degrees C was reached downstream of Swan Falls Dam. In early July 2002, following several days of extremely hot weather, instantaneous temperatures exceeded 26 degrees C below Swan Falls Dam. These temperatures resulted in a large fish kill of mountain whitefish (Figure 2.4). This event occurred after several days of extremely hot weather and water temperatures >26 degrees C clsius. This picture is not meant to imply that these fish kills occur on an annual basis, nor is it necessarily representative of conditions in the tributaries to the Snake River. Whitefish are subject to lethal effects at temperatures above 26 degrees C. An Idaho Power study on the habitat of the Snake River Plain states that whitefish kills are common in the Swan Falls area in the summer and are primarily due to elevated temperatures (IPC 2002). As shown in Figure 2.5, the Snake River exceeds the cold water maximum daily average temperature listing on the section 303(d) list. A TMDL is not being written at this time in order to allow time to adequately assess the thermal site potential of the river. |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    |
| ID17050103SW006_07a Snake River - Castle Creek to Swan Falls |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.28                                                                                                                                                                                                                                                                                                                                                                                 | Miles                                                                                                                              |
| TEMPERATURE                                                  | 9/19/2014 (HS) - Temperature data submitted by Idaho Powe<br>maximum daily average of 23.8 degrees C and a maximum te<br>degrees C, which exceeds the temperature criterion of 19 deg<br>degrees C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r showed a<br>emperature of 2<br>prees C and 22                                                                                                                                                                                                                                                                                                                                       | 25.0                                                                                                                               |

### Southwest

| ID17050103SW006_07b Snake River - Swan Falls to Marsing (RM425) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Miles                                                                                                                                                                     |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TEMPERATURE                                                     | From 2004 TMDL, page 70: The Snake River is dess<br>life, but supports a primarily warm and cool water fis<br>above the cold water aquatic life temperature standa<br>July and August. The maximum weekly average tem<br>of August 1997 was 23 degrees C. Figure 2.4 July 1<br>Snake River at Walters Ferry In 1992, a drought yee<br>of 29 degrees C was reached downstream of Swan<br>following several days of extremely hot weather, insi<br>exceeded 26 degrees C below Swan Falls Dam. The<br>large fish kill of mountain whitefish (Figure 2.4). This<br>days of extremely hot weather and water temperature<br>picture is not meant to imply that these fish kills occ<br>necessarily representative of conditions in the tributs.<br>Whitefish are subject to lethal effects at temperature<br>Idaho Power study on the habitat of the Snake River<br>kills are common in the Swan Falls area in the sum<br>elevated temperatures (IPC 2002). As shown in Figu<br>exceeds the cold water maximum daily average tem<br>(USGS 2000). The Snake River is proposed for tem<br>303(d) list. A TMDL is not being written at this time i<br>adequately assess the thermal site potential of the r<br>listing was confirmed by Idaho Power temperature d<br>were deployed at Marsing, Celebration Park, and Mu | ignated for cold water a<br>hery. Elevated tempera<br>ard are typically observe<br>operature during the firs<br>4, 2002: Fish kill on the<br>ar, an instantaneous ma<br>Falls Dam. In early July<br>tantaneous temperatures<br>ese temperatures result<br>is event occurred after so<br>res >26 degrees Celsius<br>ur on an annual basis, r<br>aries to the Snake River<br>es above 26 degrees C.<br>r Plain states that white<br>mer and are primarily du<br>ure 2.5, the Snake River<br>operature of 19 degrees<br>perature listing on the s<br>n order to allow time to<br>iver. 9/18/2014 (HS) -<br>lata. Temperature logge<br>urphy. | quatic<br>tures<br>ed in<br>t week<br>eximum<br>22002,<br>es<br>ed in a<br>everal<br>s. This<br>hor is it<br>r.<br>An<br>fish<br>ue to<br>r<br>C<br>ection<br>This<br>ers |  |  |
| ID17050103SW009_03 Reynolds, Salmon at                          | nd Wilson Creeks - 3rd order segments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                     |  |  |
| ESCHERICHIA COLI (E. COLI)                                      | Stream listed because of 5 e-coli results: 948.8, 162 over a one-month period on different days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4, 76.6, 45.5, 125.9. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aken                                                                                                                                                                      |  |  |
| ID17050103SW009_04 Reynolds Creek - 4th                         | n order (Salmon Creek to Snake River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                     |  |  |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |
| ID17050103SW016_02 Pickett Creek - 1st &                        | 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                     |  |  |
| SEDIMENTATION/SILTATION                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |
| ID17050103SW019_02 Brown Creek - 1st &                          | 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                     |  |  |
| SEDIMENTATION/SILTATION                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |
| ID17050103SW019_03 Brown Creek - 3rd o                          | rder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Miles                                                                                                                                                                     |  |  |
| SEDIMENTATION/SILTATION                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |
| ID17050103SW019_04 Brown Creek - 4th or                         | rder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Miles                                                                                                                                                                     |  |  |
| SEDIMENTATION/SILTATION                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |
| ID17050103SW021_02 Birch Creek and tribu                        | utaries - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                     |  |  |
| SEDIMENTATION/SILTATION                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |
| ID17050103SW024_03 Shoofly and Poison 0                         | Creeks - 3rd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Miles                                                                                                                                                                     |  |  |
| SEDIMENTATION/SILTATION                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |

### Southwest

| ID17050103SW025_02 Corder Creek - 1st and 2nd order                     |                                                                                                                                                                                                                                                                                                                                                                                   | 63.34                                                                                                                                                                                   | Miles                                             |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| ESCHERICHIA COLI (E. COLI)                                              | 12/29/2014 (HS) - In October 2014, DEQ collected fi<br>Creek at the ID67 crossing near Grand View. The ge<br>samples, collected in accordance with IDAPA 58.01.<br>cfu/100mL which is greater than the 126 cfu/100mL<br>recreational use of this water body is considered imp                                                                                                     | ve E. coli samples fron<br>ometric mean of the<br>02.251.01.a was 1,108<br>criterion value. Therefc<br>paired by bacteria.                                                              | n Jack<br>}<br>ore, the                           |
| SEDIMENTATION/SILTATION                                                 | 1/9/2014 (HS) - Sediment was first listed on the 1994<br>promulgated by EPA. The sediment listing was base<br>data). The evaluation was most likely conducted in th                                                                                                                                                                                                               | 1 303(d) list which was<br>d on an evaluation (no<br>ne (wet) 3rd-order reac                                                                                                            | actual<br>h.                                      |
| ID17050103SW026_02 Rabbit Creek (north side                             | e of Snake River) - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                             | 12.99                                                                                                                                                                                   | Miles                                             |
| SEDIMENTATION/SILTATION                                                 |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                   |
| 17050104 Upper Owyhee                                                   |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                   |
| ID17050104SW005L_0L Juniper Basin Reservoir                             |                                                                                                                                                                                                                                                                                                                                                                                   | 241.79                                                                                                                                                                                  | Acres                                             |
| ESCHERICHIA COLI (E. COLI)                                              |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                   |
| ID17050104SW012_03 Little Blue Creek - 3rd o                            | rder                                                                                                                                                                                                                                                                                                                                                                              | 4.49                                                                                                                                                                                    | Miles                                             |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                   |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                   |
| ID17050104SW014_02L Shoofly Reservoir                                   |                                                                                                                                                                                                                                                                                                                                                                                   | 87.82                                                                                                                                                                                   | Acres                                             |
| MERCURY                                                                 | 2/16/2010 (NED) - Mercury listing based on the DEC<br>and Selenium in Fish Tissue from Idaho Lakes and F<br>Assessment" (Essig and Kostermann, May 2008). A<br>mg/kg, which exceeds the human health criterion of<br>8/1/17 (DM, JW): 12 fish tissue samples (from cutthr<br>Shoofly Reservoir on 5/21/13 by the USEPA Region<br>samples averaged 0.3180 mg/Kg of Hg, above the 0 | Preport, "Arsenic, Merc<br>Reservoirs: A Statewide<br>Mercury level of 0.502<br>0.3 mg/kg, was reporte<br>oat trout) were taken fi<br>10 Monitoring team. T<br>.3 mg/Kg limit for recre | xury,<br>e<br>:<br>≥d.<br>rom<br>Γhese<br>eation. |
| ID17050104SW024_02 Dry Creek - entire draina                            | 26.29                                                                                                                                                                                                                                                                                                                                                                             | Miles                                                                                                                                                                                   |                                                   |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                   |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                   |
| ID17050104SW025_03 Big Springs Creek - 3rd                              | order                                                                                                                                                                                                                                                                                                                                                                             | 3.99                                                                                                                                                                                    | Miles                                             |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                   | 9/23/2014 (HS) - The 2011 BURP site had excellent<br>of 3 each), but failed the fish index. The unusual con<br>revisit the site in 2014 for repeat electrofishing. How<br>and only 2 perch were found.                                                                                                                                                                            | bugs and habitat (scor<br>ibination caused DEQ<br>ever, the result was the                                                                                                              | e 3 out<br>to<br>∋ same,                          |
| ID17050104SW026_02a Deep Creek - 1st and 2nd order forested tributaries |                                                                                                                                                                                                                                                                                                                                                                                   | 80.27                                                                                                                                                                                   | Miles                                             |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                   | 9/18/2014 (HS) - BURP site 2011SBOIA003 shows p<br>downcut gully with unstable banks. Although the fine<br>particles were highly embedded. There was very little                                                                                                                                                                                                                  | boor scores. The site w<br>s were not excessive, f<br>e riparian shade.                                                                                                                 | <i>i</i> as in a<br>the                           |
| ID17050104SW030_03 Camel Creek - 3rd order                              |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         | Miles                                             |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                   |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                   |
| ID17050104SW031_03 Nickel, Thomas & Smith Creeks - 3rd order sections   |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         | Miles                                             |
| AQUATIC PLANT BIOASSESSMENTS                                            | The 2003 TMDL used an analysis of periphyton to co<br>unit may be impaired by metals.                                                                                                                                                                                                                                                                                             | onclude that this asses                                                                                                                                                                 | sment                                             |
| ID17050104SW033_02 Beaver Creek - 1st and 2nd order                     |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         | Miles                                             |
| 17050108                  | Jordan                    |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                     |
|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| ID17050108SW001_05        | Jordan Creek - Williams   | Creek to State Line                                                                                                                                                                                                                                                                                                                                                                                          | 13.35                                                                                                              | Miles                               |
| MERCURY                   |                           | 3/22/2018 (AS): Mercury listing is based on the DEQ report<br>Mercury Concentrations in Fish Samples from Jordan Creek<br>Creek Sites" (Dai and Ingham, Revised November 2009). Fi<br>sampling location JC-2005-01, which is located within this A<br>average fish total mercury value of 0.717 mg/kg, which exce<br>criterion of 0.3 mg/kg. This AU should have been listed in a<br>was somehow overlooked. | "Analysis of Tota<br>and Non-Jorda<br>ish tissue taken<br>U, resulted in ar<br>eeds the human<br>previous cycle, I | al<br>n<br>at<br>n<br>health<br>but |
| ID17050108SW002_02        | Lone Tree Creek and tril  | butaries - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                 | 29.22                                                                                                              | Miles                               |
| ESCHERICHIA COLI (E. COLI | )                         |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                     |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                     |
| ID17050108SW004_02        | Jordan Creek, Upper - 1   | st and 2nd order tributaries                                                                                                                                                                                                                                                                                                                                                                                 | 102.35                                                                                                             | Miles                               |
| MERCURY                   |                           | 2/18/2010 (NED) - Mercury listing based on the DEQ report,<br>Mercury Concentrations in Fish Samples from Jordan Creek<br>Creek Sites" (Xin Dai and Michael Ingham, Revised Novemb<br>level of 0.551 mg/kg, which exceeds the human health criter<br>reported.                                                                                                                                               | , "Analysis of Toi<br>k and Non-Jorda<br>ber 2009). A Mei<br>rion of 0.3 mg/kg                                     | tal<br>n<br>rcury<br>յ, was         |
| ID17050108SW004_03        | Jordan Creek - Jacobs C   | Gulch to Louse Creek                                                                                                                                                                                                                                                                                                                                                                                         | 13.41                                                                                                              | Miles                               |
| MERCURY                   |                           | 2/18/2010 (NED) - Mercury listing based on the DEQ report,<br>Mercury Concentrations in Fish Samples from Jordan Creek<br>Creek Sites" (Xin Dai and Michael Ingham, Revised Novemb<br>level of 0.511 mg/kg, which exceeds the human health criter<br>reported.                                                                                                                                               | , "Analysis of Toi<br>k and Non-Jorda<br>ber 2009). A mei<br>rion of 0.3 mg/kg                                     | tal<br>n<br>rcury<br>յ, was         |
| ID17050108SW004_05        | Jordan Creek - Big Bould  | der Creek to Williams Creek                                                                                                                                                                                                                                                                                                                                                                                  | 3.37                                                                                                               | Miles                               |
| MERCURY                   |                           | 2/18/2010 (NED) - Mercury listing based on the DEQ report,<br>Mercury Concentrations in Fish Samples from Jordan Creek<br>Creek Sites" (Xin Dai and Michael Ingham, Revised Novemb<br>level of 0.590 mg/kg, which exceeds the human health criter<br>reported.                                                                                                                                               | , "Analysis of To<br>k and Non-Jorda<br>ber 2009). A Mei<br>rion of 0.3 mg/kg                                      | tal<br>n<br>rcury<br>g, was         |
| ID17050108SW010_04        | Rock Creek - 4th order (  | (Meadow Creek to Josephine Creek)                                                                                                                                                                                                                                                                                                                                                                            | 0.48                                                                                                               | Miles                               |
| COMBINED BIOTA/HABITAT I  | BIOASSESSMENTS            | 4/18/2011 (NED) - BURP site 2003SBOIA0432 had a SFI so<br>threshold levels, therefore DEQ automatically determines th<br>fully supporting.                                                                                                                                                                                                                                                                   | core below minin<br>e water body as                                                                                | num<br>not                          |
| ID17050108SW013_03        | Rock Creek above Trian    | ngle Reservoir - 3rd order                                                                                                                                                                                                                                                                                                                                                                                   | 12.5                                                                                                               | Miles                               |
| TEMPERATURE               |                           | Temperature standards are exceeded based on temperature DEQ by BLM. In 2004, BLM temperature data indicated 32% exceeded the 22 degrees C maximum daily maximum temp criteria, and 22% exceeded the 19 degrees C maximum dail temperature criteria (MDAT).                                                                                                                                                   | e data supplied t<br>6 of the dates<br>erature (MDMT)<br>ly average                                                | 0                                   |
| ID17050108SW014_02        | Louisa Creek - entire dra | ainage                                                                                                                                                                                                                                                                                                                                                                                                       | 13.81                                                                                                              | Miles                               |

SEDIMENTATION/SILTATION

| 17050111                  | North and Middle          | e Forks Boise                                                                                                                                                                                          |                                                                                                                      |                 |
|---------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|
| ID17050111SW001_02b       | Montezuma Creek and       | Quartz Gulch                                                                                                                                                                                           | 4.95                                                                                                                 | Miles           |
| ARSENIC                   |                           | 12/8/2009 (HS) - Data were provided by Idaho Co<br>drinking water, and contact recreation standards f<br>the time below a 100m mixing zone on Montezum                                                 | onservation League that sho<br>for Arsenic were violated 8<br>a Creek.                                               | ow the<br>5% of |
| 17050112                  | Boise-Mores               |                                                                                                                                                                                                        |                                                                                                                      |                 |
| ID17050112SW004_05        | Boise River - 5th order ( | (North Fork to Arrowrock)                                                                                                                                                                              | 10.95                                                                                                                | Miles           |
| TEMPERATURE               |                           | (HS) - Listing based on Twin Springs temperature by the City of Boise.                                                                                                                                 | logger data submitted to I                                                                                           | DEQ             |
| ID17050112SW014_04        | Granite Creek - 4th orde  | er (Woof Creek to mouth)                                                                                                                                                                               | 5.19                                                                                                                 | Miles           |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                        |                                                                                                                      |                 |
| ID17050112SW016_03        | Daggett Creek - 3rd ord   | er (Sheep Creek to mouth)                                                                                                                                                                              | 3.77                                                                                                                 | Miles           |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                        |                                                                                                                      |                 |
| 17050113                  | South Fork Boise          | 9                                                                                                                                                                                                      |                                                                                                                      |                 |
| ID17050113SW004_03        | Dixie and Deer Creeks     | - 3rd order sections                                                                                                                                                                                   | 9.85                                                                                                                 | Miles           |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                        |                                                                                                                      |                 |
| ID17050113SW005L_0L       | Anderson Ranch Reser      | voir (Boise River)                                                                                                                                                                                     | 4605.37                                                                                                              | Acres           |
| MERCURY                   |                           | 2/18/2010 (NED) - Mercury listing based on the D<br>and Selenium in Fish Tissue from Idaho Lakes ar<br>Assessment" (Essig and Kostermann, May 2008)<br>mg/kg, which exceeds the human health criterion | EQ report, "Arsenic, Mercu<br>ad Reservoirs: A Statewide<br>. A Mercury level of 0.367<br>of 0.3 mg/kg, was reported | ury,<br>d.      |
| ID17050113SW010_03a       | a Moores and Big Springs  | S Creeks - 3rd order sections                                                                                                                                                                          | 4.62                                                                                                                 | Miles           |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                        |                                                                                                                      |                 |
| ID17050113SW018_03        | Little Smoky, Salt & Grin | ndstone Creeks - 3rd order sections                                                                                                                                                                    | 10.99                                                                                                                | Miles           |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                        |                                                                                                                      |                 |
| ID17050113SW032_03        | Smith Creek - 3rd order   | (Mule Gulch to SF Boise River)                                                                                                                                                                         | 16.45                                                                                                                | Miles           |
| ESCHERICHIA COLI (E. COLI | )                         |                                                                                                                                                                                                        |                                                                                                                      |                 |
| 17050114                  | Lower Boise               |                                                                                                                                                                                                        |                                                                                                                      |                 |
| ID17050114SW001_02        | Dixie Slough              |                                                                                                                                                                                                        | 20.16                                                                                                                | Miles           |

| ID17050114SW001_02 | Dixie Slough | 20.16 | Mile |
|--------------------|--------------|-------|------|
|                    |              |       |      |

TEMPERATURE

| ID17050114SW001_06 Boise River - Indian Cree | ek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44.91                                                                                                                                                                                                                                                                            | Miles                                                                  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| TEMPERATURE                                  | 12/30/19 (DM): 2017 temperature logger data submitted by th<br>shows water temperatures of twenty-two (22) degrees C or g<br>of maximum daily average temperatures of greater than nine<br>These temperatures indicate that cold water aquatic life is no<br>58.01.02.250.02.b). AU will remain impaired by temperature.<br>DEQ analyzed temperature data from a logger deployed abor<br>between June 27, 2014 and January 15, 2015 (2015 City of E<br>temperature was measured every 15 minutes using DEQ pro<br>quality controlled and assured using USGS methods and pro<br>calculate daily maximum and daily average temperatures. Th<br>temperature data during the last five years showed the follow<br>maximum temperature exceeded 22 degrees C 62% of the tin<br>and September 21 and; (2) The daily average temperature ex<br>C 76% of the time between June 27 and September 21.                                              | ne City of Boise<br>reater with insta<br>teen (19) degree<br>t supported (ID/<br>3/13/2015 (HS)<br>ve Dixie Slough<br>Boise). Water<br>tocols. The data<br>vide sufficient d-<br>te continuous<br>ring: (1) The dail<br>me between Jur<br>kceeded 19 degr                        | nces<br>es C.<br>APA<br>-<br>a are<br>ata to<br>y<br>ne 27<br>rees     |
| ID17050114SW002_04 Indian Creek - Sugar Ave  | enue to Boise River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.91                                                                                                                                                                                                                                                                            | Miles                                                                  |
| CAUSE UNKNOWN                                | 1/29/2013 (NED) - This segment (WQLS 2731) was first liste<br>1994 section 303(d) list which was promulgated by EPA as p<br>lawsuit. However, when DEQ migrated to the 2002 cycle the<br>erroneously deleted. DEQ has an obligation to relist this segr<br>(cause unknown) since no rationale was provided that demor<br>were no longer impairing beneficial uses. Therefore, for the 2<br>Report DEQ relisted cause unknown (nutrients suspected) in<br>such time that either: 1) water quality data demonstrates that<br>no longer impaired by nutrients; 2) a TMDL is developed; or 3<br>data and information shows the original listing was made in e                                                                                                                                                                                                                                                                                | d for nutrients o<br>art of the first TI<br>nutrients listing<br>nent for nutrient<br>strated nutrient<br>012 Integrated<br>Category 5 unti<br>beneficial uses<br>3) readily availat<br>error.                                                                                   | n the<br>MDL<br>was<br>s<br>s<br>l<br>are<br>ble                       |
| TEMPERATURE                                  | 12-14-16 (JW) - Based on temperature logger data collected<br>Riverside Canal between May 8, 2011 and February 7, 2012,<br>average exceeded the allowed standard of nineteen degrees<br>exceeded 22 degrees C 2 times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | by the DEQ abo<br>the maximum o<br>C 17 times, and                                                                                                                                                                                                                               | ove<br>daily<br>d                                                      |
| ID17050114SW003a_04 Indian Creek - New York  | Canal to Sugar Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.39                                                                                                                                                                                                                                                                             | Miles                                                                  |
| TEMPERATURE                                  | 12-14-16 (JW) - Site-specific criteria for water temperature a<br>require a maximum weekly maximum temperature (MWMT) of<br>brown trout and rainbow trout spawning and incubation, and a<br>15 through June 30. Based on temperature logger data collec<br>October 15, 2011 and February 5, 2012, the MWMT exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oply to this AU a<br>of 13 C to protect<br>applies from Oct<br>cted by DEQ be<br>ed 13 C.                                                                                                                                                                                        | ind<br>ct<br>tober<br>tween                                            |
| CAUSE UNKNOWN                                | 1/29/2013 (NED) - This segment (WQLS 2731) was first liste<br>1994 section 303(d) list, which was promulgated by EPA as p<br>lawsuit. For the 2002 cycle, because DEQ had not identified<br>impairing the water body, EPA and DEQ agreed that the nutr<br>changed to "cause unknown" with the comment "nutrients su<br>during the 2010 cycle, cause unknown was delisted and repla<br>temperature-overlooking the fact that cause unknown was a<br>nutrients. Since DEQ did not provide a rationale demonstratin<br>no longer impairing beneficial uses, DEQ has an obligation to<br>for cause unknown (nutrients suspected). Therefore, for the 2<br>Report, DEQ relisted this segment for cause unknown (nutrient<br>Category 5 until such time that either: (1) water quality data of<br>beneficial uses are no longer impaired by nutrients, (2) a TMI<br>(3) readily available data and information show the original lis<br>error. | d for nutrients o<br>bart of the first T<br>the limiting nutri<br>ient listing would<br>spected." Howe<br>aced with<br>placeholder for<br>ng that nutrients<br>o relist this segm<br>2012 Integrated<br>ints suspected)<br>lemonstrate that<br>DL is developed<br>sting was made | n the<br>MDL<br>ent<br>d be<br>ver,<br>were<br>nent<br>t<br>, or<br>in |
| ID17050114SW005_02 Mill Slough and East Har  | tley Gulch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.94                                                                                                                                                                                                                                                                            | Miles                                                                  |
| TEMPERATURE                                  | 5/8/2012 (HS) - DEQ deployed a thermograph in Mill Slough<br>between 4/1/11 and 10/31/11. The maximum weekly maximu<br>(between November 1 and May 30) was 15.8 degrees C. This<br>degrees C water quality criterion for salmonid spawning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | located in Middl<br>im temperature<br>s exceeds the 13                                                                                                                                                                                                                           | eton<br>3                                                              |

| ID17050114SW005_06 Boise River - Veterans M   | Memorial Parkway to Star Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.89                                                                                                                                                                                                                         | Miles                                  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| TEMPERATURE                                   | 02/07/2020 (DM): Data submitted by the City of Boise in 2019<br>temperature exceeded criteria for cold water aquatic life in 20<br>salmonid spawning in 2015 and 2016 at Eagle Road Bridge.<br>was in Category 5 for temperature in the 2016 Integrated Rep<br>was determined that elevated temperature was impairing aquassessment further stated that the assessment unit will rema-<br>temperature pending additional data collection further down to<br>Road. Due to the fact that there were still exceedances in the<br>additional data was collected in a downstream representing a<br>remain impaired for temperature.                                                                                                                                           | ∋ showed that th<br>)13 and 2015 an<br>This assessmer<br>port. At that time<br>latic life. That<br>in listed for<br>he unit, towards<br>⇒ criteria, and no<br>area, the AU will                                               | ne<br>Ind<br>Int unit<br>e, it<br>Star |
| ID17050114SW005_06a Boise River-Star to Mido  | lleton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.34                                                                                                                                                                                                                         | Miles                                  |
| TEMPERATURE                                   | 12/30/19 (DM): 2016 temperature logger data submitted by th<br>shows maximum water temperatures of twenty-two (22) degr<br>instances of maximum daily average temperatures of ninetee<br>greater. These temperatures indicate that cold water aquatic<br>(IDAPA 58.01.02.250.02.b). AU will remain impaired by temp                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne City of Boise<br>ees C or greater<br>an (19) degrees<br>; life is not suppo<br>perature.                                                                                                                                   | r and<br>C or<br>orted                 |
| ID17050114SW005_06b Boise River-Middleton to  | o Indian Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.84                                                                                                                                                                                                                          | Miles                                  |
| TEMPERATURE                                   | 12/30/19 (DM): 2018 temperature logger data submitted by the<br>shows maximum water temperatures of twenty-two (22) degr<br>instances of maximum daily average temperatures of ninetee<br>greater. These temperatures indicate that cold water aquatic<br>(IDAPA 58.01.02.250.02.b). AU will remain impaired by temp                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne City of Boise<br>ees C or greater<br>en (19) degrees<br>; life is not suppo<br>perature.                                                                                                                                   | r and<br>C or<br>orted                 |
| ID17050114SW006_02 Mason Creek - entire wa    | atershed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.83                                                                                                                                                                                                                         | Miles                                  |
| CHLORPYRIFOS                                  | 1/31/10 (HS) - According to the 'Pesticide Residue Water Qu<br>Boise River Tributaries (Kirk Campbell, ISDA, December 200<br>detections of chlorpyrifos with two of the detections (0.062 ug<br>exceeding the EPA acute (0.05 ug/L) and chronic (0.04 ug/L)<br>benchmarks for invertebrates. The presence of toxic substan<br>that impair beneficial uses is a violation of Idaho's narrative s<br>substances.                                                                                                                                                                                                                                                                                                                                                           | ality Report', Lov<br>19): "There were<br>J/L and 0.052 ug<br>guidance<br>ces in concentra<br>tandard for toxic                                                                                                               | wer<br>eight<br>J/L)<br>ations         |
| TEMPERATURE                                   | (HS) - Temperature impairment added based upon data subr<br>Boise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nitted by City of                                                                                                                                                                                                             |                                        |
| CAUSE UNKNOWN                                 | Nutrients suspected impairment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                        |
| ID17050114SW007_04 Fifteenmile Creek - 4th of | order (Fivemile Creek to mouth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.73                                                                                                                                                                                                                          | Miles                                  |
| CHLORPYRIFOS                                  | 1/13/2010 (Hawk Stone) - According to the 'Pesticide Residu<br>Report', Lower Boise River Tributaries (Kirk Campbell, ISDA,<br>"The highest detection of chlorpyrifos (0.053 ug/L) exceeded<br>(0.05 ug/L) and chronic (0.04 ug/L) guidance benchmarks for<br>Chlorpyrifos also had a detection of 0.044 ug/L, which exceed<br>invertebrate benchmark. The presence of toxic substances in<br>impair beneficial uses is a violation of Idaho's narrative stand<br>substances. In addition to the chlorpyrifos detections, ethol<br>levels that exceeded the EPA chronic invertebrate benchmar<br>although the methomyl level did not exceed any EPA benchm<br>detections were very close to the chronic invertebrate benchmar<br>study. It will remain unlisted for now. | e Water Quality<br>December 2009<br>both the EPA actions<br>invertebrates.<br>ded the chronic<br>oconcentrations<br>and for toxic<br>oprop was detect<br>k (0.8 ug/L) and<br>narks, several<br>mark. Also,<br>the 2011 (W-43) | 9):<br>cute<br>that<br>red at          |

| ID17050114SW008_03       | Tenmile Creek - 3rd ord  | er below Blacks Creek Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.49                                                                                                                                                                                                                                 | Miles                                                                                      |
|--------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| CAUSE UNKNOWN            |                          | 1/29/2013 (NED) - This segment (WQLS 2736) was first listed<br>1994 section 303(d) list which was promulgated by EPA as p<br>lawsuit. During the 2010 cycle, it was determined that sedim<br>the biological impairment and cause unknown was delisted.<br>overlooked was that cause unknown was a place holder for<br>did not provide rationale that demonstrated that nutrients we<br>beneficial uses, DEQ has an obligation to relist this segment<br>unknown). Therefore, for the 2012 Integrated Report DEQ rc<br>(nutrients suspected) in Category 5 until such time that either<br>data demonstrates that beneficial uses are no longer impaired<br>TMDL is developed; or 3) readily available data and informat<br>listing was made in error.                           | ed for nutrients of<br>part of the first T<br>lent was the cau<br>However, what y<br>nutrients. Since<br>yre no longer imp<br>for nutrients (ca<br>elisted cause unl<br>er: 1) water quali-<br>ed by nutrients; 2<br>tion shows the o | on the<br>MDL<br>se of<br>was<br>DEQ<br>pairing<br>ause<br>known<br>ty<br>2) a<br>vriginal |
| CHLORPYRIFOS             |                          | 3/22/2012 (HS) - Tenmile Creek is impaired due to presence<br>in concentrations that impair beneficial uses (IDAPA 58.01.0<br>of concern is chlorpyrifos, which was found at a level that ex<br>Life Benchmarks for acute toxicity to aquatic life. The Aqua<br>are based on toxicity values reviewed by EPA and used in th<br>risk assessments developed as part of the decision making<br>registration. Each Aquatic Benchmark is based on the most<br>scientifically acceptable toxicity endpoint available to EPA for<br>Chlorpyrifos was detected six times by ISDA sampling in 20<br>concentration, exceeded the acute Aquatic Life Benchmark<br>(Source: ISDA Technical Report Summary W-43: Pesticide<br>for Fifteenmile Creek Tenmile Creek, and Fivemile Creek 20    | of toxic substar<br>(2.200.02). The t<br>(ceeds EPA's Aq<br>atic Life Benchm<br>(e EPA's most re<br>process for pest<br>sensitive,<br>or a given taxon.<br>11, and at its hig<br>by a factor of 1.4<br>Residue Evalua<br>(11).        | nces<br>toxin<br>juatic<br>iarks<br>ecent<br>icide<br>Jhest<br>42.<br>ation                |
| ID17050114SW009_02       | Blacks Creek and Bryan   | s Run - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56.19                                                                                                                                                                                                                                 | Miles                                                                                      |
| COMBINED BIOTA/HABITAT I | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |                                                                                            |
| ID17050114SW009_03       | Blacks Creek - 3rd order |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.13                                                                                                                                                                                                                                  | Miles                                                                                      |
| COMBINED BIOTA/HABITAT I | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |                                                                                            |
| ID17050114SW010_03       | Fivemile Creek - 3rd ord | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.63                                                                                                                                                                                                                                 | Miles                                                                                      |
| CHLORPYRIFOS             |                          | 3/22/2012 (HS) - Fivemile Creek is impaired due to presence<br>in concentrations that impair beneficial uses (IDAPA 58.01.0<br>of concern is chlorpyrifos, which was found at level that excer<br>Life Benchmarks for acute toxicity to aquatic life. The Aqua<br>are based on toxicity values reviewed by EPA and used in th<br>risk assessments developed as part of the decision making<br>registration. Each Aquatic Benchmark is based on the most<br>scientifically acceptable toxicity endpoint available to EPA for<br>Chlorpyrifos was detected four times by ISDA sampling in 20<br>concentration, exceeded the acute Aquatic Life Benchmark<br>(Source: ISDA Technical Report Summary W-43: Pesticide<br>for Fifteenmile Creek Tenmile Creek, and Fivemile Creek 20 | e of toxic substa<br>)2.200.02). The t<br>eds EPA's Aqua<br>atic Life Benchm<br>the EPA's most re<br>process for pest<br>t sensitive,<br>or a given taxon.<br>011, and at its hi<br>by a factor of 1.3<br>residue Evalua<br>011).     | nces<br>toxin<br>atic<br>iarks<br>ecent<br>icide<br>ighest<br>36.<br>ation                 |
| CAUSE UNKNOWN            |                          | 1/29/2013 (NED) - This segment (WQLS 2734) was first liste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed for nutrients c                                                                                                                                                                                                                    | on the                                                                                     |

1/29/2013 (NED) - This segment (WQLS 2734) was first listed for nutrients on the 1994 section 303(d) list, which was promulgated by EPA as part of the first TMDL lawsuit. For the 2002 cycle, because DEQ had not identified the limiting nutrient impairing the water body, EPA and DEQ agreed that the nutrient listing would be changed to "cause unknown" with the comment "nutrients suspected." However, during the 2010 cycle, cause unknown was delisted and replaced with sediment-overlooking the fact that cause unknown was a placeholder for nutrients. Since DEQ did not provide a rationale demonstrating that nutrients were no longer impairing beneficial uses, DEQ has an obligation to relist this segment for cause unknown (nutrients suspected). Therefore, for the 2012 Integrated Report, DEQ relisted this segment for cause unknown (nutrients suspected) in Category 5 until such time that either: (1) water quality data demonstrate that beneficial uses are no longer impaired by nutrients, (2) a TMDL is developed, or (3) readily available data and information show the original listing was made in error.

| ID17050114SW012_02        | Stewart Gulch, Cottonwo   | ood and Crane Creeks - 1st & 2nd order                                                                                                                                              | 63.71                                                                           | Miles                    |
|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|
| COMBINED BIOTA/HABITAT I  | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                                                 |                          |
| ID17050114SW012_03        | Cottonwood Creek - 3rd    | order (Fivemile Creek to Boise River)                                                                                                                                               | 5.87                                                                            | Miles                    |
| COMBINED BIOTA/HABITAT I  | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                                                 |                          |
| ID17050114SW016_03        | Sand Hollow Creek (C-L    | ine Canal to I-84)                                                                                                                                                                  | 5.55                                                                            | Miles                    |
| CAUSE UNKNOWN             |                           | Nutrients Suspected Impairment Low DO due to susp                                                                                                                                   | ected Organic Enrichn                                                           | nent                     |
| ID17050114SW017_06        | Sand Hollow Creek - Sh    | arp Road to Snake River                                                                                                                                                             | 3.68                                                                            | Miles                    |
| CAUSE UNKNOWN             |                           | Nutrients Suspected Impairment                                                                                                                                                      |                                                                                 |                          |
| 17050115                  | Middle Snake-Pay          | yette                                                                                                                                                                               |                                                                                 |                          |
| ID17050115SW002_02        | Homestead Gulch           |                                                                                                                                                                                     | 21.26                                                                           | Miles                    |
| ESCHERICHIA COLI (E. COLI | )                         | 9/18/2014 (HS) - The five-sample geometric mean co<br>had a value of 287 cfu/100mL, which is greater than t<br>value. Therefore, the recreational use of this water bo<br>bacteria. | ollected in the spring of<br>the 126 cfu/100mL crite<br>ody is considered impai | 2014<br>∍rion<br>ired by |
| ID17050115SW003_03        | Ashlock Gulch - 3rd orde  | er                                                                                                                                                                                  | 2.21                                                                            | Miles                    |
| ESCHERICHIA COLI (E. COLI | )                         | 9/18/2014 (HS) - The five-sample geometric mean co<br>had a value of 641 cfu/100mL, which is greater than t<br>value. Therefore, the recreational use of this water bo<br>bacteria. | ellected in the spring of<br>the 126 cfu/100mL crite<br>ady is considered impai | 2014<br>erion<br>ired by |
| ID17050115SW004_02        | Hurd and Big Whitley Gu   | ulches                                                                                                                                                                              | 24.73                                                                           | Miles                    |
| ESCHERICHIA COLI (E. COLI | )                         | 9/18/2014 (HS) - The five-sample geometric mean cc<br>had a value of 888 cfu/100mL, which is greater than t<br>value. Therefore, the recreational use of this water bc<br>bacteria. | ollected in the spring of<br>the 126 cfu/100mL crite<br>ody is considered impai | 2014<br>erion<br>ired by |
| 17050120                  | South Fork Payet          | tte                                                                                                                                                                                 |                                                                                 |                          |
| ID17050120SW001_02        | SF Payette River - 1st a  | nd 2nd order:Lowman to Garden Valley                                                                                                                                                | 115.78                                                                          | Miles                    |
| COMBINED BIOTA/HABITAT I  | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                                                 |                          |
| ID17050120SW001_05        | South Fork Payette Rive   | er - 5th order                                                                                                                                                                      | 23.95                                                                           | Miles                    |
| SEDIMENTATION/SILTATION   | 1                         |                                                                                                                                                                                     |                                                                                 |                          |
| 17050121                  | Middle Fork Paye          | tte                                                                                                                                                                                 |                                                                                 |                          |
| ID17050121SW007_02        | Silver Creek - 1st and 2r | nd order                                                                                                                                                                            | 23.91                                                                           | Miles                    |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| 17050122 Payette                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ID17050122SW001_06 Payette River - Black C  | anyon Reservoir Dam to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66.8                                                                                                                                                                                                                                                                                                                         | Miles                                                                                    |
| TEMPERATURE                                 | 9/18/2014 (HS) - According to the Lower Payette River<br>the temperature criteria exceedance appears to be driv<br>impoundments. Data collected from the outlet of Black<br>Side Irrigation Canal, Payette Ditch, the mainstem rive<br>(near the dam outfall), LPR-003 (Letha Bridge), and LF<br>indicate that the water delivered to the lower Payette R<br>Reservoir exceeds beneficial use criteria by 4 degrees<br>November. The north-side tributaries with the most imp<br>Creek (AU 017) and Little Willow Creek (AU 018_04), i<br>criteria for beneficial use support from May through Ju<br>the Payette Ditch and the lower Payette River that exc<br>(AU 015_03a) and numerous north- and south-side irri<br>contribute water that meets temperature criteria for sup- | <sup>5</sup> 5-year review (page<br>yen by, or closely rel<br>Canyon Reservoir,<br>r (AU 001_06) at LP<br>PR-007 (near Payett<br>tiver by the Black Ca<br>C (15%) from June<br>boundments, Big Wi<br>also exceed tempera<br>ly and contribute war<br>eeds criteria. Bissel<br>gation system drains<br>oport of beneficial us | e 86)<br>North<br>R-001<br>e)<br>inyon<br>to<br>llow<br>ature<br>ter to<br>Creek<br>ses. |
| ID17050122SW002_02 Tributaries to Black Car | nyon Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.13                                                                                                                                                                                                                                                                                                                        | Miles                                                                                    |
| ESCHERICHIA COLI (E. COLI)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050122SW003_02a Dry Buck, Peterson & F  | leming Creeks - 1st & 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.38                                                                                                                                                                                                                                                                                                                        | Miles                                                                                    |
| ESCHERICHIA COLI (E. COLI)                  | 8/4/17 (DM, JW): A single E. coli sample collected 7/9, 2,419.6 cfu/100 mL. Five E. coli samples collected 8/1 geometric mean of 1,840 cfu/100 mL, which exceeds t criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /15 had a concentrai<br>1/15 - 8/28/15 had a<br>he 126 cfu/100 mL B                                                                                                                                                                                                                                                          | tion of<br>E. coli                                                                       |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050122SW011_03 Little Squaw Creek - 3rd | d order (North Fork to Soldier Creek)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.69                                                                                                                                                                                                                                                                                                                         | Miles                                                                                    |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050122SW012_03 Soldier Creek - 3rd orde | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.02                                                                                                                                                                                                                                                                                                                         | Miles                                                                                    |
| SEDIMENTATION/SILTATION                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050122SW015_02 Bissel Creek - 1st and 2 | 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.47                                                                                                                                                                                                                                                                                                                        | Miles                                                                                    |
| SEDIMENTATION/SILTATION                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050122SW016_03 Sand Hollow - 3rd order  | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.72                                                                                                                                                                                                                                                                                                                         | Miles                                                                                    |
| ESCHERICHIA COLI (E. COLI)                  | 9/18/2014 (HS) - E.coli data collected in 2013 showed<br>cfu/100mL which is greater than the 126 cfu/100mL cri<br>recreational use of this water body is considered impai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a geomean of 1,124<br>iterion value, therefo<br>red by bacteria.                                                                                                                                                                                                                                                             | re the                                                                                   |
| 17050123 North Fork Payer                   | tte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050123SW006_02 Beaver Creek - 1st and   | 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.32                                                                                                                                                                                                                                                                                                                        | Miles                                                                                    |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050123SW010_02 Kennally, Rapid and Slo  | pans Creeks - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91.87                                                                                                                                                                                                                                                                                                                        | Miles                                                                                    |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                          |
| ID17050123SW010_04 Kennally Creek - Rapid   | Creek to Gold Fork River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.22                                                                                                                                                                                                                                                                                                                         | Miles                                                                                    |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| ID17050123SW011_03 Boulder Creek - 3rd ord  | er (Louie Creek to mouth)                                                                                                                                                                                                                                                                                          | 11.55                                                                                                                  | Miles                         |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| TEMPERATURE                                 |                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                               |  |  |
| ID17050123SW012_02 Lake Fork below Little F | ayette Lake - 1st and 2nd order                                                                                                                                                                                                                                                                                    | 12.14                                                                                                                  | Miles                         |  |  |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                               |  |  |
| ID17050123SW015_02 Mud Creek - 1st and 2n   | ID17050123SW015_02 Mud Creek - 1st and 2nd order 26.75 Miles                                                                                                                                                                                                                                                       |                                                                                                                        |                               |  |  |
| ESCHERICHIA COLI (E. COLI)                  |                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                               |  |  |
| ID17050123SW015_03 Mud Creek - 3rd order (  | Norwood to Reservoir)                                                                                                                                                                                                                                                                                              | 7.26                                                                                                                   | Miles                         |  |  |
| ESCHERICHIA COLI (E. COLI)                  | Bacteria sample at BURP site exceeded the cut-off for r further samples were taken. Additionally, DEQ's Casca bacteria samples on three occasions. The geometric me from 6/18/02 through 9/23/02 was 316 col/100 mL, a vic standard of 126 col/100 mL. Cows were seen grazing at sample site.                      | epeat sampling, so<br>de Satellite Office to<br>ean of all samples to<br>plation of the bacter<br>tor near the bacteri | six<br>ook<br>aken<br>ia<br>a |  |  |
| ID17050123SW016_04 North Fork Payette Rive  | r - Payette Lake to Cascade Reservoir                                                                                                                                                                                                                                                                              | 20.41                                                                                                                  | Miles                         |  |  |
| TEMPERATURE                                 | 02/07/2020 (DM): The cause parameter for this AU was biota/habitat bioassessments.' Data collected by the DI temperature exceedances for both cold water aquatic lif criteria.                                                                                                                                     | updated from 'com<br>EQ in 2019 shows<br>e and salmonid spa                                                            | bined                         |  |  |
| ID17050123SW017L_0L Payette Lake            |                                                                                                                                                                                                                                                                                                                    | 4986.89                                                                                                                | Acres                         |  |  |
| MERCURY                                     | 2/18/2010 (NED) - Mercury listing based on the DEQ report, "Arsenic, Mercury,<br>and Selenium in Fish Tissue from Idaho Lakes and Reservoirs: A Statewide<br>Assessment" (Essig and Kostermann, May 2008). A Mercury level of 0.305<br>mg/kg, which exceeds the human health criterion of 0.3 mg/kg, was reported. |                                                                                                                        |                               |  |  |
| 17050124 Weiser                             |                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                               |  |  |
| ID17050124SW001_06a Weiser River - Galloway | / Dam to Snake River                                                                                                                                                                                                                                                                                               | 16.98                                                                                                                  | Miles                         |  |  |
| ESCHERICHIA COLI (E. COLI)                  | 7/24/2015 (MH) - E. coli sampling in the Weiser River p<br>cfu/100 mL, which exceeds the 126 cfu/100 mL criterior<br>ranged from 228 - 435 cfu/100 mL and were collected 6<br>7/16/2015 with 3-7 days between samples.                                                                                             | roduced a geomear<br>n value. Individual si<br>/29/2015 through                                                        | n of 311<br>amples            |  |  |
| ID17050124SW002_02 Cove Creek - entire wat  | ershed                                                                                                                                                                                                                                                                                                             | 44.74                                                                                                                  | Miles                         |  |  |
| SEDIMENTATION/SILTATION                     |                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                               |  |  |
| ID17050124SW012_02 Grays Creek - 1st and 2  | nd order                                                                                                                                                                                                                                                                                                           | 45.72                                                                                                                  | Miles                         |  |  |
| ESCHERICHIA COLI (E. COLI)                  | 4/26/2012 (HS) - Bacteria samples collected during Aug<br>showed a geometric mean of 1,052.5 cfu/100 mL which<br>cfu/100 mL criterion value.                                                                                                                                                                       | ust and September<br>is greater than the                                                                               | 2011<br>126                   |  |  |
| ID17050124SW012_03 Grays Creek - 3rd order  | (Sucker Creek to mouth)                                                                                                                                                                                                                                                                                            | 3.76                                                                                                                   | Miles                         |  |  |
| ESCHERICHIA COLI (E. COLI)                  | 4/26/2012 (HS) - Bacteria samples collected during Aug<br>showed a geometric mean of 1014.2 col/100 mL which<br>col/100 mL criterion value.                                                                                                                                                                        | ust and September<br>is greater than the <i>ć</i>                                                                      | - 2011<br>126                 |  |  |
| ID17050124SW014_03 Middle Fork Weiser Rive  | er - lower 3rd order (rangeland)                                                                                                                                                                                                                                                                                   | 8.66                                                                                                                   | Miles                         |  |  |
| FISH BIOASSESSMENTS                         |                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |                               |  |  |

ESCHERICHIA COLI (E. COLI)

### Southwest

| ID17050124SW025_03 Rush Creek - 3rd order (Beaver Creek to mouth)  | 6.29  | Miles |
|--------------------------------------------------------------------|-------|-------|
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                              |       |       |
| ID17050124SW028_03 Hopper, Deer and Keithly Creeks - 3rd order     | 4.99  | Miles |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                              |       |       |
| ID17050124SW028_04 Keithly Creek - 4th order (Deer Creek to mouth) | 1.82  | Miles |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                              |       |       |
| ID17050124SW030_03 Mann Creek - 3rd order                          | 16.6  | Miles |
| ESCHERICHIA COLI (E. COLI)                                         |       |       |
| ID17050124SW033_03 Monroe Creek - 3rd order                        | 15.38 | Miles |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

### 17050201 Brownlee Reservoir

| ID17050201SW001_08         | Hells Canyon Reservoir    |                                                                                                                                                                                                                                                                                                                                                                                                 | 2510.21                                                                                                                                                           | Acres                  |
|----------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| MERCURY                    |                           | 9/18/2014 (HS) - Mercury data submitted by Idaho Po<br>impairment. The mean mercury concentration in smal<br>0.421 mg/kg, which exceeds the human health criterio<br>(NED) - Mercury listing based on the DEQ report, "Ars<br>Selenium in Fish Tissue from Idaho Lakes and Reserv<br>Assessment" (Essig and Kostermann, May 2008). A n<br>mg/kg, which exceeds the human health criterion of 0. | wer confirmed this<br>Imouth bass >200mm<br>on of 0.3 mg/kg. 2/1<br>senic, Mercury, and<br>voirs: A Statewide<br>nercury level of 0.522<br>.3 mg/kg, was reported | n was<br>8/2010<br>ed. |
| ID17050201SW002_08         | Oxbow Reservoir           |                                                                                                                                                                                                                                                                                                                                                                                                 | 1106.23                                                                                                                                                           | Acres                  |
| MERCURY                    |                           | 9/18/2014 (HS) - Mercury data submitted by Idaho Po<br>concentration in smallmouth bass >200mm of 0.339 n<br>human health criterion of 0.3 mg/kg.                                                                                                                                                                                                                                               | wer had a mean meren<br>ng/kg, which exceeds                                                                                                                      | cury<br>the            |
| ID17050201SW003_02         | Tributaries to Snake Rive | er - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                          | 108.39                                                                                                                                                            | Miles                  |
| ESCHERICHIA COLI (E. COLI) |                           | 9/18/2014 (HS) - E. coli impairment confirmed in 2012 mean value of 1,239 cfu/100mL, well in excess of the of 126 cfu/100mL.                                                                                                                                                                                                                                                                    | 2 by 5-sample geome<br>Idaho water quality c                                                                                                                      | tric<br>riterion       |
| COMBINED BIOTA/HABITAT E   | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   |                        |
| ID17050201SW003_08         | Brownlee Reservoir, Low   | ver (Porters Flat to Brownlee Dam)                                                                                                                                                                                                                                                                                                                                                              | 13193.87                                                                                                                                                          | Acres                  |
| MERCURY                    |                           | 9/18/2014 (HS) - The Idaho Power mercury study con<br>the mean mercury concentration in smallmouth bass a<br>Although this value is slightly below the human health                                                                                                                                                                                                                             | ducted in May 2013 f<br>>200mm to be 0.275<br>criterion of 0.3 mg/kg                                                                                              | ound<br>mg/kg.<br>J,   |

9/18/2014 (HS) - The Idaho Power mercury study conducted in May 2013 found the mean mercury concentration in smallmouth bass >200mm to be 0.275 mg/kg. Although this value is slightly below the human health criterion of 0.3 mg/kg, additional multi-species information is warranted before mercury can be proposed for delisting. (H. Stone) - Mercury listing based on the DEQ reports "Arsenic, Mercury, and Selenium in Fish Tissue from Idaho Lakes and Reservoirs: A Statewide Assessment" Essig and Kostermann, May 2008) and "Brownlee Reservoir Mercury TMDL Fish Tissue Study, Results and Field Summary".

| ID17050201SW005_02 Jenkins Creek - entire v | vatershed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.95                                                                                                                                                                                                              | Miles                                                             |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| ESCHERICHIA COLI (E. COLI)                  | 10/1/2014 (HS) - The five-sample geometric mean E. coli sa<br>summer of 2014 all exceeded the 126 cfu/100mL criterion va<br>had a value of 624 cfu/100mL, and the two upper sites had v<br>cfu/100mL and 1,196 cfu/100mL. Therefore, the recreational<br>body is considered impaired by bacteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mples collected<br>alue. The lower<br>values of 1,566<br>use of this wate                                                                                                                                          | in the<br>site<br>er                                              |
| CHLORPYRIFOS                                | 3/22/2012 (HS) - Jenkins Creek is impaired due to presence<br>in concentrations that impair beneficial uses (IDAPA 58.01.0<br>of concern is chlorpyrifos, which was found at level that exce<br>Life Benchmarks for acute toxicity to aquatic life. The Aqua<br>are based on toxicity values reviewed by EPA and used in th<br>risk assessments developed as part of the decision making<br>registration. Each Aquatic Benchmark is based on the most<br>scientifically acceptable toxicity endpoint available to EPA fo<br>Chlorpyrifos was detected six times by ISDA sampling in 200<br>concentration, exceeded the acute Aquatic Life Benchmark I<br>(Source: ISDA Technical Report Summary W-20: Evaluation<br>Residues Within Weiser Flat, Weiser, Idaho, December 200 | of toxic substar<br>2.200.02). The<br>eds EPA's Aquatic Life Benchm<br>the EPA's most m<br>process for pest<br>sensitive,<br>r a given taxon.<br>07, and at its hig<br>by a factor of 1.3<br>n of Pesticide<br>7). | nces<br>toxin<br>atic<br>narks<br>ecent<br>ticide<br>ghest<br>36. |
| ID17050201SW006_03 Scott Creek - 3rd order  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.39                                                                                                                                                                                                              | Miles                                                             |
| ESCHERICHIA COLI (E. COLI)                  | 10/1/2014 (HS) - The five-sample geometric mean E. coli sa<br>summer of 2014 had values of 629 cfu/100mL (lower site) ar<br>(upper site). Both values are greater than the 126 cfu/100mL<br>therefore the recreational use of this water body is considered<br>bacteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mples collected<br>nd 146 cfu/100n<br>. criterion value,<br>nd impaired by                                                                                                                                         | in the<br>nL                                                      |
| ID17050201SW007_03 Warm Springs Creek - 3   | 3rd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.31                                                                                                                                                                                                               | Miles                                                             |
| ESCHERICHIA COLI (E. COLI)                  | 10/1/2014 (HS) - The five-sample geometric mean E. coli sa<br>summer of 2014 had values of 407 cfu/100mL (lower site) ar<br>(upper site). Both values are greater than the 126 cfu/100mL<br>therefore the recreational use of this water body is considered<br>bacteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mples collected<br>nd 236 cfu/100n<br>. criterion value,<br>nd impaired by                                                                                                                                         | in the<br>nL                                                      |
| ID17050201SW008_02 Hog Creek - 1st & 2nd o  | order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34.41                                                                                                                                                                                                              | Miles                                                             |
| ESCHERICHIA COLI (E. COLI)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                    |                                                                   |
| ID17050201SW008_03 Hog Creek - 3rd order s  | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.89                                                                                                                                                                                                               | Miles                                                             |
| ESCHERICHIA COLI (E. COLI)                  | 10/1/2014 (HS) - The five-sample geometric mean E. coli sa summer of 2014 had values of 190 cfu/100mL (lower site) ar (upper site). Both values are greater than the 126 cfu/100mL therefore the recreational use of this water body is considered bacteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mples collected<br>nd 589 cfu/100m<br>criterion value,<br>d impaired by                                                                                                                                            | in the<br>nL                                                      |
| ID17050201SW010_02 Rock Creek and Tributa   | ries - 1st and 2nd order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63.02                                                                                                                                                                                                              | Miles                                                             |
| ESCHERICHIA COLI (E. COLI)                  | 4/26/2012 (HS) - Bacteria samples collected during August a showed a geometric mean of 2145.5 col/100mL which is gre col/100 mL criterion value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and September<br>ater than the 12                                                                                                                                                                                  | 2011<br>26                                                        |
| ID17050201SW010_03 Rock, Little Rock and H  | enley Creeks - 3rd order sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.31                                                                                                                                                                                                               | Miles                                                             |
| ESCHERICHIA COLI (E. COLI)                  | 4/26/2012 (HS) - Bacteria samples collected during August a showed a geometric mean of 662 cfu/100mL which is greate cfu/100 mL criterion value. Therefore, the recreational use o considered impaired by bacteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and September<br>r than the 126<br>f this water body                                                                                                                                                               | 2011<br>y is                                                      |

| 17040104 Palisades                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|
| ID17040104SK008_02 Snake River - Palisades                                                                                                                                                                                               | Reservoir Dam to Fall Creek                                                                                                                                                                                                                                                                                                                                             | 77.83                                                                                                     | Miles                                     |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
| SEDIMENTATION/SILTATION                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
| 17040105 Salt                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
| ID17040105SK003_03 Tincup Creek - source to                                                                                                                                                                                              | o Idaho/Wyoming border                                                                                                                                                                                                                                                                                                                                                  | 19.04                                                                                                     | Miles                                     |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
| TEMPERATURE                                                                                                                                                                                                                              | 12/4/19 (GAM): Continuous temperature data was collected<br>9/26/2018 on Tincup Creek (ID17040105SK003_03). Daily r<br>temperature exceeded 22 degrees C on 12 of 95 days samp<br>average, the daily maximum water temperature was 18.0 de<br>deviation = 3.5). The daily mean water temperature never ex<br>Cold Water Aquatic Life of 19 degrees C (mean = 15.1, star | from 6/22/2018<br>naximum water<br>bled (13%). On<br>grees C (stanc<br>xceeded the cri<br>ndard deviation | 8 to<br>r<br>lard<br>teria for<br>= 2.7). |
| ID17040105SK005_02c Deer Creek                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                         | 4.82                                                                                                      | Miles                                     |
| ESCHERICHIA COLI (E. COLI)                                                                                                                                                                                                               | 6/11/2019 (RE): Four E. coli samples were 8/24/2016 throug<br>a geometric mean of 2061.3 cfu/100 mL, which exceeds the<br>criterion, and indicates non-support of Secondary Contact R                                                                                                                                                                                   | 3h 9/14/2016 ai<br>126 cfu/100 m<br>lecreation.                                                           | nd had<br>nL                              |
| ID17040105SK006_02e Hyde Canyon                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         | 7.03                                                                                                      | Miles                                     |
| SEDIMENTATION/SILTATION 7/18/17 (HH, JW): Sediment impairment determination based on Wolman Pebble<br>Counts and bank stability assessment. Stream very impacted by cattle grazing.<br>Banks often very unstable. Water cloudy to murky. |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
| ID17040105SK006_02i Horse Creek                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         | 10.21                                                                                                     | Miles                                     |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
| ID17040105SK008_04 Crow Creek - Deer Cree                                                                                                                                                                                                | ek to border                                                                                                                                                                                                                                                                                                                                                            | 10.44                                                                                                     | Miles                                     |
| SELENIUM                                                                                                                                                                                                                                 | 10/23/2015 (GM) - Crow Creek was sampled near the lower 2010 through 2014, resulting in selenium concentrations of 0.00781, 0.0124 and 0.0128 mg/L, respectively. Given that thas been exceeded in 4 of these 5 years, DEQ has listed th selenium.                                                                                                                      | end of this rea<br>0.00766, 0.002<br>the selenium cr<br>is AU as impair                                   | ch in<br>17,<br>iterion<br>red by         |
| ID17040105SK009_02 North Fork Sage Creek                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         | 12.43                                                                                                     | Miles                                     |
| SELENIUM                                                                                                                                                                                                                                 | 11/4/2015 (GM) - The selenium concentration downstream of<br>Pole Creek was 0.041 mg/L in May of 1998. This exceeds th<br>of 0.005 mg/L (Idaho Mining Association Selenium Subcom<br>Regional Investigation Report, December 1999).                                                                                                                                     | of the confluence<br>ne selenium crit<br>mittee Final 19                                                  | ce with<br>terion<br>98                   |
| ID17040105SK009_02c Sage Creek                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                         | 1.81                                                                                                      | Miles                                     |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                           |
| ID17040105SK009_02d Pole Canyon Creek                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         | 3.62                                                                                                      | Miles                                     |

SELENIUM

| ID17040105SK009_02e      | South Fork Sage Creek    |                                                                                | 7.95                     | Miles |
|--------------------------|--------------------------|--------------------------------------------------------------------------------|--------------------------|-------|
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           | 1/20/10 - Added based on failing BURP score in 2                               | 2006.                    |       |
| SELENIUM                 |                          | Listing based on May 24, 2007 "Supplemental Su<br>Transmittal" from Newfields. | rface Water Monitoring D | ata   |
| ID17040105SK009_03       | Sage Creek - confluence  | e with North Fork Sage Creek to mouth                                          | 3.22                     | Miles |
| SELENIUM                 |                          |                                                                                |                          |       |
| 17040201                 | Idaho Falls              |                                                                                |                          |       |
| ID17040201SK007_05       | Crow Creek - source to   | Willow Creek                                                                   | 9.24                     | Miles |
| SEDIMENTATION/SILTATION  | 1                        |                                                                                |                          |       |
| ID17040201SK013_02       | Snake River - river mile | 856 to Dry Bed Creek                                                           | 20.39                    | Miles |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                |                          |       |
| 17040202                 | Upper Henrys             |                                                                                |                          |       |
| ID17040202SK025_02       | Henrys Lake Outlet - He  | enrys Lake Dam to mouth                                                        | 34.12                    | Miles |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                |                          |       |
| ID17040202SK030_02       | Twin Creek - source to   | mouth                                                                          | 8.55                     | Miles |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                |                          |       |
| ID17040202SK035_03       | Timber Creek - source t  | to mouth                                                                       | 3.37                     | Miles |
| ESCHERICHIA COLI (E. COL | 1)                       |                                                                                |                          |       |
| 17040203                 | Lower Henrys             |                                                                                |                          |       |
| ID17040203SK013_04       | Sand Creek - Pine Cree   | ek to mouth                                                                    | 9.96                     | Miles |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                |                          |       |
| 17040204                 | Teton                    |                                                                                |                          |       |
| ID17040204SK011_02       | Warm Creek - source to   | mouth                                                                          | 5.77                     | Miles |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                |                          |       |
| FECAL COLIFORM           |                          |                                                                                |                          |       |
| ID17040204SK034_02       | Warm Creek - source to   | o mouth                                                                        | 17.59                    | Miles |
| FECAL COLIFORM           |                          |                                                                                |                          |       |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                |                          |       |
| ID17040204SK046_02       | Dick Creek spring comp   | blex                                                                           | 3.59                     | Miles |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS           |                                                                                |                          |       |
| ID17040204SK048_02       | Teton Creek - Idaho/Wy   | oming border to Highway 33 bridge                                              | 7.28                     | Miles |
|                          |                          |                                                                                |                          |       |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| 17040205                  | Willow                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
|---------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| ID17040205SK005_02        | Willow Creek - Birch Cre  | eek to Bulls Fork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.41                                                                                                                                                                                                                                    | Miles                                            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040205SK005_04        | Willow Creek - Birch Cre  | eek to Bulls Fork                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                                                                                                                                      | Miles                                            |
| TEMPERATURE               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040205SK008_02        | Willow Creek - Mud Cree   | ek to Birch Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.76                                                                                                                                                                                                                                    | Miles                                            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ESCHERICHIA COLI (E. COLI | )                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040205SK008_04        | Willow Creek - Mud Cree   | ek to Birch Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.84                                                                                                                                                                                                                                     | Miles                                            |
| TEMPERATURE               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040205SK009_02        | Mud Creek - source to m   | nouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.77                                                                                                                                                                                                                                     | Miles                                            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040205SK019_04        | Grays Lake outlet - Broc  | kman Creek to Homer Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.49                                                                                                                                                                                                                                    | Miles                                            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040205SK021_02        | Grays Lake - Order 1 & 2  | 2 tributaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96.58                                                                                                                                                                                                                                    | Miles                                            |
| TEMPERATURE               |                           | 11/9/2017: (AS, TS) ID17040205SK021_02 contains fi<br>segments of Willow Creek, Bridge Creek, NF Eagle Cr<br>Originally listed in 1998 as impaired through Combined<br>Assessments, investigation by regional office staff sug<br>Spawning impairments result from temperature exceed<br>pollutants such as sediment. In 2016, the AU was four<br>criteria for salmonid spawning 31 days throughout the<br>seasons (data file attached at AU-level). So, the AU was<br>Combined Biota/Habitat Assessments for both cold was<br>salmonid spawning and listed as impaired for temperat<br>TMDL anticipated completion date is 2018. | rst and second order<br>eek and Clark Creek<br>d Biota/Habitat<br>gest any existing Sa<br>dances rather than o<br>id to violate tempera<br>spring and fall spawn<br>as de-listed for the<br>ater aquatic life and<br>ture. A temperature | r<br>K.<br>Imonid<br>ther<br>ture<br>ning<br>PNV |
| ID17040205SK024_02        | Brockman Creek - Corra    | al Creek to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.03                                                                                                                                                                                                                                    | Miles                                            |
| ESCHERICHIA COLI (E. COLI | )                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040205SK030_02        | Bulls Fork - source to me | outh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.38                                                                                                                                                                                                                                    | Miles                                            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| 17040206                  | American Falls            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040206SK001L_0L       | American Falls Reservoi   | ir (Snake River)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31724.26                                                                                                                                                                                                                                 | Acres                                            |
| SEDIMENTATION/SILTATION   | I                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| NUTRIENT/EUTROPHICATIO    | N BIOLOGICAL INDICATORS   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| DISSOLVED OXYGEN          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |
| ID17040206SK002_02        | Bannock Creek - source    | to American Falls Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 132.97                                                                                                                                                                                                                                   | Miles                                            |
| FECAL COLIFORM            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                          |                                                  |

## Upper Snake

| ID17040206SK002_03         | Bannock Creek - source    | to American Falls Reservoir                                                                                                                                                                                                              | 14.24                                                                   | Miles                 |
|----------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|
| ESCHERICHIA COLI (E. COLI  | )                         |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040206SK002_04         | Bannock Creek - source    | to American Falls Reservoir                                                                                                                                                                                                              | 0.81                                                                    | Miles                 |
| FECAL COLIFORM             |                           |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040206SK005_02         | Sunbeam Creek - source    | e to mouth                                                                                                                                                                                                                               | 24.02                                                                   | Miles                 |
| ESCHERICHIA COLI (E. COLI) | )                         | 6/11/2019 (RE): Five E. coli samples collected 8/23/2017 geometric mean of 1108.2 cfu/100 mL, which exceeds the criterion, and indicates non-support of Secondary Contact                                                                | through 9/11/201<br>e 126 cfu/100 mL<br>t Recreation.                   | I7 had a              |
| ID17040206SK005_03         | Sunbeam Creek             |                                                                                                                                                                                                                                          | 2.82                                                                    | Miles                 |
| SEDIMENTATION/SILTATION    |                           |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040206SK009_02         | Knox Creek - source to    | nouth                                                                                                                                                                                                                                    | 23.85                                                                   | Miles                 |
| ESCHERICHIA COLI (E. COLI) | )                         | 6/11/2019 (RE): Five E. coli samples collected 8/23/2017<br>had a geometric mean of 135.4 cfu/100 mL, which exceed<br>criterion, and indicates non-support of Secondary Contact                                                          | through 9/11/201<br>ds the 126 cfu/10<br>t Recreation.                  | I7 and<br>0 mL        |
| ID17040206SK009_03         | Knox Creek - source to    | nouth                                                                                                                                                                                                                                    | 7.83                                                                    | Miles                 |
| ESCHERICHIA COLI (E. COLI  | )                         | 6/11/2019 (RE): Five E. coli samples collected 8/23/2017 geometric mean of 161.1 cfu/100 mL, which exceeds the criterion, and indicates non-support of Secondary Contac                                                                  | through 9/11/201<br>126 cfu/100 mL<br>t Recreation.                     | I7 had a              |
| ID17040206SK010_02         | Rattlesnake Creek - sou   | rce to mouth                                                                                                                                                                                                                             | 50.82                                                                   | Miles                 |
| ESCHERICHIA COLI (E. COLI  | )                         |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040206SK010_02b        | Rattlesnake Creek         |                                                                                                                                                                                                                                          | 1.1                                                                     | Miles                 |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040206SK010_03         | Rattlesnake Creek - sou   | rce to mouth                                                                                                                                                                                                                             | 9.95                                                                    | Miles                 |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040206SK010_04         | Rattlesnake Creek - low   | er                                                                                                                                                                                                                                       | 1.27                                                                    | Miles                 |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040206SK022_04         | Snake River               |                                                                                                                                                                                                                                          | 108.17                                                                  | Miles                 |
| MERCURY                    |                           | 03/16/2010 (NED) - Mercury listing based on the DEQ rep<br>and Selenium in Fish Tissue and Water from Idaho's Maj<br>Assessment" (Essig, October 2009). A mercury level of 0<br>exceeds the human health criterion of 0.3 mg/kg, was rep | oort, "Arsenic, Me<br>or Rivers: A State<br>.317 mg/kg, whic<br>oorted. | ercury,<br>ewide<br>h |
| 17040207                   | Blackfoot                 |                                                                                                                                                                                                                                          |                                                                         |                       |
| ID17040207SK007_04         | Grizzly Creek - source to | mouth                                                                                                                                                                                                                                    | 2.78                                                                    | Miles                 |
| COMBINED BIOTA/HABITAT     | BIOASSESSMENTS            |                                                                                                                                                                                                                                          |                                                                         |                       |

| ID17040207SK010_02a State Land Creek - headwaters to Blackfoot River | 9.08 | Miles |
|----------------------------------------------------------------------|------|-------|
|                                                                      |      |       |

SELENIUM

Se listed based on DEQ data. See DEQ 2006. Selenium Project Southeast Idaho Phosphate Mining Resource Area.

| ID17040207SK010_04       | Blackfoot River - headwa  | aters to Slug Creek                                                                                                                                                                                                                                                                                  | 13.82                                                           | Miles            |
|--------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|
| SELENIUM                 |                           |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| ID17040207SK010_05       | Blackfoot River           |                                                                                                                                                                                                                                                                                                      | 20.72                                                           | Miles            |
| DISSOLVED OXYGEN         |                           | 6/4/2015 (NED) - Nighttime dissolved oxygen exceedances are<br>temperature exceedances. Any temperature reductions achiev<br>implementation of the temperature TMDL will naturally result in<br>concentrations. Therefore, the temperature TMDL will serve as<br>improve the existing DO impairment. | e due to water<br>ed through<br>i improved DO<br>a surrogate to | 1                |
| SELENIUM                 |                           | Se listed based on DEQ data. See DEQ 2006. Selenium Proje<br>Phosphate Mining Resource Area.                                                                                                                                                                                                         | ect Southeast I                                                 | daho             |
| ID17040207SK011_03       | Trail Creek - source to m | nouth (Below Findlayson Ranch)                                                                                                                                                                                                                                                                       | 7.85                                                            | Miles            |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| ID17040207SK012_02a      | Johnson Creek - upper     |                                                                                                                                                                                                                                                                                                      | 4.85                                                            | Miles            |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| ID17040207SK012_02b      | Goodheart Creek           |                                                                                                                                                                                                                                                                                                      | 7.54                                                            | Miles            |
| SELENIUM                 |                           | Se listed based on DEQ data. See DEQ 2006. Selenium Proje<br>Phosphate Mining Resource Area.                                                                                                                                                                                                         | ect Southeast I                                                 | daho             |
| ID17040207SK013_02a      | Dry Valley Creek          |                                                                                                                                                                                                                                                                                                      | 6.43                                                            | Miles            |
| SELENIUM                 |                           |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| ID17040207SK013_02b      | Chicken Creek (tributary  | to Dry Valley Creek)                                                                                                                                                                                                                                                                                 | 2.85                                                            | Miles            |
| SELENIUM                 |                           |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| ID17040207SK013_03       | Dry Valley Creek - sourc  | e to mouth                                                                                                                                                                                                                                                                                           | 4.98                                                            | Miles            |
| COMBINED BIOTA/HABITAT E | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| SELENIUM                 |                           |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| ID17040207SK014_02       | Maybe Creek - source to   | mouth                                                                                                                                                                                                                                                                                                | 5.23                                                            | Miles            |
| SELENIUM                 |                           | Montgomery Watson and others working under CERCLA- relation<br>monitoring documented chronic selenium standard violation. L<br>fatalities have been documented. There are no fish in this streat<br>TMDL, a consent order with clean-up plan was finalized in 199                                    | ed water qualit<br>ivestock (horse<br>am. Rather tha<br>8.      | ry<br>es)<br>n a |
| ID17040207SK015_02       | Spring Creek (Blackfoot   | River tributary)                                                                                                                                                                                                                                                                                     | 7.3                                                             | Miles            |
| SELENIUM                 |                           | Selenium listed based on DEQ 2006 data. Selenium Project S<br>Phosphate Mining Resource Area.                                                                                                                                                                                                        | outheast Idaho                                                  |                  |
| TEMPERATURE              |                           |                                                                                                                                                                                                                                                                                                      |                                                                 |                  |
| ID17040207SK015_02a      | East Mill Creek           |                                                                                                                                                                                                                                                                                                      | 2.44                                                            | Miles            |
| SELENIUM                 |                           | Se listed based on DEQ data. See DEQ 2006. Selenium Proje<br>Phosphate Mining Resource Area. Plus additional data source                                                                                                                                                                             | ect Southeast le<br>es.                                         | daho             |
| ID17040207SK015_02b      | lower Mill Canyon         |                                                                                                                                                                                                                                                                                                      | 1.03                                                            | Miles            |
| SELENIUM                 |                           | Se listed based on DEQ data. See DEQ 2006. Selenium Proje<br>Phosphate Mining Resource Area. Plus additional data source                                                                                                                                                                             | ect Southeast less.                                             | daho             |

| ID17040207SK015_03 lower Spring Creek       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05                                                                                                                                | Miles                               |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| TEMPERATURE                                 | Exceeded state Water Quality Standards for salmonid spawnir aquatic life. See documentation in IDASA.                                                                                                                                                                                                                                                                                                                                                                                                                                    | ig and cold wa                                                                                                                      | ter                                 |
| SELENIUM                                    | Selenium listed based on DEQ 2006 data. Selenium Project Se<br>Phosphate Mining Resource Area.                                                                                                                                                                                                                                                                                                                                                                                                                                           | outheast Idaho                                                                                                                      | 1                                   |
| ID17040207SK016_02a upper Diamond Creek     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.43                                                                                                                                | Miles                               |
| TEMPERATURE                                 | Exceeded state Water Quality Standards for salmonid spawnir documentation in IDASA.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg. See                                                                                                                             |                                     |
| ID17040207SK016_03 Diamond Creek - lower    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.29                                                                                                                               | Miles                               |
| TEMPERATURE                                 | Exceeded state Water Quality Standards for salmonid spawnir documentation in IDASA.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg. See                                                                                                                             |                                     |
| ID17040207SK016_03a Diamond Creek - middle  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.63                                                                                                                               | Miles                               |
| TEMPERATURE                                 | Exceeded state Water Quality Standards for salmonid spawnir documentation in IDASA.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıg. See                                                                                                                             |                                     |
| ID17040207SK018_02d Corrailsen Creek        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.91                                                                                                                                | Miles                               |
| ESCHERICHIA COLI (E. COLI)                  | 10/16/2014 (Greg Mladenka) - A five-sample E. coli geomean was collected 8/20 through 9/15/2014. This value is greater tha cfu/100mL criterion value, therefore the recreational use of this considered impaired by bacteria.                                                                                                                                                                                                                                                                                                            | of 169 cfu/100i<br>an the 126<br>s water body is                                                                                    | mL                                  |
| ID17040207SK018_04 Lanes Creek - Chippy C   | reek to Blackfoot River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.41                                                                                                                                | Miles                               |
| ESCHERICHIA COLI (E. COLI)                  | 10/16/2014 (Greg Mladenka) - A five-sample E. coli geomean was collected 8/20 through 9/15/2014. This value is greater tha cfu/100mL criterion value, therefore the recreational use of this considered impaired by bacteria.                                                                                                                                                                                                                                                                                                            | of 334 cfu/100i<br>an the 126<br>s water body is                                                                                    | mL                                  |
| ID17040207SK021_02a Olsen Creek - upper (Bl | ackfoot River tributary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.05                                                                                                                                | Miles                               |
| ESCHERICHIA COLI (E. COLI)                  | 10/16/2014 (Greg Mladenka) - A five-sample E. coli geomean was collected 8/20 through 9/15/2014. This value is greater tha cfu/100mL criterion value, therefore the recreational use of this considered impaired by bacteria.                                                                                                                                                                                                                                                                                                            | of 128 cfu/100i<br>an the 126<br>s water body is                                                                                    | mL                                  |
| TEMPERATURE                                 | Exceeded state Water Quality Standards for salmonid spawnir documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ig. See IDASA                                                                                                                       | \ for                               |
| ID17040207SK022_02a South Fork Sheep Cree   | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.84                                                                                                                                | Miles                               |
| SELENIUM                                    | 7/1/2015 (LVE) - Water sample data collected on South Fork S<br>Production, LLC (Monsanto) as part of their environmental mon<br>requirements at the S. Rasmussen Ridge Mine and Horseshoe<br>Disposal Area from June 1999 through June 2011 showed that<br>collected above the confluence of this tributary with the 3rd orc<br>Creek exceeded the chronic total recoverable selenium criterio<br>(Data source: Final Source Characterization Report, Horsesho<br>South Rasmussen Ridge Mine, Caribou Co., Idaho, Rev. 5., No<br>2013). | iheep Creek for<br>nitoring<br>Overburden<br>: 37 of 57 samj<br>ler reach of Sh<br>n of 0.005 mg,<br>e Overburden<br>ewfields, Augu | ples<br>leep<br>/l.<br>Area,<br>lst |

| ID17040207SK022_03         | Sheep Creek - below co   | nfluence of South Fork Sheep Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.55                                                                                                                                                                                                                           | Miles                                    |
|----------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| SELENIUM                   |                          | 6/24/2015 (LVE) - Since 2006, DEQ has been collect<br>of the annual spring-time synoptic sampling regime.<br>Creek Road has shown that 5 of 10 years have exce-<br>concentration of 0.005 mg/L chronic selenium criteria<br>data collected by Agrium and Monsanto on the South<br>drainage confirmed that South Fork Sheep Creek-wh<br>Rasmussen Ridge Complex and Monsanto's Horses<br>Area (and is tributary to this AU)-is the primary contri-<br>in the Sheep Creek drainage. | ting water quality data as<br>The data collected at Lat<br>eded the 4-day average<br>a. Additional water quality<br>n Fork of Sheep Creek<br>nich sits below both Agriu<br>hoe Overburden Disposa<br>ibutor to selenium impair | s part<br>nes<br>y<br>um's<br>al<br>ment |
| ID17040207SK023_02a        | Rasmussen Creek          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.27                                                                                                                                                                                                                           | Miles                                    |
| SELENIUM                   |                          | Se listing based on DEQ data. See Annual TMDL base.                                                                                                                                                                                                                                                                                                                                                                                                                               | aseline monitoring report                                                                                                                                                                                                      | s for                                    |
| ID17040207SK023_02b        | Angus Creek - upper, he  | adwaters to Rasumussen Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.81                                                                                                                                                                                                                           | Miles                                    |
| SELENIUM                   |                          | Selenium listing based on 4-day average selenium w<br>5 ppb during IDEQ sampling events in 2005 and 200                                                                                                                                                                                                                                                                                                                                                                           | /ater column concentratio<br>6                                                                                                                                                                                                 | on >                                     |
| TEMPERATURE                |                          | Exceeded state Water Quality Standards for cold wa spawning. See IDASA for documentation.                                                                                                                                                                                                                                                                                                                                                                                         | ter aquatic life and salmo                                                                                                                                                                                                     | onid                                     |
| ID17040207SK023_04         | Lower Angus Creek - Ra   | smussen Creek to Blackfoot River                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.46                                                                                                                                                                                                                           | Miles                                    |
| TEMPERATURE                |                          | Exceeded state Water Quality Standards for cold wa spawning. See documentation in IDASA.                                                                                                                                                                                                                                                                                                                                                                                          | ter aquatic life and salmo                                                                                                                                                                                                     | onid                                     |
| ID17040207SK025_02c        | Clarks Cut - Sheep Cree  | k to Grays Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.92                                                                                                                                                                                                                           | Miles                                    |
| SEDIMENTATION/SILTATION    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                          |
| ID17040207SK030_02         | Wolverine Creek - source | e to Jones Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.89                                                                                                                                                                                                                          | Miles                                    |
| ESCHERICHIA COLI (E. COLI) | )                        | 10/16/2014 (Greg Mladenka) - The five-sample geom<br>throught 8/25/14 had a value of 415 cfu/100mL, whic<br>cfu/100mL criterion value. Therefore, the recreational<br>considered impaired by bacteria.                                                                                                                                                                                                                                                                            | netric mean collected 8/6<br>h is greater than the 126<br>I use of this water body i                                                                                                                                           | 6/14<br>6<br>is                          |
| 17040208                   | Portneuf                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                          |
| ID17040208SK001_02c        | Papoose Creek - headw    | aters to Portneuf River                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.01                                                                                                                                                                                                                           | Miles                                    |
| ESCHERICHIA COLI (E. COLI) | )                        | Failed Idaho Water Quality Standards for bacteria in                                                                                                                                                                                                                                                                                                                                                                                                                              | 2007.                                                                                                                                                                                                                          |                                          |
| ID17040208SK001_05         | Portneuf River - Marsh 0 | Creek to American Falls Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.46                                                                                                                                                                                                                          | Miles                                    |
| DISSOLVED OXYGEN           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                          |
| TEMPERATURE                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                          |
| ID17040208SK002_02         | City Creek - source to m | outh                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.48                                                                                                                                                                                                                           | Miles                                    |
| ESCHERICHIA COLI (E. COLI) | )                        | 12/5/2019 (GAM): Five E. coli samples collected by t<br>and 6/2/2015 had a geometric mean of 551 cfu/100 r<br>being met.                                                                                                                                                                                                                                                                                                                                                          | the DEQ between 5/5/20<br>mL, indicating that SCR i                                                                                                                                                                            | 15<br>is not                             |
| ID17040208SK004_02a        | Kinney Creek - headwat   | ers to Mink Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.58                                                                                                                                                                                                                           | Miles                                    |
|                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                          |

ESCHERICHIA COLI (E. COLI)

| ID17040208SK004_02c South Fork Mink Creek    | - headwaters to Mink Creek                                                                                                                                                                                          | 6.75                                                          | Miles           |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------|
| ESCHERICHIA COLI (E. COLI)                   | 6/13/2019 (RE): Five E. coli samples collected 8/15/201<br>geometric mean of 557.2 cfu/100 mL, which exceeds the<br>criterion, and indicates non-support of Secondary Conta                                         | 7 through 9/07/2013<br>∋ 126 cfu/100 mL<br>ct Recreation.     | 7 had a         |
| ID17040208SK004_02d East Fork Mink Creek, 2  | 2nd order                                                                                                                                                                                                           | 7.35                                                          | Miles           |
| ESCHERICHIA COLI (E. COLI)                   | 10/16/2014 (Greg Mladenka) - A five-sample E. coli geo<br>was collected 7/21 through 8/12/2014. This value is grea<br>cfu/100mL criterion value, therefore the recreational use<br>considered impaired by bacteria. | mean of 373 cfu/10<br>ater than the 126<br>of this water body | i0mL<br>is      |
| ID17040208SK004_03a Mink Creek - S. Fk to E. | Fk Mink Creek                                                                                                                                                                                                       | 2.82                                                          | Miles           |
| ESCHERICHIA COLI (E. COLI)                   | 10/16/2014 (Greg Mladenka) - A five-sample E. coli geo<br>was collected 7/21 through 8/12/2014. This value is grea<br>cfu/100mL criterion value, therefore the recreational use<br>considered impaired by bacteria. | mean of 540 cfu/10<br>ater than the 126<br>of this water body | IOmL<br>is      |
| ID17040208SK004_04a Mink Creek - East Fork   | to USFS bdy (Portneuf tributary)                                                                                                                                                                                    | 1.52                                                          | Miles           |
| ESCHERICHIA COLI (E. COLI)                   | 6/13/2019 (RE): Five E. coli samples collected 7/13/201<br>geometric mean of 1401.9 cfu/100 mL, which exceeds th<br>criterion, and indicates non-support of Secondary Conta                                         | 6 through 8/1/2016<br>ne 126 cfu/100 mL<br>ct Recreation.     | had a           |
| ID17040208SK006_02 Marsh Creek - source to   | o mouth - Second order tributaries                                                                                                                                                                                  | 211.36                                                        | Miles           |
| ESCHERICHIA COLI (E. COLI)                   | 7/13/17 (JW, HH): Five E. coli samples collected 7/1/15-<br>mean concentration of 329 cfu/100 mL, which is greater<br>criterion of 126 cfu/100 mL.                                                                  | 7/27/15 had a geor<br>than the water qua                      | netric<br>llity |
| ID17040208SK006_02a Arkansas Creek           |                                                                                                                                                                                                                     | 2.61                                                          | Miles           |
| NITROGEN, TOTAL                              | DEQ water quality sampling indicates high total nitrogen phosphorus mean concentrations (>0.12 mg/L)                                                                                                                | (>7 mg/L) and tota                                            | ıl              |
| PHOSPHORUS, TOTAL                            | IDEQ water quality sampling indicates high total nitroger phosphorus mean concentrations (>0.12 mg/L)                                                                                                               | າ (>7 mg/L) and tota                                          | al              |
| SEDIMENTATION/SILTATION                      | DEQ water quality sampling indicated total suspended s during 27 June 2006 site visit.                                                                                                                              | ediment of 130 mg/                                            | /L              |
| ID17040208SK006_03 upper middle Marsh Cre    | ek                                                                                                                                                                                                                  | 11.11                                                         | Miles           |
| DISSOLVED OXYGEN                             |                                                                                                                                                                                                                     |                                                               |                 |
| TEMPERATURE                                  |                                                                                                                                                                                                                     |                                                               |                 |
| ID17040208SK006_03a Marsh Creek - Rt Fk to   | Red Rock Pass                                                                                                                                                                                                       | 3.78                                                          | Miles           |
| TEMPERATURE                                  |                                                                                                                                                                                                                     |                                                               |                 |
| DISSOLVED OXYGEN                             |                                                                                                                                                                                                                     |                                                               |                 |
| ID17040208SK006_04 Lower Marsh Creek         |                                                                                                                                                                                                                     | 17.69                                                         | Miles           |
| TEMPERATURE                                  |                                                                                                                                                                                                                     |                                                               |                 |
| DISSOLVED OXYGEN                             |                                                                                                                                                                                                                     |                                                               |                 |
| ESCHERICHIA COLI (E. COLI)                   |                                                                                                                                                                                                                     |                                                               |                 |

# Upper Snake

| ID17040208SK006_04a        | Lower Middle Marsh Cre    | eek                                                                                                                                                                                | 19.76                                                        | Miles              |
|----------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|
| DISSOLVED OXYGEN           |                           |                                                                                                                                                                                    |                                                              |                    |
| TEMPERATURE                |                           |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK010_02a        | upper Garden Creek - he   | eadwaters to Garden Creek Gap                                                                                                                                                      | 9.5                                                          | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK011_02         | Hawkins Creek - Hawkir    | ns Reservoir Dam to mouth                                                                                                                                                          | 23.58                                                        | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         | 6/13/2019 (RE): Five E. coli samples collected 8/23/2017 tl<br>geometric mean of 2175.5 cfu/100 mL, which exceeds the<br>criterion, and indicates non-support of Secondary Contact | nrough 9/13/20 <sup>.</sup><br>126 cfu/100 mL<br>Recreation. | 17 had a<br>-      |
| ID17040208SK011_03         | lower Hawkins Creek       |                                                                                                                                                                                    | 9.11                                                         | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         | 1/3/2018 (HH, AS): 2008 E. coli geometric mean indicates supported (1634 cfu/100 mL),                                                                                              | recreational use                                             | e is not           |
| ID17040208SK012L_0L        | Hawkins Reservoir         |                                                                                                                                                                                    | 67.42                                                        | Acres              |
| DISSOLVED OXYGEN           |                           | Based on field sampling in 2007, TP is very high (mean=0. sampling event=60, and there were several exceedences of the column.                                                     | 19), one chloro<br>f DO in the upp                           | phyll a<br>ber 80% |
| ID17040208SK013_02b        | Yellow Dog Creek - head   | dwaters to Hawkins Creek                                                                                                                                                           | 6.01                                                         | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK014_03         | Cherry Creek - lower      |                                                                                                                                                                                    | 1.57                                                         | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK014_04         | Birch Creek from Cherry   | Creek to Marsh Creek confluences                                                                                                                                                   | 2.74                                                         | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK015_03         | Birch Creek - source to   | mouth                                                                                                                                                                              | 3.96                                                         | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK015_03a        | Birch Creek - Mill Creek  | to I-15 road crossing                                                                                                                                                              | 2.8                                                          | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK016_02b        | East Bob Smith Creek      |                                                                                                                                                                                    | 6.73                                                         | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK016_02c        | West Bob Smith Creek      |                                                                                                                                                                                    | 4.09                                                         | Miles              |
| ESCHERICHIA COLI (E. COLI) | )                         | 7/14/17 (HH, JW): Five E. coli samples collected 7/12/2016 a geometric mean of 310 cfu/100 mL, which exceeds the E criterion of 126 cfu/100 mL.                                    | 6 through 8/1/20<br>. coli water qua                         | 016 had<br>llity   |
| ID17040208SK016_03         | Portneuf River- Chester   | field Reservoir to Toponce Creek                                                                                                                                                   | 5.52                                                         | Miles              |
| TEMPERATURE                |                           |                                                                                                                                                                                    |                                                              |                    |
| ID17040208SK016_04         | Portneuf River- hist. cha | nnel, Toponce to Twentyfour Mile Ck                                                                                                                                                | 2.82                                                         | Miles              |
| TEMPERATURE                |                           | Based on the sonde data collected on the section of the Po<br>of Marsh Creek. Exceeded 24 days in 2004 and 25 days ir                                                              | ortneuf River up<br>1 2006.                                  | stream             |

| ID17040208SK016_05 Portneuf River- Twentyfo | our Mile Creek to Marsh Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.21                                                                                                                                                           | Miles                           |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| MERCURY                                     | 03/16/2010 (NED) - Mercury listing based on the DEQ report<br>River Fish Tissue and Water Column Mercury Sampling Res<br>level of 0.396 mg/kg for Brown Trout collected from the Tope<br>reported. This result exceeds the human health criterion of 0                                                                                                                                                                                                                                                                                                                      | , "Upper Portne<br>ults 2007". A Me<br>z reach was<br>.3 mg/kg.                                                                                                 | uf<br>ercury                    |
| TEMPERATURE                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                 |
| ID17040208SK017_02d Dempsey Creek           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.42                                                                                                                                                           | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                 |
| COMBINED BIOTA/HABITAT BIOASSESSMENTS       | 12/2/2019 (GAM): Salmonids less than 100 millimeters were<br>BURP site 2016SPOCA053, indicating Salmonid Spawning i<br>(Idaho's WBAG III, section 6.5.2).                                                                                                                                                                                                                                                                                                                                                                                                                   | not collected at<br>s not supported                                                                                                                             | :                               |
| ID17040208SK021_02e upper Toponce Creek     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.59                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  | 6/13/2019 (RE): Five E. coli samples collected 8/15/2016 thr geometric mean of 156.4 cfu/100 mL, which exceeds the 120 criterion, and indicates non-support of Secondary Contact Re                                                                                                                                                                                                                                                                                                                                                                                         | ough 9/07/2016<br>3 cfu/100 mL<br>ecreation.                                                                                                                    | had a                           |
| ID17040208SK022_03a North Fork Pebble Creel | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  | 6/13/2019 (RE): Five E. coli samples collected 7/13/2016 thr<br>geometric mean of 1095.5 cfu/100 mL, which exceeds the 12<br>criterion, and indicates non-support of Secondary Contact Re                                                                                                                                                                                                                                                                                                                                                                                   | ough 8/1/2016 h<br>26 cfu/100 mL<br>ecreation.                                                                                                                  | nad a                           |
| ID17040208SK023_02d Sawmill Creek           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.28                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  | 12/5/2019 (GAM): This AU was sampled for E. coli on 8/22, 9/13/2016. The geometric mean was 2419.2 cfu/100 mL whi water quality criterion of 126 cfu/100 mL.                                                                                                                                                                                                                                                                                                                                                                                                                | 3/29, 9/1, 9/7, ar<br>ch is greater tha                                                                                                                         | nd<br>ın the                    |
| ID17040208SK023_02e upper Moonlight Creek   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.76                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                 |
| ID17040208SK023_02f lower Moonlight Creek   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                 |
| ID17040208SK023_02g West Fork Rapid Creek   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.58                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  | 6/13/2019 (RE): Five E. coli samples collected 7/13/2016 thr<br>geometric mean of 241.6 cfu/100 mL, which exceeds the 120<br>criterion, and indicates non-support of Secondary Contact Re                                                                                                                                                                                                                                                                                                                                                                                   | ough 8/1/2016 h<br>3 cfu/100 mL<br>ecreation.                                                                                                                   | nad a                           |
| ID17040208SK023_02i North Fork Rapid Creek  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.87                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  | 8/24/2020 (GM): Five E. coli samples collected 7/13/2016 th<br>geometric mean of 934 cfu/100 mL, which exceeds the 126 of<br>and indicates non-support of Secondary Contact Recreation.                                                                                                                                                                                                                                                                                                                                                                                     | rough 8/1/2016 l<br>cfu/100 mL crite                                                                                                                            | had a<br>rion,                  |
| ID17040208SK024_03 lower Pocatello Creek    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.91                                                                                                                                                            | Miles                           |
| ESCHERICHIA COLI (E. COLI)                  | 12/9/2019 (RE, GAM): Primary Contact Recreation is presum<br>of immersion/ingestion of water. 2016 BURP depth measure<br>greater than 24 inches, which is the minimum depth recomm<br>Contact Recreation by WBAG 3. A single E. coli sample was<br>8/29/2016 and had a concentration of 107.1 cfu/100 mL, whi<br>406 cfu/100 mL concentration required to trigger additional s<br>the DEQ and the City of Pocatello have collected E. coli sar<br>impairment to secondary contact recreation, as stated in the<br>MS4 / NPDES 401 certification (IDS-028053) issued 5/20/20 | ned due to likelih<br>ments were also<br>ended for Prima<br>collected on<br>ch is less than ti<br>ampling, howev<br>nples that show<br>City of Pocatelli<br>19. | hood<br>ary<br>he<br>er,<br>o's |

| ID17040208SK024_03a        | middle Pocatello Creek   | - Fks to Outback Driving Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.02                                                                                                                                                                                                                       | Miles                                             |
|----------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| ESCHERICHIA COLI (E. COLI) | )                        | 12/9/2019 (GAM, RE): Secondary Contact Recreation<br>unlikelihood of immersion/ingestion of water. 2017 BU<br>were also less than 24 inches, which is the minimum<br>Primary Contact Recreation by WBAG 3. A single E.<br>9/11/2017 and had a concentration of 307.6 cfu/100 n<br>576 cfu/100 mL concentration required to trigger add<br>the DEQ and the City of Pocatello have collected E.<br>impairment to secondary contact recreation, as stated<br>MS4 / NPDES 401 certification (IDS-028053) issued | n is presumed due to t<br>JRP depth measurement<br>depth recommended is<br>coli sample was collect<br>mL, which is less than<br>itional sampling, howe<br>coli samples that show<br>d in the City of Pocatel<br>5/20/2019. | he<br>for<br>cted on<br>the<br>ver,<br>v<br>llo's |
| ID17040208SK026_02a        | North Fork Pocatello Cre | eek - headwaters to Pocatello Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.53                                                                                                                                                                                                                      | Miles                                             |
| ESCHERICHIA COLI (E. COLI) | )                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| 17040209                   | Lake Walcott             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| ID17040209SK004L_0L        | Lake Walcott (Snake Riv  | ver)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8384.71                                                                                                                                                                                                                    | Acres                                             |
| MERCURY                    |                          | 2/18/2010 (NED)- A mercury level of 0.332 mg/kg, w<br>health criterion of 0.3 mg/kg, was reported for the sar<br>that were collected June 2005.                                                                                                                                                                                                                                                                                                                                                             | rhich exceeds the hum<br>mples of Small Mouth I                                                                                                                                                                            | an<br>Bass                                        |
| ID17040209SK007_03         | Fall Creek - source to m | outh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.66                                                                                                                                                                                                                       | Miles                                             |
| COMBINED BIOTA/HABITAT     | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| ID17040209SK008_03         | Rock Creek (Spring Cre   | ek and tributaries)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.04                                                                                                                                                                                                                       | Miles                                             |
| COMBINED BIOTA/HABITAT     | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| ID17040209SK008_04         | Rock Creek - lower (Roc  | ckland Valley)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.53                                                                                                                                                                                                                      | Miles                                             |
| ESCHERICHIA COLI (E. COLI) | )                        | 10/16/2014 (Greg Mladenka) - A five-sample E. coli g<br>was collected from August 7 through August 25, 2014<br>the 126 cfu/100mL criterion value, therefore the recre<br>body is considered impaired by bacteria.                                                                                                                                                                                                                                                                                           | geomean of 1,079 cfu/<br>4. This value is greater<br>actional use of this wat                                                                                                                                              | 100mL<br>r than<br>er                             |
| ID17040209SK011_02         | Snake River - American   | Falls Reservoir Dam to Rock Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.64                                                                                                                                                                                                                      | Miles                                             |
| COMBINED BIOTA/HABITAT     | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| ID17040209SK011_03         | Snake River - American   | Falls Reservoir Dam to Rock Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.82                                                                                                                                                                                                                       | Miles                                             |
| COMBINED BIOTA/HABITAT     | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| ID17040209SK012_02         | Warm Creek - source to   | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.07                                                                                                                                                                                                                      | Miles                                             |
| COMBINED BIOTA/HABITAT     | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| ESCHERICHIA COLI (E. COLI) | )                        | 12/13/2019 (TW) - The geometric mean for samples<br>field season is 340 cfu/100mL, which is above the cri<br>E. coli (WBAG III Section 5.2.6). Therefore the use is                                                                                                                                                                                                                                                                                                                                         | collected during the 20<br>terion of 126 cfu/100m<br>considered not suppo                                                                                                                                                  | )17<br>IL for<br>orting.                          |
| ID17040209SK013_02         | Copper Creek             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113.48                                                                                                                                                                                                                     | Miles                                             |
| COMBINED BIOTA/HABITAT     | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |
| ID17040209SK013_03         | 3rd order Cottonwood C   | k in the Craters of the Moon Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.37                                                                                                                                                                                                                      | Miles                                             |
|                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                   |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

### 17040210 Raft

| ID17040210SK006_02                                                                                                                                   | Clyde Creek - source to                                                        | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.87                                                                                                                                                                           | Miles                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ESCHERICHIA COLI (E. COLI)                                                                                                                           | )                                                                              | 12/13/2019 (TW) : The geometric mean for samples collect field season is 1720 cfu/100mL, which is above the criteric E. coli (WBAG III Section 5.2.6). The use will remain not s                                                                                                                                                                                                                                                                                                                | ted during the 2<br>on of 126 cfu/100<br>upporting.                                                                                                                             | 017<br>mL for                                                                          |
| ID17040210SK006_03                                                                                                                                   | Clyde Creek - source to                                                        | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.32                                                                                                                                                                            | Miles                                                                                  |
| ESCHERICHIA COLI (E. COLI                                                                                                                            | )                                                                              | 12/13/2019 (TW): The geometric mean for samples collect season is 1309 cfu/100mL, which is above the criterion of coli (WBAG III Section 5.2.6). Therefore the use is considered                                                                                                                                                                                                                                                                                                                | ted during the 20<br>126 cfu/100mL f<br>ered not supporti                                                                                                                       | 17 field<br>or E.<br>ng.                                                               |
| ID17040210SK021_03                                                                                                                                   | Sublett Creek - source to                                                      | o Sublett Reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.9                                                                                                                                                                             | Miles                                                                                  |
| ESCHERICHIA COLI (E. COLI                                                                                                                            | )                                                                              | 3/2/2012 (S. Woodhead) - Sublett Creek was monitored to meeting the secondary contact recreation beneficial use demonitoring season. After assessing the data, the E. colid of 310 col/100 mL which is greater than the 126 col/100 m therefore the recreational use of this water body is consider bacteria.                                                                                                                                                                                   | determine if it w<br>uring the 2011<br>ata showed a ge<br>L criterion value,<br>rred impaired by                                                                                | as<br>omean                                                                            |
| 17040211                                                                                                                                             | Goose                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                        |
| ID17040211SK002L_0L                                                                                                                                  | Lower Goose Creek Res                                                          | servoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1005.99                                                                                                                                                                         | Acres                                                                                  |
| MERCURY                                                                                                                                              |                                                                                | 2/18/2010 (NED) - Mercury listing based on the DEQ report<br>and Selenium in Fish Tissue from Idaho Lakes and Resen<br>Assessment" (Essig and Kostermann, May 2008). A Mercu<br>mg/kg, which exceeds the human health criterion of 0.3 me                                                                                                                                                                                                                                                       | rt, "Arsenic, Mero<br>voirs: A Statewid<br>ury level of 0.378<br>g/kg, was reporte                                                                                              | cury,<br>e<br>k<br>ed.                                                                 |
| ID17040211SK007_02                                                                                                                                   | Trout Creek - source to                                                        | ldaho/Nevada border                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.92                                                                                                                                                                           | Miles                                                                                  |
| SEDIMENTATION/SILTATION                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                        |
| 17040212                                                                                                                                             | Upper Snake-Roc                                                                | :k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                        |
| ID17040212SK000_03A                                                                                                                                  | Yahoo Creek                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                        |
| 1                                                                                                                                                    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.23                                                                                                                                                                            | Miles                                                                                  |
| SEDIMENTATION/SILTATION                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.23                                                                                                                                                                            | Miles                                                                                  |
| SEDIMENTATION/SILTATION                                                                                                                              | )                                                                              | 10/17/2014 (NED) - E. coli criteria values were developed<br>the fecal coliform criteria and were directly calculated by tr<br>criteria using ratios of observed water quality data from EF<br>studies. Recent E. coli data show a geomean of 811 cfu/10<br>than the 126 cfu/100mL criterion value, therefore the recre<br>body is considered impaired by bacteria. Due to change in<br>standard, fecal coliform is being delisted and E. coli is being                                         | 2.23<br>to be as protecti<br>anslating fecal c<br>2A epidemiologic<br>00mL which is gr<br>ational use of th<br>the water quality<br>ing listed in Catego                        | Miles<br>// we as<br>oliform<br>al<br>weater<br>/ s water<br>/<br>ory 5.               |
| SEDIMENTATION/SILTATION<br>ESCHERICHIA COLI (E. COLI)<br>ID17040212SK010_03                                                                          | )<br>Mud Creek - Deep Cree                                                     | 10/17/2014 (NED) - E. coli criteria values were developed<br>the fecal coliform criteria and were directly calculated by tr<br>criteria using ratios of observed water quality data from EF<br>studies. Recent E. coli data show a geomean of 811 cfu/10<br>than the 126 cfu/100mL criterion value, therefore the recre<br>body is considered impaired by bacteria. Due to change in<br>standard, fecal coliform is being delisted and E. coli is being<br>k Road (T09S, R14E) to mouth         | 2.23<br>to be as protecti<br>anslating fecal c<br>2A epidemiologic<br>00mL which is gr<br>ational use of th<br>the water quality<br>ng listed in Categ<br>1.07                  | Miles<br>// e as<br>obliform<br>al<br>reater<br>// s water<br>//<br>ory 5.<br>Miles    |
| SEDIMENTATION/SILTATION<br>ESCHERICHIA COLI (E. COLI<br>ID17040212SK010_03<br>TEMPERATURE                                                            | )<br>Mud Creek - Deep Cree                                                     | 10/17/2014 (NED) - E. coli criteria values were developed<br>the fecal coliform criteria and were directly calculated by tr<br>criteria using ratios of observed water quality data from EF<br>studies. Recent E. coli data show a geomean of 811 cfu/10<br>than the 126 cfu/100mL criterion value, therefore the recre<br>body is considered impaired by bacteria. Due to change in<br>standard, fecal coliform is being delisted and E. coli is beir<br>k Road (T09S, R14E) to mouth          | 2.23<br>to be as protecti<br>anslating fecal c<br>2A epidemiologic<br>00mL which is gr<br>ational use of th<br>the water quality<br>ng listed in Categ<br>1.07                  | Miles<br>Ve as<br>oliform<br>al<br>eater<br>s water<br>v<br>pory 5.<br>Miles           |
| SEDIMENTATION/SILTATION<br>ESCHERICHIA COLI (E. COLI<br>ID17040212SK010_03<br>TEMPERATURE<br>ID17040212SK012_03                                      | )<br>Mud Creek - Deep Cree<br>Cedar Draw - source to                           | 10/17/2014 (NED) - E. coli criteria values were developed<br>the fecal coliform criteria and were directly calculated by tr<br>criteria using ratios of observed water quality data from EF<br>studies. Recent E. coli data show a geomean of 811 cfu/10<br>than the 126 cfu/100mL criterion value, therefore the recre<br>body is considered impaired by bacteria. Due to change in<br>standard, fecal coliform is being delisted and E. coli is beir<br>k Road (T09S, R14E) to mouth<br>mouth | 2.23<br>to be as protecti<br>anslating fecal c<br>2A epidemiologic<br>00mL which is gr<br>ational use of th<br>the water quality<br>ng listed in Categ<br>1.07<br>2.93          | Miles<br>Ve as<br>oliform<br>al<br>eater<br>is water<br>v<br>iory 5.<br>Miles<br>Miles |
| SEDIMENTATION/SILTATION<br>ESCHERICHIA COLI (E. COLI<br>ID17040212SK010_03<br>TEMPERATURE<br>ID17040212SK012_03<br>TEMPERATURE                       | )<br>Mud Creek - Deep Cree<br>Cedar Draw - source to                           | 10/17/2014 (NED) - E. coli criteria values were developed<br>the fecal coliform criteria and were directly calculated by tr<br>criteria using ratios of observed water quality data from EF<br>studies. Recent E. coli data show a geomean of 811 cfu/10<br>than the 126 cfu/100mL criterion value, therefore the recre<br>body is considered impaired by bacteria. Due to change in<br>standard, fecal coliform is being delisted and E. coli is bein<br>k Road (T09S, R14E) to mouth<br>mouth | 2.23<br>to be as protecti<br>anslating fecal c<br>2A epidemiologic<br>00mL which is gr<br>ational use of th<br>the water quality<br>ng listed in Categ<br>1.07<br>2.93          | Miles<br>Ve as<br>oliform<br>al<br>eater<br>is water<br>v<br>iory 5.<br>Miles<br>Miles |
| SEDIMENTATION/SILTATION<br>ESCHERICHIA COLI (E. COLI<br>ID17040212SK010_03<br>TEMPERATURE<br>ID17040212SK012_03<br>TEMPERATURE<br>ID17040212SK014_02 | )<br>Mud Creek - Deep Cree<br>Cedar Draw - source to<br>North/Dry Cottonwood C | 10/17/2014 (NED) - E. coli criteria values were developed<br>the fecal coliform criteria and were directly calculated by tr<br>criteria using ratios of observed water quality data from EF<br>studies. Recent E. coli data show a geomean of 811 cfu/10<br>than the 126 cfu/100mL criterion value, therefore the recre<br>body is considered impaired by bacteria. Due to change in<br>standard, fecal coliform is being delisted and E. coli is beir<br>k Road (T09S, R14E) to mouth<br>mouth | 2.23<br>to be as protecti<br>anslating fecal c<br>2A epidemiologic<br>00mL which is gr<br>ational use of th<br>the water quality<br>ng listed in Categ<br>1.07<br>2.93<br>37.64 | Miles<br>Ve as<br>oliform<br>al<br>eater<br>is water<br>v<br>jory 5.<br>Miles<br>Miles |

TEMPERATURE

## Upper Snake

| ID17040212SK015_02        | McMullen Creek - source to mouth                                                                                                                                         | 49.99                                                          | Miles                |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------|
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| ID17040212SK015_03        | McMullen Creek - source to mouth                                                                                                                                         | 9.41                                                           | Miles                |
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| ID17040212SK020_07        | Snake River - Milner Dam to Twin Falls                                                                                                                                   | 21.31                                                          | Miles                |
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| ID17040212SK022_03        | Dry Creek - source to mouth                                                                                                                                              | 9.85                                                           | Miles                |
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| ID17040212SK034_04        | Clover Creek - Pioneer Reservoir Dam outlet to Snake River                                                                                                               | 10.1                                                           | Miles                |
| TEMPERATURE               | 1/28/2010 - EPA add January 2001.                                                                                                                                        |                                                                |                      |
| ID17040212SK035_04        | Pioneer Reservoir                                                                                                                                                        | 228.92                                                         | Acres                |
| ESCHERICHIA COLI (E. COLI | ) 3/20/2009 (NED) - Fecal coliform has been delisted an the impairment due to a change in DEQ's water quality associated with fecal coliform to a more specific criterio | d E.coli has been lis<br>standards from a c<br>on for E. coli. | sted as<br>criterion |
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| ID17040212SK036_02        | Clover Creek - source to Pioneer Reservoir                                                                                                                               | 72.84                                                          | Miles                |
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| ID17040212SK038_02        | Catchall Creek - source to mouth                                                                                                                                         | 15.86                                                          | Miles                |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                                                                                                                                           |                                                                |                      |
| ID17040212SK040_02        | Calf Creek - source to mouth                                                                                                                                             | 35.9                                                           | Miles                |
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| ID17040212SK040_03        | Calf Creek - source to mouth                                                                                                                                             | 6.57                                                           | Miles                |
| CAUSE UNKNOWN             | Nutrients Suspected Impairment                                                                                                                                           |                                                                |                      |
| TEMPERATURE               |                                                                                                                                                                          |                                                                |                      |
| FECAL COLIFORM            |                                                                                                                                                                          |                                                                |                      |
| SEDIMENTATION/SILTATION   | I                                                                                                                                                                        |                                                                |                      |
| 17040213                  | Salmon Falls                                                                                                                                                             |                                                                |                      |
| ID17040213SK007_06        | Salmon Falls Creek                                                                                                                                                       | 0.94                                                           | Miles                |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                                                                                                                                           |                                                                |                      |
| 17040214                  | Beaver-Camas                                                                                                                                                             |                                                                |                      |
| ID17040214SK006_03        | Ching Creek - source to mouth                                                                                                                                            | 11.93                                                          | Miles                |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS                                                                                                                                                           |                                                                |                      |
|                           |                                                                                                                                                                          |                                                                |                      |

ESCHERICHIA COLI (E. COLI)

## Upper Snake

| ID17040214SK008_02        | Crooked/Crab Creek - so  | ource to mouth                                                                                                                                                                                                                                                                            | 30.04                                                                                                 | Miles                  |
|---------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------|
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK008_03        | Crooked/Crab Creek - so  | ource to mouth                                                                                                                                                                                                                                                                            | 10.83                                                                                                 | Miles                  |
| ESCHERICHIA COLI (E. COLI | )                        |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK009_02        | Warm Creek - Cottonwo    | od Cr. to mouth and East Camas Creek                                                                                                                                                                                                                                                      | 11.69                                                                                                 | Miles                  |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| FECAL COLIFORM            |                          |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK010_03        | East Camas Creek         |                                                                                                                                                                                                                                                                                           | 4.26                                                                                                  | Miles                  |
| ESCHERICHIA COLI (E. COLI | )                        | 9/30/2014 (JF) - E. coli geometric mean sampling conc<br>calculated geometric mean of 134.6 cfu/100mL, which<br>cfu/100mL criterion value.                                                                                                                                                | lucted in 2012 result<br>exceeds the 126                                                              | ed in a                |
| ID17040214SK013_02        | West Camas Creek -sou    | rce to Targhee National Forest Boundary                                                                                                                                                                                                                                                   | 52.54                                                                                                 | Miles                  |
| SEDIMENTATION/SILTATION   |                          | 12/14/2009 (SR) - Wolman Pebble Count data indicate sand/silt in nearly all streams in this AU.                                                                                                                                                                                           | s a high percentage                                                                                   | of                     |
| ID17040214SK013_03        | West Camas Creek -sou    | rce to Targhee National Forest Boundary                                                                                                                                                                                                                                                   | 6.54                                                                                                  | Miles                  |
| ESCHERICHIA COLI (E. COLI | )                        | 9/30/2014 (JF) - E. coli geometric mean sampling com<br>geometric mean concentration of 282.2 cfu/100mL, wh<br>cfu/100mL criterion value. Therefore, the recreational u<br>considered impaired by bacteria. 6/29/17 (JW, TS): ,<br>collected 8/11/13 had a concentration of 308 cfu/100 m | pleted in 2012 result<br>ich exceeds the 126<br>use of this water bod<br>A single E. coli samp<br>nL. | ed in a<br>y is<br>⊳le |
| ID17040214SK016_02        | Rattlesnake Creek - sou  | rce to mouth                                                                                                                                                                                                                                                                              | 56.84                                                                                                 | Miles                  |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK016_03        | Rattlesnake Creek - sou  | rce to mouth                                                                                                                                                                                                                                                                              | 10.51                                                                                                 | Miles                  |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK017_02        | Threemile Creek - sourc  | e to mouth                                                                                                                                                                                                                                                                                | 23.1                                                                                                  | Miles                  |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK017_03        | Threemile Creek - sourc  | e to mouth                                                                                                                                                                                                                                                                                | 1.82                                                                                                  | Miles                  |
| FECAL COLIFORM            |                          |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK018_02        | Beaver Creek - Miners C  | Creek to Rattlesnake Creek                                                                                                                                                                                                                                                                | 40.25                                                                                                 | Miles                  |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                                                                                           |                                                                                                       |                        |
| ID17040214SK018_04        | Beaver Creek - Miners C  | Creek to Rattlesnake Creek                                                                                                                                                                                                                                                                | 8.93                                                                                                  | Miles                  |
| ESCHERICHIA COLI (E. COLI | )                        | 9/30/2014 (JF) - E. coli geometric mean sampling in 20 mean concentration of 333.6 cfu/100mL, which exceed criterion value.                                                                                                                                                               | )12 resulted in a geo<br>is the 126 cfu/100mL                                                         | metric                 |
| ID17040214SK019_03        | Miners Creek - source to | mouth                                                                                                                                                                                                                                                                                     | 0.97                                                                                                  | Miles                  |

COMBINED BIOTA/HABITAT BIOASSESSMENTS

| ID17040214SK020_02        | Beaver Creek - Idaho C   | reek to Miners Creek                                                                                                                                                                                                  | 12.84                                                                | Miles                 |
|---------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|
| ESCHERICHIA COLI (E. COLI | )                        |                                                                                                                                                                                                                       |                                                                      |                       |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040214SK021_02        | Beaver Creek - source t  | o Idaho Creek                                                                                                                                                                                                         | 68.41                                                                | Miles                 |
| ESCHERICHIA COLI (E. COLI | )                        | 9/30/2014 (JF) - The five-sample geometric mean E. cc<br>West Modoc Creek in 2012 had a value of 433.3 cfu/10<br>exceeds the 126 cfu/100mL criterion value; therefore th<br>water body is still impaired by bacteria. | bli samples collected<br>0mL was. This valu<br>ne recreational use o | d on<br>ıe<br>of this |
| ID17040214SK023_02        | Pleasant Valley Creek -  | source to mouth                                                                                                                                                                                                       | 23.67                                                                | Miles                 |
| ESCHERICHIA COLI (E. COLI | )                        | 9/30/2014 (JF) - E. coli geometric mean sampling in 20<br>Creek resulted in a geometric mean concentration of 18<br>exceeds the 126 cfu/100mL criterion value.                                                        | 12 on School Sectio<br>329.1 cfu/100mL, w                            | on<br>'nich           |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                       |                                                                      |                       |
| 17040215                  | Medicine Lodge           |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK005_02        | West Fork Indian Creek   | - source to mouth                                                                                                                                                                                                     | 24.46                                                                | Miles                 |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK008_02        | Middle Creek - source to | Dry Creek                                                                                                                                                                                                             | 12.12                                                                | Miles                 |
| SEDIMENTATION/SILTATION   | l                        |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK009_02        | Dry Creek - source to m  | outh                                                                                                                                                                                                                  | 5.2                                                                  | Miles                 |
| SEDIMENTATION/SILTATION   | I                        |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK012_02        | Irving Creek - source to | mouth                                                                                                                                                                                                                 | 13.69                                                                | Miles                 |
| ESCHERICHIA COLI (E. COLI | )                        |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK013_02        | Warm Creek - source to   | mouth                                                                                                                                                                                                                 | 14.88                                                                | Miles                 |
| SEDIMENTATION/SILTATION   | I                        |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK013_03        | Warm Creek - source to   | mouth                                                                                                                                                                                                                 | 2.44                                                                 | Miles                 |
| SEDIMENTATION/SILTATION   | l                        |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK014_02        | Divide Creek - source to | mouth                                                                                                                                                                                                                 | 13.86                                                                | Miles                 |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK015_02        | Horse Creek - source to  | mouth                                                                                                                                                                                                                 | 8.42                                                                 | Miles                 |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                       |                                                                      |                       |
| SEDIMENTATION/SILTATION   | l                        |                                                                                                                                                                                                                       |                                                                      |                       |
| ID17040215SK018_02        | Deep Creek - source to   | mouth                                                                                                                                                                                                                 | 77.08                                                                | Miles                 |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS           |                                                                                                                                                                                                                       |                                                                      |                       |

SEDIMENTATION/SILTATION

# Upper Snake

| ID17040215SK018_03        | Deep Creek - source to    | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.98                                                                                                       | Miles          |
|---------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------|
| SEDIMENTATION/SILTATION   | I                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| ID17040215SK021_02        | Crooked Creek - source    | to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.1                                                                                                       | Miles          |
| SEDIMENTATION/SILTATION   | I                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| ID17040215SK021_03        | Crooked Creek - source    | to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.67                                                                                                       | Miles          |
| SEDIMENTATION/SILTATION   |                           | 11/26/2019 (RE): Crooked Creek was incorrectly placed in Ca<br>sedimentation/siltation during the 2008 Integrated Report. Th<br>load allocations associated with this AU in the Medicine Lodg<br>Assessment and TMDL (2003) and there is no reference to a<br>approval in EPA's TMDL approval letter (May 6, 2003). Durin<br>2019, DEQ collected McNeil sediment samples from this AU<br>percent fines were exceeding the 28% threshold, indicating a<br>sedimentation/siltation impairment. Therefore, DEQ is placing<br>sedimentation/siltation in Category 5. | ategory 4a for<br>ere are no sedir<br>je Subbasin<br>sediment TMD<br>g the summer o<br>and found that<br>g | ment<br>L<br>f |
| 17040216                  | Birch                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| ID17040216SK002_04        | Birch Creek - Pass Cree   | ek to Reno Ditch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.08                                                                                                       | Miles          |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| 17040217                  | Little Lost               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| ID17040217SK001 02a       | Warm Spring Creek         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.01                                                                                                       | Miles          |
| TEMPERATURE               |                           | 12/30/2019 (AB): Temperature data collected by the BLM in 2 exceedances of salmonid spawning temperature criteria. Sale therefore not fully supported in this AU.                                                                                                                                                                                                                                                                                                                                                                                                | 2018 show<br>monid spawning                                                                                | l is           |
| ID17040217SK019_03        | Summit Creek - source     | to mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                          | Miles          |
| ESCHERICHIA COLI (E. COLI | )                         | 11/12/2019 (AB): The geometric mean concentration of E.col<br>samples collected in 2017 was 204.2 MPN/100ml, which exc<br>Secondary Contact Recreation support (Idaho's WBAG III, se                                                                                                                                                                                                                                                                                                                                                                             | i cells from 5 wa<br>eeds the criteria<br>ection 7.2).                                                     | ater<br>I for  |
| ID17040217SK023_02        | Squaw Creek - source to   | o mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.89                                                                                                      | Miles          |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| 17040218                  | Big Lost                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| ID17040218SK009_02        | Pass Creek - source to    | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.12                                                                                                      | Miles          |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| ID17040218SK009_03        | Pass Creek - source to    | mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.22                                                                                                      | Miles          |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |
| ESCHERICHIA COLI (E. COLI | )                         | 8/8/17 (TS, JW): Five E. coli samples collected 8/28/13 throu<br>geometric mean concentration of 140 cfu/100 mL, which exce<br>mL E. coli criterion.                                                                                                                                                                                                                                                                                                                                                                                                             | gh 9/24/13 had<br>eeds the 126 cfi                                                                         | a<br>u/100     |
| ID17040218SK024_02        | Big Lost River - Burnt Ci | reek to Thousand Springs Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101.04                                                                                                     | Miles          |
|                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                            |                |

# Upper Snake

|                           |                           |                                                                                                                                                                                     | 4.4                                                      | NA <sup>11</sup> |
|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------|
| _ID17040218SK024_03       | Big Lost River - Burnt Ci | reek to Thousand Springs Creek                                                                                                                                                      | 1.4                                                      | Miles            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                          |                  |
| ID17040218SK025_02        | Big Lost River - Summit   | Creek to and including Burnt Creek                                                                                                                                                  | 30.41                                                    | Miles            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                          |                  |
| ID17040218SK032_04        | Fall Creek - source to m  | outh                                                                                                                                                                                | 2.22                                                     | Miles            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                          |                  |
| ID17040218SK035_02        | Star Hope Creek - Lake    | Creek to mouth                                                                                                                                                                      | 17.1                                                     | Miles            |
| ESCHERICHIA COLI (E. COLI | ))                        | 2/14/2016 (JW) - Five E. coli samples collected 8/14/2016<br>had a geometric mean value of 587 cfu/100 mL, which ex<br>mL criterion value.                                          | 4-8/28/2014 by W<br>ceeds the 126 cft                    | WP<br>J/100      |
| ID17040218SK035_04        | Star Hope Creek - Lake    | Creek to mouth                                                                                                                                                                      | 7.63                                                     | Miles            |
| ESCHERICHIA COLI (E. COLI | ))                        | 8/8/17 (JW, TS): Five E. coli samples collected 8/14/14 th geometric mean of 346.2 cfu/100 MI, which exceeds the criterion value of 126 cfu/100 mL.                                 | hrough 8/28/14 ha<br>water quality stand                 | ld a<br>dards    |
| ID17040218SK036_02        | Star Hope Creek - source  | ce to Lake Creek                                                                                                                                                                    | 20.41                                                    | Miles            |
| ESCHERICHIA COLI (E. COLI | ))                        | Five E. coli samples collected 8/14/2014-8/28/2014 by W mean value of 248.7 cfu/100 mL, which exceeds the wate criterion value of 126 cfu/100 mL.                                   | 'WP had a geome<br>er quality standard                   | tric<br>Is       |
| ID17040218SK037_02        | Muldoon Canyon Creek      | - source to mouth                                                                                                                                                                   | 25.94                                                    | Miles            |
| ESCHERICHIA COLI (E. COLI | ))                        | Five E. coli samples collected by WWP 8/12/2014-8/28/2 mean value of 339.1 cfu/100 mL, which exceeds the wate criterion value of 126 cfu/100 mL.                                    | 2014 had a geome<br>er quality standard                  | tric<br>Is       |
| ID17040218SK041_02        | Corral Creek - source to  | mouth                                                                                                                                                                               | 18.03                                                    | Miles            |
| ESCHERICHIA COLI (E. COLI | ))                        | 9/30/2014 (JF) - 2012 E. coli data collected on Corral Cre<br>206 cfu/100mL, which exceeds the 126 cfu/100mL criterio<br>recreational use of this water body is considered impaired | ek show a geome<br>on value, thereford<br>d by bacteria. | an of<br>e the   |
| ID17040218SK049_04        | Cherry Creek-confluenc    | e of Left Fork Cherry and Lupine Creek                                                                                                                                              | 13.46                                                    | Miles            |
| ESCHERICHIA COLI (E. COLI | ))                        | 8/8/2017 (TS, JW): Five E. coli samples collected 9/9/15 geometric mean concentration of 188.7 cfu/100 mL, whic cfu/100 mL water quality standards criterion value.                 | through 10/5/15 h<br>h exceeds the 126                   | iad a<br>ວິ      |
| ID17040218SK055_02        | Right Fork Iron Bog Cre   | ek - source to mouth                                                                                                                                                                | 16.29                                                    | Miles            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                          |                  |
| 17040219                  | Big Wood                  |                                                                                                                                                                                     |                                                          |                  |
| ID17040219SK007_03        | Elkhorn Gulch             |                                                                                                                                                                                     | 8.5                                                      | Miles            |
| COMBINED BIOTA/HABITAT    | BIOASSESSMENTS            |                                                                                                                                                                                     |                                                          |                  |
| ID17040219SK027_02        | Croy Creek - source to r  | nouth                                                                                                                                                                               | 37.36                                                    | Miles            |
| ESCHERICHIA COLI (E. COLI | )                         | 06/13/2017 (SW, JW): Five E. coli samples collected in J<br>geometric mean of 563.08 cfu/100 mL, which exceeds th<br>cfu/100 mL.                                                    | uly 2015 had a<br>e E. coli criterion o                  | of 126           |

### Upper Snake

| ID17040219SK030_02       | Black Canyon Creek - so   | purce to mouth                                                                                                                                                  | 107.39                                                         | Miles           |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|
| CAUSE UNKNOWN            |                           | Nutrients Suspected Impairment                                                                                                                                  |                                                                |                 |
| TEMPERATURE              |                           |                                                                                                                                                                 |                                                                |                 |
| TOTAL SUSPENDED SOLIDS   | (TSS)                     |                                                                                                                                                                 |                                                                |                 |
| ID17040219SK030_03       | Black Canyon Creek - so   | purce to mouth                                                                                                                                                  | 24.17                                                          | Miles           |
| CAUSE UNKNOWN            |                           | Nutrients Suspected Impairment                                                                                                                                  |                                                                |                 |
| TOTAL SUSPENDED SOLIDS   | (TSS)                     |                                                                                                                                                                 |                                                                |                 |
| 17040220                 | Camas                     |                                                                                                                                                                 |                                                                |                 |
| ID17040220SK005_02       | Willow Creek - source to  | Beaver Creek                                                                                                                                                    | 53.23                                                          | Miles           |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS            |                                                                                                                                                                 |                                                                |                 |
| ID17040220SK005_03       | Willow Creek - source to  | Beaver Creek                                                                                                                                                    | 4.84                                                           | Miles           |
| SEDIMENTATION/SILTATION  |                           | 1/9/2018 (RB, SW, AS): Bank instability was greater th<br>2015 BURP surveys, indicating that sedimentation is lil<br>aquatic life and salmonid spawning.        | nan 30% for both 20 <sup>,</sup><br>kely impacting cold v      | 11 and<br>vater |
| TEMPERATURE              |                           | 6/20/17 (RB, JW): A temperature logger deployed 4/11 indicated temperature exceeded criteria for both cold w salmonid spawning (Table 40, 2016 Camas Subbasin 5 | /2014 to 9/15/2014<br>/ater aquatic life and<br>5 year review) |                 |
| ID17040220SK012_03       | Soldier Creek - source to | o and including Wardrop Creek                                                                                                                                   | 6.52                                                           | Miles           |
| TEMPERATURE              |                           | 1/9/2018 (RB, SW, AS): 2014 temperature data show water aquatic life and salmonid spawning, not meeting Camas Subbasin Review).                                 | exceedances for bot<br>criteria (Table 88, 20                  | th cold<br>016  |
| ID17040220SK023L_0L      | Mormon Reservoir          |                                                                                                                                                                 | 1583.81                                                        | Acres           |
| MERCURY                  |                           | 2/22/2010 (NED) - A mercury level of 0.33 mg/kg, whic<br>health criterion of 0.3 mg/kg, was reported from the fisl<br>in April 2007.                            | h exceeds the huma<br>h tissue samples coll                    | in<br>lected    |
| 17040221                 | Little Wood               |                                                                                                                                                                 |                                                                |                 |
| ID17040221SK009_03       | West Fork Fish Creek -    | source to Fish Creek Reservoir                                                                                                                                  | 3.33                                                           | Miles           |
| CAUSE UNKNOWN            |                           | Nutrients Suspected Impairment; Low DO due to suspe                                                                                                             | ected Organic Enrich                                           | nment.          |
| FECAL COLIFORM           |                           |                                                                                                                                                                 |                                                                |                 |
| SEDIMENTATION/SILTATION  | l                         |                                                                                                                                                                 |                                                                |                 |
| ID17040221SK015_04       | South Fork Muldoon Cre    | eek - Friedman Creek to mouth                                                                                                                                   | 3.17                                                           | Miles           |
| COMBINED BIOTA/HABITAT I | BIOASSESSMENTS            |                                                                                                                                                                 |                                                                |                 |
| ID17040221SK016_02       | South Fork Muldoon Cre    | ek - source to Friedman Creek                                                                                                                                   | 21.83                                                          | Miles           |
| COMBINED BIOTA/HABITAT   | BIOASSESSMENTS            |                                                                                                                                                                 |                                                                |                 |
| ID17040221SK020_02A      | Cold Spring Creek         |                                                                                                                                                                 | 16.78                                                          | Miles           |
| COMBINED BIOTA/HABITAT I | BIOASSESSMENTS            |                                                                                                                                                                 |                                                                |                 |

ID17040221SK023\_03 Silver Creek - source to mouth

30.86 Miles

COMBINED BIOTA/HABITAT BIOASSESSMENTS

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283569145

# Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

Article *in* Environmental Chemistry · October 2015

| citations<br>9 | 5                                                                                                  | READS<br>394 |                                                                                                       |
|----------------|----------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------|
| 4 autho        | rs:                                                                                                |              |                                                                                                       |
| 2              | Meghan Dovick<br>Binghamton University<br>3 PUBLICATIONS 9 CITATIONS<br>SEE PROFILE                |              | Thomas R Kulp<br>Binghamton University<br>29 PUBLICATIONS 1,316 CITATIONS<br>SEE PROFILE              |
|                | Robert S. Arkle<br>United States Geological Survey<br>43 PUBLICATIONS 899 CITATIONS<br>SEE PROFILE |              | David S Pilliod<br>United States Geological Survey<br>117 PUBLICATIONS 2,642 CITATIONS<br>SEE PROFILE |

Some of the authors of this publication are also working on these related projects:

Antimony Reduction from Sediments of Arsenic Rich Pond View project

# Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

Meghan A. Dovick,<sup>A</sup> Thomas R. Kulp,<sup>A,C</sup> Robert S. Arkle<sup>B</sup> and David S. Pilliod<sup>B</sup>

<sup>A</sup>Department of Geological Sciences and Environmental Studies, Binghamton University, State University of New York (SUNY), Binghamton, NY 13902, USA.

<sup>B</sup>US Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID 83706, USA.

<sup>C</sup>Corresponding author. Email: tkulp@binghamton.edu

**Environmental context.** The food web behaviours of As and Sb are poorly understood. We compare As and Sb bioaccumulation in a contaminated freshwater ecosystem. Metalloid accumulation decreased with increasing trophic level. Bioprecipitated minerals in microbial mats represent a direct route of uptake (by ingestion) of metalloids to tadpoles, which contained the highest concentrations ever reported. We demonstrate food web bioaccumulation, but not biomagification, of As and Sb. We also report an unexpectedly high tolerance of tadpoles to metalloid toxicity.

**Abstract.** We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers > tadpoles > macroinvertebrates > trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg<sup>-1</sup> As and 675 mg kg<sup>-1</sup> Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg<sup>-1</sup> (As) and 375 mg kg<sup>-1</sup> (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

#### Additional keyword: tadpoles.

Received 3 March 2015, accepted 15 June 2015, published online 13 October 2015

#### Introduction

Mining and smelting are major sources of trace metal contamination in freshwater systems. The toxic metalloids arsenic and antimony, either individually or in combination, have caused adverse environmental effects in the vicinity of contaminated mines around the world.<sup>[1–8]</sup> Arsenic is a ubiquitous poison and environmental contaminant and Sb, a toxic element of emerging environmental concern, is increasingly mined for a variety of industrial applications.<sup>[9]</sup> Both elements are classified as pollutants of priority interest by the U.S. Environmental Protection Agency (EPA), which sets the maximum contaminant level (MCL) for As and Sb in drinking water at <10 and <6 µg L<sup>-1</sup> respectively.<sup>[10]</sup> The two metalloids occur in the same group of the periodic table and they exhibit similar, but not necessarily identical, geochemical and toxicological properties that vary with chemical form and oxidation state. In natural waters, these metalloids are present primarily as the pentavalent oxyanions arsenate (As<sup>V</sup>) and antimonate (Sb<sup>V</sup>) in oxygenated settings, or as trivalent arsenite (As<sup>III</sup>) and antimonite (Sb<sup>III</sup>) under anoxic conditions.<sup>[9,11]</sup> Arsenic and Sb are chalcophilic elements that frequently co-occur in sulfidic mineral phases, such as arsenopyrite (FeAsS) or stibnite (Sb<sub>2</sub>S<sub>3</sub>), associated with hydrothermal ores.<sup>[9,12]</sup> The oxidative weathering and dissolution of As- or Sb-bearing sulfide minerals in subaerially exposed mine waste is a common point source for contamination of aquatic ecosystems.

The behaviour of As and Sb in aquatic ecosystems is complex, with the former element being better studied than the latter. Both metalloids can bioaccumulate in freshwater food chains but they are not known to bio-magnify, and in some cases they are reported to undergo bio-diminution with increasing trophic level.<sup>[5,6,8,13–15]</sup> The primary routes of As and Sb uptake into the food chain are through direct contact of organisms with



Fig. 1. Map of the Stibnite Mine field site showing the extent of mine tailings (shaded area), restoration projects and wetlands. Dotted lines are service roads. Sampled reaches in this study are labelled with site name abbreviations (see *Field Site* in the *Experimental* section). Sites GH, OP and MPW are not within map range, and are located  $\sim 1$  km northeast of the tailings.

contaminated water and sediment, or through the consumption of contaminated autotrophs (e.g. biofilm, algae and macrophytes) by invertebrates.<sup>[5,6,16]</sup> Conflicting reports exist regarding the comparative bioaccumulation of As and Sb. Fu et al.<sup>[8]</sup> reported higher bioaccumulation of As than Sb from water to algae, water to fish, and terrestrial soil to earthworms around an active Sb mine. Telford<sup>[5]</sup> also reported greater uptake of As than Sb in aquatic plants in the vicinity of a gold and Sb mine. However, consistently higher bioaccumulation of Sb (compared to As) has been observed in bryophytes, benthic macroinvertebrates, and fish in a river ecosystem affected by a historic realgar mine.<sup>[6]</sup> In general, there have been few and conflicting studies documenting the environmental behaviour of Sb, or the bioconcentration of As and Sb when both metalloids are present.

The primary objective of this study is to compare As and Sb bioaccumulation and biomagification in aquatic organisms from several trophic levels when these metalloids co-occur at varying environmental concentrations. Our study site consisted of a freshwater creek (Meadow Creek) and wetlands near the As- and Sb-contaminated Stibnite Mine in central Idaho (Fig. 1). We assessed As and Sb concentrations and redox speciation in surface water, and concentrations in sediment and stream or wetland biota including: riparian tree leaves, biofilm, algae, submergent macrophytes, benthic macroinvertebrates, frog and toad tadpoles and predatory fish (trout). We sought to determine if As and Sb bioaccumulate or biomagnify in stream or wetland food chains, and to draw inferences with respect to pathways of biological As and Sb uptake in the ecosystem. We note particularly elevated metalloid concentrations in frog and toad tadpoles resulting from the ingestion of microbial mats that contain abundant microbiologically precipitated As- and Sb-bearing minerals. In 1998 and 2005 stretches of Meadow Creek adjacent to the mine tailings were engineered in an attempt to ameliorate toxic metalloid concentrations. Therefore, as a secondary objective, we compare our water, sediment and biota concentrations of As and Sb with values reported pre-remediation, to evaluate the effectiveness of these different restoration strategies in reducing the metalloid burden in the stream ecosystem.

#### Experimental

#### Field site

The Stibnite Mine (also referred to as the Yellow Pine Mine) is located in Valley County, Idaho within the Payette National Forest (44°53.727'N, 115°20.449'W; Fig. 1). The mine operated intermittently from 1931 to 1995 to extract gold, antimony and tungsten ore. Arsenic, Sb, cyanide (CN<sup>-</sup>), and other toxic metals leached from mine tailings into nearby Meadow Creek where it flows through 3.2 km of tailings that were piled in a 0.64-km<sup>2</sup> area near the mine. Between the 1980s and 2000, concentrations of As and CN<sup>-</sup> in the creek consistently exceeded the EPA aquatic chronic level and often exceeded the aquatic acute level for stream dwelling organisms.<sup>[17]</sup> From 1995 to 1999, elevated levels of As, Sb, Hg and CN<sup>-</sup> were documented in Meadow Creek water, sediment, fish and nearby wetlands (Table 1).<sup>[18]</sup> In 2001, the EPA proposed that the mine area be added to the National Priorities List as a potential 'Superfund' site. The South Fork of the Salmon River and its tributaries, including Meadow Creek, are designated critical habitat for three species listed under the US Endangered Species Act: Snake River chinook salmon (Oncorhynchus tshawytscha), Snake River steelhead (Oncorhynchus mykiss) and Columbia River bull trout (Salvelinus confluentus).

In 1998, the USDA Forest Service (USFS), EPA and responsible mining companies engineered a stretch of Meadow Creek adjacent to the tailings in an attempt to ameliorate toxic metalloid concentrations in the stream. They excavated a 1.4-km-long, straight flowing, low gradient stream channel in Meadow Creek to a depth below the mine tailings, and installed a sand filter between the tailings and the stream. The streamside was then armoured with rock substrate. A second project, completed in 2005, diverted the stream channel around the tailings in a 1.6-km-long reach downstream from the 1998 project. The 2005 reach was constructed with greater attention to natural substrates, meanders and gradients, and included a riparian zone between the stream and mine tailings that was constructed with transplanted soil and tree seedlings. We sampled biotic and abiotic components of five reaches of Meadow Creek near the tailings (Fig. 1): (1) an upstream reference reach (URR) that was not affected by the tailings,

### Table 1. Aqueous As and Sb concentration ( $\mu$ g L<sup>-1</sup>) $\pm$ standard deviation and pH levels in surface water from Meadow Creek and wetland sites

n is the number of samples analysed. En-dashes represent no measurement taken. Meadow Creek Sites: an upstream reference reach (URR) that was not affected by the tailings, the 1998 restoration project reach (98PR), the 2005 restoration project reach (05PR), a non-remediated reach downstream of the mine tailings (DSR) and a tributary stream, the East Fork of the South Fork of the Salmon River (EFSF)

| Site                 | Date        | п | pН   | As                   | Sb              |
|----------------------|-------------|---|------|----------------------|-----------------|
| Meadow Creek flow of | lirection ↓ |   |      |                      |                 |
| URR                  | 2011        | 3 | 6.8  | $<\!\!2^{A}$         | $3.1\pm0.03$    |
|                      | 2012        | 2 | 8.3  | $<2^{A}$             | $4.0\pm2.8$     |
| 98PR                 | 2010        | 1 | 8.3  | $<\!\!2^{A}$         | $< 1.4^{A}$     |
|                      | 2011        | 4 | 7.8  | $7.9 \pm 2.0$        | $3.8{\pm}0.1$   |
|                      | 2012        | 2 | 8.6  | $<2^{A}$             | $< 1.4^{A}$     |
| 05PR                 | 2010        | 1 | 9.3  | 40.4                 | 4.9             |
|                      | 2011        | 3 | 7    | $35.6\pm0.4$         | $7.9\pm0.7$     |
|                      | 2012        | 2 | 8.6  | $27.9\pm3.3$         | $6.7\pm1.7$     |
| DSR                  | 2010        | 1 | 9.3  | 41.6                 | 6               |
|                      | 2011        | 3 | 6.8  | $36.4 \pm 1.3$       | $9.9\pm0.4$     |
|                      | 2012        | 2 | 8.4  | $28.1\pm4.2$         | $6.1\pm0.5$     |
| EFSF                 | 2011        | 3 | _    | $9.3 \pm 0.1$        | $3.9\pm0.4$     |
|                      | 2012        | 1 | _    | 10.3                 | 9.6             |
| Wetland              |             |   |      |                      |                 |
| Channel pond         | 2010        | 1 | 8.7  | 147.1                | 324.5           |
|                      | 2011        | 3 | 7.8  | $138.4\pm1.0$        | $453.8\pm16.4$  |
|                      | 2012        | 2 | 8.2  | $168.2\pm10.5$       | $206.8\pm149.4$ |
| Heap Seep            | 2010        | 2 | 10.4 | $27373.3 \pm 1639.3$ | $1127.9\pm35.5$ |
|                      | 2011        | 4 | 8.6  | $18788.9\pm169.2$    | $239.1\pm5.3$   |
|                      | 2012        | 1 | 9.4  | 10870                | 1042            |
| Glory Hole           | 2010        | 1 | 8.1  | 64.9                 | 21.2            |
|                      | 2011        | 3 | 6.4  | $53.7\pm2.8$         | $21.0\pm1.3$    |
|                      | 2012        | 2 | 8.1  | $70.6\pm9.0$         | $20.7\pm2.0$    |
| Mine Pit wetland     | 2010        | 2 | 7.7  | $191.3\pm7.2$        | $115.5\pm3.9$   |
|                      | 2011        | 3 | 6.3  | $23.8 \pm 1.7$       | $68.6\pm2.4$    |
|                      | 2012        | 2 | 7.9  | $104.4\pm10.4$       | $164.4\pm23.7$  |
| Office Pond          | 2012        | 2 | 7.4  | $395.7\pm94.2$       | $28.0\pm6.5$    |
| Red Seep             | 2012        | 1 | 8    | 1243.1               | 1034.7          |
| Boulder Pond         | 2012        | 2 | 8.3  | $21.5\pm6.8$         | $11.9\pm0.9$    |

<sup>A</sup>Below current instrument detection limit (As,  $<2 \ \mu g \ L^{-1}$ ; Sb,  $<1.4 \ \mu g \ L^{-1}$ ).

(2) the 1998 restoration project reach (98PR), (3) the 2005 restoration project reach (05PR), (4) a non-remediated reach downstream of the mine tailings (DSR) and (5) a tributary stream, the East Fork of the South Fork of the Salmon River (EFSF).

Low lying areas around the tailings contain ephemeral and permanent ponds, as well as groundwater springs that emerge along the edge of the tailing's piles. We sampled seven of these wetlands (Fig. 1) representing a range of different habitats and communities. We assigned descriptive designations to these locations as follows: (1) Channel Pond (CP), a small, permanent pond between Meadow Creek and the tailings, located in the prerestoration stream channel of the 05PR reach, (2) Heap Seep (HS), a seasonally flooded, shallow (5-20 cm deep) impoundment that receives direct drainage from the largest tailings heap, (3) the flooded mine pit known locally as the Glory Hole (GH), through which Meadow Creek flows before leaving the mine area, (4) the Mine Pit Wetland (MPW), a marsh immediately downstream of the mine pit, (5) Office Pond (OP) a small permanent pond near the location of the mining company office but outside of the immediate tailings area, (6) Red Seep, (RS) a small spring that emerges from the edge of the tailings and is coloured bright red from precipitated realgar mineral  $(As_2S_3)$ and (7) Boulder Pond (BP), a larger pond (1100  $m^2$ ) located at the upstream end of the mine tailings piles.

#### Sample collection

Samples were collected during the summers of 2010 through 2012, except for EFSF, OP, RS and BP samples which were collected in 2012 only. Surface water samples from each location were collected for As and Sb concentration and speciation analysis by filtering through a 0.45-µm nylon syringe filter (Fisher, Co., Hampton, NH, USA) into 5-mL evacuated tubes (Vacutainer, BD Company, Franklin Lakes, NJ, USA) to prevent contact with air during storage.<sup>[19]</sup> Water samples for As and Sb speciation were preserved by adding 50  $\mu$ L of 0.125 Methylenediaminetetraacetic acid (EDTA).<sup>[20]</sup> Water samples were collected approximately 15 cm below the air-surface interface. Sediment samples (0-15 cm below the sedimentwater interface) were collected using a garden trowel and sealed in completely filled glass jars. Water and sediment samples were stored on ice in the dark for transportation to the laboratory, where they were stored at 5 °C and analysed within one week of collection. Biological samples included the following primary producers: riparian tree leaves (alder, Alnus sp.; and willow, Salix sp., the main source of allochthonous primary production in the stream), submergent macrophytes (mosses and algal streamers) and biofilm (a mixture of attached microalgae, bacteria and fine inorganic detrital material referred to as periphyton). Tree leaves and macrophytes were collected in sealable

plastic bags. Biofilm was collected by scraping a 3.45-cm<sup>2</sup> area of rock and collecting scraped material and rinse water onto Whatman 0.45-µm glass fiber filter paper (GE Healthcare Bio-Sciences, Pittsburgh, PA). Benthic macroinvertebrates (Morris and Lee, Inc., Yulee, FL, USA), and Tricoptera f (*Arctopsyche* sp.) and Ephemeroptera (*Drunella* sp.) larvae (primarily filterer and shredder–gatherer functional feeding groups respectively) were placed in sealable plastic bags. Predatory stream-dwelling fish (rainbow trout, *Oncorhynchus in mykiss*), stream-dwelling Rocky Mountain tailed frog tadpoles (*Ascaphus montanus*; primarily an algavore), pond-dwelling a spotted frog tadpoles (*Rana luteiventris*) were collected using sealables of the lab-

oratory and then frozen until analysis. Live tadpoles collected in 2012 were held in source water (2 L) for 24 h in the laboratory after collection, in an attempt to purge tadpole gut content prior to freezing and subsequent analysis.<sup>[21]</sup>

#### Sample preparation and analysis

All acids and reagents used were trace metal grade. Water samples for total As and Sb determination were acidified (2%) using nitric acid (HNO<sub>3</sub>) prior to measurement by inductively coupled plasma-mass spectrometry (ICP-MS) or inductively coupled plasma-optical emission spectroscopy (ICP-OES). Instruments were calibrated daily with National Institute of Standards and Technology (NIST) traceable standards. A second-source NIST-traceable standard was analysed after every tenth sample to verify accuracy within 10% standard error. A deionised water blank was also run after every tenth sample to monitor baseline drift. Water samples from the site that were spiked with known concentrations of As and Sb were used to verify that there was no interference to the detection of these elements from the sample matrix. Surface water samples for determination of As and Sb redox speciation were measured by high performance liquid chromatography with inductively coupled plasma-mass spectroscopy (HPLC-ICP-MS).<sup>[7,20]</sup> Sediment samples ( $\sim 10$  g wet weight) for the determination of total As and Sb concentration were oven dried (65 °C for 72 h) and ground using a mortar and pestle. Dried and ground sediment (0.5 g) was digested using microwave assisted digestion with a 3:1 (v/v) mixture of concentrated HNO<sub>3</sub> and HCl according to US EPA Method 3052.<sup>[22]</sup> Digestions were filtered and diluted prior to As and Sb analysis by ICP-OES.

Biological samples were thawed and rinsed using deionised water to remove residual sediment and source water. Rinse water was dried from the exterior of specimens using lint-free tissue paper and initial (wet) sample weight was recorded. For riparian plants, whole leaves were analysed. For submergent macrophytes we analysed roots and shoots together. Biofilm samples were processed and digested on the filters used for sample collection. For macroinvertebrates, tadpoles and fish, whole body samples were analysed. To examine tadpole gut metalloid concentrations, samples from CP, HS and OP ponds were thawed, rinsed and dissected under a stereoscope for the removal, digestion and analysis of the intestinal tract (extending from bottom of the esophagus to the anus). Biological samples were freeze-dried using a Labconco FreeZone (Labconco Co., Kansas City, MO, USA) 4.5-L freeze drying system for 48 h and reweighed to obtain the sample dry weight. Samples were acid digested by refluxing with a mixture of concentrated HNO<sub>3</sub> and

HCl on a hotplate at 50 °C for up to five days until samples were completely dissolved.<sup>[23]</sup> The acid was then evaporated at 70 °C, the residue was reconstituted in 10 mL of 2 % HNO<sub>3</sub> and filtered (0.45  $\mu$ m) prior to As and Sb analysis. Elemental values were normalised to sample dry weight. The biological concentration factor (BCF) was calculated for all biological samples as the average metalloid concentration in the organism divided by the average concentration in the water.<sup>[6]</sup>

Identification of minerals in microbial mats and tadpole intestinal tracts was conducted by electron microprobe (EMP) analysis. Prior to analysis, samples were freeze-dried for 48 h and homogenised using a mortar and pestle. Microprobe samples were mounted on polished (6  $\mu$ m) graphite rods in a sample–ethanol mixture and carbon coated prior to analysis.

#### Analytical

Elemental analyses in 2010 were conducted using a Perkin– Elmer ELAN II ICP-MS (Perkin–Elmer, Inc, Waltham, MA, USA). Analyses in 2011 and 2012 utilised a Perkin–Elmer ELAN 6000 ICP-MS or a Varian VISTA-MPX ICP-OES (Agilent Technologies Inc., Santa Clara, CA). Arsenic and Sb speciation were measured in water by HPLC-ICP-MS using a Perkin–Elmer Series 200 HPLC interfaced with a Perkin–Elmer ELAN II ICP-MS with chromatography conditions described in Kulp et al.<sup>[19]</sup> Amorphous mineral identification was conducted using a JOEL 8900 Superprobe electron microprobe (JEOL Co., Freising, Germany).

#### Results

#### Stream results

Surface water and sediment

Average As concentrations in stream water ranged from <2to 41.6  $\mu$ g L<sup>-1</sup>, whereas Sb concentrations occurred in the range of <1.4 to 9.9 µg L<sup>-1</sup> (Table 1). Average background water concentrations (URR) were below instrument detection limits for As during 2011 and 2012, with corresponding Sb concentrations of  $3.1-4.0 \ \mu g \ L^{-1}$ . Downstream from the reference site, we found progressive increases in As and Sb concentrations (Fig. 2). Both elements were slightly elevated in the 98PR reach in 2011 compared to the URR, but remained below the drinking water MCL (<10 and <6  $\mu$ g L<sup>-1</sup> respectively) and were below detection limits in other years. However, further downstream in the 05PR and DSR reaches, we found elevated As (27.9-41.6) and Sb concentrations (4.9–9.9  $\mu$ g L<sup>-1</sup>). Compared to historic (pre-1999) values, dissolved As and Sb concentrations in the 98PR reach were lower in all three years of our study (Table 1 and Fig. 2a). Further downstream (i.e., 05PR and DSR reaches) there was no significant post-remediation reduction in dissolved As, but Sb concentrations were reduced by as much as 71% compared to historic data. Measurements of dissolved As and Sb redox speciation in surface water samples collected in 2010 show that the pentavalent ions (As<sup>V</sup> and Sb<sup>V</sup>) were the dominant valence states in solution, and in most stream reaches they were the only forms of the metalloids present (Table 2). However, in the 05PS and DS reaches, As<sup>III</sup> accounted for 30-37% of the total measured aqueous As. Antimonate (SbV) was the predominant aqueous Sb species, with Sb<sup>III</sup> detected only in minor amounts (5.0%) at 05PS.

Similarly to dissolved As, sedimentary As concentrations increased in a downstream direction through the tailings area (Table 3). Sediment Sb concentrations were not elevated above the range typically reported for uncontaminated sediments.<sup>[9]</sup>



**Fig. 2.** A comparison of As and Sb concentrations in water (a), sediment (b) and benthic macroinvertebrates (c). Samples collected in 2012 (solid bars) and between 1996 and 1999<sup>[18]</sup> (patterned bars). BD, below detection; ND, not determined. Error bars represent standard deviation.

Sedimentary As and Sb concentrations were highly variable among all reaches in the pre-remediation data set, possibly reflecting localised inputs of tailings into the creek channel prior to its diversion (Table 3). The 98PR and DSR reaches had notably lower concentrations of sediment-associated As and Sb in 2012 compared to those measured pre-remediation (Fig. 2b). Sediment metalloid concentrations in the 05PR reach were low pre-remediation (15 and 1.0 mg kg<sup>-1</sup> for As and Sb respectively) and exhibited little change between pre-1999 and 2012 measurements.

#### Stream primary producers

Arsenic concentrations in submerged macrophytes (i.e. vascular submergent plants, mosses and algae) and biofilm averaged  $6.6 \pm 0.6 \text{ mg kg}^{-1}$  (dry weight, DW) in the URR section and were between  $3.1 \pm 1.8$  and  $46.8 \pm 11.6 \text{ mg kg}^{-1}$  (mean  $\pm$  standard deviation) in the downstream reaches (Table 4). The Sb concentration of all vascular plants was <4 mg kg<sup>-1</sup>. Average As concentrations were  $19.9 \pm 6.2 \text{ mg kg}^{-1}$  in biofilm and  $5.8 \text{ mg kg}^{-1}$  in algal streamers from the URR. Algae and biofilm exhibited a wide range in downstream reaches with the highest concentrations observed in the 05PR reach (Table 4).

Both metalloids were below detection in alder and willow leaves from the URR, but were elevated in leaves collected from downstream reaches, as well as the EFSF tributary stream (Table 4). Concentrations of both As and Sb were less than 6 mg kg<sup>-1</sup> in all leaves except for willow leaves from the 05PR riparian zone, which contained an average As concentration of  $29.3 \pm 2.8$  mg kg<sup>-1</sup>. Metalloid concentrations were higher in willow compared to alder leaves, with the exception of Sb in the 98PR reach.

#### Stream macroinvertebrates

Benthic macroinvertebrates contained As levels  $<2.3 \text{ mg kg}^{-1}$ and Sb levels  $<1.5 \text{ mg kg}^{-1}$  in the URR and the EFSF (Table 5). Macroinvertebrates from sites adjacent to the tailings area (98PR, 05PR and DSR) had elevated levels of both metalloids, with DSR macroinvertebrates exhibiting the greatest concentrations (up to 66.4 mg kg<sup>-1</sup> for As and 5.3 mg kg<sup>-1</sup> for Sb). No difference in As or Sb uptake was observed between the two insect genera. In stream reaches where pre-remediation data were available, As and Sb concentrations in benthic macroinvertebrates were reduced compared to the historic data (Fig. 2c). The insect genera sampled in the earlier dataset are not known.

#### Stream tadpoles and trout

Arsenic concentrations in juvenile trout were not elevated in the downstream reaches of Meadow Creek relative to the URR reference site (Table 5). Antimony was below detection in fish from all reaches.

Tailed frog tadpoles, which primarily graze on periphyton or biofilm, contained much higher metalloid concentrations than macroinvertebrates or trout (Table 5). Tadpoles in the URR had an average whole-body As concentration of  $6.7 \pm 0.30 \text{ mg kg}^{-1}$  in 2011 samples. Metalloid concentrations in the 2012 tadpoles were all below detection in the URR. The highest metalloid concentrations in tailed frog tadpoles ( $637.4 \pm 173.2$ ) were measured at the 98PR site in 2011. Whole body As concentrations in tadpoles were elevated (> $80.8 \pm 29.5 \text{ mg kg}^{-1}$ ) in all reaches adjacent to the mine tailings (98PR, 05PR and DSR) compared to URR concentrations. Antimony concentrations in tadpoles from the downstream reaches measured up to  $7.7 \pm 3.6 \text{ mg kg}^{-1}$  in 2011 but were notably lower in 2012 (Table 5).

#### Stream bioaccumulation trends

We selected the 05PR site in 2012 to illustrate bioaccumulation trends for As and Sb in the contaminated reaches of Meadow Creek. The concentration of both metalloids generally decreased from biofilm, to tadpoles, to macroinvertebrates, to trout, although tadpoles and macroinvertebrates had similar Sb concentrations (Fig. 3a). The BCF for each organism is

### Table 2. Total As and Sb concentration and redox speciation (μg L<sup>-1</sup> (%)) in surface water from Meadow Creek and wetland sites in 2010 from one analysed sample per site

Values in parenthesis report the percent recovery of total As or Sb represented by each oxidation state. See *Field Site* in the *Experimental* section for site abbreviations. bd, below instrument detection limit (As, <1 µg L<sup>-1</sup>; Sb, <1 µg L<sup>-1</sup>)

| Site                          | Arsenic ( $\mu g L^{-1}$ (%)) |                 |                   |         | Antimony ( $\mu g L^{-1}$ (%)) |                              |  |
|-------------------------------|-------------------------------|-----------------|-------------------|---------|--------------------------------|------------------------------|--|
|                               | Total                         | $As^V$          | As <sup>III</sup> | Total   | $\mathrm{Sb}^{\mathrm{V}}$     | $\mathrm{Sb}^{\mathrm{III}}$ |  |
| Meadow Creek flow direction ↓ |                               |                 |                   |         |                                |                              |  |
| URR                           | 1.84                          | 1.8 (100)       | bd                | 0.45    | 0.5 (100)                      | bd                           |  |
| 98PR                          | 1.64                          | 1.6 (100)       | bd                | 0.65    | 0.7 (100)                      | bd                           |  |
| 05PR                          | 30.2                          | 19.1 (63.35)    | 11.1 (36.7)       | 7.96    | 7.6 (95.5)                     | 0.4 (5.0)                    |  |
| DSR                           | 31.3                          | 22.1 (70.5)     | 9.3 (29.5)        | 9.55    | 9.6 (100)                      | bd                           |  |
| Wetlands                      |                               |                 |                   |         |                                |                              |  |
| СР                            | 136.96                        | 128.5 (93.8)    | 5.1 (3.7)         | 436.1   | 435.5 (99.9)                   | 0.57 (0.1)                   |  |
| HS                            | 22 730.78                     | 21 902.2 (96.4) | 350.5 (1.5)       | 1508.89 | 1503.4 (99.6)                  | 5.54 (0.4)                   |  |

| Table 3.  | Total sedimentary mean As and Sb concentrations (mg $kg^{-1})\pm$ |
|-----------|-------------------------------------------------------------------|
| standa    | rd deviation from Meadow Creek and wetland sites in 2012          |
| URR, refe | erence site, upstream; $n$ is the number of samples analysed. See |

*Field Site* in the *Experimental* section for site abbreviations

| Site         | n | Arsenic          | Antimony        |
|--------------|---|------------------|-----------------|
| URR          | 2 | $4.4\pm0.8$      | $0.6 \pm 0.2$   |
| Meadow Creek |   |                  |                 |
| 98PR         | 2 | $4.9\pm2.4$      | $0.4 \pm 0.3$   |
| 05PR         | 2 | $11.5\pm0.004$   | $1.4\pm0.3$     |
| DSR          | 2 | $15.6\pm0.4$     | $0.8\pm0.01$    |
| EFSF         | 2 | $19.9\pm4.4$     | $0.8\pm0.2$     |
| Wetland      |   |                  |                 |
| CP           | 2 | $292.6\pm21.6$   | $203.5\pm42.6$  |
| HS           | 2 | $1388 \pm 192.5$ | $43.1 \pm 17.1$ |
| OP           | 2 | $149.6\pm41.9$   | $10.4\pm0.5$    |
| BP           | 1 | 1860             | 45.2            |
| GH           | 1 | 4728             | 4.1             |
| MPW          | 1 | 15 192           | 20.5            |

presented in Fig. 3b. Bioaccumulation of As is 10–100 times greater than bioaccumulation of Sb in biofilm, tadpoles and macroinvertebrates. Antimony was not detectable in trout from this stream.

#### Wetland results

#### Surface water and sediment

Several wetlands in this study were characterised by aqueous As and Sb concentrations up to three orders of magnitude greater than in Meadow Creek (Table 1). The HS site accounts for the highest of these concentrations, which ranged from 10 870 to 27 373  $\mu$ g L<sup>-1</sup> for As and 239.1 to 1127.9  $\mu$ g L<sup>-1</sup> for Sb over the three study years. Aqueous metalloid concentrations were also highly elevated at the RS and OP sites (Table 1). The CP location was unique among all sites in that it had dissolved Sb concentrations that were consistently higher than As during all three years. As<sup>V</sup> and Sb<sup>V</sup> were the predominant aqueous redox states of the two metalloids in the wetland surface waters, accounting for >96.3 % of dissolved As and >99 % of dissolved Sb, with the remaining balance present as As<sup>III</sup> or Sb<sup>III</sup> (Table 2).

Sedimentary As and Sb concentrations in wetlands were two to three orders of magnitude higher than in stream sediments (Table 3). The greatest sedimentary concentrations for As occurred at MPW, whereas the highest sedimentary Sb concentrations were observed at CP. Consistent with the dissolved aqueous concentrations reported above, the CP location was unique in having more Sb than As in sediments.

#### Wetland primary producers

Due to differences in sample availability, submergent macrophytes were analysed from the CP and OP ponds, whereas photosynthetic microbial mats were analysed from the CP, RS and HS sites. The results are reported in Table 6. Pond plants at CP averaged 171.6  $\pm$ 11.1 mg kg<sup>-1</sup> As and 24.9  $\pm$  4.9 mg kg<sup>-1</sup> total Sb (DW), whereas As and Sb concentrations in CP algae were higher at  $1735 \pm 129$  and  $47.3 \pm 1.7$  mg kg<sup>-1</sup> respectively. Two plants collected from OP showed a high variability in As concentration (608.4 and 1244 mg kg<sup>-1</sup>) but contained similar total Sb concentrations (73.0 and 83.7 mg kg<sup>-1</sup>). The highest total As and Sb concentrations measured in this study occurred in microbial mats at the RS and HS locations (Table 6). The RS mat contained 76 564 mg kg<sup>-1</sup> total As and  $674.9 \text{ mg kg}^{-1}$  total Sb, whereas the HS mat concentrations were  $3366 \pm 200$  mg kg<sup>-1</sup> total As and  $30.2 \pm 5.9$  mg kg<sup>-1</sup> total Sb. At the RS site, red, amorphous realgar (As<sub>4</sub>S<sub>4</sub>) and other As- and Sb-sulfide mineral phases are actively precipitating in microbial mats and sediments that surround the spring. Microbial mats containing flocculated As- and Sb-bearing minerals were also observed at the HS location. The precipitation of these minerals appears to be the primary mechanism of As and Sb enrichment in the sediments and mats from the pond and spring sites. Electron microprobe analyses showed that high concentrations of As in the microbial mat samples were associated with amorphous, flocculated As-sulfide minerals in the mat material (Table 7), whereas Sb was associated mainly with amorphous Fe-oxides.

#### Wetland tadpoles

Boreal toad tadpoles, primarily sediment grazers, were abundant in the wetlands and had extremely elevated metalloid concentrations (Table 6). Tadpoles in the HS and CP ponds exhibited whole body As and Sb concentrations higher than any previously reported for tadpoles. Tadpoles at HS displayed whole-body As concentrations ranging from  $1532 \pm 435$  to  $3043 \pm 523$  mg kg<sup>-1</sup> (DW) and average Sb concentrations between  $33.5 \pm 5.3$  and  $75.6 \pm 56.8$  mg kg<sup>-1</sup>. Arsenic concentrations in CP tadpoles were  $786.0 \pm 161.8$  and  $1124 \pm 488.6$  mg kg<sup>-1</sup> in 2011 and 2012 respectively and were particularly notable for their elevated Sb concentrations of >200 mg kg<sup>-1</sup> (Table 6). In 2012, tadpoles from the OP and
| Organism                   | Site | п | Collection years | Collection years $As (mg kg^{-1})$ |             | Sb (mg kg <sup><math>-1</math></sup> ) |           |
|----------------------------|------|---|------------------|------------------------------------|-------------|----------------------------------------|-----------|
|                            |      |   |                  | Mean                               | Range       | Mean                                   | Range     |
| Alder leaves (Alnus sp.)   | URR  | 3 | 2012             | bd                                 |             | bd                                     |           |
|                            | 98PR | 3 | 2012             | $2.5\pm0.4$                        | 2.0-2.7     | $0.9\pm0.2$                            | 0.7 - 1.1 |
|                            | 05PR | 3 | 2012             | $5.7 \pm 1.3$                      | 4.9-7.2     | $3.1 \pm 1.2$                          | 2.0-4.2   |
|                            | EFSF | 2 | 2012             | $2.4\pm0.003$                      | 2.35-2.36   | $2.2\pm0.2$                            | 2.0-2.3   |
| Willow leaves (Salix sp.)  | URR  | 3 | 2012             | bd                                 |             | bd                                     |           |
|                            | 98PR | 3 | 2012             | $3.0\pm0.5$                        | 2.4-3.4     | bd                                     |           |
|                            | 05PR | 2 | 2012             | $29.3\pm2.8$                       | 27.3-31.3   | $5.3\pm0.8$                            | 4.7-5.9   |
|                            | EFSF | 2 | 2012             | $4.4\pm0.9$                        | 3.7-5.1     | $3.3\pm0.08$                           | 3.3-3.4   |
| Vascular submergent plants | 98PR | 2 | 2011             | $3.1\pm1.8$                        | 1.8-4.3     | $0.33\pm0.18$                          | 0.2 - 0.5 |
|                            | 05PR | 2 | 2011             | $46.8 \pm 11.6$                    | 38.5-55.1   | $3.8\pm0.7$                            | 3.3-4.2   |
|                            | EFSF | 1 | 2011             | 43.1                               |             | 1.7                                    |           |
|                            | URR  | 2 | 2012             | $6.6\pm0.6$                        | 6.1-7.0     | bd                                     |           |
| Algae                      | DSR  | 2 | 2011             | $120.0\pm31.0$                     | 98.1-141.8  | $11.2 \pm 1.4$                         | 10.2-12.2 |
|                            | URR  | 1 | 2012             | 5.8                                |             | bd                                     |           |
|                            | 98PR | 2 | 2012             | $20.0\pm3.1$                       | 17.7-22.1   | bd                                     |           |
|                            | 05PR | 1 | 2012             | 30.1                               |             | bd                                     |           |
|                            | EFSF | 1 | 2012             | 18.8                               |             | bd                                     |           |
| Biofilm                    | URR  | 3 | 2012             | $19.9\pm6.7$                       | 13.4-26.9   | $2.1\pm0.2$                            | 1.9-2.3   |
|                            | 98PR | 3 | 2012             | $32.7\pm8.2$                       | 26.5-42.0   | $1.6\pm0.6$                            | 1.2-2.2   |
|                            | 05PR | 2 | 2012             | $323.3\pm56.2$                     | 283.5-363.0 | $3.5\pm2.5$                            | 1.7-5.3   |
|                            | EFSF | 2 | 2012             | $38.7 \pm 10.9$                    | 31.0-46.4   | $2.3\pm0.5$                            | 1.9–2.7   |

 Table 4.
 Mean As and Sb concentrations ± standard deviation and range in primary producer samples (dry weight) from Meadow Creek sites

 Site abbreviations: see *Field Site* in the *Experimental* section. n refers to the number of samples; bd, below instrument detection limit

 Table 5. Mean As and Sb concentrations ± standard deviation and range in animal samples (dry weight) from Meadow Creek sites

 Site abbreviations: see *Field Site* in the *Experimental* section. n refers to the number of samples; bd, below instrument detection limit

| Organism                     | Site | п | Collection years | As (mg            | $kg^{-1}$ ) | Sb (mg kg <sup><math>-1</math></sup> ) |            |
|------------------------------|------|---|------------------|-------------------|-------------|----------------------------------------|------------|
|                              |      |   |                  | Mean              | Range       | Mean                                   | Range      |
| Benthic Macroinvertebrates   | URR  | 5 | 2010             | $1.3 \pm 0.3$     | 0.97-1.9    | $0.16\pm0.11$                          | 0.05-0.30  |
|                              | 05PR | 6 | 2010             | $27.1\pm16.2$     | 20.9-53.1   | $0.55\pm0.30$                          | 0.21 - 1.1 |
|                              | DSR  | 6 | 2010             | $30.5\pm21.9$     | 8.2-66.4    | $1.5 \pm 2.0$                          | 0.25-5.3   |
|                              | EFSF | 6 | 2010             | $2.1\pm0.90$      | 1.2-3.5     | $0.14\pm0.09$                          | 0.02-0.16  |
|                              | URR  | 5 | 2011             | $1.2 \pm 0.14$    | 0.96-1.3    | $0.09\pm0.04$                          | 0.04-0.14  |
|                              | 98PR | 5 | 2011             | $11.0\pm6.2$      | 2.1-12.6    | $1.0\pm0.34$                           | 0.71 - 1.5 |
|                              | 05PR | 5 | 2011             | $8.8\pm 6.3$      | 3.8-19.3    | $1.2\pm0.9$                            | 0.62 - 2.7 |
|                              | DSR  | 5 | 2011             | $13.6\pm8.7$      | 6.9-27.6    | $3.2 \pm 1.1$                          | 1.7-4.3    |
|                              | EFSF | 5 | 2011             | $2.4 \pm 1.2$     | 1.1-4.3     | $0.8 \pm 0.7$                          | 0.24-1.9   |
|                              | URR  | 2 | 2012             | $2.3 \pm 0.2$     | 0.78 - 1.0  | $0.91\pm0.45$                          | 0.12-0.75  |
|                              | 98PR | 3 | 2012             | $6.7 \pm 3.9$     | 3.1-10.9    | $0.23\pm0.05$                          | 0.19-0.28  |
|                              | 05PR | 5 | 2012             | $10.0\pm1.8$      | 7.3-11.2    | $0.25\pm0.12$                          | 0.13-0.44  |
|                              | DSR  | 5 | 2012             | $19.2\pm8.2$      | 7.5-26.8    | $0.52\pm0.21$                          | 0.34-0.82  |
|                              | EFSF | 2 | 2012             | $5.2\pm0.25$      | 5.0-5.4     | $0.46\pm0.10$                          | 0.39-0.53  |
| Trout                        | URR  | 3 | 2012             | $3.2 \pm 1.2$     | 2.3-4.6     | bd                                     |            |
|                              | 98PR | 1 | 2012             | bd                |             | bd                                     |            |
|                              | 05PR | 2 | 2012             | $3.9 \pm 0.4$     | 3.6-4.2     | bd                                     |            |
|                              | DSR  | 3 | 2012             | $4.2 \pm 0.9$     | 3.2-5.0     | bd                                     |            |
| Tadpoles (Ascaphus montanus) | URR  | 2 | 2011             | $6.7\pm0.30$      | 6.5-6.9     | $0.16 \pm 0.0$                         | 0.16-0.16  |
| • • • • · ·                  | 98PR | 2 | 2011             | $637.4 \pm 173.2$ | 514.9-759.9 | $7.7 \pm 3.6$                          | 5.2-10.3   |
|                              | DSR  | 2 | 2011             | $142.0\pm74.7$    | 89.1-198.8  | $7.0 \pm 3.5$                          | 4.5-9.5    |
|                              | EFSF | 2 | 2011             | $46.9 \pm 13.7$   | 37.2-56.6   | $0.38 \pm 0.0$                         | 0.37-0.38  |
|                              | URR  | 3 | 2012             | bd                |             | bd                                     |            |
|                              | 05PR | 3 | 2012             | $80.8\pm29.5$     | 59.9-101.6  | $0.32\pm0.45$                          | 0-0.6      |
|                              | DSR  | 3 | 2012             | $90.3\pm36.7$     | 51.2-124.2  | $0.31\pm0.53$                          | 0-0.91     |
|                              | EFSF | 3 | 2012             | bd                |             | bd                                     |            |

BP ponds were also measured and contained highly elevated As  $(>390 \text{ mg kg}^{-1})$  and Sb  $(>20 \text{ mg kg}^{-1})$  concentrations.

Dissection of seep and spring pond tadpoles revealed that the intestinal tracts were filled and affected with sediment and mat

material, despite our attempts to purge the animals prior to analysis (Fig. 4). The majority of the concentration for both metalloids was located in the intestinal tracts of the tadpoles, which accounted for >89.8% of whole body As and >83.8% of

whole body Sb (data not shown). Electron microprobe analysis of HS gut material showed that the high gut As concentrations were associated with amorphous As–S–Fe minerals, whereas the Sb was associated primarily with amorphous Fe-oxides (Table 7). Table 7 reports the weight percent (wt-%) of Sb, As, S and Fe in the gut material normalised to Si, Al, K, Mg and



**Fig. 3.** A comparison of mean concentrations of As (patterned bars) and Sb (solid bars) in biofilm, tadpoles, macroinvertebrates, trout, sediment and water in the 2005 restoration project reach (05PR) reach of Meadow Creek during 2012 (a), and the bioconcentration factors of the two metalloids in each genera relative to water concentrations (b). Error bars represent standard deviation.

Ca, which are associated with the clay mineral matrix of the HS sediment. The same As- and Sb-bearing amorphous mineral phases identified in the gut were also present in the HS mat samples (Table 7; Fig. 4).

#### Discussion

#### Bioaccumulation of As and Sb in the stream ecosystem

The tailings piles at Stibnite Mine continue to be a source of high As and Sb concentrations in the surrounding watershed. Five to seven years post-remediation, dissolved As concentrations were still significantly elevated and exceed their respective MCL concentrations for human consumption in reaches downstream from the tailings and in the area of the flooded mine pit. Nonetheless, dissolved As concentrations in all stream reaches were below the EPA aquatic life standard (150  $\mu$ g L<sup>-1</sup>). Antimony concentrations were likewise below the proposed aquatic life standard of 30  $\mu$ g L<sup>-1</sup>. Despite meeting these aquatic life standards, metalloid concentrations in organisms downstream of the mine tailings were considerably elevated compared to upstream organisms. These findings demonstrate that As and Sb can bioaccumulate to significant levels in the food web even when aqueous concentrations are within levels deemed acceptable for wildlife.

Arsenic was present in water, sediment and biota with the following decreasing pattern of accumulation: primary producers > tadpoles > sediment > macroinvertebrates > trout > water. This is in agreement with previous reports that As is bioavailable at all trophic levels but does not bio-magnify in the food web.<sup>[5,8,14]</sup> Antimony was present at much lower concentrations than As, making the pattern of Sb accumulation in the stream difficult to discern. However, Sb concentrations were notably higher in biofilm and grazing tadpoles compared to water, sediment and other organisms. The BCF of organisms to water was considerably higher for As than Sb in all organisms. Arsenic is bioaccumulated to a greater extent than Sb into the photosynthetic base of the food web. These results are in agreement with previous reports of higher bioaccumulation of As than Sb for transfer from water to algae<sup>[8]</sup> and water to plants.<sup>[5]</sup>

Arsenic and Sb in benthic macroinvertebrates generally followed water concentrations with the 05PR and DSR reaches

 Table 6.
 Mean As and Sb concentrations ± standard deviation and range in biological samples (dry weight) collected from wetland sites

 Field Site in Experimental. n refers to the number of samples; bd, below instrument detection limit. For Algae–algal mat data, algae were used as the sample for<br/>CP and algal mats were used as the sample for HS and RS

| Organism                             | Site   | п | Collection dates | As $(mg kg^{-1})$ Sb $(mg^{-1})$ |             | Sb (mg          | $(kg^{-1})$ |
|--------------------------------------|--------|---|------------------|----------------------------------|-------------|-----------------|-------------|
|                                      |        |   |                  | Mean                             | Range       | Mean            | Range       |
| Submergent pond plants               | СР     | 2 | 2011             | $171.6\pm11.1$                   |             | $24.9 \pm 4.9$  |             |
|                                      | OP     | 2 | 2012             | $926.6\pm450.0$                  | 608.4-1244  | $78.4\pm7.6$    | 73.0-83.7   |
| Algae–algal mat                      | CP     | 2 | 2012             | $1735\pm129.8$                   | 1643-1827   | $47.3\pm1.7$    | 46.1-48.5   |
|                                      | HS     | 4 | 2012             | $3366\pm200.4$                   | 3087-3558   | $30.2\pm5.9$    | 25.7-38.9   |
|                                      | RS     | 1 | 2012             | 76 564                           |             | 674.9           |             |
| Tadpole whole body (Anaxyrus boreas) | HS     | 5 | 2010             | $2477\pm378.0$                   | 2015-2777   | $54.8\pm36.2$   | 11.8-100.7  |
|                                      | CP     | 7 | 2011             | $786.0\pm161.8$                  | 615.3-1113  | $283.6\pm63.4$  | 211.2-377.4 |
|                                      | HS     | 6 | 2011             | $1531\pm435.6$                   | 906.2-2061  | $33.5\pm5.3$    | 25.2-41.1   |
|                                      | CP     | 5 | 2012             | $1124 \pm 488.6$                 | 529.2-1815  | $200.4\pm124.3$ | 0-294.0     |
|                                      | HS     | 6 | 2012             | $3043 \pm 523.7$                 | 2601-3866   | $75.6\pm56.8$   | 0-145.5     |
|                                      | OP     | 6 | 2012             | $396.3\pm205.6$                  | bd-417.0    | $21.4 \pm 12.4$ | bd-28.6     |
|                                      | $BP^A$ | 3 | 2012             | $732.3\pm100.9$                  | 615.8–793.9 | $23.5\pm3.1$    | 21.6-27.1   |

<sup>A</sup>BP tadpoles are *Rana luteiventris*.

exhibiting the highest values, but trends were less pronounced than for the primary producers (Fig. 2). Antimony accumulation in the macroinvertebrates was quite low (average Sb concentration was  $<3.2 \text{ mg kg}^{-1}$ ), and the BCF of As in these organisms was higher than that of Sb by up to two orders of magnitude (Fig. 3b). The benthic macroinvertebrate larvae examined were mayflies (Drunella spp.), representing the shredder-gatherer functional feeding group, and filter feeding caddisflies (Arctophyche spp.). These feeding types are reported to accumulate higher concentrations of metals than omnivores or predators.<sup>[5,6]</sup> Likely food sources for these genera are submergent plants, algae, biofilm and riparian leaves that fall into the stream. We measured a wide range in metalloid concentrations within both genera for individuals collected from the same reach, but average concentrations of the two genera were similar in reaches where both were present. The macroinvertebrate concentrations reported in Table 4 represent data from pooled mayfly and caddisfly samples, and therefore provide an estimate of the As and Sb burden in a large proportion of the macroinvertebrate community that is available as prey for fish.

Trout did not exhibit biomagnification of As or Sb, nor did they display significantly elevated metalloid concentrations downstream compared to our reference reach (URR). However, whole body As concentrations in Meadow Creek trout ranged from 2.3 to 5.0 mg kg<sup>-1</sup> (DW), slightly higher than values in fish reported from several other studies. For example, Salmo trutta from a mining affected river in France (Presa River) accumulated 1.92 mg kg<sup>-1</sup> (DW) of As in whole body samples.<sup>[6]</sup> Telford et al.<sup>[5]</sup> reported flat-headed gudgeon (*Philypnodon grandiceps*) from a contaminated mining creek in Australia (As water concentration 46  $\pm$  2 µg L<sup>-1</sup>) to have 1.6  $\pm$  0.4 mg kg<sup>-1</sup> (DW), and in a moderately As-contaminated mining area in China, Fu et al.<sup>[8]</sup> reported As values in fish of 0.266  $\pm$  $0.109 \text{ mg kg}^{-1}$ . However, fish muscle (*Channa striata*) from a highly contaminated pond in Thailand was reported to have As concentrations up to 22.2 mg kg<sup>-1</sup>.<sup>[24]</sup> Trout did not display any discernable trends of As bioaccumulation as a function of water concentrations, possibly because they move between stream reaches.

Antimony bioaccumulation data for freshwater fish are limited. Telford et al.<sup>[5]</sup> reported that fish in their study had an average Sb value of  $0.3 \pm 0.3$  mg kg<sup>-1</sup>. The Presa River *S. trutta* samples had an average maximum Sb concentration of  $0.45 \pm 0.17$  mg kg<sup>-1</sup>.<sup>[6]</sup> In our study, trout Sb concentrations

were all below detection (Table 5). We note that the fish sampled in our study were young (snout–fork length <5 cm), which may have precluded metalloid accumulation. Consequently, our values may underestimate tissue metalloid concentrations in older individuals if concentrations increase with age.

Studies on metal concentrations in tadpoles, and particularly on As and Sb concentrations, are also limited. Burger and Snodgrass<sup>[21]</sup> reported bullfrog tadpoles (*Rana catesbeiana*) from a contaminated Savannah River site (South Carolina, USA) to have average As concentrations of  $3.1 \pm 0.202$  mg kg<sup>-1</sup> (DW). Clark et al.[25] measured cricket frogs (Acris crepitans) with average As concentrations of 51.3 mg kg<sup>-1</sup> (DW) in an As-contaminated lake. Telford et al.<sup>[5]</sup> measured As and Sb concentrations from two unidentified tadpole (Anuran) samples showing average concentrations of  $62\pm 2$  and  $174 \pm 10 \text{ mg kg}^{-1}$  (DW) respectively. Arsenic and Sb concentrations in tailed frog tadpoles from the downstream sites were elevated compared to the URR, and this species had the highest metalloid concentrations in the stream food chain after the primary producers. Arsenic concentrations in tadpoles from the downstream reaches were consistently higher than those reported in previous studies, with notably high concentrations



Fig. 4. Anaxyrus boreas tadpole under  $0.7 \times$  magnification displaying ventral body cavity and affected gut containing microbial mat, sediment and flocculated As- and Sb-bearing mineral precipitates.

# Table 7. Electron microprobe quantitative analysis (wt-%) from Heap Seep site microbial mat material and Anaxyrus tadpole intestinal tract (gut) material

Analyses are normalised to remove Si, Al, K, Mg and Ca associated with the silicate-sediment matrix

| Analyte |       | Heap Seep  | mat material |            | Heap Seep gut material |              |       |            |
|---------|-------|------------|--------------|------------|------------------------|--------------|-------|------------|
|         | А     | As-S-rich  |              | Sb–Fe-rich |                        | As–S–Fe-rich |       | -Fe-rich   |
|         | wt-%  | Normalised | wt-%         | Normalised | wt-%                   | Normalised   | wt-%  | Normalised |
| Si      | 2.01  | _          | 16.25        | _          | 1.36                   | _            | 4.07  | _          |
| Al      | 1.48  | _          | 9.72         | _          | 0.70                   | _            | 2.75  | _          |
| K       | 0.30  | _          | 0.60         | _          | 0.22                   | _            | 1.99  | _          |
| Mg      | 0.00  | _          | 0.73         | _          | 0.00                   | _            | 0.12  | _          |
| Ca      | 0.04  | _          | 6.97         | _          | 0.12                   | _            | 1.43  | _          |
| Sb      | 4.64  | 11.56      | 43.16        | 65.85      | 0.01                   | 0.01         | 28.32 | 78.76      |
| As      | 21.62 | 53.82      | 2.06         | 3.14       | 36.11                  | 39.06        | 0.65  | 1.82       |
| S       | 13.24 | 32.97      | 0.14         | 0.21       | 20.17                  | 21.82        | 0.06  | 0.17       |
| Fe      | 0.66  | 1.64       | 20.19        | 30.81      | 36.15                  | 39.11        | 6.92  | 19.25      |
| Total   | 44.00 | 100        | 99.82        | 100        | 94.83                  | 100          | 46.32 | 100        |

 $(637.4\pm173.2~mg~kg^{-1})$  measured in 2011 at 98PR. Antimony concentrations in the stream tadpoles, on the other hand, were much lower than those reported by Telford.  $^{[5]}$ 

#### Effectiveness of the remediation projects

Engineered remediation projects conducted in 1998 and 2005 have reduced metalloid concentrations in Meadow Creek water, sediment and biota compared to pre-remediation values. Data collected prior to and immediately following the first remediation project in 1998 show that dissolved metalloid and sediment concentrations in the 98PR reach have decreased by 10 fold, to uncontaminated levels, since 1999. We infer that diversion and the installation of a sand filter at this site has been effective in reducing the metalloid burden to this short reach of Meadow Creek. In contrast, the strategies used in engineering the 05PR reach appear to be less effective in reducing dissolved metalloid and sediment concentrations in that reach, or in the more downstream DSR site. This could be the result of greater ground water input into the DSR than is delivered to the 98PR reach. This is supported by our finding that the 05PR and DSR are the only reaches that contain a significant proportion (30-37%) of dissolved As in the form of reduced As<sup>III</sup>, which we interpret to indicate that reducing groundwater is a predominant source of As to these stretches. The installation of a sand filtration barrier or other similar mechanism in the 05PR could reduce contaminated groundwater flow into that reach of the stream. Comparison of metalloid concentrations in macroinvertebrates from this study to values collected prior to and immediately after the 1998 remediation project show that insect larva concentrations have decreased in the 05PR and DSR. No prior macroinvertebrate data were available for the 98PR, but macroinvertebrate As concentrations in that reach were lower than the two more downstream reaches. Antimony levels in macroinvertebrates from all reaches in 2012 were not significantly elevated above the URR values.

#### Occurrence of As and Sb in wetlands

The most contaminated sites in this study were wetlands that occurred around the margins of the tailings heaps. The water in several of these wetlands contains dissolved As and Sb concentrations in the parts per million (mg  $L^{-1}$ ) range. These extremely contaminated waters actively precipitate As- and Sb-bearing mineral phases which become incorporated into microbial mats, algae and sediment resulting in As concentrations in the parts per thousand (g kg<sup>-1</sup>) range, and Sb concentrations of hundreds of parts per million (mg kg<sup>-1</sup>). Metalloid concentrations in the base of the wetland food web are therefore largely reflective of the mineral precipitates that are dispersed throughout the mats, algae and sediments, rather than of direct biological assimilation.

These contaminated mats and sediments represent a direct source of As and Sb, by ingestion, to boreal toad tadpoles. Whole body concentrations in these tadpoles were up to 75.5 times higher in As and 2.2 times higher in Sb than the highest values that, to our knowledge, have been previously reported.<sup>[5]</sup> Purging methods had little effect on the removal of contaminated intestinal contents based on observations during dissection and direct analysis of intestinal metalloid concentrations. Our findings of high metal concentrations located in the gut, along with the ineffectiveness of purging, are in agreement with previous reports.<sup>[21,26,27]</sup> Electron microprobe analyses

identified the same amorphous As-sulfide phases and Sb associated with iron-oxide minerals in both the HS microbial mat and in tadpole intestinal tracts from that location. The extreme metalloid concentrations in these tadpoles are therefore associated with ingestion of flocculated As- and Sb- bearing mineral precipitates contained within microbial mats.

Several prior studies have demonstrated the precipitation of amorphous As-bearing sulfide minerals resulting from micro-biological As<sup>V</sup> reduction to As<sup>III</sup> in sulfidic conditions.<sup>[28,29]</sup> Similarly, recent work by Kulp et al.<sup>[19]</sup> demonstrated the precipitation of amorphous stibnite mineral (Sb<sub>2</sub>S<sub>3</sub>) during biological Sb<sup>V</sup> and sulfate reduction by sediment bacterial communities from this study site. Others have shown that two crystalline polymorphs of Sb<sub>2</sub>O<sub>3</sub>, senarmontite and valentinite, are precipitated during bacterial Sb<sup>V</sup> reduction in the absence of sulfide.<sup>[30]</sup> We attribute the high concentration of As- and Sb-bearing mineral phases in the contaminated algal and microbial mats of the ponds to geomicrobiological As- and Sb-cycling by microorganisms in the mat community. The biologically induced precipitation of these mineral phases represents a direct mechanism of concentration for As and Sb in the base of the food web, and these minerals are actively consumed along with the mat material by tadpoles. The apparent resistance of these larval amphibians to extremely high concentrations of As and Sb in water, food and sediment reinforces the suggestion by Kerby et al.<sup>[31]</sup> that the commonly presumed high sensitivity of amphibians to trace metal contamination may not apply to all taxa.

#### Conclusions

Tailings derived from gold, antimony and tungsten mining activity can leach high concentrations of As and Sb to nearby streams and wetlands. Remediation efforts, such as those completed along Meadow Creek, can be effective in reducing water metalloid concentrations to levels below EPA aquatic life standards. In this study the more effective remediation design was that which incorporated water filtration (e.g. sand filters). Infiltration of groundwater appears to be a direct source of As and Sb to the remediated reach that did not include a sand filter.

Arsenic bioaccumulates at all trophic levels in the stream food web, but it does not bio-magnify and it generally diminishes with increasing trophic level. Antimony accumulates to a lesser extent than As and accumulates most readily in lower trophic levels (e.g. biofilm and plants). Extremely elevated metalloid concentrations in two species of tadpoles (one stream-dwelling and one pond-dwelling species) are caused by ingestion of algal and microbial mat material and sediment that are highly contaminated with As- and Sb-bearing minerals. These minerals are interpreted to be the biogenic products of microbiological As and Sb cycling in the mats, and are a primary source of metalloid uptake for these tadpoles. Contaminated sediments and mat material remained present in the tadpole gut even after purging the live animals by conventional methods, and account for the highest whole body As and Sb concentrations ever recorded in live tadpoles. This study adds to the growing number of investigations reporting bioaccumulation and food web diminution of As and Sb in freshwater ecosystems, and suggests that tadpoles may be far more resistant to metalloid contamination than was previously assumed. Future studies should investigate the mechanisms of unexpectedly high resistance to metalloid toxicity in these tadpoles.

#### Acknowledgements

This study was supported in part by a grant from the Payette National Forest, US Forest Service, US Geological Survey and a student research grant from the Geological Society of America. The authors thank Hannah Blatchford, Elliot Jagniecki, Joseph Graney, David Collins and David Jenkins for field or analytical assistance. They also thank Jim Egnew, Mary Faurot, Gina Bonaminio and Kim Apperson for assistance with project funding, fieldwork coordination, and ancillary data. Handling and collection of amphibians and fish were permitted by Boise State University Institutional Animal Care and Use Committee (IACUC Number 692-AC11-013) and the State of Idaho Department of Fish and Game. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

#### References

- W. T. Dushenko, D. A. Bright, K. J. Reimer, Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients. *Aquat. Bot.* **1995**, *50*, 141. doi:10.1016/0304-3770(95)00448-9
- [2] L. F. Villarroel, J. R. Miller, P. J. Lechier, D. Germanoski, Lead, zinc, and antimony contamination of the Rio Chilco-Rio Tupiza drainage system, Southern Bolivia. *Environ. Geol.* 2006, 51, 283. doi:10.1007/ S00254-006-0326-X
- [3] G. Morin, G. Calas, Arsenic in soils, mine tailings, and former industrial sites. *Elements* 2006, 2, 97. doi:10.2113/GSELEMENTS. 2.2.97
- [4] C. Casiot, M. Ujevic, M. Munoz, J. L. Seidel, F. Elbaz-Poulichet, Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). *Appl. Geochem.* 2007, 22, 788. doi:10.1016/J.APGEOCHEM.2006.11.007
- [5] K. Telford, W. Maher, F. Krikowa, S. Foster, M. J. Ellwood, P. M. Ashley, P. V. Lockwood, S. C. Wilson, Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. *Environ. Chem.* 2009, *6*, 133. doi:10.1071/EN08097
- [6] J. Culioli, A. Fouquoire, C. Mori, A. Orsini, Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study. *Aquat. Toxicol.* 2009, 94, 286. doi:10.1016/J.AQUATOX.2009.07.016
- [7] F. Liu, X. C. Le, A. McKnight-Whitford, Y. Xia, F. Wu, E. Elswick, C. C. Johnson, C. Zhu, C., Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelling area, China. *Environ. Geochem. Health* **2010**, *32*, 401. doi:10.1007/ S10653-010-9284-Z
- [8] Z. Fu, F. Wu, C. Mo, B. Liu, J. Zhu, Q. Deng, H. Liao, Y. Zhang, Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China. *Microchem. J.* **2011**, *97*, 12. doi:10.1016/J.MICROC.2010.06.004
- [9] M. Filella, N. Belzile, Y. Chen, Antimony in the environment: a review focused on natural water: I. Occurrence. *Earth Sci. Rev.* 2002, 57, 125. doi:10.1016/S0012-8252(01)00070-8
- [10] National Primary Drinking Water Standards 2009 (US Environmental Protection Agency, Office of Water Regulations and Standards, Criteria and Standards Division: Washington, DC).
- [11] R. S. Oremland, J. Stolz, The ecology of arsenic. *Science* 2003, 300, 939. doi:10.1126/SCIENCE.1081903
- [12] J. Majzlan, B. Lalinská, M. Chovan, U. Bläß, B. Brecht, J. Göttlicher, R. Steininger, K. Hug, S. Ziegler, J. Gescher, A mineralogical, geochemical, and microbiogical assessment of the antimony-and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. *Am. Mineral.* 2011, 96, 1. doi:10.2138/AM.2011.3556
- [13] A. M. Farag, D. F. Woodward, J. N. Goldstein, W. Brumbaugh, J. S. Meyer, Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene River Basin, Idaho. *Arch. Environ. Contam. Toxicol.* **1998**, *34*, 119. doi:10.1007/S002449900295

- [14] C. Y. Chen, C. L. Folt, Bioaccumulation and diminution of arsenic and lead in a freshwater food web. *Environ. Sci. Technol.* 2000, 34, 3878. doi:10.1021/ES991070C
- [15] R. P. Mason, J. M. Laporte, S. Andres, Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. *Arch. Environ. Contam. Toxicol.* 2000, *38*, 283. doi:10.1007/S002449910038
- [16] M. Duran, Y. Kara, G. K. Akyildiz, A. Ozdemir, Antimony and heavy metals accumulation in some macroinvertebrates in the Yesilirmak River (N Turkey) near the Sb-mining area. *Bull. Environ. Contam. Toxicol.* 2007, 78, 395. doi:10.1007/S00128-007-9183-X
- [17] NPL Site Narrative for Stibnite/Yellow Pine Mining Area 2001 (US Environmental Protection Agency, Office of Solid Wastes and Emergency Response: Washington, DC).
- [18] Stibnite Area site characterization report: Volume I. T01050. Prepared for The Stibnite Area Site Characterization Voluntary Consent Order Respondents 2000 (URS Corporation: Denver, CO).
- [19] T. R. Kulp, L. G. Miller, F. Braiotta, S. M. Webb, B. D. Kocar, J. S. Blum, R. S. Oremland, Microbiological reduction of Sb(V) in anoxic freshwater sediments. *Environ. Sci. Technol.* 2014, 48, 218. doi:10.1021/ES403312J
- [20] J. R. Garbarino, A. J. Bednar, M. R. Burkhardt, Methods of analysis by the US Geological Survey National Water Quality Laboratory – Arsenic speciation in natural-water samples using laboratory and field methods. US Geological Survey Water-Resources Investigations Report 2002 (US Geological Survey: Reston, VA). Available at http://nwql.usgs.gov/pubs/WRIR/WRIR-02-4144.pdf [Verified 26 August 2015].
- J. Burger, J. Snodgrass, Heavy metals in bullfrog (*Rana catesbeiana*) tadpoles: effects of depuration before analysis. *Environ. Toxicol.* 1998, 17, 2203. doi:10.1002/ETC.5620171110
- [22] Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices 1996 (US Environmental Protection Agency, Office of Solid Wastes: Washington, DC).
- [23] D. J. Cain, S. N. Luoma, J. L. Carter, S. V. Fend, Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams. *Can. J. Fish. Aquat. Sci.* **1992**, *49*, 2141. doi:10.1139/ F92-237
- [24] P. Jankong, C. Chalhoub, N. Kienzl, W. Goessler, K. A. Francesconi, P. Visoottiviseth, Arsenic accumulation and speciation in freshwater fish living in arsenic-contaminated waters. *Environ. Chem.* 2007, 4, 11. doi:10.1071/EN06084
- [25] D. R. Clark, R. Cantu, D. F. Cowman, D. J. Maxon, Uptake of arsenic and metals by tadpoles at a historically contaminated Texas site. *Ecotoxicology* **1998**, 7, 61. doi:10.1023/A:1008819132474
- [26] D. W. Sparling, P. T. Lowe, Metal concentrations of tadpoles in experimental ponds. *Environ. Pollut.* **1996**, *91*, 149. doi:10.1016/ 0269-7491(95)00057-7
- [27] J. H. Roe, W. A. Hopkins, B. P. Jackson, Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes. *Environ. Pollut.* 2005, *136*, 353. doi:10.1016/J.ENVPOL.2004.11.019
- [28] K. A. Rittle, J. I. Drever, P. J. Colberg, Precipitation of arsenic during bacterial sulfate reduction. *Geomicrobiol. J.* 1995, 13, 1. doi:10.1080/ 01490459509378000
- [29] P. A. O'Day, D. Vlassopoulos, R. Root, N. Rivera, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. *Proc. Natl. Acad. Sci.* USA 2004, 101, 13 703. doi:10.1073/PNAS.0402775101
- [30] C. A. Abin, J. T. Hollibaugh, Dissimilatory antimonite reduction and production of antimony trioxide microcrystals by a novel microorganism. *Environ. Sci. Technol.* 2014, 48, 681. doi:10.1021/ ES404098Z
- [31] J. L. Kerby, K. L. Richards-Hrdlicka, A. Storfer, D. K. Skelly, An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries? *Ecol. Lett.* **2010**, *13*, 60. doi:10.1111/ J.1461-0248.2009.01399.X



NATIONAL COUNCIL FOR AIR AND STREAM IMPROVEMENT

## COMPARISON OF ROAD SURFACE EROSION MODELS WITH MEASURED ROAD SURFACE EROSION RATES

TECHNICAL BULLETIN NO. 988 JULY 2011

by Kathy Dubé, Watershed GeoDynamics Tom Black and Charlie Luce, United States Forest Service Rocky Mountain Research Station Mark Riedel, W.F. Baird and Associates, Ltd.

#### Acknowledgments

The authors thank Drew Coe, Brian Gowin, Lee MacDonald, Matt McBroom, Arne Skaugset, Brian Sugden, and Donald Turton for providing road erosion and runoff data for analysis, and Erica Marbet for her helpful review comments. We would also like to thank the NCASI Forest Watershed Task Group for its support and interest in testing the performance of road surface erosion models.

#### For more information about this research, contact:

Dr. George Ice NCASI Fellow NCASI West Coast Regional Center P.O. Box 458 Corvallis, OR 97339-0458 (541) 752-8801 gice@ncasi.org Dr. Alan A. Lucier Senior Vice President NCASI P.O. Box 13318 Research Triangle Park, NC 27709-3318 (919) 941-6403 alucier@ncasi.org

#### For information about NCASI publications, contact:

Publications Coordinator NCASI PO Box 13318 Research Triangle Park, NC 27709-3318 (919) 941-6400 publications@ncasi.org

#### Cite this report as:

National Council for Air and Stream Improvement, Inc. (NCASI). 2011. *Comparison of road surface erosion models with measured road surface erosion rates*. Technical Bulletin No. 988. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.

© 2011 by the National Council for Air and Stream Improvement, Inc.



serving the environmental research needs of the forest products industry since 1943

#### **PRESIDENT'S NOTE**

NCASI is committed to finding practical management solutions to meet its members' environmental objectives. One continuing challenge is forest roads. Roads are essential to the economic and sustainable management of forests, but the forestry community has long recognized the potential of roads to be sources of increased sediment to nearby streams. The first NCASI Technical Bulletin that focused on forest water quality (Technical Bulletin No. 322, published in 1979) contained a summary of research findings on forest roads and their impact on sediment. It also included a discussion about models being used to assess forest management impacts. Today all state forestry Best Management Practices contain specific practices designed to minimize increases in sediment coming from roads. Because of the scope of forest road systems, models are often used to assess their impacts and to project the benefits of applying sediment control practices. NCASI has supported research both to develop models capable of assessing erosion from roads and to collect data that can be used to calibrate and test road models.

This report represents a forest watershed community-wide effort to synthesize road erosion and runoff data and use them to test road model performance, defining the capabilities and limitations of three popular road erosion models. NCASI partners cooperating in this effort include Temple-Inland Corporation, Plum Creek Timber Company, the USDA Forest Service, Stephen F. Austin State University, Colorado State University, Oregon State University, Oklahoma State University, Watershed GeoDynamics, and W.F. Baird and Associates Ltd. This Technical Bulletin provides an important comparison of model data needs, capabilities, ease of application, and performance. Without local calibration, none of the models predicted absolute values of annual erosion well at all of the sites. Two performed better at between-road segment comparisons, but there were still unexplained differences between observed and predicted sediment losses from the road datasets tested. This comparison of model performance with measured road erosion highlights the need for additional research and the limitations of model-only assessments of forest road impacts.

Ronald A. Yeske July 2011



serving the environmental research needs of the forest products industry since 1943

## NOTE DU PRÉSIDENT

NCASI s'applique continuellement à trouver des solutions pratiques pour aider ses membres à atteindre leurs objectifs en matière d'environnement. Les chemins forestiers constituent un défi permanent. Ils sont essentiels à l'économie et à l'aménagement durable des forêts, mais peuvent potentiellement contribuer à une augmentation des sédiments dans les cours d'eau à proximité, une situation que la communauté forestière reconnaît depuis longtemps. Le premier bulletin technique de NCASI portant sur la qualité de l'eau en forêt (Bulletin technique n° 322, publiée en 1979) contenait un sommaire des résultats obtenus de travaux de recherche réalisés sur les chemins forestiers et leur impact sur les sédiments. Il traitait également des modèles utilisés pour évaluer l'impact de l'aménagement des forêts. Aujourd'hui, les meilleures pratiques d'aménagement forestier adoptées dans tous les états américains intègrent des mesures spécifiques conçues pour réduire la quantité de sédiments provenant des chemins forestiers. En raison de l'étendue du réseau de chemins forestiers, on utilise souvent des modèles pour évaluer l'impact de ces chemins et estimer les avantages d'appliquer des mesures de contrôle des sédiments. NCASI a soutenu des travaux de recherche sur l'élaboration de modèles capables d'évaluer l'érosion causée par les chemins forestiers et sur la cueillette de données pouvant servir à calibrer et à tester les modèles s'appliquant aux chemins forestiers.

Le présent rapport est le résultat d'un effort communautaire pour synthétiser les données sur l'érosion et le ruissellement des chemins forestiers à l'échelle d'un bassin versant forestier dans le but de les utiliser pour tester la performance des modèles sur les chemins forestiers, notamment pour définir les capacités et les limites de trois modèles largement utilisés en matière d'érosion. Les partenaires de NCASI qui ont collaboré à cet effort sont Temple-Inland Corporation, Plum Creek Timber Company, le service des forêts du département américain de l'agriculture, Stephen F. Austin State University, Colorado State University, Oregon State University, Oklahoma State University, Watershed GeoDynamics, et W.F. Baird and Associates Ltd. Le présent bulletin technique présente une analyse comparative fouillée sur les besoins en données, les capacités, la facilité d'application et la performance des modèles. Sans calibration locale, aucun des modèles n'a été en mesure de bien prédire les valeurs absolues d'érosion annuelle à tous les sites étudiés. Deux modèles ont affiché une meilleure performance lorsqu'on a comparé leurs résultats pour différents segments de chemins, mais il y avait quand même des différences inexpliquées entre les pertes de sédiments observées et celles prévues à partir de l'ensemble des données testées. Cette comparaison de la performance des modèles à l'aide de mesures sur l'érosion des chemins illustre bien le besoin d'effectuer d'autres travaux de recherche et fait ressortir les limites des évaluations de l'impact des chemins forestiers à partir de modèles seulement.

Pm yhe

Ronald A. Yeske Juillet 2011

## COMPARISON OF ROAD SURFACE EROSION MODELS WITH MEASURED ROAD SURFACE EROSION RATES

## TECHNICAL BULLETIN NO. 988 JULY 2011

#### ABSTRACT

Surface erosion from unpaved roads can adversely affect water quality and aquatic resources. Since direct measurement of surface erosion is difficult and time-consuming, most practitioners use models to estimate erosion based on the characteristics of the road and locale, including width, length, surfacing, traffic, ditch and cutslope condition, climate, and underlying geology. We compare measured road surface erosion and runoff data from nine sites across the United States with erosion calculated using the WEPP, GRAIP, and SEDMODL2 models to test ease of model use, ability to predict absolute value of erosion, and ability to predict relative changes in erosion under different road management conditions.

The easiest model to use is the Internet-based WEPP:Road interface developed by the US Forest Service. This interface has limited choices for road conditions, but it is convenient for modeling a few segments or testing the sensitivity to different input values. The PC-based WEPP, GRAIP, and SEDMODL2 require installation on a PC. The PC interface of WEPP provides the user with the ability to vary a large number of input variables, but most users do not have the detailed soil and management data needed to select appropriate values for many of the variables. GRAIP uses site-specific road condition data as well as a local estimate of surface erosion rates. SEDMODL2 uses GIS data, and can be run with generalized or site-specific road conditions.

None of the models predicted the absolute value of average annual runoff or erosion at all of the sites well, suggesting that data to calibrate the surface erosion models at a particular site is helpful if absolute values are needed. The WEPP (PC interface) model has the ability to predict storm-based runoff and erosion, and produced better results for individual storms than for long-term averages. The GRAIP and SEDMODL2 models performed generally well for between-segment variations, and were developed to make comparison of different management conditions relatively simple.

The road surface erosion models we tested are appropriate for the relative comparison of erosion between segments and between management conditions. If accuracy and precision are needed for a particular application, measurement of surface erosion to provide calibration data at a particular site is an appropriate solution.

#### **KEYWORDS**

erosion control practices, modeling, road surface erosion, runoff, sediment

#### **RELATED NCASI PUBLICATIONS**

Technical Bulletin No. 483 (February 1986). A study of the effectiveness of sediment traps for the collection of sediment from small forest plot studies.

Forest roads and aquatic ecosystems: A review of causes, effects, and management practices. NCASI Forest Watershed Task Group white paper. http://www.ncasi.org/Publications/Detail.aspx?id=2610. *Canadian watershed handbook of control and mitigation measures for silvicultural operations.* Version 1. <u>http://www.ncasi.org/Publications/Detail.aspx?id=3170</u>

## ANALYSE COMPARATIVE DE MODÈLES PRÉDISANT L'ÉROSION DE SURFACE DE ROUTES À L'AIDE DE TAUX D'ÉROSION DE SURFACE MESURÉS

## BULLETIN TECHNIQUE N<sup>O</sup> 988 JUILLET 2011

## RÉSUMÉ

L'érosion de surface des routes non pavées peut compromettre la qualité de l'eau et affecter les ressources aquatiques. Comme la mesure directe de l'érosion est difficile et exige beaucoup de temps, la plupart des professionnels en foresterie se servent de modèles pour estimer l'érosion en s'appuyant sur les paramètres locaux et les caractéristiques de la route, notamment la largeur, la longueur et le revêtement de la route, la densité du trafic, la condition des fossés et des pentes, le climat et les caractéristiques géologiques sous-jacentes. Dans la présente étude, nous comparons des données sur l'érosion de surface et le ruissellement provenant de neuf sites aux États-Unis avec des données sur l'érosion calculées à l'aide des modèles WEPP, GRAIP et SEDMODL2 afin d'évaluer la facilité d'utilisation de ces modèles, leur capacité à prédire une valeur absolue d'érosion et leur capacité à prédire les changements relatifs dans l'érosion sous différentes conditions d'aménagement de routes.

Le modèle le plus facile à utiliser est l'interface Internet WEPP:Road développée par le service américain des forêts. Cette interface offre un choix limité de conditions de route, mais elle est commode pour modéliser quelques segments ou pour tester sa sensibilité à différentes valeurs d'entrée. Dans le cas des modèles WEPP, GRAIP et SEDMODL2, il faut les installer sur un ordinateur. L'interface du modèle WEPP donne la possibilité à l'utilisateur de faire varier un très grand nombre de variables d'entrée, mais la plupart des utilisateurs n'ont pas les données détaillées sur le sol et l'aménagement de la route dont ils ont besoin pour être en mesure de choisir les valeurs appropriées de bon nombre de variables. Dans le cas du modèle GRAIP, il faut utiliser les conditions propres à chaque route et faire une estimation locale du taux d'érosion de surface. Le modèle SEDMODL2 fait appel à des données du système d'information géographique (GIS). On peut utiliser des conditions générales ou les conditions d'une route particulière.

Aucun des modèles n'a été en mesure de bien prédire les valeurs absolues d'érosion annuelle moyenne ou de ruissellement annuel moyen à tous les sites étudiés, ce qui semble indiquer que les données utilisées pour calibrer ce type de modèle à un site particulier sont utiles si on cherche à obtenir des valeurs absolues. Le modèle WEPP (interface sur ordinateur) a la capacité de prédire l'érosion et le ruissellement causés par une tempête. Il donne de meilleurs résultats lorsqu'on cherche à prédire l'impact de tempêtes individuelles que lorsqu'on cherche à obtenir des moyennes à long terme. Les modèles GRAIP et SEDMODL2 ont généralement bien fonctionné lorsqu'on faisait varier les conditions entre des segments de route. Ces modèles ont été développés pour comparer différentes conditions d'aménagement relativement simples.

Les modèles sur l'érosion de surface des routes non pavées que nous avons testés conviennent pour effectuer une comparaison relative de l'érosion entre des segments de route et entre différentes conditions d'aménagement. Cependant, s'il faut obtenir des résultats exacts et précis pour une application particulière, la mesure de l'érosion de surface pour obtenir des données de calibration à un site donné peut s'avérer une solution appropriée.

## **MOTS-CLÉS**

érosion de surface des chemins, mesures de contrôle de l'érosion, modélisation, ruissellement, sédiment

#### **AUTRES PUBLICATIONS DE NCASI**

Bulletin technique n° 483 (février 1986). A study of the effectiveness of sediment traps for the collection of sediment from small forest plot studies.

*Forest roads and aquatic ecosystems: A review of causes, effects, and management practices.* Article du groupe de travail de NCASI sur les bassins versants forestiers. http://www.ncasi.org/Publications/Detail.aspx?id=2610.

*Canadian watershed handbook of control and mitigation measures for silvicultural operations.* Version 1. <u>http://www.ncasi.org/Publications/Detail.aspx?id=3170</u>

## CONTENTS

| 1.0 | INTE       | RODUCTION1                                                                                |
|-----|------------|-------------------------------------------------------------------------------------------|
| 2.0 | ROA        | D SURFACE EROSION MODELING1                                                               |
|     | 2.1        | Models Examined                                                                           |
|     | 2.2        | Data Input Requirements and Ease of Use                                                   |
|     | 2.3        | Previous Model Calibration/Verification Studies7                                          |
| 3.0 | ROA<br>RUN | D EROSION DATA SETS USED FOR COMPARISON WITH MODEL                                        |
|     | 3.1        | Data Sets Used                                                                            |
|     | 3.2        | Road Runoff and Erosion Data Summary                                                      |
| 4.0 | MET        | "HODS                                                                                     |
|     | 4.1        | Adjustment of Measured Runoff/Erosion to Compare with Average Annual<br>Model Predictions |
|     | 4.2        | Model Efficiency Statistics                                                               |
| 5.0 | RES        | ULTS14                                                                                    |
|     | 5.1        | Runoff14                                                                                  |
|     | 5.2        | Effects of Road Management and Maintenance Practices                                      |
| 5.0 | DISC       | CUSSION AND CONCLUSIONS                                                                   |
|     | 6.1        | Model Performance                                                                         |
| REF | EREN       | CES                                                                                       |

## TABLES

| Table 2.1 | Model Input Requirements and Ease of Use                                                                               | 6  |
|-----------|------------------------------------------------------------------------------------------------------------------------|----|
| Table 3.1 | Summary of Road Surface Erosion/Runoff Data Sets                                                                       | 8  |
| Table 4.1 | Road Surface Erosion/Runoff Model Runs                                                                                 | 13 |
| Table 5.1 | Model Efficiency Statistics for Runoff Predictions                                                                     | 16 |
| Table 5.2 | Total Storm-Based Runoff and Erosion Measured and Predicted by WEPP<br>Watershed over Measurement Period               | 16 |
| Table 5.3 | Model Efficiency Statistics for Erosion Predictions across Sites                                                       | 18 |
| Table 5.4 | Measured and Predicted Mean Normalized Erosion                                                                         | 19 |
| Table 5.5 | Coefficient of Determination and Slope for Power Law Relationships between<br>Observed and Modeled Sediment Production | 22 |
| Table 5.6 | Modeling Differences in Road Management/Maintenance                                                                    | 32 |
| Table 5.7 | Effects of Road Surfacing on Road Erosion                                                                              | 33 |
| Table 5.8 | Relative Erosion from Roads with Different Traffic Use                                                                 | 37 |
| Table 5.9 | Relative Predicted Erosion with Traffic Use                                                                            | 37 |
|           |                                                                                                                        |    |

## **FIGURES**

| Figure 3.1 | Location of Road Sample Sites                                                | 9  |
|------------|------------------------------------------------------------------------------|----|
| Figure 3.2 | Measured Runoff vs. Precipitation for Individual Measurements                | 11 |
| Figure 3.3 | Measured Sediment Yield vs. Precipitation for Individual Measurements        |    |
| Figure 3.4 | Normalized Total Sediment Yield vs. Precipitation for Each Road Segment      |    |
| Figure 5.1 | Measured vs. Predicted Average Annual Runoff                                 | 15 |
| Figure 5.2 | Measured vs. Predicted Storm Runoff                                          | 17 |
| Figure 5.3 | Measured vs. Predicted Average Annual Sediment Yield                         | 19 |
| Figure 5.4 | Measured and Predicted Mean Normalized Erosion at Each Study Site            |    |
| Figure 5.5 | SEDMODL2 Predictions for Each Site                                           |    |
| Figure 5.6 | GRAIP Predictions for Each Site                                              |    |
| Figure 5.7 | WEPP:Road Predictions for Each Site                                          |    |
| Figure5.8  | WEPP Watershed Predictions for Each Site                                     |    |
| Figure 5.9 | Measured vs. Predicted Storm Erosion for Oklahoma and Texas Road<br>Segments | 27 |

| Figure 5.10 | Measured vs. WEPP Watershed-Predicted Storm Runoff and Erosion for Alto<br>Texas Site | 28 |
|-------------|---------------------------------------------------------------------------------------|----|
| Figure 5.11 | Single Storm Runoff and Erosion for Two Alto Texas Road Segments                      | 30 |
| Figure 5.12 | Measured and Modeled Erosion from Gravel and Native Klamath Falls Road<br>Segments    | 34 |
| Figure 5.13 | Annual Sediment Yield at Montana Sites vs. Average Truck Axles/Day                    | 35 |
| Figure 5.14 | Annual Sediment Yield at Alto Texas Road Segments                                     | 36 |
| Figure 5.15 | Erosion Reduction on Cutslopes with Varying Ground Cover                              | 38 |

## COMPARISON OF ROAD SURFACE EROSION MODELS WITH MEASURED ROAD SURFACE EROSION RATES

#### **1.0 INTRODUCTION**

Road erosion can be a large source of anthropogenic sediment in watersheds managed for forest production (Megahan and Kidd 1972; Swanson and Dyrness 1975; Reid and Dunne 1984; Megahan and Ketcheson 1996). The fine-grained sediment produced by road surface erosion has the potential to adversely affect water quality and aquatic resources. Direct measurement of surface erosion is a time-consuming and labor-intensive process and is not feasible on a large scale. As a result, most analyses of road surface erosion utilize models to estimate erosion based on the characteristics of the roads, climate, and soils in the study areas. Fu, Lachlan, and Ramos-Sharrón (2010) provided a recent review of several road surface erosion models. The most widely used road surface erosion models in the United States include Water Erosion Prediction Project (WEPP), Geomorphic Road Analysis and Inventory Package (GRAIP), Sediment Model Version 2 (SEDMODL2), and Watershed Characterization System (WCS). These models have been developed based on physical principles and empirical data, but have not been extensively compared to measured road erosion data sets. This relative lack of model calibration/validation has led to uncertainty about model results, despite their widespread use for management and regulatory decisions such as Total Maximum Daily Load (TMDLs) (USEPA 2001), watershed analyses, Habitat Conservation Plans (HCPs), forest practice applications (Pruitt et al. 2001), and road management plans (Riedel and Vose 2003).

Selection of a road surface erosion model for a particular application should take into account:

- availability of input data to run a model
- time and effort required to run a model and time and effort available
- accuracy of model predictions for roads with similar characteristics
- intended use of model results

This report discusses the WEPP, GRAIP, and SEDMODL2 models and compares sediment production and (where applicable) road runoff predictions to measured road erosion and runoff data sets from across the United States. This provides insights into how well each model predicts road erosion and runoff, as well as the strengths and limitations of each model for different purposes. The following questions are covered for each model:

- What are the data input requirements?
- How easy is the model to use?
- How well does the model predict the absolute value of road surface erosion across multiple sites?
- How well does the model predict the relative change in surface erosion in response to management differences (e.g., road surfacing, traffic, grading) among roads within a study site?

#### 2.0 ROAD SURFACE EROSION MODELING

Factors that determine the amount of sediment eroded from a given road segment include the interaction of:

- erodibility and infiltration characteristics of underlying geology/soil
- precipitation amount, intensity, and form (snow vs. rain)

- length, width, and gradient of road prism components (tread, ditch, cutslope, fillslope)
- tread surfacing
- cutslope and fillslope cover
- ditch condition (vegetated, rocked, check dams)
- disturbance history (new road, traffic amount/type/timing, grading, ditch cleaning, maintenance)
- micro-topography of road drainage patterns (insloped/outsloped/crowned, ruts, tire tracks)
- upslope area draining to road segment
- interception of groundwater by cutslope

Some of these factors are relatively easy to measure or characterize and model; others are more difficult. Past researchers have found that one or more of these factors control the variability in measured road erosion data at their particular sites. Due to the difficulty in measuring and/or modeling all of these factors, several of the existing road surface erosion models simplify model calculations or user input requirements to include the most readily available road characteristics.

Available models to estimate road runoff and sediment yield fall into two classes: empirical and physically based. Empirical models estimate erosion based on statistically derived relationships between observed patterns in erosion and different road conditions, designs, and treatments. Physically based models use basic understandings of water flow and sediment movement to estimate erosion amounts. Physical model parameters regarding infiltration capacity and sediment detachability are related to soils, weather, and treatments through small-scale experiments. In this sense physically based models have an empirical component, but conceptually these parameters are more easily transferable to different climates and geologies than the more thoroughly integrated "parameters" of empirical models. A fundamental difference is that empirical models acknowledge the need for calibration data. In order to apply empirical models to new areas, however, more expertise or judgment may be required. While physically based models should not conceptually require additional calibration for use in new areas, in practice calibration data are useful for reducing errors.

Attempts to quantify surface erosion from disturbed sites in the United States began in the 1960s with development of the Universal Soil Loss Equation (USLE) for cropland and agricultural sites (Wischmeier and Smith 1965). The USLE is an empirical model using a series of factors that represent climate, gradient, soil, and disturbance characteristics to compute expected erosion. Continued refinement of the USLE and development of other, more use-specific empirical models has resulted in the Revised Universal Soil Loss Equation (RUSLE), SEDMODL2/Washington Road Surface Erosion Model (WARSEM), GRAIP, and WCS models. Several of these have incorporated geographic information systems (GIS) to provide users with large land holdings a method to estimate erosion even if site-specific data are lacking. Empirical models are generally simple to apply, but are theoretically less reliable outside the conditions used for model development and ideally require observations of the processes of interest (e.g., direct measurements of erosion) for calibration.

Physically based models use equations governing the physics of surface erosion to calculate runoff, surface erosion, and transport, so theoretically they require fewer observations for calibration. The WEPP and the Distributed Hydrology Soil and Vegetation Model (DHSVM) are two examples with different underlying hydrologic representation. Physical models provide a solution to some of the constraints on extrapolation posed by empirical models. The disadvantage of physically based models is that they require a large amount of input data not always readily available across wide areas and, in reality, they do require some calibration data for precision. To enable these models to be utilized by

users with limited input data, interfaces that simplify model input parameters have been developed, such as WEPP:Road and Disturbed WEPP (Elliot, Hall, and Scheele 1999a).

Different models make different types of predictions. All of the evaluated models address variability of road surface erosion due to design, maintenance, and traffic (e.g., management differences) within a site. Some also address differences in erosion due to variability in precipitation and soils (e.g., differences between sites and years), and the WEPP model has the ability to model single storms. Users should consider both the intended use and the precision of the model when determining which model to use for a particular purpose. For instance, just because a model performs well describing differences due to management differences does not mean it will perform well without additional validation at another site, nor that one can predict erosion in a different year with as much precision. While the designed purposes for the models are outlined herein, discussion of the performance for each task is discussed in later sections.

#### 2.1 Models Examined

# 2.1.1 Sediment Model Version 2 (SEDMODL2) and Washington Road Surface Erosion Model (WARSEM)

After many years of collaboration with resource agencies, tribal representatives, and landowners, the Washington Department of Natural Resources (WDNR) implemented its Watershed Analysis Methodology to gain a watershed-wide understanding of the effects of timber harvest and road use in forested basins (WDNR 1997). The Watershed Analysis methods included an assessment of road surface erosion using a series of empirical relationships. These relationships were initially developed from the R1-R4 model (Cline et al. 1981), which is based heavily on research by Megahan and Kidd (1972) and Megahan (1974). The basic R1-R4 model eventually evolved into a group of location-specific models commonly used by National Forests (e.g., WATSED, BOISED, NEZSED, WWSED). Boise Cascade developed a GIS-based program (SEDMODL) to automate the WDNR road erosion calculations for landowners with extensive road networks. The goal was to create a sediment model that was flexible enough to be used at many spatial scales, with either very little site-specific input data or with detailed road inventory data. NCASI furthered SEDMODL with development of Version 2 in cooperation with Boise Cascade (NCASI 2003).

SEDMODL2 is an empirical road surface erosion model that uses GIS layers to select road segments with the potential to deliver sediment to streams in a watershed. Erosion and delivery of sediment is calculated based on a series of empirical relationships. SEDMODL2 includes an Access<sup>TM</sup> database application that users can employ to determine changes in erosion/delivery as a result of different road treatments.

SEDMODL2 calculations were used as the basis of WDNR's Washington Road Surface Erosion Model (WARSEM) that lets users in Washington State calculate road surface erosion with or without the GIS interface (Dubé, Megahan, and McCalmon 2004). WARSEM is an Access database application that allows users to enter and calculate road surface erosion on a single road segment or on multiple segments. WARSEM also allows users to apply and track BMPs and road improvements to estimate changes in road surface erosion through time. Both SEDMODL2 and WARSEM use these formulas to calculate road surface erosion and delivery:

Total sediment delivered to a stream from each road segment (in tons/year) = (tread and ditch sediment + cutslope sediment) x road age factor

Tread and ditch = geologic erosion factor x tread surfacing factor x traffic factor x segment length x road (tread + ditch) width x road gradient factor x rainfall factor x delivery factor

Cutslope = geologic erosion factor x cutslope cover factor x segment length x cutslope height x rainfall factor x delivery factor

Numeric values of each of the factors were derived from road erosion measurements, and were described in detail by Dubé, Megahan, and McCalmon (2004).

#### 2.1.2 Geomorphic Road Analysis and Inventory Package (GRAIP)

GRAIP analyzes risks from multiple erosion processes for forest roads, including surface erosion, gullying, landslides, and stream crossing failure, in a GIS environment based on road inventory and terrain data (Prasad et al. 2005). The surface erosion model in GRAIP shares its form and parentage from the R1-R4 model with SEDMODL2 (Black, Cissel, and Luce 2010). It uses information from Luce and Black (1999) on road slope and length. Erosion for an individual road segment is estimated as a function of surfacing, flow path condition (e.g., rutted road surface, ditch vegetation), road slope, and segment length. GRAIP further estimates the downslope movement and accumulation of fine sediment in stream networks to give a map of the spatial distribution of road sediment from the perspective of the stream network.

GRAIP requires a base rate that incorporates the effects of precipitation amount, form, and intensity with soil infiltration and erodibility characteristics. As a consequence of this design, GRAIP best shows the relative effects of design and maintenance practices on road erosion. Estimates of the base rate are best obtained from a series of local observations to give an annual average, or relating the annual variability to characteristics of precipitation. Existing literature (e.g., Megahan and Kidd 1972; Megahan 1974; Luce and Black 1999, 2001a) provides reasonable estimates as well. The base rate is closely akin to the geologic erosion factor in SEDMODL2 but also recognizes that erosion is a function of precipitation differences beyond those captured by precipitation amounts. Surface erosion is estimated from:

Sediment production = base rate (kg/m/year) x road length (m) x road slope (m/m) x flow path vegetation factor x road surfacing factor

The flow path vegetation factor is set at 1 if the flow path veg  $\leq 25\%$  and at 0.14 if flow path veg >25% (Luce and Black 1999). Common flow paths are the ditch line, which can have a great deal of vegetation if it has been a long time since the ditches were bladed or little if bladed recently, and wheel tracks or ruts, which rarely have vegetation. The road surfacing factor is 1 for crushed rock, gravel, cinder, or vegetated roads, 5 for native geology or dirt roads, and 0.2 for paved roads.

#### 2.1.3 Water Erosion Prediction Project (WEPP)

WEPP is a physically based model developed by a number of federal agencies (Agricultural Research Service, Natural Resources Conservation Service, United States Forest Service, Bureau of Land Management, and United States Geological Survey). It estimates soil erosion, runoff, and sediment yield with inputs of soil, climate, ground cover, and topographic conditions. WEPP calculates vegetation cover, surface residue, soil water content, infiltration, runoff, and erosion for each day in multiple-year runs. Based on these calculations, the model determines runoff and erosion from the hillside. Two basic forms of WEPP are currently available: hillslope and watershed. The hillslope version allows users to model erosion from a single profile. The watershed version allows the user to enter multiple hillslope polygons, channels, and impoundments to model erosion and routing. A GIS version of the watershed format, GeoWEPP, has also been developed to allow spatially derived input to the WEPP model.

The model is available in a number of different user interfaces. These provide the user with files containing much of the complex input data required. The user can select climate and soil files with pre-specified input data for many locations and soil types, then input site-specific topographic data for the location of interest. Some interfaces allow the user to alter the pre-specified climate and soil file information. The most commonly used forms for road surface erosion include WEPP for Windows (http://www.ars.usda.gov/Research/docs.htm?docid=10621) and WEPP:Road online interfaces

(<u>http://forest.moscowfsl.wsu.edu/fswepp/</u>). GeoWEPP is also available for users with GIS (<u>http://www.geog.buffalo.edu/~rensch/geowepp/</u>). Two WEPP interfaces were applied in the current study: WEPP:Road and the watershed configuration within WEPP for Windows Version 2006.5.

The WEPP:Road interface runs online and is the simplest to use. It provides several options for road configuration, soil, climate, traffic use, gradient, length, and width as well as fillslope and buffer characteristics. Input data files cannot be manipulated, but management and slope files have parameters that the model developers felt were most appropriate for forest road conditions (Elliot, Hall, and Scheele 1999b).

WEPP for Windows includes the option to run a hillslope or a watershed configuration (Elliot and Hall 1997). The hillslope configuration models runoff and erosion over a single slope element and is appropriate for use on outsloped roads where the road cutslope, tread, and ditch can be visualized in cross section as a complex slope. It allows up to ten slope components, each with varying length, gradient, soil, and management input files. Several different management and soil files with parameters that the model developers felt were most appropriate for forest road conditions are included in the model download package; the user can change values within each of these files. There is no simple method to include traffic or grading activities, but the user can modify one of the existing management files to include periodic disturbance.

The watershed configuration within WEPP allows users to model erosion and routing from a number of slope polygons, channels, and impoundments. This configuration is appropriate to apply to insloped roads; the cutslope and road tread are modeled as slope polygons that deliver to the ditch, which is modeled as a channel. The same soil and management files are available for the watershed configuration. Again, there is no simple way to include traffic or grading activities, but the user can modify one of the existing management files to include periodic disturbance.

#### 2.2 Data Input Requirements and Ease of Use

Each of the models was evaluated for the type of input data and level of detail needed to run the model, as well as how user-friendly the model was based on experiences in this study (Table 2.1).

SEDMODL2 and GRAIP are GIS-based models that require a computer running ESRI GIS software as well as GIS input layers. These two models are more complex to get up and running, but allow users to model and analyze road erosion spatially and can be run over large areas.

SEDMODL2 requires the user to provide GIS coverages for roads and streams, a watershed boundary, and a Digital Elevation Model (DEM – a 10 meter or finer DEM is best); inclusion of soil/geology, annual rainfall, and culvert coverages is optional. The model can be run in a screening mode with few site-specific data or in a more detailed mode with additional data on road and culvert conditions.

GRAIP requires GIS coverages of road lines and drain points that describe water flow paths along and off of the road. The coverages have a specific format and can be derived from existing GIS data, but are more easily obtained using a global positioning system (GPS) in the field. GPS tools allow for simplified data input in the field, where the information can be verified. GIS-based tools allow for data quality control from the field and automated analysis of field data to produce erosion and mass wasting risk estimates. Data with the proper format can be created for proposed roads by a skilled GIS operator.

WARSEM and the WEPP Windows interfaces (hillslope and watershed) are run on a PC and do not require GIS. WARSEM allows batch import and export of data files, but only has rainfall data for Washington State. Data requirements are very flexible, allowing general estimates with minimal road condition data or more specific estimates with additional input data.

The WEPP Windows interfaces can be run using default soil and management files or with sitespecific data. They do not provide batch input file capabilities.

The WEPP:Road model is run online, so it does not require the user to download or install any special software. This is the easiest and most user friendly model tested. A batch input mode was recently added to the interface. It allows a user to import and run multiple road segments (for a single climate station), then export the output to a spreadsheet program.

| Input Pequirements                                                                                                                                                                                                                         | Flexibility                                                                                                                                                  | Pelativa Fasa of Usa                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Empirical Models                                                                                                                                                                                                                           | Thexionity                                                                                                                                                   | Relative Lase of Ose                                                                                                                                                                                                                                                                                                                                          |
| SEDMODL2 is GIS-based<br>Required input: 10 m DEM,<br>roads, streams, watershed<br>boundary<br>Optional input: soils, geology,<br>rainfall_culverts                                                                                        | Flexible input data<br>requirements (can use<br>generalized or site-<br>specific road data)                                                                  | Moderately easy to use, but can<br>be finicky for new users (very<br>specific GIS data format)                                                                                                                                                                                                                                                                |
| WARSEM is Access-based<br>Required inputs: road length,<br>width, traffic, surfacing,<br>gradient, delivery, cutslope<br>height and cover, ditch width<br>Optional inputs: geology,<br>construction year, ditch<br>condition, BMPs applied | Has climate data only<br>for Washington; can<br>model and track<br>changes to road<br>conditions through<br>time (surfacing,<br>traffic, BMPs)               | Non-GIS Windows interface and<br>relatively easy to use; allows<br>importing/exporting of batch<br>input files from spreadsheet or<br>database programs; runs are<br>saved in a log file                                                                                                                                                                      |
| GRAIP requires GPS-based field<br>data collection and some<br>measure of local road surface<br>erosion for calibration                                                                                                                     | Specific GPS inputs<br>as class data<br>describing road<br>topology, vegetation,<br>and surfacing;<br>substantial flexibility<br>in describing most<br>sites | Data collection can be conducted<br>by trained field crews using data<br>dictionary in GPS; model runs in<br>GIS with pushbutton interface<br>and can be executed with limited<br>training; software assists with<br>data quality control; cumbersome<br>for a single segment but efficient,<br>easy to use, and comprehensive<br>for basin-scale evaluations |
| Physically Based Models<br>WEPP:Road<br>Required input: climate, soil<br>texture, road design, surfacing,<br>traffic, tread, fillslope and buffer<br>length, width, and gradient                                                           | Less input flexibility than other models                                                                                                                     | Very easy to use web interface;<br>can run in batch mode for<br>multiple road segments; can save<br>log file of runs for export to PC                                                                                                                                                                                                                         |
| WEPP hillslope and watershed<br>Requires climate, soil,<br>management, and hillslope input<br>files                                                                                                                                        | User can edit many<br>parameters in each<br>file if data are<br>available                                                                                    | Windows interface; relatively<br>easy to run, but limited prepared<br>data files and instructions for<br>varying input parameters for<br>forest road use                                                                                                                                                                                                      |

 Table 2.1
 Model Input Requirements and Ease of Use

#### 2.3 Previous Model Calibration/Verification Studies

Several researchers have compared measured surface erosion and runoff with modeled values. The majority of those studies have used small data sets from a single geographic area.

Elliot, Foltz, and Luce (1995) compared runoff and erosion produced by a rainfall simulator at five plots in Idaho and Colorado with an early version of the WEPP hillslope model as part of development of forest road input files. The model produced comparable results, and they identified several areas for further study and calibration, including road erodibility and hydraulic conductivity.

Tysdal et al. (1999) used the WEPP Watershed configuration to model sediment yield and plume length for 74 road erosion plots in the Oregon Coast Range. They determined that the predicted sediment yield values were reasonable approximations for measured yields, but WEPP appeared to overestimate sediment plume lengths.

Riedel and Vose (2002) measured sediment yield from 13 road segments in Georgia and Tennessee over four months and compared adjusted annual yield to estimated annual yield from the WCS model. The model was run with a variety of DEM resolutions to determine model sensitivity and comparison with measured yield. They concluded that the WCS sediment tool overestimated sediment yield from forest roads, and 90 and 30 meter DEMs were too coarse to provide reliable predictions.

Amann (2004) measured runoff and sediment yield from nine road segments in the Oak Creek watershed, Oregon. Measured values were compared to WEPP:Road and SEDMODL2 predictions of annual sediment yield. He concluded that WEPP:Road was easy to use but overestimated sediment production, and SEDMODL2 was more difficult to use but provided closer estimates of sediment yield.

Busteed (2004) measured runoff and sediment yield from two road segments in the Ouachita Mountains, Oklahoma, over eighteen months. He ran the WEPP Watershed model for each of the 76 storm events that occurred during the monitoring period, modeling road surface, cutslope, and ditch with model-supplied soil and climate files. He found that total annual sediment yield was similar to WEPP predictions, but modeled runoff was half of the observed runoff. For individual storms, WEPP under-predicted yield on smaller storms and had reasonable agreement on larger storms.

Peranich (2005) selected four unpaved, rural roads in the Stillwater Creek watershed, Oklahoma, and measured runoff and sediment yield for 26 storms from June through November. He used rainfall data collected during the study to create site-specific files for individual storms and modeled runoff/erosion for each storm using the WEPP hillslope model with four different soil and management scenarios. The WEPP hillslope model under-predicted both erosion and runoff, and scenarios that included a provision for road grading activities had the best agreement of the four tested.

Grace (2007) and Grace and Elliot (2008) compared WEPP model runs with measured road erosion for sites in Alabama and Georgia. Grace (2007) collected sediment yield from 24 cutslope or fillslope sites with different erosion control treatments for eight years and sediment yield and runoff from three road tread plots during eight storm events. He compared measured values to WEPP hillslope model predictions for annual losses (cutslope/fillslope sites) and storm losses (road surface sites). He concluded that WEPP predicted erosion reasonably well, but under-predicted runoff. Grace and Elliot (2008) measured sediment deposits (plumes) downhill from 16 road segments in Alabama to determine deposition patterns and travel distance. They used the WEPP:Road model to estimate sediment deposition amounts in buffer strips downhill from roads with characteristics similar to the measured segments. They found generally good agreement if they used high traffic levels, but the model underestimated sediment amounts deposited, particularly if low traffic levels were modeled.

#### 3.0 ROAD EROSION DATA SETS USED FOR COMPARISON WITH MODEL RUNS

Road erosion/runoff data sets were obtained from a number of researchers across the United States (Table 3.1, Figure 3.1). These data were compiled into a database that includes information on study site locations, road segment characteristics, and measured erosion and/or runoff data. More detail on study sites, database design, and data availability is available elsewhere (Dubé et al. 2008).

|                               |       |             | Average       |          |            |            |
|-------------------------------|-------|-------------|---------------|----------|------------|------------|
|                               |       |             | Annual        | Number   | Sediment   | Runoff     |
|                               |       | Elevation   | Precipitation | of       | Data       | Data       |
| Site Name                     | State | (m)         | (mm)          | Segments | Collected? | Collected? |
| Klamath Falls                 | OR    | 1,500       | 750           | 15       | Yes        | No         |
| Coast Range –<br>Low Pass     | OR    | 400         | 1,900         | 112      | Yes        | No         |
| Coast Range –<br>Windy Peak   | OR    | 700         | 2,150         | 23       | Yes        | No         |
| Coast Range –<br>Sand Bar Gap | OR    | 700         | 1,400         | 5        | Yes        | No         |
| Ouachita Mountains            | OK    | 300         | 500-1,300     | 5        | Yes        | Yes        |
| Southern                      | GA    | 400-500     | 1,600-2,300   | 10       | Yes        | Yes        |
| Appalachians                  | TN    | 300-500     | 1,600-2,300   | 4        |            |            |
| Rocky Mountains               | MT    | 1,100-1,900 | 400-1,700     | 20       | Yes        | No         |
| Oak Creek<br>Watershed        | OR    | 250         | 1,500         | 9        | Yes        | Yes        |
| Alto Watershed                | ΤХ    | 100         | 1,170         | 9        | Yes        | Yes        |
| Sierra Mountains              | CA    | 1,380-1,670 | 1,300         | 3        | Yes        | No         |

 Table 3.1
 Summary of Road Surface Erosion/Runoff Data Sets





## 3.1 Data Sets Used

## 3.1.1 Klamath Falls, Oregon

Data were collected on erosion from 15 road segments in the Klamath Basin with different surfacing using the methods of Luce and Black (1999).

#### 3.1.2 Coast Range, Oregon (Low Pass, Windy Peak)

Surface erosion data from several road segments of different lengths, slopes, cutslope heights, traffic patterns, vegetation coverages, and times since grading operations were collected in the Oregon Coast Range. Many of these data have been presented in several papers (Luce and Black 1999, 2001a, 2001b).

#### 3.1.3 Medford, Oregon (Sand Bar Gap)

Surface erosion data from five road segments of varying cutslope heights were generated using the same methods as Luce and Black (1999).

#### 3.1.4 Ouachita Mountains, Oklahoma

Road runoff and surface erosion data were collected from forest road and rural, unpaved road segments at two sites in the Ouachita Mountains by Oklahoma State University personnel (Busteed 2004; Peranich 2005).

#### 3.1.5 Southern Appalachians, Georgia and Tennessee

The USFS Southern Research Station collected road surface erosion and runoff data from 13 forest roads in the Conasauga Watershed in 2001. This road data set has been used to calibrate WCS locally (Riedel and Vose 2002).

#### 3.1.6 Rocky Mountains, Montana

Plum Creek Timber Company collected three years of road surface erosion data from 20 sites in western Montana in collaboration with researchers at the University of Montana (Sugden and Woods 2007).

#### 3.1.7 Oak Creek, Oregon

Surface erosion and runoff from nine road segments in the Oak Creek Watershed were measured by Oregon State University students from November 2002 through June 2003. These data have been compiled and compared to SEDMODL2 and WEPP (Amann 2004).

#### 3.1.8 Alto Experimental Watershed, Texas

One year of surface erosion data were collected by Temple Inland and Stephen F. Austin University in the Alto Study Watershed in northeastern Texas. The study included nine road segments covering high, medium, and low traffic and gradient conditions. Storm-based runoff and erosion data were available.

#### 3.1.9 Sierra Mountains, California

Researchers at Colorado State University collected road surface erosion data from three road segments in the Sierra Mountains of California (Coe 2006).

#### 3.2 Road Runoff and Erosion Data Summary

The road erosion database contains nearly 1000 records of road erosion and/or runoff measurements from over 200 road segments. Data in two of the studies were collected from individual storms (Alto Watershed, TX, and Ouachita Mountains, OK); other data were reported seasonally or annually.

Runoff (flow) data were collected at four of the study sites (Table 3.1). Individual runoff measurements, normalized to liters per square meter ( $L/m^2$ ), were plotted against precipitation over the measurement period, which ranged from a single storm to an entire year at different sites (Figure 3.2). Normalized runoff generally increased with increasing precipitation, but varied over several orders of magnitude under a given precipitation regime.



Figure 3.2 Measured Runoff vs. Precipitation for Individual Measurements

The measured erosion data display a similar large variability. Sediment yield per unit area from individual segments ranged over six orders of magnitude, with precipitation also ranging over six orders of magnitude during either storm events or over a year (Figure 3.3). Runoff from some of the sites exceeded the precipitation volume that fell on the road prism draining to the collection point, suggesting that interception of shallow groundwater from the cutbank or overland flow from the hillside contributing to the road segment was likely to be occurring at those sites.



Figure 3.3 Measured Sediment Yield vs. Precipitation for Individual Measurements

To further explore the variability of sediment yield, total sediment measured over the entire period of record at each plot was summed and normalized for road area and tread gradient (kg/m<sup>2</sup>/slope). These data were plotted against total measured precipitation for each plot over the period of record (Figure 3.4). The period of record for some sites included up to three years of summed precipitation and erosion data. This reduced variability somewhat, but the data collected at sites under the same precipitation conditions still ranged over three orders of magnitude.



Figure 3.4 Normalized Total Sediment Yield vs. Precipitation for Each Road Segment

#### 4.0 METHODS

Road erosion/runoff models were run for each of the road segments in the database using the supplied road characteristics and climate data (Table 4.1). Results were evaluated in two ways: how well the model predicted for all segments and sites; and how well it predicted within a given site. These two tests get at questions about how well the model estimates the effects of variation in soils and climate and how well it estimates the effects of variation in road design and maintenance factors. The GRAIP erosion model does not predict between different soils or different weather and was only evaluated for its performance at each site. While some data sets were appropriate for evaluating within-site variation, some (e.g., Montana) had variation in soils/geology or weather and could only be assessed in that context.

| Model               | Time Series Modeled      | Output Parameters   | Data Sets Modeled                                                                            |
|---------------------|--------------------------|---------------------|----------------------------------------------------------------------------------------------|
| SEDMODL2/<br>WARSEM | Average annual           | Sediment yield      | All                                                                                          |
| GRAIP               | Average annual           | Sediment yield      | Alto, Oak Creek,<br>Oklahoma, Oregon Coast<br>Range, Klamath Falls,<br>Southern Appalachians |
| WEPP:Road           | Average annual           | Sediment and runoff | All                                                                                          |
| WEPP<br>Watershed   | Storm and average annual | Sediment and runoff | Average annual – all;<br>Storm – Alto, Oklahoma                                              |

**Table 4.1** Road Surface Erosion/Runoff Model Runs

The SEDMODL2 and WEPP:Road models require users to select climate, geology/soil, surfacing, and traffic levels from a set of pre-defined choices. Selections were made based on the attributes reported for each road segment.

WEPP Windows has a much larger range of potential input variables. The user selects a climate, soil, slope, and management input file and then has an opportunity to modify each of the many parameters therein. Because most users do not have site-specific data regarding the parameters in the files, this study ran the model with the unmodified input files that most closely matched site conditions reported for each road segment. Climate files were generated from the included CLIGEN routine (Ver. 4.3) based on averaging the closest stations to the actual latitude/longitude location of the road segment in the Map sub-routine. The watershed version of the WEPP model was used, with cutslope and road tread modeled as hillslopes draining to the ditch, which was modeled as a channel. The included soil files labeled "road cutslope," "road surface," and "insloped road" with either vegetated or unvegetated ditch and appropriate soil types were used for the cutslope, tread, and ditch, respectively. The "forest road bladed annually" management file was used. Slopes were modeled as simple straight slopes.

The GRAIP model requires a base erosion rate at each site and year measured. To produce a sediment yield estimate for each road segment, the base rate is modified by segment length, gradient, surfacing, and ditch vegetation. The base erosion rate for each site was estimated by regressing erosion against L (road segment length) x S (road segment slope) for the data at each site in each year analyzed. LxS can be more reliably estimated from GPS and DEM than  $LxS^2$  and the regression is only slightly poorer, so it was used in the model. Because of this treatment of the base rate estimate, GRAIP was only tested for how well it analyzed data within a given site, not for between-site variability.

The models were also evaluated for their ability to predict relative differences in erosion rates within a single study area for roads with different traffic and surfacing characteristics. This was done by comparing the relative change (percent increase or decrease) in measured and predicted erosion between road segments with different traffic or surfacing attributes.

#### 4.1 Adjustments of Measured Runoff/Erosion to Compare with Average Annual Model Predictions

All of the models estimate average annual sediment yield or runoff (Table 4.1). Because the measured erosion/runoff data were collected for periods of a few months to three years, measured values needed to be adjusted to compare to average annual model estimates. The measured erosion/runoff amounts were adjusted to approximate average annual amounts by multiplying measured amounts by the ratio [measured precipitation/average annual precipitation]. This introduced some amount of imprecision into the comparison of measured and modeled rates, as runoff and erosion are sensitive to both the amount and intensity of precipitation and large, infrequent storms probably result in disproportionately high runoff and erosion that are not captured in short-term measurements.

#### 4.2 Model Efficiency Statistics

The Nash-Sutcliffe efficiency parameter (Nash and Sutcliffe 1970) was used to quantify how well each model predicted runoff or sediment yield. Model efficiency (E) is calculated as:

$$E = 1 - \sum (Y_{obs} - Y_{pred})^2 / \sum (Y_{obs} - Y_{mean})^2$$

where:  $Y_{obs}$  = measured sediment yield or runoff

 $Y_{pred}$  = predicted sediment yield or runoff

 $Y_{mean}$  = mean of measured sediment yield or runoff for each study site

Model efficiency ranges from  $-\infty$  to 1, with 1 indicating a perfect fit between measured and predicted values. An E value of 0 indicates that the mean value of sediment yield or runoff is as good a predictor as the model. Negative values indicate that the mean value is a better predictor than model results. A negative model efficiency can be obtained in two ways: if the mean of the modeled and predicted responses are dramatically different or if the relationship between modeled and observed is negative. Graphic interpretation of the results is useful in combination with the Nash-Sutcliffe index.

#### 5.0 RESULTS

#### 5.1 Runoff

The WEPP model (WEPP:Road, WEPP Windows-based watershed interfaces) was the only tested model that estimated road runoff. The WEPP:Road interface estimates average annual runoff; the hillslope and watershed interfaces can estimate average annual or storm-based runoff.

#### 5.1.1 Average Annual Runoff

Runoff was modeled at the four study sites that included runoff measurements (Alto, TX; Ouachita Mountains, OK; Southern Appalachians, GA/TN; Oak Creek, OR). WEPP:Road estimates of average annual runoff were generally less than measured values for most of the sites (Figure 5.1), similar to results reported in previous studies. Model efficiencies were negative, indicating that the mean value of measured runoff is a better predictor of runoff than the modeled values (Table 5.1). While some of the negative efficiencies could result from poor estimates of the mean (e.g., from a poor estimate of precipitation or infiltration capacity), the model also showed nearly no relationship between modeled and observed runoff, with two sites (Oak Creek and Alto) actually showing negative relationships; that is, less observed runoff with greater predicted runoff.









Figure 5.1 Measured vs. Predicted Average Annual Runoff

National Council for Air and Stream Improvement

|                   | WEPP:Road      | WEPP Wa        | tershed                |
|-------------------|----------------|----------------|------------------------|
| Site              | Average Annual | Average Annual | Storm                  |
| Oklahoma          | -0.18          | 0.08           | 0.12-0.34 <sup>a</sup> |
| Georgia/Tennessee | -2.2           | -0.1           | n/a                    |
| Oak Creek Oregon  | -0.17          | -0.17          | n/a                    |
| Alto Texas        | -0.26          | 0.1            | 0.57                   |

 Table 5.1
 Model Efficiency (Nash-Sutcliffe E) Statistics for Runoff Predictions

<sup>a</sup> Analysis from Busteed 2004 and Peranich 2005.

The watershed option of the WEPP Windows interface was also run for these four study sites to predict average annual runoff. A site-specific climate file was generated within the WEPP model (Cligen Ver. 4.3) for each of the sites. The road treads and cutslopes were modeled as hillslopes draining to the ditch. The WEPP Watershed interface produced slightly closer agreement with measured values than the WEPP:Road interface for the Texas, Oklahoma, and Georgia/Tennessee sites (Figure 5.1 and Table 5.1) but still tended to under-predict runoff for the Oak Creek and Georgia/Tennessee sites. The small positive efficiencies for Oklahoma and Texas reflect a good estimate of the mean along with a very slight positive slope. The relationship was stronger for the Georgia/Tennessee data ( $R^2 = 0.55$ ), but was negative for the Oak Creek data.

#### 5.1.2 Storm Runoff

The WEPP Watershed interface was run using single-storm climate files for the Oklahoma segments and the Alto segments for each measured storm (Table 5.2). (Oklahoma segments were run and reported in Busteed 2004 and Peranich 2005). The storm-based estimates of runoff were generally better than the average annual estimates, with at least a positive trending relationship on most segments (Figure 5.2). The storm-based model tended to under-predict runoff from the largest storms, but did a better job with smaller storms.

| 2          |            |           | ,            | ,         |
|------------|------------|-----------|--------------|-----------|
|            | Runoff (L) |           | Erosion (kg) |           |
| Segment    | Measured   | Predicted | Measured     | Predicted |
| Oklahoma   |            |           |              |           |
| А          | 1,150,000  | 420,000   | 700          | 600       |
| В          | 610,000    | 380,000   | 500          | 500       |
| 19th St NE | 150,000    | 160,000   | 5,300        | 3,600     |
| 19th St NW | 200,000    | 190,000   | 14,200       | 5,700     |
| 32nd St NE | 320,000    | 260,000   | 6,900        | 2,300     |
| 32nd St NW | 320,000    | 210,000   | 5,900        | 1,800     |
| Texas      |            |           |              |           |
| 1          | 100,000    | 185,500   | 60           | 430       |
| 2          | 50,000     | 141,700   | 30           | 440       |
| 3          | 140,000    | 198,200   | 90           | 790       |
| 4          | 150,000    | 144,900   | 410          | 550       |
| 5          | 70,000     | 130,600   | 210          | 370       |
| 6          | 170,000    | 122,900   | 120          | 290       |
| 7          | 120,000    | 152,000   | 150          | 340       |
| 8          | 470,000    | 177,600   | 230          | 590       |
| 9          | 170,000    | 161,200   | 50           | 460       |

**Table 5.2.** Total Storm-Based Runoff and Erosion Measured and Predicted by WEPP Watershed over Measurement Period (6 to 12 months)



Oklahoma



**Figure 5.2** Measured vs. Predicted Storm Runoff (Oklahoma data reported in Busteed 2004 and Peranich 2005)

Measured Runoff (L) ◆ RS1 ■ RS2 ▲ RS3 × RS4 ● RS5 ■ RS6 ◆ RS7 \* RS8 ● RS9
## 5.1.3 Sediment Yield

Average annual sediment yield was modeled for each road segment. Storm-based yield was modeled using the WEPP for Windows watershed interface for the Alto and Oklahoma sites that reported storm-based erosion.

## 5.1.4 Average Annual Erosion – Patterns between Sites and Segments

Patterns of average annual erosion were tested across all sites (Tables 5.3 and 5.4, Figures 5.3 and 5.4). Inter-site comparisons revealed poor performance of the models in predicting the observed erosion at every segment (Figure 5.3). Table 5.3 reveals poor model efficiencies at most sites, which indicates that the model predictions are poorer than using the mean of the observation. Much of the issue is that the models do not predict differences between sites well and do a poor job of even estimating mean erosion at a site (Figure 5.4, Table 5.4).

While the primary image in Figure 5.3 shows the overall plot of points nearly horizontal and above the 1:1 line, there is some information to be seen by looking at individual studies. All three models show a horizontal pattern (no correlation) for the Montana data, which were collected at widely spaced segments across the state with different soils and weather. The large group of Oregon Coast Range plots also has some variability in weather and soils that was not captured well by the models. If it were even marginally captured, the groups of points highlighted by varying colors would array along the 1:1 line. Looking at the individual groups of points, there is some indication of slight positive trends within some of the groups, but clear mismatches in the means (the center of the points is not near the 1:1 line), which would speak to an inability to estimate the effects of differences in weather and soil between sites.

|                      | SEDMODL2/ |            |         |                |
|----------------------|-----------|------------|---------|----------------|
|                      | WARSEM    | WEPP: Road | WEPP V  | Vatershed      |
|                      | Average   | Average    | Average |                |
| Site                 | Annual    | Annual     | Annual  | Storm          |
| Klamath Falls Oregon | -1.1      | -1.7       | -11     | n/a            |
| Coast Range Oregon   |           |            |         |                |
| Low Pass             | -2.2      | -4.6       | -5.2    | n/a            |
| Wind Peak            | -7.0      | -65        | -110    | n/a            |
| Sand Bar Gap         | -0.16     | -5.8       | 0.7     | n/a            |
| Oklahoma             | -0.91     | -0.13      | -0.85   | $0.4-0.61^{a}$ |
| Georgia/Tennessee    | 0.15      | -0.02      | -0.12   | n/a            |
| Montana              | -35       | 0.44       | -0.05   | n/a            |
| Oak Creek Oregon     | -7040     | -1030      | -850    | n/a            |
| Alto Texas           | -490      | -32        | -15     | -18            |
| Sierra Mts. CA       | -3700     | -73        | -302    | n/a            |

| Table 5.3 | Model Efficiency | (Nash-Sutcliffe E   | ) Statistics for Erosion | Predictions across Sites   |
|-----------|------------------|---------------------|--------------------------|----------------------------|
|           | Model Lineiency  | (1 tubil Dutennie L | ) Statistics for Libbion | i realetions across prices |

<sup>a</sup> Analysis from Busteed 2004 and Peranich 2005.

|                  | Mean Normalized Erosion (kg/m <sup>2</sup> -slope) |          |       |           |
|------------------|----------------------------------------------------|----------|-------|-----------|
|                  |                                                    |          | WEPP: | WEPP      |
| Site             | Measured                                           | SEDMODL2 | Roads | Watershed |
| Klamath Falls OR | 0.01                                               | 0.03     | 0.04  | 0.07      |
| Low Pass OR      | 0.08                                               | 0.18     | 0.22  | 0.27      |
| Sand Bar Gap OR  | 0.08                                               | 0.06     | 0.21  | 0.10      |
| Windy Peak OR    | 0.02                                               | 0.16     | 0.23  | 0.45      |
| Oklahoma         | 1.20                                               | 0.17     | 0.55  | 0.60      |
| GA/TN            | 0.34                                               | 0.21     | 0.22  | 0.21      |
| Montana          | 0.07                                               | 0.47     | 0.04  | 0.04      |
| Oak Creek OR     | 0.01                                               | 0.19     | 0.08  | 0.12      |
| Alto TX          | 0.20                                               | 1.54     | 0.62  | 0.61      |
| Sierras CA       | 0.08                                               | 0.40     | 0.06  | 0.16      |

 Table 5.4
 Measured and Predicted Mean Normalized Erosion

Measured vs. SEDMODL2 Predicted



Figure 5.3 Measured vs. Predicted Average Annual Sediment Yield (continued on next page)



Measured vs. WEPP:Roads Predicted





Figure 5.3 (continued) Measured vs. Predicted Average Annual Sediment Yield



Figure 5.4 Measured and Predicted Mean Normalized Erosion at Each Study Site

## 5.1.5 Average Annual Erosion – Patterns between Segments at a Site

Another utility of erosion models is in being able to compare road segments in an area with similar climate and soil characteristics. Even if the mean value were missed for a site, the question would be how well do predictions trend with observations. Coefficient of determination ( $\mathbb{R}^2$ ) and slope values for each model at each site as determined from a power-law regression are shown in Table 5.5. The slope is the exponent in the power-law relationship. Figures 5.5 through 5.8 show the relationship between observed and predicted data at each site. Again, the location relative to the 1:1 line is not as important in this discussion as the slope and the coefficient of determination. A strong relationship suggests that the model gives a good indication of relative differences, and a slope close to 1 suggests a linear scaling between predictions and observations; that is, ratios of predictions are comparable to ratios of observations. Larger and lower values suggest non-linear behavior, which makes interpretations of ratios of sediment production difficult. For example, a project that is predicted to produce twice as much sediment could actually produce four times as much for a slope of 2. Negative slopes would be particularly problematic, implying an inverse relationship. Realistically, a model producing a negative relationship would not be informative.

GRAIP gave the best  $R^2$  or was within 2% of the best  $R^2$  at five sites. The only site for which it provided a poor relationship was Oklahoma, where two of the other models produced negative slopes. SEDMODL posted a similar pattern in  $R^2$  values, and gave the best  $R^2$  or was within 4% at four sites. WEPP:Road again gave a somewhat similar pattern, and gave the best  $R^2$  or was within 1% at three sites, but it was substantially off the lead at the other three and gave the poorest relationship at one site. It was the only model that did well for the Oklahoma data. WEPP Watershed was within 3% of the best  $R^2$  at one site, but produced the poorest relationship at five sites, if one interprets a strong negative relationship as a poor relationship. GRAIP produced slopes consistently close to 1 except in Oklahoma and Texas, and had an average deviation from 1.0 of 0.24, with a median of 0.09. SEDMODL was the next best, with an average deviation of 0.56 and median 0.52. Both WEPP:Road and WEPP Watershed had average deviations of about 0.8 and medians of 0.44 and 0.57, respectively. The patterns in differences in slope were not similar between the two, however. Slopes less than 1 often show a greater range in predictions than the observations, and slopes greater than 1 are often the opposite.

All told, the analysis shows that SEDMODL and GRAIP, although empirical models, predict relative differences well. WEPP:Road had largely non-linear relationships with the observations, but gave only slightly poorer relationships. WEPP Watershed was the poorest on the basis of more non-linear relationships and poorer strength of relationship.

| Site              | SEDMODL | GRAIP | WEPP Road | WEPP Watershed |
|-------------------|---------|-------|-----------|----------------|
| $\mathbb{R}^2$    |         |       |           |                |
| Klamath Falls     | 0.84    | 0.82  | 0.6       | 0.81           |
| Georgia/Tennessee | 0.15    | 0.15  | 0.17      | 0.11           |
| Low Pass          | 0.24    | 0.43  | 0.19      | 0.16           |
| Oak Creek         | 0.83    | 0.87  | 0.74      | 0.35           |
| Oklahoma          | 0.02    | 0.08  | 0.85      | 0.66           |
| Texas             | 0.37    | 0.5   | 0.49      | 0.05           |
| Slope             |         |       |           |                |
| Klamath Falls     | 1.8     | 0.88  | 3.6       | 1.79           |
| Georgia/Tennessee | 0.62    | 0.99  | 1.4       | 1.47           |
| Low Pass          | 0.72    | 0.94  | 0.79      | 0.9            |
| Oak Creek         | 0.96    | 0.94  | 0.79      | 1.04           |
| Oklahoma          | -0.24   | 0.46  | 1.91      | -1.77          |
| Texas             | 0.35    | 0.38  | 0.52      | 0.34           |

 Table 5.5
 Coefficient of Determination (R<sup>2</sup>) and Slope for Power Law Relationships between Observed and Modeled Sediment Production



Figure 5.5 SEDMODL2 Predictions for Each Site

National Council for Air and Stream Improvement



Figure 5.6 GRAIP Predictions for Each Site



Figure 5.7 WEPP:Road Predictions for Each Site



Figure 5.8 WEPP Watershed Predictions for Each Site

### 5.1.6 Storm Erosion

Storm-based sediment yields were modeled using the WEPP Windows watershed interface for each road segment at the Oklahoma and Alto sites. The model generally under-predicted erosion for the Oklahoma segments (which had high sediment yields) and over-predicted erosion for the lower-yield Alto segments (Figure 5.9). Model efficiency statistics indicated moderate performance for the Oklahoma site and poor performance for the Alto site (Table 5.3). Figure 5.9 reveals that while there is at least a positive relationship between what was measured and predicted for each storm on a particular segment in Oklahoma, there is no hint that the storm-to-storm variability is captured by the model for the Texas data. Peranich (2005) noted that increasing soil erodibility to simulate grading activity on the road segments in his study at two of the Oklahoma sites resulted in better agreement between measured and WEPP-modeled erosion. A detailed examination of storm-based runoff and erosion for the Alto site shows fair agreement between measured and WEPP Watershed-predicted runoff for most storms, but general over-prediction of erosion (Figure 5.10).





| Alto | Texas  |
|------|--------|
| πιυ  | I EAdS |



Figure 5.9 Measured vs. Predicted Storm Erosion for Oklahoma and Texas Road Segments (Oklahoma data reported in Busteed 2004 and Peranich 2005)



Figure 5.10 Measured vs. WEPP Watershed-Predicted Storm Runoff and Erosion for Alto Texas Site (sum of nine segments)

National Council for Air and Stream Improvement

One possible cause of model over-prediction is that observations and measurements of erosion on roads indicate that disturbance of surfaces by traffic (particularly during rainfall events) or grading results in an increase in sediment available for erosion, and erosion rates increase. However, if the disturbance ceases or decreases due to reduced traffic or time since the last grading, the road, ditch, and cutslope surfaces relatively quickly become supply-limited systems and erosion rates decrease. This can be seen in the Alto data set. A comparison of precipitation with runoff and sediment yield for each storm shows relatively good positive correlation between precipitation and runoff as well as a fair positive correlation between precipitation and sediment yield for a road segment with a bare ditch and the highest traffic use (Figure 5.11, Segment 4). However, a road segment with a grassed ditch and low traffic levels has a fair positive correlation between precipitation and runoff and a poor negative correlation between precipitation and erosion (Figure 5.11, Segment 3).

Reid (1981) documented the effects of temporary reductions in traffic levels by sampling runoff from mainline roads that were heavily used for log haul during weekdays and not used during weekends. She found that erosion dropped to 13% of the heavy use rate during the weekends, even during rainfall events. Luce and Black (2001a) noted a 90% decrease in sediment concentrations within an hour of traffic cessation.

Road surface erosion models predict erosion based on input values that include precipitation, general road tread, cutslope, and ditch cover characteristics, and average traffic use values. These findings suggest that process-based models may need to track detailed disturbance timing and armoring trajectories relative to precipitation intensity variations, and that empirical models need to find an effective parameter describing the averaged effect of traffic in different seasons.



Alto Watershed Texas, Segment 4 11% gradient, rutted tread, bare ditch, highest traffic

Figure 5.11 Single Storm Runoff and Erosion for Two Alto Texas Road Segments

## 5.2 Effects of Road Management and Maintenance Practices

Road managers often look to management or maintenance practices to reduce road erosion and sediment delivery to streams. Common practices that have been shown to reduce surface erosion include:

- changing road surfacing material to gravel or asphalt (Reid and Dunne 1984; Swift 1984b; Kochenderfer and Helvey 1987; Burroughs and King 1989; Foltz 1996)
- reducing traffic (Reid 1981; Sullivan and Duncan 1981; Reid and Dunne 1984; Foltz 1996; Luce and Black 2001a)
- reducing road segment length by installing culverts, drivable dips, waterbars, etc.
- re-grading to crown or outslope an insloped road
- reducing the frequency of cutslope or ditch grading to encourage vegetation growth (Burroughs and King 1989; Megahan et al. 1992; Luce and Black 1999, 2001a, 2001b; Megahan, Wilson, and Monsen 2001; Grace 2002)
- armoring or vegetating the cutslope or ditchline (Burroughs and King 1989; Luce and Black 2001b; Grace 2002)
- installing sediment traps in the ditchline or at the culvert outfall (Bilby, Sullivan, and Duncan 1989; NCASI 2000; Grace 2002)

All of the models allow users to evaluate the effects of reducing road segment lengths or tread shape by modifying the lengths or widths of the road surface being modeled. SEDMODL2/WARSEM, GRAIP, and WEPP:Road have the most easily understood choices for modeling different traffic and surfacing/cover differences (Table 5.6). WEPP's hillslope and watershed interfaces provide virtually unlimited abilities to vary properties of the soil and management input files to simulate different management conditions. However, there are so many variables that can be changed and usually little data available on appropriate input values that it is not a simple task to determine appropriate changes to model particular management conditions.

|                                                  |                                                                                                                                               |                                                                                                                                                                                                    | Ditch/Cutslope                                                                                                  |                                                                                                                                                          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model                                            | Surfacing                                                                                                                                     | Traffic                                                                                                                                                                                            | Vegetation                                                                                                      | Comments                                                                                                                                                 |
| SEDMODL2<br>WARSEM                               | User can choose<br>asphalt, gravel,<br>gravel with ruts,<br>pitrun, native,<br>native vegetated,<br>or native with<br>ruts                    | User can choose<br>from six traffic<br>categories<br>ranging from<br>heavy to no use                                                                                                               | User can enter<br>percent cutslope<br>cover; does not<br>calculate ditch<br>erosion<br>separately               | User<br>documentation<br>details<br>differences<br>between various<br>input choices                                                                      |
| GRAIP                                            | User can choose<br>gravel/vegetated,<br>native, or paved<br>and specifies<br>flowpath<br>location and<br>cover                                | Traffic effects not<br>directly<br>modeled,<br>however<br>flowpath<br>changes by<br>traffic affect<br>flowpath<br>vegetation<br>cover; traffic can<br>also be<br>addressed by<br>varying base rate | User can choose<br>between bare or<br>vegetated<br>flowpath (ditch<br>or wheel rut);<br>cutslope not<br>modeled | User<br>documentation<br>describes how to<br>update parameter<br>values to account<br>for local data or<br>specific<br>processes                         |
| WEPP:Road                                        | User can select<br>native, gravel, or<br>paved                                                                                                | User can select<br>high, low, or no<br>traffic                                                                                                                                                     | User can select<br>bare or<br>vegetated ditch;<br>cutslope not<br>modeled                                       | User<br>documentation of<br>differences in<br>input values is<br>brief                                                                                   |
| WEPP<br>Hillslope and<br>Watershed<br>interfaces | User can select<br>pre-determined<br>unsurfaced or<br>gravel tread;<br>also can<br>customize soil<br>file to account<br>for gravel<br>surface | Not specifically<br>addressed; user<br>can change soil<br>erodibility or<br>management<br>file, but<br>appropriate<br>values not<br>specified                                                      | User can select<br>bare or<br>vegetated ditch,<br>and can alter<br>vegetation cover<br>in ditch or<br>cutslope  | User can vary<br>many parameters<br>in soil and<br>management<br>files, but<br>determining<br>appropriate<br>values for these<br>fields is not<br>simple |

 Table 5.6
 Modeling Differences in Road Management/Maintenance

## 5.2.1 Surfacing

The quality and type of road surfacing has been shown to affect sediment production. Addition of gravel, chipseal, or asphalt generally reduces sediment production from the road surface. Published research on the effects of road surfacing has been compiled by Burroughs and King (1989), with additional work by Swift (1984a), Kochenderfer and Helvey (1987), Foltz and Burroughs (1990), and Foltz (1996). The Klamath Falls data set in this report includes both native and gravel-surfaced roads (Table 5.7). Foltz and Truebe (2003) found that the quality of gravel surfacing had a large effect on both runoff and sediment production from road test plots. Runoff and erosion varied over two orders

of magnitude between the lowest and highest quality gravel tested, and rutting was a major factor associated with increased erosion.

| Reference                      | Road Condition        | Results                           |
|--------------------------------|-----------------------|-----------------------------------|
| Kochenderfer and Helvey (1987) | 3" clean gravel       | 10-13% of native road             |
| Kochenderfer and Helvey (1987) | 3" crusher run gravel | 13-16% of native road             |
| Klamath Falls (herein)         | gravel                | 2% of native road                 |
| Swift (1984a)                  | gravel                | 20% of native road                |
| Burroughs and King (1989)      | 4" gravel             | 22% of native road                |
| Foltz (1996)                   | good gravel           | 13% of marginal gravel road       |
| Foltz and Truebe (2003)        | good gravel           | 34-80% of marginal gravel road    |
| Burroughs and King (1989)      | dust oil treated      | 15% of native road                |
| Burroughs and King (1989)      | bituminous surface    | 3.5% of native road               |
| Reid and Dunne (1984)          | asphalt               | 0.4% of gravel, heavily used road |
| Burroughs and King (1989)      | rutted                | 200% of un-rutted road            |
| Foltz and Burroughs (1990)     | rutted                | 200-500% of un-rutted road        |
| Swift (1984a)                  | grass                 | 50% of native road                |
|                                |                       |                                   |

 Table 5.7
 Effects of Road Surfacing on Road Erosion

The GRAIP model has three surfacing categories associated with numerical factors that are used to predict erosion: crushed rock, gravel, cinder, vegetated = 1; native, dirt = 5; and paved = 0.2. SEDMODL has seven surfacing categories/factors: asphalt = 0.03; gravel = 0.2; gravel with ruts = 0.4; pitrun = 0.5; vegetated native = 0.5; native = 1; and native with ruts = 2.

The WEPP:Road model allows the user to select native, gravel, or asphalt road surfaces. The WEPP hillslope and watershed interfaces have sample input files for native and gravel road surfaces and the user can alter the soil input files to simulate other surfacing characteristics if appropriate input values are known. In the WEPP models, changes in surfacing are simulated by changing the rock content and hydraulic conductivity of the soil input file.

Klamath Falls, which included native and gravel road sections, was the only site in this study where it was possible to test the models' abilities to predict differences in surfacing. The data set included 10 road segments with aggregate surfacing and five native surfaced segments. The measured and modeled output for each of the road segments is shown in Figure 5.12. All models predicted more erosion from native surfaced roads than from gravel road segments. Measurements from the Klamath Falls segments showed that gravel surfaced roads produced 2% of the sediment of native surfaced roads. Ratios of predicted gravel:native roads for the models were: GRAIP 3%; SEDMODL 18%; WEPP:Road 54%; and WEPP Watershed 18%.

The 98% reduction in erosion from the gravel surfaced roads at the Klamath Falls site is a much greater reduction than reported in most studies (Table 5.7). The ratio of gravel:native road erosion in other studies ranged from 10 to 22%, closer to the ratios predicted by SEDMODL and WEPP Watershed. In part the difference in erosion is due to changes in drainage flow paths caused by differences in surfacing. The native surfaced roads in Klamath Falls had ruts that did not grow

vegetation, whereas the surfaced roads had ditches with vegetation cover. The combined effects of these two processes drove the difference in sediment yields. Luce and Black (1999, 2001a, 2001b) found that changes in the traveled way rarely yielded as great an effect on sediment yield as changes in the primary down-road flow path (ditch or rut). There is a need for experimental data that show the effects of varying surfacing interacting with varying flowpath treatments.



Figure 5.12 Measured and Modeled Erosion from Gravel and Native Klamath Falls Road Segments

## 5.2.2 Disturbance: Traffic and Grading

Traffic use or grading of a road can increase runoff and erosion by disturbing and breaking down the road surface. Traffic use can also create ruts in the road that concentrate water and increase erosion. When disturbance ceases, the surface of a roadway develops an armor layer of larger particles that are resistant to erosion as runoff removes smaller, more easily erodible particles. Traffic during precipitation or runoff events results in continuous disruption of the road surface with consequent high erosion rates. Traffic during dry weather breaks down the road surface into smaller particles that are carried away during the next runoff event, but if traffic is discontinued during wet weather the road surface quickly armors and limits further erosion.

Large-scale disturbances such as new road construction, road reshaping, and regrading of road tread, cutslope, and ditches have been shown to greatly increase erosion in the first two years following disturbance (Megahan and Kidd 1972; Dyrness 1975; Ketcheson, Megahan, and King 1999; Luce and Black 1999, 2001b). Increases in the first year ranged from five to twelve times the long-term erosion rate, and second year yields were one to two times the long-term rate.

There have been several studies of the effects of traffic levels on surface erosion in different parts of the country. Early studies noted large increases in suspended sediment loads leaving roadways that

were actively used by truck traffic. Wald (1975) noted that roads used by log trucks generated 13 times more sediment than a control (no traffic). He also noted that runoff following grading of the road had 3.6 times as much sediment as runoff prior to grading. Wooldridge (1979) found increased sediment levels in streams below forest roads during work days with precipitation, but no increased levels of suspended sediment in the creek on the following weekend day (no traffic) despite heavier rainfall. Research by Reid (1981), Sullivan and Duncan (1981), Reid and Dunne (1984), and Foltz (1996) was specifically aimed at determining the effects of traffic on road erosion. Reid's work was done in the Clearwater River watershed on the Olympic Peninsula (average 3,886 mm of rain per year during study), on worn gravel roads underlain by Tertiary sedimentary rocks. Sullivan and Duncan's study area was the Deschutes and Chehalis River watersheds on gravel roads underlain by glacial outwash and basalt, respectively. Average annual precipitation is 1,295 mm in the Deschutes basin and 2,794 mm in the Chehalis basin. Traffic rates in the studies included heavy mainline roads (over four log trucks/day), moderate use (one to three trucks/day), light administrative use (less than one log truck plus pickup traffic), and abandoned/inactive (blocked) roads with no use. In addition, Reid collected data from heavily used roads during temporary non-use periods when log trucks were not running.

Three of the data sets from the current study provide data on the effects of different traffic levels. The Montana, Oregon Coast Range, and Alto sites included road segments with varying traffic use rates. Annual normalized erosion  $(kg/m^2)$  vs. average number of truck axles/day was plotted for the 20 road segments from the Montana study (Figure 5.13). Erosion generally increased with traffic levels, particularly at sites with three or more truck axles/day. The large variability is due to the study simultaneously varying multiple factors in addition to traffic, including grading, precipitation, soil, slope, and other site characteristics.



Figure 5.13 Annual Sediment Yield at Montana Sites vs. Average Truck Axles/Day

Because varying road gradient and surfacing introduced additional factors at the Alto site, total runoff and sediment yields from each of the nine sites were plotted separately (Figure 5.14). Runoff and erosion were higher for moderate and high traffic levels in each road gradient class compared to low traffic segments of similar gradient. Traffic use at this site produced ruts in the road segments with gradients over 10%, which probably contributed to higher erosion rates.



Figure 5.14 Annual Sediment Yield at Alto Texas Road Segments

Erosion rates from studies and sites reporting traffic differences were normalized to a light traffic rate of less than 1 load/day (Table 5.8). All studies showed increased erosion rates with increased traffic use. Variations in the rates of erosion between studies are probably caused by other factors such as gravel quality, as seen by the difference in erosion rates between the two surfacing types in the Foltz (1996) study (good quality gravel vs. pitrun marginal quality gravel).

The GRAIP model does not include a direct provision for different traffic levels; however, the effect can be modeled through a modified base rate for trafficked segments or by adding surfacing descriptions that describe an interaction between surfacing and traffic.

SEDMODL includes six traffic categories: heavy = 120; moderately heavy = 50; moderate = 10; light = 2; occasional = 1; and none = 0.1. It also includes a factor for new roads: roads 0 to 1 year old = 10; roads 1 to 2 years old = 2; and roads over 2 years old = 1.

The WEPP:Road model allows users to select between high, low, or no traffic use. The model reduces the rill erodibility value in the soil input file by 75% on low and no traffic roads and includes 50% vegetation cover in the management file of no use roads. Users can change soil and management values in the hillslope and watershed versions of WEPP for Windows to simulate traffic or grading if appropriate values are known.

|                                 |                     |                     |                             |                     |                   |                                 | -                             |                      |
|---------------------------------|---------------------|---------------------|-----------------------------|---------------------|-------------------|---------------------------------|-------------------------------|----------------------|
| Use Rate                        | Gravel <sup>a</sup> | Pitrun <sup>a</sup> | Worn<br>Gravel <sup>b</sup> | Gravel <sup>c</sup> | Alto <sup>d</sup> | Ungraded<br>Gravel <sup>e</sup> | Graded<br>Gravel <sup>e</sup> | Montana <sup>d</sup> |
| Heavy<br>(>4 loads/day)         |                     |                     | 125                         | 46                  |                   | 21                              | 1.14                          |                      |
| Mod. heavy<br>(3-4 loads/day)   | 9                   | 12                  |                             |                     |                   |                                 |                               |                      |
| Moderate<br>(2 loads/day)       | 2                   | 8                   | 10                          |                     | 2-3               |                                 |                               | 5                    |
| Light (<1<br>load/day)          | 1                   | 1                   | 1                           | 1                   | 1                 | 1                               | 1                             | 1                    |
| Abandoned<br>(inactive)         |                     |                     | 0.13                        |                     |                   |                                 |                               |                      |
| Temporary non-<br>use (weekend) |                     |                     | 16                          |                     |                   |                                 |                               |                      |
| <sup>a</sup> Foltz 1996.        |                     |                     |                             |                     |                   |                                 |                               |                      |

 Table 5.8
 Relative Erosion from Roads with Different Traffic Use (normalized to light traffic)

<sup>b</sup> Reid and Dunne 1984.

<sup>c</sup> Sullivan and Duncan 1981.

<sup>d</sup> Native surface.

<sup>e</sup> Luce and Black 2001a.

To examine how SEDMODL and WEPP:Road predict the effects of traffic, the models were used to simulate higher (log truck traffic), low (administrative use), and no (blocked/vegetated) traffic levels on a 100 meter long, 5% gradient, insloped road with a gravel surface (tread and ditch) and a native surface (tread and ditch). Predicted erosion relative to a low traffic use is shown in Table 5.9. Both models predict relative increases in erosion with log truck traffic that are within the range measured. Under the conditions modeled, the WEPP model predicted higher than measured erosion on roads with no use.

|                            | Range of       | SEDMODL | WEPP:ROAD |
|----------------------------|----------------|---------|-----------|
| Use Rate                   | Measured Rates | Factors | Predicted |
| Heavy (>4 loads/day)       | 46-125         | 50-120  | n/a       |
| Mod. heavy (3-4 loads/day) | 9-12           | 10      | n/a       |
| Moderate (2 loads/day)     | 2-10           | 2       | 3.5       |
| Light (<1 load/day)        | 1              | 1       | 1         |
| Abandoned (inactive)       | 0.13           | 0.1     | 0.8       |

**Table 5.9** Relative Predicted Erosion with Traffic Use (normalized to light traffic)

The interactions of major disturbances such as grading and traffic pose an interesting problem. While both grading and traffic are known to increase sediment yield, the combination of the two is not much greater than recent grading alone (Luce and Black 2001a). SEDMODL and WARSEM both use a multiplicative interaction, where the total effect is an age factor (based on time since grading) and a traffic factor. Luce and Black (2001a) suggested that such a model could dramatically over-predict the effects of the two practices in concert and under-predict the individual effect of grading absent traffic. An additive model or a compensating model that accounts for the effects of grading but only accounts for traffic effects if grading is not recent may be appropriate.

## 5.2.3 Ditch/Cutslope Cover

The amount of vegetation, rock cover, or armoring in road ditches and on cutslopes has an effect on whether or not the cutslope or ditch erodes. Cover in ditches and cutslopes can be disrupted by grading activities, resulting in short-term increases in erosion. Road managers can control the frequency of ditch and cutslope grading activities or take measures to add cover to ditches or cutslopes to reduce erosion. Luce and Black (1999) measured about seven times as much sediment from recently graded roads as from undisturbed roads. Within a year, the relative increase had dropped to a factor between two and three (Luce and Black 2001b). They examined situations where both the road tread (gravel) and ditch had been graded and where only the tread was graded (without disturbance of the ditch) and found no effect from grading only the road tread.

The GRAIP and WEPP models allow users to model bare and vegetated/rocked ditches. The GRAIP model has two choices for ditch cover, with associated model factors: ditch vegetation less than 25% = 1; and flow path vegetation over 25% = 0.14. The WEPP:Road and WEPP for Windows interfaces allow the user to select a bare ditch or a rocked/vegetated ditch. The rocked/vegetated ditch has a higher critical shear value in the soil input file, resulting in less erosion from the ditchline.

Research on the effects of cutslope cover on erosion rates is included in Burroughs and King (1989), Megahan et al. (1992), Megahan, Wilson, and Monsen (2001), and Grace (2002) and is compiled in Figure 5.15.



**Figure 5.15** Erosion Reduction on Cutslopes with Varying Ground Cover [data with lines from Burroughs and King 1989; data with solid points and no line from Grace 1999]

Cutslope cover can be modeled in SEDMODL and in the WEPP hillslope or watershed interfaces. Cover can be entered in 10% increments in SEDMODL and percent cover can be entered as part of the management file in WEPP for Windows.

## 6.0 DISCUSSION AND CONCLUSIONS

## 6.1 Model Performance

These model comparisons revealed information useful for model selection and use and important for defining future research objectives. There are two primary findings:

- None of the models predicted differences that might be attributed to variations in soil or climate well.
- The empirical models predicted differences between road segments at a given location better than the physically based models, although both types still showed substantial unexplained variance in some locations.

One important aspect of the first finding is that there was no indication that the physically based models performed any better than the empirical models for estimating differences between sites. WEPP uses soil texture as a predictor of runoff and erodibility. Because soils around forest roads are either altered by construction (road tread and ditch), from deep soil horizons (cutslope and ditch), or high in organic matter (upper cutslope), relationships derived for agricultural soils may be imprecise. In addition, such relationships can be complex and may depend not only on amount but geologic origin of clays (e.g., Burroughs, Luce, and Phillips 1992). Without calibration to a particular location (e.g., Luce and Cundy 1994), estimates of hydraulic conductivity based solely on soil texture may be in error.

It is not surprising that empirical models generally perform well for between-segment analyses, considering that these are the kinds of data from which they are usually developed. Plots of varying road characteristics are laid out within a relatively small area, providing control on soils and climate. The fact that some sites still have substantial unexplained variance while others were very well predicted suggests that some processes play out differently in different locations, and also serves as a reminder that there are road characteristics other than the ones that have been modeled that drive sediment production.

The physically based models estimated variations in annual runoff between and within sites poorly. The WEPP Watershed model run for individual storms produced slightly better results because the actual precipitation could be input; however, it estimated less variability in flows than was observed, predicting low flows during small storms, but also predicting low flows for the largest storms.

Evaluating the performance of models that predict "average" annual behavior by comparing them to observations that span from a few months to three years posed some challenges. Short-term records were annualized by the ratio of measured precipitation to average annual precipitation for each site. Some errors might be incorporated in this process because the effect of individual storms is not linearly related to the amount of precipitation. Most of these kinds of errors would relate to the position of a group of points using the same weather information relative to the 1:1 line, so could have substantial influence on the Nash-Sutcliffe score but little influence on the strength of the correlation and the slope between observed and measured. Because SEDMODL uses average annual precipitation as an input, the applied corrections fully compensate. Because WEPP's road and watershed models use stochastic climate files, differences in intensity cannot be adjusted. However, results of the storm-based runoff analysis suggest that even perfect climate data would produce errors similar to those seen.

The primary implication for use of these models is that they are most appropriate for comparison in a relative sense unless calibration data are available. Because GRAIP requires calibration data for a particular site, it plots closer to the 1:1 line and has positive Nash-Sutcliffe scores for most sites. However, the kind of calibration performed does not affect the slope or  $R^2$  value relating to within-

site variability due to road slope or other factors. The other models have similar parameters that can be adjusted to move them closer to the 1:1 line while maintaining a similar relationship among the points. Methods for measurement of sediment data are robust and fairly inexpensive compared to mitigation treatments (see Black and Luce 2010 for specific methods). If regulations require accuracy and precision in modeling, calibration is a cost-effective solution.

A second implication for use is that selection of a model should tie primarily to the intended use, because there were not strong differences in predictive ability. If values for an individual segment or a few segments is needed, WEPP:Road is convenient. If distribution over a landscape and contributions to stream segments are needed, GIS based models such as SEDMODL or GRAIP would be more useful. GRAIP gives the best estimates of ratios in sediment production or delivery for evaluations of relative impacts.

Several research needs are highlighted in two areas: 1) improved prediction of inter-site variation driven by differences in soil and vegetation; and 2) improved prediction of interacting segment-scale design and operation. Improved inter-site predictions reduce the need for local calibration, and may refine just how "local" calibration needs to be. Ultimately, understanding the large-scale differences between sites as driven by variations in soil, geology, and climate is useful for transferring solutions found in one place to another and for designing effective road erosion treatments for the best cost, for example, applying climate and soil specific Best Management Practices. Improved prediction of interacting design/operation effects seems to be a continuing need. While there are many studies on the effects of varying individual treatments (e.g., surfacing or traffic), how combinations work is important to both modeling and treatment efficiency. For example, the results of Luce and Black (2001a) showing a tradeoff in effects of grading versus effects of traffic suggests that traffic regulation is only important when ditches have not been recently cleaned. Some example combination that might be priorities are surfacing x traffic, surfacing x traffic x maintenance, or cutslope height x surfacing. In the context of sediment limited or energy limited transport of materials, understanding these kinds of interactions are useful for either physically based or empirical models.

## REFERENCES

Note: Many of the items in the reference list contain digital object identifiers (DOIs). DOIs allow for persistent links for electronic objects. More information is available at www.doi.org.

- Amann, J.R. 2004. Sediment production from forest roads in the upper Oak Creek watershed of the Oregon Coast Range. Masters thesis. Corvallis, OR: Oregon State University.
- Bilby, R.E., Sullivan, K., and Duncan, S.H. 1989. The generation and fate of road-surface sediment in forested watersheds in southwestern Washington. *Forest Science* 35(2):453-468.
- Black, T.A., Cissel, R.M., and Luce, C.H. 2010. *The Geomorphic Road Analysis and Inventory Package (GRAIP) data collection method*. Boise, ID: United States Department of Agriculture Forest Service Rocky Mountain Research Station. <u>http://www.fs.fed.us/GRAIP/downloads/manuals/GRAIP\_ManualField2010.pdf</u>.
- Black, T.A., and Luce, C.H. 2010. *Measuring water and sediment discharge from a bordered road plot using a settling basin and tipping bucket*. Boise, ID: United States Department of Agriculture Forest Service Rocky Mountain Research Station. http://www.fs.fed.us/GRAIP/downloads/NewRoadPlotv3.pdf.
- Burroughs, E.R., Jr., and King, J.G. 1989. *Reduction of soil erosion on forest roads*. General Technical Report INT-264. Ogden, UT: United States Department of Agriculture Forest Service, Intermountain Research Station.

- Burroughs, E.R., Jr., Luce, C.H., and Phillips, F. 1992. Estimating interill erodibility for forest soils. *Transactions of the American Society of Agricultural Engineers* 35(5):1489-1495.
- Busteed, P. 2004. *Quantifying forest road erosion in the Ouachita Mountains of Oklahoma*. Masters thesis. Oklahoma State University.
- Cline, R., Cole, G., Megahan, W., Patten, R., and Potyondy, J. 1981. *Guide for predicting sediment yield from forested watersheds*. Missoula, MT and Ogden, UT: United States Department of Agriculture Forest Service Northern Region and Intermountain Region.
- Coe, D.B.R. 2006. Sediment production and delivery from forest roads in the Sierra Nevada, *California*. Masters thesis. Colorado State University.
- Dubé, K., Luce, C., Black, T., Riedel, M., Coe, D., Gowin, B., Grace, J., MacDonald, L., McBroom, M., Skaugset, A., Sugden, B., and Turton, D. 2008. *Road Surface Erosion Database*. Report prepared for the National Council for Air and Stream Improvement, Inc. (NCASI). Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.
- Dubé, K., Megahan, W., and McCalmon, M. 2004. Washington Road Surface Erosion Model. Report prepared for State of Washington Department of Natural Resources. <u>http://www.dnr.wa.gov/BusinessPermits/Topics/ForestPracticesApplications/Pages/fp\_warsem.as px</u>.
- Dyrness, C.T. 1975. Grass-legume mixtures for erosion control along forest roads in western Oregon. *Journal of Soil and Water Conservation* 30:169-173.
- Elliot, W.J., Foltz, R.B., and Luce, C.H. 1995. Validation of Water Erosion Prediction Project (WEPP) model for low-volume forest roads. *Sixth International Conference on Low-Volume Roads*, 178-186. Minneapolis, MN, June 25-29. Washington, DC: National Academy Press.
- Elliot, W.J., and Hall, D.E. 1997. Water Erosion Prediction Project (WEPP) forest applications. General Technical Report INT-GTR-365. United States Department of Agriculture Forest Service, Rocky Mountain Research Station.
- Elliot, W.J., Hall, D.E., and Scheele, D.L. 1999a. FS WEPP, Forest Service interfaces for the Water Erosion Prediction Project computer model. United States Department of Agriculture Forest Service, Rocky Mountain Research Station and San Dimas Technology and Development Center.
  - ——. 1999b. WEPP interface for predicting forest road runoff, erosion and sediment delivery. United States Department of Agriculture Forest Service, Rocky Mountain Research Station and San Dimas Technology and Development Center.
- Foltz, R.B. 1996. Traffic and no-traffic on an aggregate surfaced road: Sediment production differences. Paper presented at seminar on Environmentally Sound Forest Road and Wood Transport, Sinaia, Romania, June 17-22. United Nations Food and Agriculture Organization.
- Foltz, R.B., and Burroughs, E.R., Jr 1990. Sediment production from forest roads with wheel ruts. In Watershed Planning and Analysis; Proceedings of a Symposium, 266-275. July 9-11, Durango, CO. American Society of Civil Engineers.
- Foltz, R.B., and Truebe, M. 2003. Locally available aggregate and sediment production. Paper No. LVR8-1050 presented at the 8th International Conference on Low-Volume Roads. June 22-25, Reno, NV. *Transportation Research Record* 1819(2):185-193.

- Fu, B., Lachlan, T.H., and Ramos-Sharrón, C.E. 2010. A review of surface erosion and sediment delivery models for unsealed roads. *Environmental Modelling and Software* 25:1-14. <u>doi:10.1016/j.envsoft.2009.07.013</u>
- Grace, J.M., III. 1999. Erosion control techniques on forest road cutslopes and fillslopes in north Alabama. In Seventh International Conference on Low Volume Roads, Vol. 2, pp. 227-234. Transportation Research Record 1652.

——. 2002. Sediment transport investigations on the National Forests of Alabama. In *Proceedings* of the International Erosion Control Association Conference 33, 347-357. February 25-March 1, Orlando, FL.

———. 2007. Modeling erosion from forest roads with WEPP. In *Proceedings: Environmental Connection 07*, Conference 38. Steamboat Springs, CO: International Erosion Control Association.

Grace, J.M., III, and Elliot, W.J. 2008. Determining soil erosion from roads in coastal plain of Alabama. In *Proceedings: Environmental Connection 08*, Conference 39, Orlando, FL. Steamboat Springs, CO: International Erosion Control Association.

Ketcheson, G.L., Megahan, W.F., and King, J.G. 1999. "R1-R4" and "BOISED" sediment prediction model tests using forest roads in granitics. *Journal of the American Water Resources Association* 35(1):83-98. doi:10.1111/j.1752-1688.1999.tb05454.x

Kochenderfer, J.N., and Helvey, J.D. 1987. Using gravel to reduce soil losses from minimum standard forest roads. *Journal of Soil and Water Conservation* 42:46-50.

Luce, C.H., and Black, T.A. 1999. Sediment production from forest roads in western Oregon. *Water Resources Research* 35(8):2561-2570. doi:10.1029/1999WR900135

— 2001a. Effects of traffic and ditch maintenance on forest road sediment production. V67-V74 in *Proceedings of the Seventh Federal Interagency Sedimentation Conference*, March 25-29, Reno, NV.

—. 2001b. Spatial and temporal patterns in erosion from forest roads. In *Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application*. Vol. 2, 165-178, ed. M.S. Wigmosta and S.J. Burges. Washington, DC: American Geophysical Union.

Luce, C.H., and Cundy, T.W. 1994. Parameter identification for a runoff model for forest roads. *Water Resources Research* 30(4):1057-1069. <u>doi:10.1029/93WR03348</u>

- Megahan, W.F. 1974. *Erosion over time on severely disturbed granitic soils: A model*. Research Paper INT-156. Ogden, UT: United States Department of Agriculture Forest Service, Intermountain Research Station.
- Megahan, W.F., and Ketcheson, G.L. 1996. Predicting downslope travel of granitic sediments from forest roads in Idaho. *Water Resources Bulletin* 32(2):371-382.
- Megahan, W.F., and Kidd, W.J., Jr. 1972. Effects of logging and logging roads on erosion and sediment deposition from steep terrain. *Journal of Forestry* 70(3):136-141.

Megahan, W.F., Monsen, S.B., Wilson, M.D., Lozano, N., Haber, D.F., and Booth, G.D. 1992. Erosion control practices applied to granitic roadfills for forest roads in Idaho: Cost effectiveness evaluation. *Journal of Land Degradation and Rehabilitation* 3:55-65. doi:10.1002/ldr.3400030106

- Megahan, W.F., Wilson, M.D., and Monsen, S.B. 2001. Erosion on steep, granitic roadcuts in Idaho. *Earth Surface Processes and Landforms* 26(2):153-163. <u>doi:10.1002/1096-</u> <u>9837(200102)26:2<153::AID-ESP172>3.0.CO;2-0</u>
- Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models. Part I A discussion of principles. *Journal of Hydrology* 10:282-290. doi:10.1016/0022-1694(70)90255-6
- National Council for Air and Stream Improvement, Inc. (NCASI). 2000. *Handbook of control and mitigation measures for silvicultural operations*. Unpublished Technical Bulletin. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc.

——. 2003. SEDMODL Release Ver. 2.0, User's manual and technical documentation. Research Triangle Park, NC: National Council for Air and Stream Improvement, Inc. http://www.ncasi.org/support/downloads/Detail.aspx?id=5.

- Peranich, C.M. 2005. *Measurement and modeling of erosion from four rural unpaved road segments in the Stillwater Creek Watershed*. Masters thesis. Oklahoma State University.
- Prasad, A., Tarboton, D.G., Luce, C.H., and Black, T.A. 2005. A GIS tool to analyze forest road sediment production and stream impacts. In 2005 ESRI International User Conference Proceedings. July 25-29, San Diego, CA. Redlands, CA: Environmental Systems Research Institute.
- Pruitt, B.A, Melgaard, D.L., Howard, H., Flexner, M.C., and Able, A.S. 2001. Chattooga River watershed ecological/sedimentation project. In *Proceedings of the 7th Federal Interagency Sedimentation Conference*, March 25–29, Reno, NV.
- Reid, L.M. 1981. Sediment production from gravel-surfaced forest roads, Clearwater Basin, Washington. Masters thesis. Seattle, WA: University of Washington.
- Reid, L.M., and Dunne, T. 1984. Sediment production from forest road surfaces. Water Resources Research 20(11):1753-1761. doi:10.1029/WR020i011p01753
- Riedel, M.S., and Vose, J.M. 2002. Forest road erosion, sediment transport, and model validation in the southern Appalachians. In *Proceedings of the Second Federal Interagency Hydrologic Modeling Conference*, Las Vegas, NV.
  - ——. 2003. Collaborative research and watershed management for optimization of forest road best management practices. In *Proceedings of the International Conference on Ecology and Transportation*, 148-158, ed. C. Leroy Irwin, Paul Garrett, and K.P. McDermott. Raleigh, NC: Center for Transportation and the Environment, North Carolina State University.
- Sugden, B.D., and Woods, S.W. 2007. Sediment production from forest roads in western Montana. Journal of the American Water Resources Association 43(1):193-206. doi:10.1111/j.1752-1688.2007.00016.x
- Sullivan, K.O., and Duncan, S.H. 1981. Sediment yield from road surfaces in response to truck traffic and rainfall. Technical Report 042-4402.80. Tacoma, WA: Weyerhaeuser Company, Weyerhaeuser Technical Center.
- Swanson, F.J., and Dyrness, C.T. 1975. Impact of clear-cutting and road construction on soil erosion by landslides in the western Cascade Range, Oregon. *Geology* 3:393-396. <u>doi:10.1130/0091-</u> <u>7613(1975)3<393:IOCARC>2.0.CO;2</u>
- Swift, L.W., Jr. 1984a. Gravel and grass surfacing reduces soil loss from mountain roads. *Forestry Science* 30:657-670.

—. 1984b. Soil losses from roadbeds and cut and fill slopes in the southern Appalachian Mountains. *Southern Journal of Applied Forestry* 8(4):209-213.

- Tysdal, L.M., Elliot, W.J., Luce, C.H., and Black, T.A. 1999. Modeling erosion from insloping lowvolume roads with WEPP watershed model. In *Seventh International Conference on Low-Volume Roads*, Baton Rouge, LA, May 23-26. *Transportation Research Record* 1652(2): 250-256.
- United States Environmental Protection Agency (USEPA). 2001. *Total Maximum Daily Load* (*TMDL*) for sediment in the Middle/Lower Chattooga River Watershed, GA. United States Environmental Protection Agency
- Wald, A.R. 1975. *The impact of truck traffic and road maintenance on suspended-sediment yield from a 14 foot standard forest road*. Unpublished Masters thesis. Seattle, WA: University of Washington.
- Washington Department of Natural Resources (WDNR). 1997. Standard methodology for conducting watershed analysis, Ver. 4.0. Olympia, WA: Washington Department of Natural Resources, Washington Forest Practices Board.
- Wischmeier, W.H., and Smith, D.D. 1965. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: A guide for selection of practices for soil and water conservation.
   Agriculture Handbook 282. Washington, DC: United States Department of Agriculture.
- Wooldridge, D.D. 1979. Suspended sediment from truck traffic on forest roads, Meadow and Coal Creeks. Washington Department of Ecology Technical Report 79-5a-3. Olympia, WA: Washington State Department of Ecology, Office of Water Programs.

Contents lists available at ScienceDirect





## Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

# Impact of flow regulation on stream morphology and habitat quality distribution



## Jenna Duffin<sup>a</sup>, Elowyn M. Yager<sup>a</sup>, John M. Buffington<sup>b</sup>, Rohan Benjankar<sup>c</sup>, Carter Borden<sup>a,d</sup>, Daniele Tonina<sup>a,\*</sup>

<sup>a</sup> Center for Ecohydraulics Research, University of Idaho, Boise, USA

<sup>b</sup> US Forest Service, Rocky Mountain Research Station, Boise, ID, USA

<sup>c</sup> Southern Illinois University Edwardsville, Edwardsville, IL, USA

<sup>d</sup> Centered Consulting International, LLC, Boise, ID, USA

#### HIGHLIGHTS

#### GRAPHICAL ABSTRACT

• Regulated flows reduce amplitude and frequency of pools and bars.

• Regulated flows impact fish habitat by altering stream morphology.

 Hydrologic restoration can improve subdued topography in regulated rivers. 60 years of regulated flows formed a simpler and smother topography than that resulting from unregulated flows (left panels). The unregulated flows formed more complexy topography, with a 33 % increase in pool frequency, 92 % total pool volume and 43 % total bar volume compared to that of regulated flows. The combined effect of morphological changes and hydrology resulted in different spatial distributions of habitat suitability (CSI) and overall lower habitat quality (HHS).



#### ARTICLE INFO

Editor: Sergi Sabater

Keywords: Sediment transport Regulated and unregulated flows Riverine habitat Salmonids

#### ABSTRACT

The importance of interactions among stream hydrology, morphology, and biology is well recognized in studies of stream ecosystems. However, when quantifying the impacts of altered flow on aquatic habitat, results are often based either on combined changes in topography and flow, or with altered flow over static topography. Here, we study the potential beneficial effects of restoring unregulated flows on salmonid habitat and separate the relative influences of changes in flow vs. topography. We hypothesize that flow restoration will increase topographic complexity and that the coevolution of topography with altered streamflow will produce stronger changes in habitat than predicted for static topography. We address this hypothesis by quantifying spawning and juvenile rearing habitat distributions for Chinook salmon (*Oncorhynchus tshawytscha*) from a set of quasi-three-dimensional hydromorphodynamic models for two morphologically distinct reaches along the Lemhi River, Idaho (USA): an engineered, straightened, planebed reach, and a less-altered, meandering, pool-riffle reach. Sediment transport was modeled with hydrographs predicted for actual interannual variability of flow and for a synthetic annual flow veriation and hydrographs predicted from the model produced similar morphologic results, which implies that interannual flow variation and hydrograph order did not have a strong effect on the modeled topography. Unregulated hydrographs enhanced the geometry and frequency of pools in the meandering reach compared to regulated flows. These morphological changes did not increase habitat quality predicted

Corresponding author.
 E-mail address: dtonina@uidaho.edu (D. Tonina).

http://dx.doi.org/10.1016/j.scitotenv.2023.163016 Received 6 December 2022; Received in revised form 28 February 2023; Accepted 19 March 2023 Available online 23 March 2023 0048-9697/© 2023 Elsevier B.V. All rights reserved. from suitability indices, but the large growth of pools likely improved winter refugia for juvenile salmon. In the straight reach, both regulated and unregulated scenarios resulted in a plane-bed morphology, suggesting that flow restoration in highly altered reaches is not sufficient to improve ecological function.

#### 1. Introduction

Human alterations of rivers have led to worldwide concern over degradation of aquatic ecosystems and the need for stream habitat enhancement (Geist and Hawkins, 2016). To aid in restoration design and site selection, quantifying aquatic habitat and the processes of habitat loss are critical to identifying potential impacts of restoration (Beechie et al., 2008; Roni et al., 2008). The natural flow regime, which represents the quantity, timing, and variability of flow, is a primary driver for physical habitat and ecological integrity in river ecosystems (Poff et al., 1997; Richter et al., 2003) and interruptions to functional flows can reduce physical and biological diversity (Hayes et al., 2018; Wohl, 2012). Flow regulation has been linked to an overall reduction in geomorphic complexity, decreases in channel area, and losses in river longitudinal and lateral connectivity (Brandt, 2000; Graf, 2006; Williams and Wolman, 1984). Reductions in flow have also decreased the number and area of high bars, increased channel stability and river straightening, and reduced competent flows for sediment transport (Church, 1995; Grant et al., 2003; Ligon et al., 1995). All of these geomorphic effects, coupled with reduced flows, have generated a decrease in fish abundance and habitat in human-altered rivers (Bunn and Arthington, 2002; García et al., 2011; Poff and Zimmerman, 2010). Therefore, in rivers with modified hydrographs, it is important to consider how channel morphology may adjust as the flow regime changes (Yarnell et al., 2015) because physical habitat, specifically depth, velocity, and bedforms, results from the interaction between hydrologic regimes, channel morphology, and hydraulics (Brierley and Fryirs, 2000; Pasternack and Brown, 2013).

Although the importance of river morphology to physical habitat, and specifically to salmon habitat, is known (Cram et al., 2017; Geist and Dauble, 1998; Hanrahan, 2007; Montgomery et al., 1999), habitat is often modeled in terms of altered flow over static topography (e.g., Bovee et al., 1998) or based on combined changes in topography and flow (e.g., García et al., 2011). As topographic data and morphodynamic modeling become more accessible, some studies have considered dynamic topography. Using repeat topographic surveys, Wheaton et al. (2009) monitored a restoration project after a spring flood event and found that areas of scour were associated with reduction in salmon spawning habitat and areas of deposition led to improved spawning habitat. Another study used a coupled hydraulic and sediment transport model to identify the unregulated flow conditions needed to scour fines and expose coarse spawning substrate for white sturgeon (McDonald et al., 2010). Despite these advances, results tend to focus on short-term changes (1-10 years), warranting additional studies that consider the long-term morphodynamics of a system and its influence on habitat (Kail et al., 2015), as well as separating the impacts of altered flow regime from morphological changes on habitat under future flow scenarios.

To study the effects of flow changes on topography, the hydrology in numerical modeling and laboratory flume studies has been characterized by either actual hydrographs depicting the full variability of a system or with representative repeated hydrographs to simplify calculations and to better constrain the impacts of specific hydrograph characteristics. Flume experiments have shown that increases in discharge variability, represented by multiple high flow hydrographs, increase channel width (Vargas-Luna et al., 2019), whereas variation in the order of hydrographs affects bedform morphology (Nelson et al., 2011). Duration and frequency of individual hydrographs can affect channel slope and topographic variability (Plumb et al., 2020), but conversely the shape and duration of repeated hydrographs may have little effect on channel characteristics such as slope and sediment transport rates (Nelson and Morgan, 2018; Wong and Parker, 2006). The effects of hydrograph characteristics vary in the literature and there is limited research directly comparing the morphologic impact of variable vs. cycled simplified hydrographs (Huthoff et al., 2010). Thus, work is needed to quantify differences between actual and synthetic hydrograph inputs on modeled geomorphic response and consequent aquatic habitat.

Altering flows in rivers also may have different effects depending on the existing morphology, which mediates the effectiveness of flow restoration strategies (Meitzen et al., 2013), highlighting the fact that the current morphologic condition of rivers must be considered when studying the potential effects of deregulated flows. For example, aquatic habitat in river reaches with more physical diversity, such as those with pools and riffles, is generally more resilient to changes in flow than habitat in plane-bed rivers (Hauer et al., 2012). Similarly, restoration of natural flow regimes may not be successful in cases where humans have confined channels through levees and other structures that alter the range of fluvial processes and channel morphologies compared to historic conditions (Wohl et al., 2015; Yarnell et al., 2015). Consequently, when assessing the potential effects of changing flow regimes, it is necessary to consider the range of existing morphologic conditions and how they may mediate the potential resulting topography because the interaction between morphology and flow regime impacts the temporal and spatial variability of local hydraulics with important ecological implications (Gostner et al., 2013, 2017, 2021).

In this study, to address the potential changes in physical habitat from alterations in both flow and morphology, we developed a set of morphodynamic models for two morphologically distinct reaches: (1) a straight, highly-altered reach and (2) a meandering, more-natural reach on the Lemhi River (central Idaho, USA). The Lemhi River is an ideal study area because flows have been regulated for decades by irrigation diversion throughout the system and the river supports anadromous fish species listed under the U.S. Endangered Species Act (NMFS, 2019). Our goal was to model the morphodynamic effects of regulated vs. unregulated flows on salmonid habitat and to separately understand the effects of altered hydraulics and morphology. We hypothesized that the current regulated riverbed morphology is subdued and that unregulated flows will increase topographic complexity and, through this altered morphology, improve the availability of suitable spawning habitat and juvenile overwintering habitat. We also tested the hypothesis that interannual hydrologic variability would affect the modeled morphodynamics; this was examined by comparing the results of predicted actual hydrographs (representing interannual variability) to cycled synthetic hydrographs (no interannual variability) for both regulated and unregulated flows. Improved understanding of geomorphic and hydraulic changes from flow deregulation, and the impact of these changes on salmonid habitat, could be used to help meet restoration goals through water management and dynamic channel response, as opposed to constructed habitat improvements, such as placement of wood debris or channel realignment.

#### 2. Methods

#### 2.1. Study area

The Lemhi River is a 100 km-long gravel-bedded river draining a 3300 km<sup>2</sup> basin before flowing into the Salmon River in Idaho, USA (Fig. 1). Like many streams in the western USA, it has a history of hydrologic regulation due to irrigation diversions that affect the magnitude and timing of flows throughout the year, but primarily cause reduced spring and summer flows. The entire river and its floodplain were mapped at 1 m resolution with the airborne topobathymetric LiDAR EAARL-B system in October 2013 during low flow and clearwater conditions (Tonina et al., 2019).



Fig. 1. Map of the modeling extent for the (a) straight and (c) meandering reaches and their locations within (b) the Lemhi watershed in Idaho (USA).

We selected two morphologically distinct reaches to encompass the degree of potential human alteration: an engineered straightened reach representative of the highly altered sections of river, and a less-altered, more natural and highly sinuous meandering reach (Fig. 1). The 350 m-long straight reach is channelized and flows along the highway with an average bankfull channel width of 14 m and a channel slope of 0.006 m/m. A surface median grain size  $(D_{50})$  of 46 mm was measured in the reach during low flow in 2020 with (Wolman, 1954) pebble count, which was representative of the entire active area. The 650 m-long meandering reach, located  $\sim$ 20 km upstream of the straight reach, flows through a narrowed floodplain area confined by agricultural fields. This reach had a sinuosity of 2.8, average bankfull width of 15 m, and channel slope of 0.003 m/m. Due to limited access, a grain-size distribution was not available for this reach; instead, we used a  $D_{50}$  of 36 mm, which was measured with a Wolman pebble count in 2020 in a naturally meandering reach with a similar bankfull width, depth, and slope and was located 10 km downstream of our reach with no tributaries between the two reaches. We collected grains from subaerial and subaqueous topography, including bars, riffles, and pools during low flow when most of the channel was wadable.

#### 2.2. Hydraulic modeling

We developed two reach-scale morphodynamic models using the Flow and Sediment Transport with Morphological Evolution of Channels (FaSTMECH) software developed by the U.S. Geological Survey and hosted by the International River Interface Cooperative (Nelson et al., 2016; Nelson et al., 2003). FaSTMECH is a quasi-steady, quasi-3D solver, that simulates sediment transport and channel bed evolution and efficiently handles long time scales. We input the 1 m resolution LiDAR point elevations into FaSTMECH and used template mapping, a curvilinear inverse distance interpolator, to interpolate the stream and floodplain topography. We selected model grid sizes for each reach based on preliminary testing for a resolution that created the most stable model. We used a 1 m by 0.4 m (downstream by cross-stream direction) and a 1.5 m by 1 m-averaged cell size for the curvilinear grid for the straight and meandering reaches, respectively. To create a stable downstream boundary in each model, we used a 10 m grid extension and forced no recirculation at the boundary. The upstream and downstream boundary conditions were set by the flow discharge and stage.

FaSTMECH requires characterization of the lateral eddy viscosity and a roughness value quantified by a drag coefficient, which remains constant for all discharges. The lateral eddy viscosity was quantified as 0.01uh, where u and h are the reach-averaged flow velocity and water depth, respectively (Tonina and Jorde, 2013). The drag coefficient was selected to minimize the mean and standard deviation of the residuals between the

measured and predicted water-surface elevations and velocities. In the straight reach, 15 measurements of depth and depth-averaged velocity were collected with an ADV (acoustic Doppler velocimeter) along the channel centerline during low flow conditions ( $\sim 2.3 \text{ m}^3/\text{s}$ ). In the meandering reach, field measurements were limited; therefore, the drag coefficient was selected by comparing FaSTMECH hydraulics with 30 depths and velocities (at  $1.5 \text{ m}^3/\text{s}$ ) extracted along the reach centerline from a larger whole-Lemhi River hydraulic model (Tonina et al., 2020). The wholeriver model was calibrated with widely spaced depth and velocity field measurements, three of which were in our meandering reach and were used to validate the selection of the drag coefficient. In the straight reach, we selected a drag coefficient of 0.01, which resulted in a mean error of 0.01 m for the water-surface elevation and a standard deviation of 0.05 m. For velocity, the mean error was 0.13 m/s or 16 % of the mean relative error (mean of the residuals normalized by the measured velocity) and a standard deviation of 0.22 m/s or 29 % of the relative error. In the meandering reach, we selected a spatially constant drag coefficient of 0.015, which resulted in a water-surface mean error of -0.02 m and a standard deviation of 0.08 m, and a velocity mean error of 0.03 m/s or 10 % of the relative error and a standard deviation of 0.10 m/s or 21 % of the relative error. These errors are similar to those reported in the literature for similar river systems (Kammel et al., 2016; Tonina and Jorde, 2013).

#### 2.3. Morphodynamic modeling

To simulate bedload transport, we selected the Yalin (1963) singlegrain-size equation based on D<sub>50</sub>, similar to Nelson et al., 2015b who found that this equation produced similar bars compared to a mixed grain-size model. This allowed faster and more reliable convergence of the numerical solution than using a multi-size bedload transport equation. For each model, we allowed the flow to develop fully before calculating sediment transport by setting sediment transport to begin 60 m (about 4 bankfull channel widths) downstream of the upstream model boundary. Due to a lack of bedload transport data for the reaches, we assumed that the sediment input at the transect where sediment transport begins was equal to the calculated transport rate at that location (e.g., Nelson et al., 2015b). As the streambed evolved, the local flow depth changed, not only as a function of discharge, but also from erosion and depositional processes. These changes affect the numerical stability of the model if they occur too suddenly. Thus, we ran the models with an initial time step of 8640 s (1/10 of a day) that was adjusted with the automatic time stepping option to limit change in water depth for each cell to 2 % of the previous time step.

After preliminary model runs, we found that the shear stresses on the bed were likely overpredicted because they resulted in sediment transport at low flows when no transport had been visually observed at the field sites and they created instabilities in the models at high flows. To reduce the shear stress, we used shear stress partitioning to determine the stress acting on the particles as opposed to that borne by topographic roughness of the bed and banks (e.g., Yager et al., 2012). For a channel composed of grain and bedform roughness, the ratio of the grain shear stress ( $\tau$ ) to the total shear stress ( $\tau_0$ ) can be determined from the following equation developed for dune-like bedforms (Bennett, 1995; Nelson et al., 1993; Smith and McLean, 1977)

$$\frac{\tau'}{\tau_0} = \frac{1}{1 + \frac{C_d}{2\kappa^2} \frac{\Delta}{\lambda} \left( \ln\left(\frac{0.368\Delta}{z_0}\right) \right)^2},\tag{1}$$

where  $C_d$  is the bedform drag coefficient with a value of 0.2 for separated flow,  $\kappa$  is von Karman's constant with a value of 0.4,  $\Delta$  is the height of the bedform,  $\lambda$  is the bedform wavelength, and  $z_0$  is the gain-size roughness height calculated as  $0.2D_{50}$ . No actual dune-like bedforms were present in these reaches, but we found that a bedform height of 0.1 m and wavelength of 0.8 m produced the minimum reduction in shear stress (~13 % reduction in the straight reach and  $\sim 17$  % in the meandering reach) needed for the regulated flows (see next section) to maintain pools that were of similar depths to those initially in the reaches which, in turn, improved model stability at high flows. The partitioning likely accounted for small-scale topographic variations in the bed that were smaller than those captured by the LiDAR survey and discretized by the numerical mesh. The impact of gravitational forces due to cross-stream topographic slope, e.g., bar and pool slopes, on transverse bedload transport is parameterized in FaSTMECH with a user-defined gravitational correction based on either a pseudo-stress or a slope correction. We adopted the slope correction option and ran a set of preliminary simulations with correction values ranging between 1.2 and 2 (Nelson et al., 2015a). Results showed that increasing the slope correction value produced more subdued topographical features, e.g., less deep pools and lower bars (Nelson et al., 2015a). We selected a constant value of 1.4 because it correctly simulated bed topography, i.e., pool sizes and pool slopes, observed in the field for regulated flow conditions.

#### 2.4. Hydrology

We represented the hydrology with regulated and unregulated flow scenarios from a basin-wide hydrologic model, the Lemhi River Basin Model (LRBM), which was developed to evaluate diversion operations and tributary reconnections in the Lemhi River basin. The LRBM simulates daily water allocation and in-stream discharge in the system from October 1, 2007, to September 30, 2017, by accounting for: catchment inflows; routing of water within the stream network; and diversion operation, consumption, and return flows from irrigation. The LRBM was built using the DHI MIKE BASIN software (DHI, 2003, 2006) and included lumped rainfall-runoff models (Nedbør-Afrstrømnings) to predict inflow to the system, and a water allocation model to route water in the stream network and account for agricultural water use. The stream network in the LRBM was determined from the national hydrography dataset, with delineation of catchments based on a 30 m digital elevation model (DEM) (DHI, 2006). The agricultural irrigation network, represented by 322 water user nodes, was constructed from known points of diversion, places of use, aerial photography, and consultation from local water authorities and stakeholders. Historic diversion records or full water rights were used for water demand, and consumptive rates were determined by crop coefficients and reference evapotranspiration records reported by ETIdaho (Allen and Robison, 2017). The unregulated flow regime was reconstructed from the regulated flow regime and historical water use information. Further details of the LRBM can be found elsewhere (DHI, 2006).

We ran each reach-scale morphodynamic model for 60 years to ensure that the models had enough time to reach dynamic equilibrium (defined as volumes of aggradation and degradation varying around a quasi-steady mean) and to model the long-term effects of the flow scenarios. To create our 60-year hydrograph inputs for the morphodynamic models, we used a

10-year LRBM simulation and repeated this sequence of flows six times for the regulated and unregulated flow scenarios (Fig. 2). Hydrographs were available for the straight reach, but not for the meandering reach. Instead, we used the hydrograph of the reference reach used to quantify the  $D_{50}$  of our meandering reach. No tributaries that would affect the magnitude of the hydrographs existed between the two meandering reaches; therefore, we used the available reference meandering reach hydrographs as a proxy for our reach even though some differences may exist from diversions. We define the hydrographs predicted from the LRBM as "actual" hydrographs to differentiate them from a set of synthetic annual hydrographs (see below). Comparison of duration curves for actual hydrographs in the straight reach showed a 45 % mean increase in flow for unregulated conditions compared to regulated flows. Unregulated flow also increased the base flow (90 % exceedance probability) by 106 %, the median flow by 22 %, the high flow (10 % exceedance probability) by 36 %, and flow variance by 30 % (Figs. S2a and b). In the meandering reach, the actual unregulated flow regime increased the mean flow by 60 %, base flow by 87 %, median flow by 22 %, high flow by 38 %, and flow variance by 24 %.

We ran each of our morphodynamic models with both actual hydrographs and a cycled, synthetic, annual hydrograph for both regulated and unregulated flows (Fig. 2). The topography resulting from the 60-year simulation of regulated flows was used as a reference for comparison with the other scenarios examined in the study. We also compared the results of the 60-year simulation of regulated flows with current topography to ensure that the numerical model properly predicts the observed streambed topography that has resulted from historic flow regulation. The actual hydrographs were used to represent interannual natural variability of flows, while the synthetic hydrographs represented the ensemble probability of flows that occurred within the 10 years of LRBM simulations and were repeated annually. We used these synthetic hydrographs to understand if the variability and sequence of annual flows affected the resulting topography. To create the synthetic annual hydrograph, we calculated the probability of all 10 years of daily flows and then subsampled probabilities, selecting a low flow at 97.5 % probability, then flows representing 5 % increments of probability from 95 % to 10 % exceedance. High flows were sampled with increasing frequency to accurately capture their occurrence down to the smallest probability of 0.027 %, which represents 0.1 day or the timestep of our model (for values see Supplementary Information). The shape of the synthetic hydrograph was based on a time-averaged (over 10 years) hydrograph for each of the actual regulated and unregulated scenarios. We shifted each of the 10 actual hydrographs in the series such that each annual peak flow occurred on the same day of the water year and then calculated the average daily flow over the 10 years. We used the shape of the averaged hydrograph for each scenario to create the synthetic hydrographs by arranging the subsampled flows into the same order of flows as the average hydrograph (see Supplementary Information). For each reach, a synthetic annual hydrograph was created for regulated and unregulated conditions and each synthetic hydrograph was repeated 60 times to create the full synthetic hydrograph time series.

#### 2.5. Topographic analysis

For each reach, the models were run for 60 years of regulated and unregulated scenarios with both the actual and synthetic hydrographs for a total of four scenarios per reach. For each model scenario, we saved the stream topography at the end of each year and calculated the difference between each successive year's topographies to calculate the annual reach volumes of aggradation and degradation. We compared the final topography after 60 years among the scenarios by calculating the DEM of difference (DOD). To visualize all of the topographic data, we detrended the bed elevations by removing the reach slope from the topography and vertically translated the data by 100 m to create only positive detrended elevations.

We also extracted thalweg profiles through the final, 60-year topography of each model scenario. From these thalwegs, we identified pools by their residual depths, calculated as the difference between the deepest



**Fig. 2.** Hydrograph scenarios used for the morphodynamic models. Hydrographs for the straight reach: (a) 10 years of actual regulated and unregulated hydrographs predicted from the LRBM (repeated six times for the model), and (b) the synthetic hydrograph for the regulated and unregulated water year (repeated 60 times for the model). Hydrographs for the meandering reach: (c) 10 years of actual regulated and unregulated hydrographs predicted from the LRBM (repeated six times for the model), and (d) the synthetic hydrograph for the regulated and unregulated and unregulated water year (repeated 60 times for the model), and (d) the synthetic hydrograph for the regulated and unregulated water year (repeated 60 times for the model).

point in the pool and the downstream high point at the pool tail; features with residual depths larger than the threshold value of 0.4 of the reach-averaged bankfull depth (defined from the 1.5-year flow of a given scenario) were identified as pools (as defined in Duffin et al., 2021). A complimentary approach was used to identify bars from extracted longitudinal profiles of the highest point within each grid cross section after deleting points within a meter of the channel edge to reduce the effects of steep banks on residual bar heights. The highest point on each bar was compared to the downstream low point of the profile, with bars identified if they were larger than 0.4 of the reach-averaged bankfull depth.

#### 2.6. Habitat analysis

In each reach, for both regulated and unregulated conditions, we quantified median flows in the fall (August and September) for both adult spawning and juvenile rearing of Chinook salmon (*Oncorhynchus tshawytscha*), as well winter flows (December and January) for juvenile rearing (Table 1). Using the hydraulic models for each reach, depths and velocities for each of these discharges were modeled on the final topographies developed from regulated and unregulated flows respectively. The fully regulated conditions represented the regulated fall or winter flows (Table 1) modeled on the final topography produced by regulated flows. Likewise, the fully unregulated conditions were the unregulated flows modeled on the final topography from unregulated conditions. To assess the relative impact of flow versus topography on habitat, the hydraulics for regulated flows were also modeled on the static, final, 60-year topography from unregulated flows and the hydraulics for unregulated flows were also modeled on the static, final, 60-year topography from regulated conditions. The habitat was assessed on the final topography produced from the actual hydrographs (further explained in the Results). For each reach and discharge, habitat quality was calculated for each model cell, CSI (cell suitability index), using suitability index curves for Chinook salmon that were empirically developed for the Upper Salmon basin (Maret et al., 2005) (see Appendix B for curves).

For each habitat discharge (Table 1), the suitability index of the *i*th cell within the model was quantified from the geometric mean of flow depth, *d*, and velocity, *v*; CSI<sub>i</sub> =  $\sqrt[2]{d_i v_i}$ . We then grouped the CSI values into categories: 0 to 0.2 — no habitat, 0.2 to 0.4 — low quality, 0.4 to 0.6 — moderate quality, 0.6 to 0.8 — high quality, and 0.8 to 1 — excellent quality habitat. For each reach and scenario, we calculated the total available habitat in

#### Table 1

Habitat discharges based on median flows for each season for regulated and unregulated scenarios in each reach.

| Reach      | Season | Regulated discharge scenario (m <sup>3</sup> /s) | Unregulated discharge scenario (m <sup>3</sup> /s) |
|------------|--------|--------------------------------------------------|----------------------------------------------------|
| Straight   | Fall   | 3.5                                              | 7                                                  |
| Straight   | Winter | 5.5                                              | 5.5                                                |
| Meandering | Fall   | 3.5                                              | 6                                                  |
| Meandering | Winter | 5                                                | 5                                                  |

terms of the weighted usable area (WUA) and hydraulic habitat suitability (HHS)

$$WUA = \sum_{i=1}^{n} A_i \cdot CSI_i,$$
<sup>(2)</sup>

$$HHS = \frac{WUA}{\sum_{i=1}^{n} A_i},$$
(3)

where  $A_i$  is the area of each model cell. Note that CSI, WUA and HHS are all functions of discharge.

Overwintering juvenile salmonids may have different habitat needs from other seasons because low water temperatures and ice formation may limit foraging behavior and growth (Brown et al., 2011; Huusko et al., 2007). When water temperatures decline below 3–6 °C, fish shift behavior from rearing and foraging to conserving energy, resting, finding velocity refugia, and hiding from predators and anchor ice. During this period, their metabolism is quite slow, such that they may not fully digest captured prey. Consequently, habitat suitability curves used to quantify juvenile habitat, which only consider foraging and rearing, do not fully account for juvenile winter habitat needs, such as access to low velocities and deep water refugia (Favrot et al., 2018; Huusko et al., 2007). Therefore, we also assessed winter juvenile habitat in terms of specific habitat features, such as pool depths and volumes.

#### 3. Results

#### 3.1. Model validation: topographic change

All model scenarios for the straight and meandering reaches attained dynamic equilibrium by the third decade for the unregulated flows, and within one decade for the regulated flows, shown by net zero sediment volume change each year or the balance between aggradation and degradation (Fig. 3). After dynamic equilibrium was attained, only small topographic changes occurred for regulated conditions. We repeated in-channel topographical surveys for the straight reach and for a meandering reach similar to that studied here but with easy access between 2011 and 2013. Comparison among years showed no in-channel elevation changes >10 cm. This confirms that the lack of annual topographic change predicted for the regulated scenarios reasonably represents current river conditions, where the  $D_{50}$  is rarely mobile, and the current channel morphology is mostly stationary due to a long history of flow regulation. No unregulated field sites were available to test topographic results of the unregulated scenarios.

#### 3.2. Sediment transport

The morphodynamic models only predicted substantial movement of the  $D_{50}$ , in more than just a few cells of the model, at the highest flows present in each reach: flows above  $\sim 23 \text{ m}^3/\text{s}$  and 17 m<sup>3</sup>/s for the straight and meandering reaches, respectively. These flows have recurrence probabilities of 0.94 % and 0.10 % for unregulated and regulated conditions, respectively, in the straight reach and 0.21 % and 0 % for the meandering reach. Before the models reached dynamic equilibrium, there was sediment transport at lower discharges, but after dynamic equilibrium was met only the high flows resulted in substantial sediment transport. Cumulative curves of annual aggradation and degradation increased smoothly for the synthetic hydrographs and in a stepped manner for the actual hydrographs in both reaches (Fig. 3). The latter resulted from the fact that sedimentmobilizing flows occurred during three consecutive years each decade for the actual hydrographs, whereas sediment-mobilizing flows occurred every year (albeit for a shorter duration) for the synthetic hydrographs, producing a relatively smooth increase in cumulative annual aggradation and



Fig. 3. Annual total aggradation and degradation over time for the (a) straight plane-bed reach and (b) meandering pool-riffle reach. Each hydrograph scenario is represented by a different color, cumulative aggradation over time is shown by the solid lines, cumulative degradation is shown by the dashed lines, and the annual difference between the aggradation and degradation is shown by the dotted lines.

degradation. In both reaches, unregulated flow produced substantially more cumulative aggradation/degradation than regulated flows (Fig. 3), but reach-specific differences in behavior were also predicted.

In the straight reach, the final aggradation and degradation volumes were similar for the regulated flow scenarios (Fig. 3a). In contrast, larger volumes of aggradation and degradation occurred for actual flows than synthetic ones during unregulated conditions in the straight reach (Fig. 3a). In the unregulated actual scenario, after the first decade of model adjustment, the first high flow of each decade washed out a series of subdued bedforms (proto-bars and pools) and topographic undulations, and then the second and third high flows rebuilt these subdued bedforms, but the topography at the beginning and end of a given decade was similar. This pattern of washing out and rebuilding subdued bedforms in the straight reach did not occur with the unregulated synthetic hydrographs, which resulted in less aggradation and degradation over time.

In the meandering reach, the actual and synthetic hydrographs produced similar final volumes of aggradation/degradation for a given flow scenario, with unregulated flow exhibiting larger cumulative volumes (Fig. 3b). Fully formed pool-riffle topography in the meandering reach resulted in a more stable bed (less volumetric change over time) and no appreciable difference in the effects of actual vs. synthetic hydrographs compared to the repeated washing out and rebuilding of proto-bedforms in the straight, plane-bed reach during unregulated flow with actual hydrographs.

#### 3.3. Actual versus synthetic hydrographs: morphologic differences

Here, we compare the effects of actual versus synthetic hydrographs on the final channel topography for each flow scenario (regulated or unregulated). The effects of the flow scenarios on channel morphology are examined in the next section.

In the straight reach, actual and synthetic hydrographs produced a similar, final, plane-bed topography (Figs. 4g and h) with comparable thalweg profiles (Fig. 5a). Specifically, 82 % and 97 % of the model cells exhibited less than  $\pm 0.1$  m difference in elevation between topographies developed from actual vs. synthetic hydrographs for the unregulated and regulated flows respectively. In the unregulated scenario, the larger differences in topography between synthetic and actual hydrographs (Fig. 4g) resulted from location differences in the pattern of the final topography rather than development of different overall morphologic patterns. This is highlighted by the thalweg differences between the actual and synthetic hydrographs for the unregulated scenario, specifically at 200 m where a subdued pool-like bedform created by the actual hydrographs is not present in the synthetic hydrograph profile but is instead shifted downstream to 240 m (Fig. 5a).

Similarly, differences in elevation for the final topography of the meandering reach were small for actual vs. synthetic hydrographs (Figs. 6g and h) and the thalweg profiles were comparable for a given flow scenario (regulated or unregulated, Fig. 5b). Most model cells exhibited  $\pm \sim 0.1$  m difference in elevation for actual vs. synthetic hydrographs, with aggradation and degradation localized to areas of forced pools and bars. For example, in the unregulated scenario, only 0.2 % of the model cells exhibited large differences in elevation ( $\pm \sim 0.5$  to 1 m) between topographies produced from the actual and synthetic hydrographs, with these differences caused by a shift in the location of the pools or bars (Figs. 6a, d, and g).

The above results indicate that the interannual variability and sequence of hydrographs did not greatly affect the final topography in either of the study reaches and that both synthetic and actual hydrographs can be used to represent the hydrology when modeling morphology for a given flow scenario (regulated or unregulated). Consequently, to simplify the remaining analyses, results will be based on the topography produced by actual hydrographs from this point forward, recognizing that the findings would be similar for synthetic hydrographs.



**Fig. 4.** The final, 60-year, modeled straight reach topography for each hydrograph scenario: (a) unregulated, actual hydrographs, (b) regulated, actual hydrographs, (d) unregulated, synthetic hydrographs, and (e) regulated, synthetic hydrographs. Digital elevation models (DEMs) of difference (DODs) between the different final topographies are shown for (c) unregulated minus regulated actual scenarios, (f) unregulated minus regulated synthetic hydrographs, (g) actual minus synthetic unregulated scenarios and (h) actual minus synthetic regulated scenarios. Note that the detrended elevations and DOD maps are shown on the same scale as the meandering reach in Fig. 6, which has a wider range of elevations and depths of change.

#### 3.4. Regulated versus unregulated flows: morphologic differences

The final topography of the straight reach exhibited a plane-bed morphology with no significant pools or bars for both regulated and unregulated flows. For all scenarios in the straight reach, the final detrended





Fig. 5. Detrended thalweg profiles for the final topography in the (a) straight plane-bed reach and (b) meandering pool-riffle reach. The profiles for each hydrograph scenario are shown in different colors; some lines are not visible where they overlap other lines.

thalwegs show 0.35 m of vertical range with a standard deviation of 0.07 m (Fig. 5a). Comparison of the final topographies for regulated vs. unregulated flows showed mostly small differences in elevation for actual and synthetic hydrographs (Figs. 4c and f, respectively); 66 % of model cells had differences in elevation less than  $\pm 0.1$  m, with some larger differences (never larger than 0.6 m) due to either slight shifting in the topographic patterns or to locations at the downstream end of the reach, which may be affected by the downstream model boundary.

In the meandering reach, regulated flows formed more subdued poolriffle morphology compared to unregulated flows. Topographic variability in the detrended thalweg profile increased from a vertical range of 1.00 to 1.55 m between regulated and unregulated flows and the standard deviation increased from 0.18 to 0.27 m (Fig. 5b). The unregulated flows scoured pools deeper than the regulated scenario and the scoured sediment built larger downstream bars, resulting in 8.6 % of model cells having differences in elevation greater than  $\pm 0.1$  m between topographies generated from regulated and unregulated flows for both actual and synthetic hydrographs (Figs. 6c and f). Pool and bar geometry (area, volume, and maximum depth/height) all increased between regulated and unregulated flow (Fig. 7), and a new pool formed during unregulated flow, resulting in a 33 % increase in pool frequency. Total pool volume increased by 92 % and total bar volume increased by 43 % between regulated and unregulated flows.

For both the regulated and unregulated conditions, the meandering reach showed more topographic variability and complexity than the straight reach, which is highlighted by the final thalweg profiles (Fig. 5)



**Fig. 6.** The final, 60-year, modeled meandering reach topography for each hydrograph scenario: (a) unregulated, actual hydrographs, (b) regulated, actual hydrographs, (d) unregulated, synthetic hydrographs, and (e) regulated synthetic hydrographs. Digital elevation models (DEMs) of difference (DoDs) between the different final topographies are shown for (c) unregulated minus the regulated actual scenarios, (f) unregulated minus the regulated synthetic hydrographs, (g) actual minus the synthetic unregulated scenarios and (h) actual minus the synthetic regulated scenarios.

J. Duffin et al.



**Fig. 7.** Distributions of pool and bar geometry in the meandering reach for regulated and unregulated flows: (a) pool area, (b) pool volume, (c) maximum pool depth, (d) bar area, (e) bar volume, and (f) maximum bar height. Color indicates flow type (regulated vs. unregulated) and dashed lines are average values of each distribution.

and by comparing the elevation ranges for the final topographies, where the straight and meandering reaches had total detrended elevation ranges of 1.05 and 2.32 m, respectively (Figs. 4 and 6).

In both reaches, differences in regulated vs. unregulated flow conditions produced stronger changes in sediment transport and final reach topography than choice of actual vs. synthetic hydrographs (Figs. 3–6). Furthermore, unregulated flow resulted in greater topographic variability in the meandering reach by scouring deeper pools and depositing higher bars than the topography formed by regulated flow. In contrast, the plane-bed morphology of the straight reach was less responsive to differences in flow condition (regulated vs. unregulated).

#### 3.5. Regulated versus unregulated flows: habitat differences

The fully regulated condition (i.e., regulated flows on topography developed from those flows) in the straight reach produced more suitable habitat for fall spawning of Chinook salmon (HHS = 0.41) and a greater abundance of high-quality habitat than the fully unregulated condition (HHS = 0.15) (Figs. 8a and S3a–b). Regulated conditions produced lower fall flows that improved the spawning habitat quality and availability compared to higher flow velocities associated with unregulated flow. Furthermore, flow condition (regulated vs. unregulated) and the associated channel hydraulics were a stronger control on habitat than the effect of flow on the final topography; HHS values of 0.15 occurred for unregulated flow in the straight reach regardless of whether the final topography was produced from regulated or unregulated flow, and nearly identical HHS values of 0.41 and 0.42 resulted from regulated flow over the respective straight-reach topographies. In addition, the straight reach had little to no available winter habitat for juvenile Chinook salmon (HHS = 0.01) for all flow and topography conditions (Figs. 8c and S4a-b). The juvenile rearing habitat in this reach was greatly limited by high velocities in both the fall and winter, which were almost entirely outside the suitability range for juvenile Chinook salmon for both the regulated and unregulated flows regardless of the topography (Fig. S5b-d).

In the meandering reach, fall spawning habitat quality was adequate in all tested flow and topography conditions, but was higher for fully unregulated conditions (HHS = 0.84) than fully regulated (HHS = 0.79) (Figs. 8b and S3d–e). This increase in modeled habitat suitability was not due to differences in final topographies (i.e., whether they were formed by regulated or unregulated flow), but directly to differences in the hydraulics of those flows over the topography. High unregulated flows in the fall increased habitat on both topographies (both HHS = 0.84), whereas the relatively smaller regulated flows resulted in slightly lower HHS values of 0.79 for both topographies. Although the HHS values for the regulated and unregulated flows on the topography developed from unregulated flows were similar, the unregulated topography resulted in a 2–5 % increase (depending



**Fig. 8.** Habitat quality distributions for fall spawning Chinook salmon (top panels) in (a) the straight and (b) meandering reaches and for winter rearing (bottom panels) in (c) the straight and (d) meandering reaches for regulated topography and regulated flow (i.e., fully regulated conditions; blue histograms) and for unregulated topography and unregulated flow (i.e., fully unregulated conditions; dark orange histograms). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
on flow condition) in excellent quality spawning habitat compared to the topography developed from regulated flows (Fig. 8b).

Availability of winter habitat for rearing of juvenile Chinook salmon remained similar between the fully regulated (HHS = 0.09) and fully unregulated (HHS = 0.10) conditions in the meandering reach (Figs. 8d and S4d–e). The regulated and unregulated winter flows were the same (Table 1); therefore, these small differences were entirely attributable to changes in the topography developed from each flow type. The high and excellent-quality winter juvenile habitat was mainly on the margins of the channel, where the velocities were low. In most of the meandering reach, velocities were too high in both the fall and winter to produce suitable juvenile rearing habitat for both the regulated and unregulated flows regardless of the topography (Figs. S5f and h). However, slightly more juvenile rearing habitat was available in the meandering reach than the straight one (cf. Figs. 8c and d; cf. Figs. S5b and d to f and h).

#### 4. Discussion

Our hypothesis of subdued topography for regulated flows was borne out for the meandering reach, but not the plane-bed reach. However, the increased topographic variability produced by unregulated flows in the meandering reach did not substantially increase habitat availability and quality, at least in terms of HHS values; nevertheless, increased pool depths may provide important overwintering refugia for juvenile salmonids that is not detected by the HHS analysis. Surprisingly, the largest increases in spawning habitat availability and diversity were driven by lower velocities for the regulated flow in the plane-bed reach despite no substantial changes in topography, underscoring the relative roles of flow vs. topography and the fact that results can vary with channel type (plane-bed vs. pool-riffle).

#### 4.1. Actual versus synthetic hydrographs

Our results show that actual hydrographs (representative of the natural interannual variability of flows) and synthetic hydrographs (a single, cycled, representative hydrograph) both produced similar morphologic patterns in each of our study reaches. Flume studies assessing the impact of the shape and duration of cycled hydrographs have found varying results; in some cases, those factors had little influence on bedform and channel characteristics (Nelson and Morgan, 2018; Wong and Parker, 2006), whereas other studies have found hydrograph shape and duration had an impact on bedload flux (Redolfi et al., 2018) and channel morphology (Waters and Curran, 2015; Zhang et al., 2020). Another study addressed the effect of flow order and found that changing the location of a uniform high-flow period within low flows resulted in similar bedform geometry (Nelson et al., 2011). A morphodynamic modeling study looking at the effects of cycled hydrographs found that a single, repeated, representative hydrograph produced aggradation and degradation outside of the range produced by hydrographs representing variability in discharge (Huthoff et al., 2010), but suggested the representative hydrograph may have been oversimplified by not including the full range of flows. Phillips et al. (2018) showed that bedload flux resulting from a variety of hydrograph shapes scaled with transport capacity, suggesting that maintaining transport capacity between hydrograph comparisons may provide more similar morphologic results; however, many of these studies did not hold transport capacity constant between their compared hydrographs, which may explain the variation in results. Therefore, representative designed hydrographs should preserve some physical properties of the hydrology, such as the peak discharge, volume of flows, and hydrograph shape that accurately represents the full probability of flows (Serinaldi and Grimaldi, 2011). The synthetic hydrographs presented in this paper accurately represented the full probability of flows present in the actual hydrographs and reproduced the hydrograph shape, therefore producing similar final bed elevations and topographic features compared to those resulting from temporally variable hydrographs. Fully and accurately representing the high flows in this system was important because the  $D_{50}$  only moved at the highest flows, which is similar to what has been observed in other similar

systems (Andrews, 1994; Maturana et al., 2013; McKean and Tonina, 2013).

#### 4.2. Regulated versus unregulated flows: morphologic differences

The meandering reach model showed that regulated flows resulted in more subdued topography, whereas the unregulated flows produced larger pool and bar geometry (i.e., greater area, depth/height, and volume), as well as increased pool frequency than the regulated scenarios. The current channel topography has adjusted to years of flow regulation with reduced magnitudes and durations of high flows that are needed to maintain pools and bars (e.g., Caamaño et al., 2009; MacWilliams et al., 2006; Sawyer et al., 2010). The current absence of high flows in the Lemhi River combined with our model results suggest that the river previously may have had more topographic variability, with deeper pools and more pronounced bars. Increasing the occurrence of high flows in regulated rivers will not only improve topographic variability, but also has important ecological effects. The unregulated high flows help to create an active river bed, which can remove fines and clean spawning gravels (Milhous, 1998; Reiser et al., 1989) and can break up armor layers (Parker and Klingeman, 1982; Ryan et al., 2005; Vericat et al., 2006; Yager et al., 2015). We did not measure the subsurface grain size distribution and therefore could not determine the extent of bed armoring. However, the median surface grain size only moved during high flows in our models, which implies a relatively stable surface layer particularly during the regulated flows. Given that the surface layer usually protects the finer subsurface layer from erosion, we would expect more fines to potentially accumulate in the bed during regulated than unregulated flows (Dikinya et al., 2008; Schälchli, 1992).

Topographic differences between the various flow scenarios were more pronounced in the meandering reach, where pools and bars were already present, than in the straight reach. The occurrence of topographic steering (Whiting and Dietrich, 1991), flow convergence (MacWilliams et al., 2006; Thompson and Wohl, 2009), or a combination of these effects (Brown and Pasternack, 2014) over the initial pool-riffle topography helped to maintain and further develop this topography in the meandering reach. In contrast, such processes do not emerge in the straight, planar reach. Consequently, restoration of flows alone may not be sufficient to regenerate or improve channel morphology in highly altered reaches (Wohl et al., 2015) such as the straight reach, where the existing variability in topography and lack of channel curvature is not sufficient to develop pools and bars in our simulations.

Results from modeling studies like this have limitations based on how the model is conceptualized and implemented. For example, we used a sediment transport model based on a single grain size, ignoring the potential effects of grain size interactions, such as particle hiding and size-selective transport, that could result in errors in bedload predictions (Durafour et al., 2014). Multi-size sediment transport may allow for the evolution of armor layers and formation of textural patches that may impact bar, riffle, and pool morphologies. However, the morphological effects of using a full grain-size distribution compared to a single grain size when modeling channel evolution may be minimal as shown by numerical modeling (Nelson et al., 2015b). Similarly, the adoption of a spatially constant drag coefficient may lead to the formation of bars with shorter wavelengths and higher amplitudes than those with a spatially variable roughness (Nelson et al., 2015b). Conversely, accounting for a full grain-size distribution with smaller sediment may reduce the modeled depths and volumes of pools as a result of low-flow sand deposition in the pools (Thompson et al., 1996). Including patch-based (e.g., riffle versus pool) grain-size information is also important in accurately predicting sediment transport, but may not be as important as the spatial variability in flow and shear stress (Monsalve et al., 2016), which was included in these models. Nor does our approach consider history-dependent critical shear stress values, which can impact bedload transport based on the previous flow magnitudes (Masteller et al., 2019; Reid et al., 1985; Turowski et al., 2011). Without large flow events regularly mobilizing the bed, channel stabilization can occur as the critical shear stress increases each year due to low and

moderate flows (An et al., 2021; Masteller et al., 2019). The dependence of critical shear stress on flow magnitude and flood sequencing could affect the modeled morphological differences we saw between the synthetic and actual hydrographs. The interannual variability in flows in the actual hydrographs would affect the critical shear stress and the order of the flows could be more important than we showed, whereas the synthetic hydrographs, with annual high flows, would be less affected.

#### 4.3. Regulated versus unregulated flows: habitat differences

Both regulated and unregulated flows produced moderate to high amounts of spawning habitat in both reaches, except for the fully unregulated scenario in the straight reach (HHS = 0.15). Furthermore, differences in topography developed from regulated vs. unregulated flows had very little effect on the availability of spawning habitat. The increased fall flows under the unregulated scenario affected the spawning suitability differently in each reach; spawning habitat was substantially reduced in the straight reach and slightly increased in the meandering reach.

Previous studies have shown that juvenile habitat, specifically overwintering habitat, is a limiting factor in the Lemhi River (Carmichael et al., 2020; Copeland et al., 2014). Contrary to our expectations that unregulated flow would increase habitat abundance and quality due to less subdued morphology compared to regulated conditions, we only predict a 1 % increase in habitat suitability for winter juvenile rearing between fully regulated and fully unregulated scenarios in the meandering reach. For all flow scenarios, the depth-averaged velocities were higher than suitable for juvenile Chinook rearing (Fig. S5), therefore no substantial increase in juvenile rearing habitat was predicted based on suitability curves. Nevertheless, changes in predicted pool geometry and frequency may be important. The 33 % increase in pool frequency, 36 % expansion in pool area, 92 % growth in pool volume, and 54 % increase in maximum residual pool depth between the regulated and unregulated scenarios in the meandering reach (Fig. 7) does not affect juvenile habitat suitability (Fig. 8d), but may have local benefits not detected by the suitability curves. In particular, diverse habitat with deep pools act as refugia from high velocities, create stable conditions during discharge changes (Moir et al., 2006), and increase the probability of overwintering survival for juvenile salmonids (Brown et al., 2011). Although the modeled HHS values for juvenile rearing habitat are unresponsive to regulated vs. unregulated conditions in the meandering reach, juvenile fish can use the lower velocities at the bottom of these deeper pools (Favrot et al., 2018). A study of microhabitat use in a similar stream found that Chinook parr disproportionally occupied the deepest water available during fall and winter rearing, specifically deep water areas >1.15 m (Favrot et al., 2018). During regulated fall flow  $(3.5 \text{ m}^3/\text{s})$  in the meandering reach, the area of the channel with depths >1.15 m increased from 1.7 m<sup>2</sup> to 104.2 m<sup>2</sup> (6029 % increase) between topographies developed from regulated vs. unregulated flow, and from  $30.9 \text{ m}^2$  to  $145 \text{ m}^2$  (372% increase) for the unregulated fall flow ( $6 \text{ m}^3/s$ ) on those topographies, highlighting the relative importance of the change in topography compared to the change in flows. For regulated and unregulated winter flows (5 m<sup>3</sup>/s) in the meandering reach, the streambed area with depths >1.15 m increased from 13.0 m<sup>2</sup> to 130.5 m<sup>2</sup> (902% increase), resulting in a substantial increase in deep-water juvenile refugia for topography developed from unregulated flows.

#### 4.4. Management implications

Our results show that unregulated flows could create more complex habitat through scouring of larger pools and increased pool frequency in the meandering reach. Instream restoration goals often include adding stream complexity by manually creating deep pool habitat and bars, and in regulated rivers, reintroduction of the highest flows may be an effective way to complete widespread restoration of subdued topography with minimal instream disturbance (Groll, 2017). We found that only the highest flows present in our reaches mobilized the  $D_{50}$  and resulted in meaningful morphologic changes. In the meandering reach, for the unregulated scenario, our models demonstrated that the pools developed quickly, much of the scour occurred during the first high flow, and the pools almost reached their maximum depths after three high flow years. Each of these high flows (larger than 17  $m^3/s$ ) lasted approximately one day each year. However, actual timescales for morphological change in natural rivers may differ from our modeled results due to factors not accounted for in our analysis, such as bed armoring, sediment supply effects, size-selective transport, and meander migration. Changes in riparian vegetation due to climate change and land use may also impact meander migration, which we did not model. Although caveats exist, the results showing rapid development of deep, large pools are promising for water management.

Large, extreme, disturbance events have the potential to produce large shifts in habitat (Reich and Lake, 2015). Consequently, avoiding diversion during high-water years may be enough to substantially improve juvenile habitat quality. Fulltime unregulated flows may not be necessary or beneficial for improving habitat; Carmichael et al. (2020) modeled bioenergetics for juvenile salmonids over multiple reaches along the Lemhi River and found that regulated flows produced more favorable conditions for juvenile growth than unregulated flows. Although Carmichael et al. (2020) did not account for potential changes in channel topography, they highlight the importance of slow water and lateral habitat refugia during unregulated flow conditions. We also show that the impact of flow restoration on instream morphology is not enough to reduce high velocities during fall and winter flows, which highlights the importance of lateral habitat reconnection and the potential addition of large wood to aid in velocity reduction if diversions were removed for extend periods of time.

Although we focused on the potential effects of unregulated flows on two reaches along the Lemhi River, restoration of natural flows at basin scales may have larger benefits. Our straight-reach model showed that channelized, highly-altered reaches may not improve with flow restoration (Groll, 2017; Wohl et al., 2015), but less altered reaches may have potential for morphologic improvement. Specifically, in the meandering reach, pool and bar volumes increased greatly from unregulated flows. To identify how much of the Lemhi River could possibly result in improved habitat from restoration of unregulated flows, we calculated the portion of the river having similar topographic variability to that of the meandering reach. A previous study on the Lemhi River found that small-scale wavelet power quantifies topographic variability of the thalweg and was representative of poolriffle topography (Duffin et al., 2021). Based on the observed, small-scale, wavelet power of the meandering reach, we found that 93 % of the Lemhi River has similar or higher topographic variability. This portion of the river represents areas with existing pools, which are subdued from decades of flow regulation, while the remaining 7 % of the river is composed of highly-altered reaches without existing pool-riffle topography. Although 93 % of the river has similar (or better) topographic variability to the meandering reach, only 65 % of the Lemhi River is meandering (sinuosity >1.2) and it is unknown if the sinuous reaches have a stronger response potential than less sinuous locations. The potential to improve juvenile overwintering habitat through basin-wide flow restoration along this river by increasing channel complexity and increasing pool geometry and frequency is much larger than the potential effects of local, instream, habitat improvements (e.g., woody-debris placement or channel realignment) because of the considerable area that basin-wide flow restoration could impact. Increases in deep pool habitat could also improve the resiliency of the river to potential climate change stresses due to reduced flows (Walters et al., 2013) by providing consistent hydraulic and thermal refugia (Justice et al., 2017).

#### 5. Conclusion

Hydromorphodynamic models can help to assess the effects of water management strategies on both stream hydraulics and morphology. Our analysis revealed the differences in reach topography, hydraulics, and habitat between regulated and unregulated flows applied over a 60-year period for an engineered, straightened, plane-bed reach and a more natural meandering reach. We tested a series of predicted hydrographs that represent the actual interannual variability of flows vs. a synthetic, cycled, annual hydrograph that is a composite of the actual flows. The actual and synthetic hydrographs after 60 years of simulation resulted in similar final modeled topographies for both reaches. The  $D_{50}$  was mobile only at the highest flows present in these reaches, with both the actual and synthetic hydrographs having the same probability for high-flow occurrence. We find that the sequence and interannual variability of flows was not as important as the occurrence of sediment-mobilizing high flows. Consequently, both hydrograph types (actual and synthetic) produced similar topographic results in a given reach.

For the straight reach, we found that the topography remained planebed between the regulated and unregulated flow scenarios, and spawning habitat quality for Chinook salmon was negatively affected by relatively higher unregulated discharges. Juvenile rearing habitat in the fall and winter was essentially non-existent for both the regulated and unregulated scenarios due to velocities that exceeded suitability.

In the meandering reach, unregulated flows resulted in more spatially variable topography than occurred for regulated flows, with a notable increase in pool depth, volume, and frequency. The change in topography between the regulated and unregulated flow scenarios had a negligible effect on Chinook salmon spawning habitat, which was high for both flow scenarios. Nevertheless, the increased pool geometry and frequency resulting from unregulated flows may benefit juveniles by providing greater fall and winter refugia.

Hydrologic restoration can improve subdued topography in currently regulated rivers like those examined in our study. Because high flows are capable of moving the  $D_{50}$  at our sites, increasing the frequency and magnitude of high flows may have the potential to scour subdued pools and build larger bars. Restoring unregulated high flows may improve in-channel morphology where bedforms are present (e.g., meandering pool-riffle channels), but is likely to have limited effect in reaches lacking bedforms or sinuosity, such as the engineered straightened reach. Instead, those sites may need more intervention than hydrologic restoration alone. A complex response between hydrology, topography and habitat exists; and the use of morphodynamic models, and the analysis of both hydrologic and morphologic changes together, can be a powerful tool to help water managers make informed decisions that will have the greatest benefit to the ecological function of rivers.

#### CRediT authorship contribution statement

JD ran the 2D modeling, CB ran the hydrological model, RB provided large scale 2D modeling, and DT envisioned the research and administered the funding. JD wrote the original version of the manuscript. All authors contributed to the interpretation of the results and in editing the manuscript.

#### Data availability

Data are available from Tonina et al. (2022) at the repository site HydroShare (http://www.hydroshare.org/resource/ 73fac6d628bc43e48a1801bad8f93f45).

#### Declaration of competing interest

Authors declare no competing interests.

#### Acknowledgments

This research was partially supported by the Idaho Office of Species Conservation (grant number LEM023 16), by the Bonneville Power Administration (Project # 2010-072-0), and by the U.S. Forest Service (grant number 16-CR-11221634-049). We thank Biomark Inc. for logistical support and for facilitating access to data, land, and streams. Data are available from HydroShare (Tonina et al., 2022)

#### Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2023.163016.

#### References

- Allen, R.G., Robison, C.W., 2017. Evapotranspiration and consumptive irrigation water requirements for Idaho: supplement updating the time series through December 2016, Research Technical Completion Report. Kimberly Research and Extension Center, University of Idaho, Moscow, ID Retrieved from http://www.kimberly.uidaho.edu/ ETIdaho/.
- An, C., Hassan, M.A., Ferrer-Boix, C., Fu, X., 2021. Effect of stress history on sediment transport and channel adjustment in graded gravel-bed rivers. Earth Surf. Dyn. 9 (2), 333–350. https://doi.org/10.5194/ESURF-9-333-2021.
- Andrews, E.D., 1994. Marginal bed load transport in a gravel bed stream, Sagehen Creek, California. Water Resour. Res. 30 (7), 2241–2250. https://doi.org/10.1029/94WR00553.
- Beechie, T., Pess, G., Roni, P., Giannico, G., 2008. Setting river restoration priorities: a review of approaches and a general protocol for identifying and prioritizing actions. N. Am. J. Fish Manag. 28 (3), 891–905. https://doi.org/10.1577/m06-174.1.
- Bennett, J.P., 1995. Algorithm for resistance to flow and transport in sand-bed channels. J. Hydraul. Eng. 121 (8), 578–590. https://doi.org/10.1061/(asce)0733-9429(1995) 121:8(578).
- Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J., Henriksen, J., 1998. Stream habitat analysis using the instream flow incremental methodology. U.S. Geol. Surv., Bio. Resour. Div. Inform. Tech. Rep. USGS/BRD-1998-0004, 131.
- Brandt, S.A., 2000. Classification of geomorphological effects downstream of dams. Catena 40 (4), 375–401. https://doi.org/10.1016/S0341-8162(00)00093-X.
- Brierley, G.J., Fryirs, K., 2000. River styles, a geomorphic approach to catchment characterization: implications for river rehabilitation in Bega catchment, New South Wales, Australia. Environ. Manag. 25 (6), 661–679. https://doi.org/10.1007/s002670010052.
- Brown, R.A., Pasternack, G.B., 2014. Hydrologic and topographic variability modulate channel change in mountain rivers. J. Hydrol. 510, 551–564.
- Brown, R.S., Hubert, W.A., Daly, S.F., 2011. A primer on winter, ice, and fish: what fisheries biologists should know about winter ice processes and stream-dwelling fish. Fisheries 36 (1), 8–26.
- Bunn, S.E., Arthington, A.H., 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 30 (4), 492–507.
- Caamaño, D., Goodwin, P., Buffington, J.M., Liou, J.C., Daley-Laursen, S., 2009. Unifying criterion for the velocity reversal hypothesis in gravel-bed rivers. J. Hydraul. Eng. 135 (1), 66–70. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:1(66).
- Carmichael, R.A., Tonina, D., Keeley, E.R., Benjankar, R.M., See, K.E., 2020. Some like it slow: a bioenergetic evaluation of habitat quality for juvenile Chinook salmon in the Lemhi River, Idaho. Can. J. Fish. Aquat. Sci. 77 (7), 1221–1232. https://doi.org/10.1139/ cjfas-2019-0136.
- Church, M., 1995. Geomorphic response to river flow regulation: case studies and time-scales. Regul. Rivers: Res. Manag. 11 (1), 3–22. https://doi.org/10.1002/rrr.3450110103.
- Copeland, T., Venditti, D.A., Barnett, B.R., 2014. The importance of juvenile migration tactics to adult recruitment in stream-type Chinook salmon populations. Trans. Am. Fish. Soc. 143 (6), 1460–1475. https://doi.org/10.1080/00028487.2014.949011.
- Cram, J.M., Torgersen, C.E., Klett, R.S., Pess, G.R., May, D., Pearsons, T.N., Dittman, A.H., 2017. Spatial variability of Chinook salmon spawning distribution and habitat preferences. Trans. Am. Fish. Soc. 146 (2), 206–221. https://doi.org/10.1080/00028487. 2016.1254112.
- DHI, 2003. Evaluation of diversion operation plans to meet negotiated flow targets for salmon and steelhead in the Lemhi River basin using the MIKE BASIN model. DHI, Inc. Report prepared for U.S. Bureau of Reclamation and Idaho Department of Water Resources. Boise, ID. 41 pp. Retrieved from https://www.google.com/url?client=internalelement-cse&cx = 013944898621778347075:fimgx16c16i&q=https://idwr.idaho.gov/ wp-content/uploads/sites/2/iwrb/2003/200304-MIKE-Basin-Model-Lemhi-River-Mainstream-Report.pdf&sa = U&ved = 2ahUKEwiOwObxk\_
- 9AhU4iO4BHZQ2AW0QFnoECAIQAg&usg = AOvVaw0xMtWaqag9nkek0pfG-mY. DHI, 2006. The Lemhi River MIKE BASIN model: a tool for evaluating stream flows, diversion operations and surface water – ground water relationships in the Lemhi River. DHI, Inc. Report prepared for U.S. Bureau of Reclamation and Idaho Governor's Office of Species Conservation through Idaho Denartment of Water Resources. Boise, DJ 102 np. Retrieved
- Conservation through Idaho Department of Water Resources. Boise, ID 102 pp. Retrieved from chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://idwr.idaho.gov/wp-content/uploads/sites/2/iwrb/2006/200609-MIKE-Basin-Model-Lemhi-River-Tributaries-Report.pdf.
- Dikinya, O., Hinz, C., Aylmore, G., 2008. Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma 146, 192–200.
- Duffin, J., Carmichael, R.A., Yager, E.M., Benjankar, R., Tonina, D., 2021. Detecting multiscale riverine topographic variability and its influence on Chinook salmon habitat selection. Earth Surf. Process. Landf. 46, 1026–1040. https://doi.org/10.1002/esp.5077.
- Durafour, M., Jarno, A., Le Bot, S., Lafite, R., Marin, F., 2014. Bedload transport for heterogeneous sediments. Environ. Fluid Mech. 15 (4), 731–751. https://doi.org/10.1007/ S10652-014-9380-1.
- Favrot, S.D., Jonasson, B.C., Peterson, J.T., 2018. Fall and winter microhabitat use and suitability for spring Chinook salmon parr in a U.S. Pacific Northwest River. Trans. Am. Fish. Soc. 147 (1), 151–170. https://doi.org/10.1002/tafs.10011.
- García, A., Jorde, K., Habit, E., Caamaño, D., Parra, O., 2011. Downstream environmental effects of dam operations: changes in habitat quality for native fish species. River Res. Appl. 27 (3), 312–327.

J. Duffin et al.

Geist, D.R., Dauble, D.D., 1998. Redd site selection and spawning habitat use by fall Chinook salmon: the importance of geomorphic features in large rivers. Environ. Manag. 22 (5), 655–669.

- Geist, J., Hawkins, S.J., 2016. Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquat. Conserv.: Mar. Freshw. Ecosyst. 26, 942–962. https://doi.org/10.1002/aqc.2702.
- Gostner, W., Alp, M., Schleiss, A.J., Robinson, C.T., 2013. The hydro-morphological index of diversity: a tool for describing habitat heterogeneity in river engineering projects. Hydrobiologia 712 (1), 43–60. https://doi.org/10.1007/s10750-012-1288-5.
- Gostner, W., Paternolli, M., Schleiss, A.J., Scheidegger, C., Werth, S., 2017. Gravel bar inundation frequency: an important parameter for understanding riparian corridor dynamics. Aquat. Sci. 79 (4), 825–839. https://doi.org/10.1007/s00027-017-0535-2.
- Gostner, W., Annable, W.K., Schleiss, A.J., Paternolli, M., 2021. A case-study evaluating river rehabilitation alternatives and habitat heterogeneity using the hydromorphological index of diversity. J. Ecohydraul. 6 (1), 1–16. https://doi.org/10.1080/24705357.2019. 1680320.
- Graf, W.L., 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79, 336–360.
- Grant, G.E, Schmidt, J.C., Lewis, S.L., 2003. A geological framework for interpreting downstream effects of dams on rivers. In: O'Connor, J.E., Grant, G.E. (Eds.), A Peculiar River: Geology, Geomorphology, and Hydrology of the Deschutes River. American Geophysical Union, Water Science and Application 7, Washington, DC, pp. 203–219.
- Groll, M., 2017. The passive river restoration approach as an efficient tool to improve the hydromorphological diversity of rivers – case study from two river restoration projects in the German lower mountain range. Geomorphology 293, 69–83. https://doi.org/10. 1016/j.geomorph.2017.05.004.
- Hanrahan, T.P., 2007. Bedform morphology of salmon spawning areas in a large gravel-bed river. Geomorphology 86, 529–536. https://doi.org/10.1016/j.geomorph.2006.09.017. Hauer, C., Unfer, G., Holzmann, H., Schmutz, S., Habersack, H., 2012. The impact of discharge
- Hauer, C., Unfer, G., Holzmann, H., Schmutz, S., Habersack, H., 2012. The impact of discharge change on physical instream habitats and its response to river morphology. Clim. Chang. 116 (3), 827–850. https://doi.org/10.1007/S10584-012-0507-4.
- Hayes, D.S., Brändle, J.M., Seliger, C., Zeiringer, B., Ferreira, T., Schmutz, S., 2018. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 633, 1089–1104. https://doi.org/10.1016/j.scitotenv.2018.03.221.
- Huthoff, F., Van Vuren, S., Barneveld, H.J., Scheel, F., 2010. On the importance of discharge variability in the morphodynamic modeling of rivers. In: Dittrich, A., Koll, K., Aberle, J., Geisenhainer, P. (Eds.), River Flow 2010, Bundesanstalt für Wasserbau, pp. 985–992.
- Huusko, A., Greenberg, L., Stickler, M., Linnansaari, T., Nykänen, M., Vehanen, T., et al., 2007. Life in the ice lane: the winter ecology of stream salmonids. River Res. Appl. 23 (5), 469–491. https://doi.org/10.1002/RRA.999.
- Justice, C., White, S.M., McCullough, D.A., Graves, D.S., Blanchard, M.R., 2017. Can stream and riparian restoration offset climate change impacts to salmon populations? J. Environ. Manag. 188, 212–227. https://doi.org/10.1016/j.jenvman.2016.12.005.
- Kail, J., Brabec, K., Poppe, M., Januschke, K., 2015. The effect of river restoration on fish, macroinvertebrates and aquatic macrophytes: A meta-analysis. Ecol. Indicators 58, 311–321. https://doi.org/10.1016/j.ecolind.2015.06.011.
- Kammel, L.E., Pasternack, G.B., Massa, D.A., Bratovich, P.M., 2016. Near-census ecohydraulics bioverification of *Oncorhynchus mykiss* spawning microhabitat preferences. J. Ecohydraul. 1 (1–2), 62–78. https://doi.org/10.1080/24705357.2016.1237264.
- Ligon, F.K., Dietrich, W.E., Trush, W.J., 1995. Downstream ecological effects of dams a geomorphic perspective. Bioscience 45 (3), 183–192. https://doi.org/10.2307/1312557.
- MacWilliams, M.L., Wheaton, J.M., Pasternack, G.B., Street, R.L., Kitanidis, P.K., 2006. Flow convergence routing hypothesis for pool-riffle maintenance in alluvial rivers. Water Resour. Res. 42 (W10427).
- Maret, T.R., Hortness, J.E., Ott, D.S., 2005. Instream flow characterization of Upper Salmon River Basin streams, Central Idaho. U.S. Geol. Surv. Inves. Rep. 2005-5212 124 pp.
- Masteller, C.C., Finnegan, N.J., Turowski, J.M., Yager, E.M., Rickenmann, D., 2019. Historydependent threshold for motion revealed by continuous bedload transport measurements in a steep mountain stream. Geophys. Res. Lett. 46 (5), 2583–2591. https://doi.org/10. 1029/2018GL081325.
- Maturana, O., Tonina, D., McKean, J.A., Buffington, J.M., Luce, C.H., Caamaño, D., 2013. Modeling the effects of pulsed versus chronic sand inputs on salmonid spawning habitat in a low-gradient gravel-bed river. Earth Surf. Process. Landf. 39 (7), 877–889. https:// doi.org/10.1002/esp.3491.
- McDonald, R.R., Nelson, J.M., Paragamian, V., Barton, G.J., 2010. Modeling the effect of flow and sediment transport on white sturgeon spawning habitat in the Kootenai River, Idaho. J. Hydraul. Eng. 136 (12), 1077–1092.
- McKean, J.A., Tonina, D., 2013. Bed stability in unconfined gravel bed mountain streams: with implications for salmon spawning viability in future climates. J. Geophys. Res.: Earth Surf. 118 (3), 1227–1240. https://doi.org/10.1002/jgrf.20092.
- Meitzen, K.M., Doyle, M.W., Thoms, M.C., Burns, C.E., 2013. Geomorphology within the interdisciplinary science of environmental flows. Geomorphology 200, 143–154. https:// doi.org/10.1016/J.GEOMORPH.2013.03.013.
- Milhous, R.T., 1998. Modelling of instream flow needs: the link between sediment and aquatic habitat. Regul. Rivers: Res. Manag. 14, 79–94. https://doi.org/10.1002/(SICI) 1099-1646(199801/02)14:1.
- Moir, H.J., Gibbins, C.N., Soulsby, C., Webb, J.H., 2006. Discharge and hydraulic interactions in contrasting channel morphologies and their influence on site utilization by spawning Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 63, 2567–2585. https://doi.org/ 10.1029/2010GL046558.
- Monsalve, A., Yager, E.M., Turowski, J.M., Rickenmann, D., 2016. A probabilistic formulation of bed load transport to include spatial variability of flow and surface grain size distributions. Water Resour. Res. 52 (5), 3579–3598. https://doi.org/10. 1002/2015WR017694.
- Montgomery, D.R., Beamer, E.M., Pess, G.R., Quinn, T.P., 1999. Channel type and salmonid spawning distribution and abundance. Can. J. Fish. Aquat. Sci. 56 (3), 377–387.

- Nelson, J.M., McLean, S.R., Wolfe, S.R., 1993. Mean flow and turbulence fields over twodimensional bed forms. Water Resour. Res. 29 (12), 3935–3953. https://doi.org/10. 1029/93WR01932
- Nelson, J.M., Bennett, J.P., Wiele, S.M., 2003. Flow and sediment-transport modeling. In: Kondolf, G.M., Piégay, H. (Eds.), Tools in Fluvial Geomorphology. John Wiley & Sons, Chichester, UK, pp. 539–576.
- Nelson, J.M., Logan, B.L., Kinzel, P.J., Shimizu, Y., Giri, S., Shreve, R.L., McLean, S.R., 2011. Bedform response to flow variability. Earth Surf. Process. Landf. 36 (14), 1938–1947. https://doi.org/10.1002/ESP.2212.
- Nelson, J.M., Shimizu, Y., Abe, T., Asahi, K., Gamou, M., Inoue, T., et al., 2016. The international river interface cooperative: public domain flow and morphodynamics software for education and applications. Adv. Water Resour. 93 (Part A), 62–74.
- Nelson, P.A., Morgan, J.A., 2018. Flume experiments on flow and sediment supply controls on gravel bedform dynamics. Geomorphology 323, 98–105. https://doi.org/10.1016/j. geomorph.2018.09.011.
- Nelson, P.A., McDonald, R.R., Nelson, J.M., Dietrich, W.E., 2015a. Coevolution of bed surface patchiness and channel morphology: 1. Mechanisms of forced patch formation. J. Geophys. Res.: Earth Surf. 120, 1687–1707. https://doi.org/10.1002/2014JF003428.
- Nelson, P.A., McDonald, R.R., Nelson, J.M., Dietrich, W.E., 2015b. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments. J. Geophys. Res. Earth Surf. 120 (9), 1708–1723. https://doi.org/10.1002/2014JF003429.
- NMFS, 2019. Endangered Species Act section 7(a)(2) biological opinion and Magnuson-Stevens Fishery Conservation and Management Act essential fish habitat response, continued operation and maintenance of the Columbia River system. NMFS Consultation Number WCRO-2018-00152. 966 pp. plus appendices. Retreived from https://www. fisheries.noaa.gov/resource/document/continued-operation-and-maintenancecolumbia-river-system.
- Parker, G., Klingeman, P.C., 1982. On why gravel bed streams are paved. Water Resour. Res. 18 (5), 1409–1423. https://doi.org/10.1029/WR018i005p01409.
- Pasternack, G.B., Brown, R.A., 2013. Ecohydraulic design of riffle-pool relief and morphological unit geometry in support of regulated gravel-bed river rehabilitation. In: Maddock, I., Harby, A., Kemp, P., Wood, P. (Eds.), Ecohydraulics: An Integrated Approach. John Wiley & Sons, Chichester, UK, pp. 337–355.
- Phillips, C.B., Hill, K.M., Paola, C., Singer, M.B., Jerolmack, D.J., 2018. Effect of flood hydrograph duration, magnitude, and shape on bed load transport dynamics. Geophys. Res. Lett. 45 (16), 8264–8271. https://doi.org/10.1029/2018GL078976.
- Plumb, B.D., Juez, C., Annable, W.K., McKie, C.W., Franca, M.J., 2020. The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel-bed flume. Earth Surf. Process. Landf. 45 (4), 816–830. https://doi.org/10.1002/ESP.4770.
- Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., et al., 1997. The natural flow regime. Bioscience 47 (11), 769–784. https://doi.org/10.2307/1313099.
- Poff, L.N., Zimmerman, J.K.H., 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205.
- Redolfi, M., Bertoldi, W., Tubino, M., Welber, M., 2018. Bed load variability and morphology of gravel bed rivers subject to unsteady flow: a laboratory investigation. Water Resour. Res. 54 (2), 842–862. https://doi.org/10.1002/2017WR021143.
- Reich, P., Lake, P.S., 2015. Extreme hydrological events and the ecological restoration of flowing waters. Freshw. Biol. 60 (12), 2639–2652. https://doi.org/10.1111/fwb.12508.
- Reid, I., Frostick, L.E., Layman, J.T., 1985. The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels. Earth Surf. Process. Landf. 10 (1), 33–44. https://doi.org/10.1002/ESP.3290100107.
- Reiser, D.W., Ramey, M.P., Beck, S., Lambert, T.R., Geary, R.E., 1989. Flushing flow recommendations for maintenance of salmonid spawning gravels in a steep, regulated stream. Regul. Rivers: Res. Manag. 3 (1), 267–275. https://doi.org/10.1002/rrr.3450030126.
- Richter, B.D., Mathews, R., Harrison, D.L., Wigington, R., 2003. Ecologically sustainable water management: managing river flows for ecological integrity. Ecol. Appl. 13 (1), 206–224. https://doi.org/10.1890/1051-0761(2003)013.
- Roni, P., Hanson, K., Beechie, T., 2008. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. N. Am. J. Fish. Manag. 28 (3), 856–890. https://doi.org/10.1577/m06-169.1.
- Ryan, S.E., Porth, L.S., Troendle, C.A., 2005. Coarse sediment transport in mountain streams in Colorado and Wyoming, USA. Earth Surf. Process. Landf. 30 (3), 269–288. https://doi. org/10.1002/esp.1128.
- Sawyer, A.M., Pasternack, G.B., Moir, H.J., Fulton, A.A., 2010. Riffle-pool maintenance and flow convergence routing observed on a large gravel-bed river. Geomorphology 114 (3), 143–160. https://doi.org/10.1016/J.GEOMORPH.2009.06.021.
- Schälchli, U., 1992. The clogging of coarse gravel river beds by fine sediment. Hydrobiologia (1), 235–236.
- Serinaldi, F., Grimaldi, S., 2011. Synthetic design hydrographs based on distribution functions with finite support. J. Hydraul. Eng. 16 (5), 434–446.
- Smith, J.D., McLean, S.R., 1977. Spatially averaged flow over a wavy surface. J. Geophys. Res. 82 (12), 1735–1746. https://doi.org/10.1029/JC082i012p01735.
- Thompson, D.M., Wohl, E.E., 2009. The linkage between velocity patterns and sediment entrainment in a forced-pool and riffle unit. Earth Surf. Process. Landf. 34 (2), 177–192. https://doi.org/10.1002/esp.1698.
- Thompson, D.M., Wohl, E.E., Jarrett, R.D., 1996. A revised velocity-reversal and sedimentsorting model for a high-gradient, pool-riffle stream. Phys. Geogr. 17 (2), 142–156. https://doi.org/10.1080/02723646.1996.10642578.
- Tonina, D., Jorde, K., 2013. Hydraulic modelling approaches for ecohydraulic studies: 3D, 2D, 1D and non-numerical models. In: Maddock, I., Harby, A., Kemp, P., Wood, P. (Eds.), Ecohydraulics: An Integrated Approach. John Wiley & Sons, Ltd, Chichester, UK, pp. 31–74 https://doi.org/10.1002/9781118526576.ch3.
- Tonina, D., McKean, J.A., Benjankar, R.M., Wright, C.W.W., Goode, J.R., Chen, Q., et al., 2019. Mapping river bathymetries: evaluating topobathymetric LiDAR survey. Earth Surf. Process. Landf. 44 (2), 507–520. https://doi.org/10.1002/esp.4513.

#### J. Duffin et al.

- Tonina, D., McKean, J.A., Benjankar, R.M., Yager, E., Carmichael, R.A., Chen, Q., et al., 2020. Evaluating the performance of topobathymetric LiDAR to support multi-dimensional flow modelling in a gravel-bed mountain stream. Earth Surf. Process. Landf. 45 (12), 2850–2868. https://doi.org/10.1002/esp.4934.
- Tonina, D., Duffin, J., Benjankar, R.M., Yager, E.M., Buffington, J.M., Borden, C., 2022. Lemhi River effect of flow regulation on stream morphology. Retrieved fromHydroShare. http:// www.hydroshare.org/resource/73fac6d628bc43e48a1801bad8f93f45.
- Turowski, J.M., Badoux, A., Rickenmann, D., 2011. Start and end of bedload transport in gravel-bed streams. Geophys. Res. Lett. 38, L04401. https://doi.org/10.1029/ 2010GL046558.
- Vargas-Luna, A., Crosato, P., Byishimo, Wim, S.J., 2019. Impact of flow variability and sediment characteristics on channel width evolution in laboratory streams. J. Hydraul. Res. 57 (1), 51–61. https://doi.org/10.1080/00221686.2018.1434836.
- Vericat, D., Batalla, R.J., Garcia, C., 2006. Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: the lower Ebro. Geomorphology 76 (1–2), 122–136. https://doi.org/10.1016/J.GEOMORPH.2005.10.005.
- Walters, A.W., Bartz, K.K., McClure, M.M., 2013. Interactive effects of water diversion and climate change for juvanile Chinook salmon in the Lemhi River basin (USA). Conserv. Biol. 27 (6), 1179–1189.
- Waters, K.A., Curran, J.C., 2015. Linking bed morphology changes of two sediment mixtures to sediment transport predictions in unsteady flows. Water Resour. Res. 51 (4), 2724–2741. https://doi.org/10.1002/2014WR016083.
- Wheaton, J.M., Brasington, J., Darby, S.E., Merz, J., Pasternack, G.B., Sear, D., Vericat, D., 2009. Linking geomorphic changes to salmonid habitat at a scale relevant to fish. River Res. Appl. 26 (4), 469–486. https://doi.org/10.1002/rra.1305.
- Whiting, P.J., Dietrich, W.E., 1991. Convective accelerations and boundary shear stress over a channel bar. Water Resour. Res. 27 (5), 783–796.
- Williams, G.P., Wolman, M.G., 1984. Downstream effects of dams on alluvial rivers. U.S. Geol. Surv. Prof. Pap. 1286, 64.

- Wohl, E., 2012. Identifying and mitigating dam-induced declines in river health: three case studies from the western United States. Int. J. Sediment Res. 27 (3), 271–287. https:// doi.org/10.1016/S1001-6279(12)60035-3.
- Wohl, E., Bledsoe, B.P., Jacobson, R.B., Poff, N.L., Rathburn, S.L., Walters, D.M., Wilcox, A.C., 2015. The natural sediment regime in rivers: broadening the foundation for ecosystem management. Bioscience 65 (4), 358–371. https://doi.org/10.1093/biosci/biv002.
- Wolman, M.G., 1954. A method of sampling coarse river-bed material. Eos, Trans. Am. Geophys. Union 35, 951–956.
- Wong, M., Parker, G., 2006. One-dimensional modeling of bed evolution in a gravel bed river subject to a cycled flood hydrograph. J. Geophys. Res.: Earth Surf. 111, F03018. https:// doi.org/10.1029/2006JF000478.
- Yager, E.M., Dietrich, W.E., Kirchner, J.W., McArdell, B.W., 2012. Prediction of sediment transport in step-pool channels. Water Resour. Res. 48 (1), 1–20. https://doi.org/10. 1029/2011WR010829.
- Yager, E.M., Kenworthy, M., Monsalve, A., 2015. Taking the river inside: fundamental advances from laboratory experiments in measuring and understanding bedload transport processes. Geomorphology 244, 21–32. https://doi.org/10.1016/j.geomorph.2015.04. 002.
- Yalin, M.S., 1963. An expression for bed-load transportation. J. Hydraul. Div. Am. Soc. Civ. Eng. 89 (3), 221–250. https://doi.org/10.1061/jyceaj.0000874.
   Yarnell, S.M., Petts, G.E., Schmidt, J.C., Whipple, A.A., Beller, E.E., Dahm, C.N., et al., 2015.
- Yarnell, S.M., Petts, G.E., Schmidt, J.C., Whipple, A.A., Beller, E.E., Dahm, C.N., et al., 2015. Functional flows in modified riverscapes: hydrographs, habitats and opportunities. Bio-Science 65, 963–972. https://doi.org/10.1093/biosci/biv102.
- Zhang, C., Xu, M., Hassan, M.A., Chartrand, S.M., Wang, Z., Ma, Z., 2020. Experiment on morphological and hydraulic adjustments of step-pool unit to flow increase. Earth Surf. Process. Landf. 45 (2), 280–294. https://doi.org/10.1002/ESP.4722.

### Accepted Manuscript

River temperature modelling: A review of process-based approaches and future directions

Stephen J. Dugdale, David M. Hannah, Iain A. Malcolm

PII:S0012-8252(17)30041-7DOI:doi:10.1016/j.earscirev.2017.10.009Reference:EARTH 2509To appear in:Earth-Science ReviewsReceived date:25 January 2017Revised date:13 October 2017Accepted date:20 October 2017

Please cite this article as: Stephen J. Dugdale, David M. Hannah, Iain A. Malcolm, River temperature modelling: A review of process-based approaches and future directions. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Earth(2017), doi:10.1016/j.earscirev.2017.10.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



# River temperature modelling: a review of process-based approaches and future directions

Stephen J Dugdale<sup>1,\*</sup>, David M Hannah<sup>1</sup>, Iain A Malcolm<sup>2</sup>

<sup>1</sup>School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT

<sup>2</sup>Marine Scotland Science, Freshwater Fisheries Laboratory, Faskally, Pitlochry, PH16 5LB

\*Correspondence to: s.j.dugdale@bham.ac.uk

#### Abstract

River temperature has a major influence on biophysical processes in lotic environments. River temperature is expected to increase due to climate change, with potentially adverse consequences for water quality and ecosystems. Consequently, a better understanding of the drivers of river temperature space-time variability is important for developing adaptation strategies. However, existing river temperature archives are often of low resolution or short timespans, and the analysis of patterns or trends can therefore be difficult. In light of these limitations, researchers have increasingly used models to generate river temperature estimates suitable for addressing fundamental and applied questions in river science. Of these models, process-based approaches are well suited to helping improve knowledge of the mechanisms controlling river temperature, because of their ability to explore the energy (and water) fluxes responsible for temperature patterns. While process-based modelling approaches can often be more data intensive than their statistical counterparts, they offer significant advantages with regards to simulating the impacts of projected land-use or climate change, and can provide valuable insights for informing the development of statistical models at larger scales. However, a wide range of process-based river temperature models exist, and choosing the most appropriate model for a given investigation requires careful consideration. In this paper, we review the foundations of process-based river temperature modelling and critically evaluate the features and functionality of existing models with a view to helping river scientists better understand their utility. In conclusion, we discuss key considerations and limitations of currently available processbased models and advocate directions for future research. We hope that this review will enable river researchers and managers to make informed decisions regarding model selection and spur the continued refinement of process-based temperature models for addressing fundamental and applied questions in the river sciences.

### 1. Introduction

River temperature is one of the most important river habitat variables (Caissie, 2006; Hannah and Garner, 2015), controlling biogeochemical processes (Durance and Ormerod, 2009; Kaushal et al., 2010), ecosystem dynamics (Durance and Ormerod, 2007; Bärlocher et al., 2008; Dugdale et al., 2016) and water quality (Finlay, 2003; Bloomfield et al., 2006; Delpla et al., 2009). Quantifying river temperature is therefore key for improved understanding of fluvial environments. River temperature regimes in most locations are expected to change as a result of future climate change (van Vliet et al., 2013; Caldwell et al., 2015; Hannah and Garner, 2015; Muñoz-Mas et al., 2016) and other anthropogenic drivers (e.g. abstraction, impoundment, land-use change; Poole and Berman, 2001; Hester and Doyle, 2011). However, shortcomings in several key aspects of river temperature research mean that little is currently known about the complex nature of future temperature variability. River temperature science has in the past been based on data with low spatial and temporal resolution, frequently collected as a side product of water quality and/or ecological sampling. Water temperature data quality is consequently highly variable and elucidating the controls of river temperature remains difficult (Webb et al., 2004; Jonsson and Jonsson, 2009; Watts et al., 2015). Efforts have been made to resolve this using novel temperature logger networks (e.g. Isaak et al., 2010; Jackson et al., 2016; Boyer et al., 2016) or remote sensing techniques (see. Dugdale, 2016). While such investigations are fast becoming the new norm, process-based understanding has not always kept pace with methodological development, and the exact mechanisms controlling river temperature heterogeneity remain difficult to isolate (Hannah and Garner, 2015). Further research into river temperature dynamics is consequently of key importance with regards to predicting the impacts of future climate change on river environments.

Several key review papers (including Webb, 1996; Caissie, 2006; Webb et al., 2008; Hannah and Garner, 2015) summarise the current state-of-the-art with regard to the processes driving river temperature. At the fundamental level, river temperature is determined by so-called 'first-order' climatic and hydrological processes (Hannah & Garner et al., 2015) which govern the initial temperature of the stream at the headwater and control rates of downstream warming or cooling due to radiative, latent, sensible and advective heat exchanges. However, the degree with which a river channel responds to these broad scale climatic and hydrological processes depends upon 'second-' and 'third-order' controls pertaining to the properties of the river basin (ie. land-use, hydrogeology, hydromophology), which influence energy and mass transfers at a range of nested scales (Figure 1). At the whole-river scale, riparian forests and steep topography act as 'second-order' controls on stream temperature by moderating incoming solar or longwave radiation (e.g. Leach and Moore, 2010; Benyahya et al., 2012; Garner et al., 2014; Garner et al., 2015). Topography also drives localised variability in precipitation (Hannah and Garner, 2015), in addition to controlling the distribution of advective inputs from tributaries or diffuse groundwater inputs (e.g. Webb and Zhang, 1999; Yearsley, 2009) through interactions with geology and subsurface stratigraphy (eg. Malcolm et al., 2008). At the reach scale, channel morphology and topology constitute 'third-order' controls on river temperature. Localised advective warming or cooling is driven by discrete or diffuse groundwater inputs (e.g. Torgersen et al., 1999; Dugdale et al., 2015) linked to channel morphology, or by hyporheic exchange (engendered by gravel bars; e.g Gooseff et al., 2006; Burkholder et al., 2008). Deep stratified pools may also create pockets of cool water (Matthews et al., 1994; Nielsen et al., 1994). When combined, these processes interact to create a mosaic of river temperature heterogeneity along a river's length (ie. a river's 'thermal landscape'; Steel et al., 2017). However, although these processes are reasonably well understood in isolation, the way in which they interact to determine stream temperature is still the subject of considerable research. These mechanisms must therefore be unravelled to better understand river temperature patterns and processes.



Figure 1. Basin controls on river water temperature heterogeneity across multiple scales

In light of such knowledge gaps, researchers have increasingly turned to models to explore space-time variance in river temperature patterns (e.g. Tung et al., 2006; Ruesch et al., 2012) and to yield processbased understanding of stream temperature dynamics (e.g. Garner et al., 2014). Because river temperature science is still a relatively data-poor domain, models are one of the few ways in which researchers can generate estimates of river temperature and its associated energy transfers suitable for answering these fundamental questions.

River temperature models can be divided into those based in statistics and those that simulate physical processes (alternately labelled 'deterministic', 'mechanistic' or 'process-based' models) to predict water temperature (Caissie, 2006). Benyahya et al. (2007) provide a detailed account of statistical water temperature models. Broadly speaking, they function through fitting statistical linkages between water temperature and a range of related covariates, either by parametric means (eg. regressive, correlative or autoregressive models) or through non-parametric approaches (eg. artificial neural networks, nearestneighbours approaches; Benyahya et al., 2007). Statistical temperature models can generate accurate stream temperature predictions (e.g. Jeong et al., 2013; Daigle et al., 2015) and are particularly useful at large spatial scales where the data requirements of process-based models make their application unfeasible (eg. Isaak et al., 2015; Jackson et al. 2017; Steel et al., 2016). They can also be used to infer the drivers of river temperature variability (e.g. Hrachowitz et al., 2010; Imholt et al., 2013; Jackson et al., 2017). However, they are unable to reveal the specific energy transfer mechanisms responsible for stream temperature patterns, and their space-time transferability to dissimilar locations is limited. In contrast, process-based models simulate the processes controlling river temperature. Unlike statistical models, the intricacy of these processes means that such models are relatively data-intensive and highly parameterised (Benyahya et al., 2007), and they can be difficult to apply very large scales. However, they are particularly useful for a) providing process-based insights into the drivers of river temperature, b) for informing appropriate metrics to use in larger statistically based models and c) for predicting temperature response to climate or land-use change scenarios (e.g. Morin and Couillard, 1990; Caissie et al., 2007) in situations where statistical solutions may break down due to scenarios outside of their calibration range.

A range of process-based stream temperature models have been produced and published (often on a noncommercial basis) for use by the research community (Table 1). However, there are considerable differences between the types of models available and their utility for simulating water temperature in various contexts. Choosing the most appropriate model for a given investigation is therefore often difficult,

due to differences in model functionality, features, outputs and data requirements. Furthermore, elucidating the key features of the various models is often laborious as important details regarding the functionality of some models can be buried within the grey literature. Consequently, a detailed understanding of the advantages and limitations of the various river temperature models is vital for making an informed choice of temperature model.

In this review, we aim to evaluate existing process-based stream temperature models with a view to helping researchers (and potentially managers) identify the most appropriate model for their given purpose, building on the previous meta-analyses presented in Norton and Bradford (2009) and Ficklin et al. (2012). To achieve this, the article is structured around four key objectives:

- 1. Review the foundations of process-based river temperature modelling.
- 2. Compare the ways in which currently available process-based temperature models represent the physical energy flux processes responsible for river temperature dynamics.
- 3. Document differences in model implementation, features and practicalities.
- 4. Discuss limitations, future prospects and key considerations regarding model use.

In an attempt to aid readability, citations for individual models are given by numbers (1 - 21) corresponding to the rows in Tables 1-6. Standard references for each model are given in Table 1. We only explicitly consider 'named' models that a) have been published in the peer-reviewed literature, b) have been used for more than one study and c) for which information is readily available. Every attempt has been made to gain accurate information about each model, although in some cases, the difficulty in elucidating the models' technical details means that it has been necessary to simplify the contents of Tables 1-6. We do not examine models that have only been documented on single occasions or that only appear in the grey literature. Furthermore, we only detail the most up-to-date incarnation of a given model (or series of models), as an appraisal of a model's evolutionary development is outside the scope of this article.

4

### Table 1. List of reviewed process-based river temperature models (including programming language, source code and availability)

| No. | Model name   | Main reference(s)                           | Further reading                                      | Language                  | Availability                                   | Source code | URL for model download                                                                                                                       |
|-----|--------------|---------------------------------------------|------------------------------------------------------|---------------------------|------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | BasinTemp    | Allen (2008)                                | Allen et al. (2007)                                  | N/a                       | Proprietary (Stillwater<br>Sciences)           |             | N/a                                                                                                                                          |
| 2   | CE-QUAL-W2   | Cole & Wells (2015)                         | Rounds (2007)<br>Norton & Bradford (2009)            | Fortran /<br>Visual Basic | Free download                                  | Yes         | http://www.ce.pdx.edu/w2/                                                                                                                    |
| 3   | CEQUEAU      | Morin & Paquet (2007)                       | Morin & Couillard (1990)<br>St-Hilaire et al. (2000) | MATLAB /<br>C++           | Available on request                           | Yes         | http://ete.inrs.ca/ete/publications/cequeau-hydrological-model                                                                               |
| 4   | CrUSTe       | LeBlanc et al. (1997)                       | LeBlanc & Brown (2000)                               | STELLA                    | N/a                                            |             | N/a                                                                                                                                          |
| 5   | Delft3D-FLOW | Deltares (2014)                             | Carrivick et al. (2012)<br>Shen et al. (2014)        | Fortran                   | Free download                                  | Yes         | http://oss.deltares.nl/web/delft3d/download                                                                                                  |
| 6   | Heat Source  | Boyd & Casper (2003)                        | Bond et al. (2015)<br>Woltemade et al. (2016)        | Python /<br>Visual Basic  | Free download                                  | Yes         | http://www.oregon.gov/deq/wq/tmdls/Pages/TMDLs-Tools.aspx                                                                                    |
| 7   | DHVSM-RBM    | Sun et al. (2015)<br>Yearsley et al. (2001) | Yearsley et al. (2009)<br>Yearsley et al. (2012)     | Fortran                   | Free download                                  | Yes         | http://www.hydro.washington.edu/Lettenmaier/Models/RBM/ind<br>ex.shtml                                                                       |
| 8   | GIS-STRTemp  | Sansone (2001)                              | Sridhar et al. (2004)                                | N/a                       | N/a                                            |             | https://www.niwa.co.nz/freshwater-and-estuaries/our-<br>services/catchment-modelling/water-allocation-impacts-on-river-<br>attributes-waiora |
| 9   | HEC-RAS      | Brunner (2016)                              | Drake et al. (2010)                                  | Java                      | Free download                                  |             | http://www.hec.usace.army.mil/software/hec-ras/                                                                                              |
| 10  | MIKE 11      | DHI (2016)                                  | Loinaz et al. (2013)                                 | N/a                       | Commercially available                         |             | https://www.mikepoweredbydhi.com/products/mike-11                                                                                            |
| 11  | MNSTREM      | Sinokrot & Stefan (1993)                    | Sinokrot & Stefan (1994)                             | Fortran                   | Free download                                  | Yes         | N/a                                                                                                                                          |
| 12  | Qual2K       | Chapra et al. (2012)                        | Kannel et al. (2007)                                 | Fortran /<br>Visual Basic | Free download                                  | Yes         | http://www.ecy.wa.gov/programs/eap/models.html                                                                                               |
| 13  | RAFT         | Pike et al. (2013)                          | Danner et al. (2012)                                 | N/a                       | N/a                                            |             | N/a                                                                                                                                          |
| 14  | RMA11        | King (2016)                                 | Lowney (2000)                                        | Fortran                   | Proprietary (Resource<br>Modelling Associates) |             | http://ikingrma.iinet.net.au/                                                                                                                |
| 15  | SHADE-HSPF   | Becknell et al. (1997)                      | Chen et al. (1998a)<br>Chen et al. (1998b)           | Fortran                   | Free download                                  | Yes         | https://www.epa.gov/exposure-assessment-models/hspf                                                                                          |
| 16  | SNTemp       | Theurer et al. (1984)                       | Bartholow (1984)<br>Norton & Bradford (2009)         | Basic, Fortran            | Free download                                  | Yes         | https://www.fort.usgs.gov/products/sb/7557                                                                                                   |
| 17  | Streamline   | Rutherford et al. (1997)                    | Rutherford et al. (2004)                             | Fortran /<br>Visual Basic | Available on request                           |             | N/a                                                                                                                                          |
| 18  | TVA-RMS      | Deas et al. (2003)                          | Null et al. (2010)                                   | С                         | Available on request                           | Yes         | N/a                                                                                                                                          |
| 19  | WAIORA       | Jowett et al. (2004)                        | Davies-Colley et al. (2009)                          | Delphi                    | Free download                                  |             |                                                                                                                                              |
| 20  | WASP7        | Wool et al. (2008)                          |                                                      | Fortran                   | Free download                                  | Yes         | https://www.epa.gov/exposure-assessment-models/water-<br>quality-analysis-simulation-program-wasp                                            |
| 21  | WET-Temp     | Cox & Bolte (2007)                          | Watanabe et al. (2005)                               | C++                       | Available on request                           | Yes         | N/a                                                                                                                                          |

### 2. Basics of process-based water temperature models

### 2.1 Energy fluxes determining stream temperature

Stream temperature is determined by a series of energy and hydrological exchanges that act at the airwater and water-streambed interface (Eq. 1, Figure 2; Hannah et al., 2008). At the air-water interface, net radiative (longwave and shortwave energy) fluxes dominate (Caissie, 2006; Hannah et al., 2004). Incident shortwave radiation ( $H_{sw}$ ) from the sun is typically the largest source of energy for a river system (particularly during summer months; Webb & Zhang, 1997), although bankside objects such as vegetation and/or topography can reduce the amount of solar radiation received by the river through providing shade (e.g. Garner et al., 2014, 2017). Longwave radiation ( $H_{lw}$ ; thermal energy emitted by all objects with a temperature above 0 °K; Dugdale, 2016) can be both a heat source and sink, with downwelling longwave radiation from clouds, the land surface and bankside vegetation contributing to heat gains, and upwelling radiation from the water surface driving energy losses from the stream (e.g. Benyahya et al., 2012). Energy at the air-water interface is also gained or lost through non-radiative means (latent and sensible heat fluxes; Hannah & Garner, 2015). Latent heat flux ( $H_e$ ) comprises energy lost (gained) by the stream during evaporation (condensation) as water moves from a higher to lower energy state (or *vice versa*). Sensible heat flux ( $H_s$ ) encompasses mainly convective exchange between the air and water surface depending upon temperature differences and atmospheric mixing (Webb & Zhang, 1999).



Figure 2. Energy and hydrological exchanges determining stream temperature (modified from Hannah et al., 2008)

At the water-streambed interface, heat is principally exchanged through advective ( $H_a$ ) and conductive ( $H_{bhf}$ ) processes. Advective heat transfers from groundwater exfiltration and hyporheic exchanges drive both river temperature warming and cooling (e.g. Hannah et al., 2009; Hébert et al., 2011). Because the

temperature of groundwater is broadly stable over the year and the water column exhibits a sinusoidal annual cycle, streambed advective exchanges contribute to stream cooling in the summer and warming during winter months (Caissie, 2006). In addition to these advective processes, conduction between the water column and streambed also drives heat exchange. These fluxes generally act in the same direction as advective transfers, with heat being lost from the water column to the (comparatively) cooler bed in the summer (Webb & Zhang, 2004). However, radiative (shortwave) heating of the bed in in shallow streams can also drive positive conductive transfers from the bed to the water column (e.g. Evans et al, 1998). A final source of energy at the water-streambed interface is fluid friction between the water column and bed/banks. Friction gains are generally minor (e.g. Evans et al., 1998) and often considered negligible (Carrivick et al., 2012) for most rivers, but are sometimes observed in energetic environments (i.e. mountainous streams) with high roughness coefficients (Brown & Hannah, 2008) or large bed material (Chikita et al., 2010).

Taken together, the sum of these heat fluxes occurring at both the air-water and water-streambed interfaces exerts a direct control on the thermal regime of a river. However, the relative magnitude of the fluxes can vary substantially between locations (e.g. Webb & Zhang, 1999; Hannah et al., 2008; Hebert et al., 2011) as a function of variability in prevailing first-order climatic/hydrologic processes and their subsequent modification by second- and third-order river basin controls (Hannah & Garner, 2015). Consequently, the potential of a process-based river temperature model to provide accurate predictions of water temperature is reliant on its capacity to faithfully represent these energy transfers and their interaction with the physical environment through which the river flows.

### 2.2 Mathematical basis of stream temperature models

Process-based river temperature models function by simulating the addition (removal) of heat to (from) the river channel as a result of the processes detailed in section 2.1. This is achieved by calculating energy fluxes associated with each of these processes and subsequently computing the temperature change to a volume of water. Process-based models are based around two key equations which quantify these processes. Energy fluxes to or from the river channel are first calculated using an energy balance equation (see Webb and Zhang, 1997; Hannah et al., 2004) which describes the net energy gains or losses as a series of radiative, latent, sensible and advective heat exchanges:

(1) 
$$H_{total} = H_{sw} + H_{lw} + H_e + H_s + H_{bhf} + H_a$$

where  $H_{total}$  represents the total energy available for transfer to or from the river channel,  $H_{sw}$  is the net shortwave solar radiation flux,  $H_{lw}$  is the net longwave radiation flux,  $H_e$  is the net energy flux due to evaporation or condensation (latent heat flux),  $H_s$  is the net energy gain or loss from convection or conduction (sensible heat flux),  $H_{bhf}$  represents heat fluxes to or from the river bed and  $H_a$  is the energy gained or lost from groundwater or tributary inflows (all in W m<sup>-2</sup>).

Depending on the complexity and scope of the river temperature model, some of these energy exchange terms may be omitted from the overall energy balance equation. Indeed, some models only compute surface fluxes and consider bed energy transfers to be negligible. Depending on available data, the individual heat flux terms in Equation 1 are computed using a mix of observed hydrometeorological values and values derived from these observations using empirical or physically based equations. Ouellet et al. (2014b) provide an in-depth review of the various formulae.

Once net heat flux has been calculated, the river temperature change resulting from this energy gain (loss) is computed using Equation 2. The literature contains many variations on this equation (e.g. Sinokrot and Stefan, 1993; Rutherford et al., 1997; Tung et al., 2006; Hebert et al., 2011; Garner et al., 2014) which attempt to account for variability in discharge and channel morphology or compute heat transport in multiple dimensions. However, the basic one-dimensional heat advection-dispersion equation for an open channel of constant cross section and flow is given by Sinokrot and Stefan (1993):

(2) 
$$\frac{\partial T_w}{\partial t} = -U \frac{\partial T_w}{\partial x} + D_L \frac{\partial^2 T_w}{\partial x^2} + \frac{H_{total}}{\rho \cdot c_p \cdot d}$$

where  $T_w$  is water temperature (°C) at time t, U is mean channel velocity (m s<sup>-1</sup>), x is streamwise distance (m),  $D_l$  is an empirically derived longitudinal dispersion coefficient (m s<sup>-2</sup>),  $\rho$  is the density of water (kg m<sup>-3</sup>),  $c_\rho$  is the specific heat of water (41.8 x 10<sup>3</sup> J kg<sup>-1</sup> °C<sup>-1</sup>) and d is the mean channel depth (m). Equation 2 allows for Eulerian (temporal) computation of river temperature; its rearrangement in the form  $\left(\frac{\partial T_w}{\partial x}\right)$  also permits the calculation of river temperature in a Lagrangian (spatial) framework (e.g. Garner et al., 2014). Provided that the channel is well mixed and does not contain notable lateral temperature gradients, the combination of Equations 1 and 2 can be used to simulate water temperature as a function of the input hydrometeorological and geomorphological data.

### 3. Representation of energy exchange processes

All process-based river temperature models use observed hydrometeorological data to calculate the energy fluxes detailed in Equation 1. However, there exists considerable disparity between the various energy flux terms included within each model and between the routines used to calculate them. This means that the numerical representation of the physical energy fluxes can vary substantially between different river temperature models, and has implications for both model complexity and the quality of river temperature simulations. In this section, we evaluate differences between the models in terms of how they represent the energy fluxes required to compute Equation 1.

### 3.1 Quantification of radiative fluxes

### 3.1.1 Incoming solar shortwave radiation

Typically, radiative fluxes (net shortwave and longwave radiation) dominate the heat budget of most river environments (Caissie, 2006), with solar shortwave radiation generally being the largest heat source for a river or stream (Morin and Couillard, 1990; Webb and Zhang, 1997, 2004). If observations of solar radiation are available for a given location, most models (2-5, 7, 9-12, 14-20; Table 2) allow for the direct input of such data. However, observations of incoming solar radiation are often scarce compared to other meteorological variables (i.e. air temperature, precipitation, wind speed, pressure). Consequently, many process-based river temperature models (1, 4-10, 13, 14, 16, 20, 21) contain complex routines capable of approximating the solar radiation received by a given point on the Earth's surface as a function of the date and time (see Boyd and Kasper (2003) for appropriate algorithms). Because such algorithms yield predictions of solar radiation uninfluenced by the atmosphere, these models include further functions allowing for solar radiation values to be corrected for atmospheric transmissivity resulting from a range of factors (e.g. cloud cover, atmospheric dust/water vapour scattering; see Theurer et al. (1984) and Boyd and Kasper (2003) for more detailed summary). Certain models (4, 5, 7, 9, 10, 14, 16, 20) even offer the facility

to use both observed solar radiation values and computed data, aiding their flexibility for application in data-poor regions. However, care must be taken when using computed solar radiation values to ensure that they provide a good analogue of real data, either by comparing them to in-situ measurements acquired using a pyranometer or data from meteorological re-analysis programmes (eg. Rienecker et al., 2011). Model choice should therefore be informed by an appraisal of existing solar radiation data and (when using computed values) an appreciation of how well a given model is able to replicate observed data.

#### 3.1.2 Net longwave radiation

While outgoing longwave radiation from the river channel represents a common heat sink, especially during night time or the winter months, studies have also demonstrated that incoming longwave energy from the atmosphere (and riparian vegetation) can mediate heat losses in certain circumstances (Benyahya et al., 2012; Hannah et al., 2008). The effect of longwave radiation must therefore be properly accounted for by the stream temperature model. Some studies involving process-based river temperature models (e.g. Garner et al., 2014) incorporate observations of longwave radiation acquired from net radiometers, but such data are rarely available from meteorological service databases. As a result, all of the river temperature models summarised in Table 1 offer the ability to compute longwave radiative fluxes as a function of other meteorological variables using a variant of the equation:

$$(3) \qquad H_{lw} = H_{lw\_atm} - H_{lw\_stream}$$

given:

- (4)  $H_{lw\_atm} = (1 R_L) \cdot \varepsilon_{atm} \cdot \sigma \cdot T_a^4$
- (5)  $H_{lw\_stream} = \varepsilon_w \cdot \sigma \cdot T_w^4$

where  $\varepsilon_{atm}$  and  $\varepsilon_w$  ( $\approx 0.97$ ) are the emissivity of the stream and the atmosphere respectively,  $R_L$  is the reflectance coefficient of the stream surface (given as  $1 - \varepsilon_w$ ),  $\sigma$  is the Stefan-Boltzmann constant (5.670367×10<sup>-8</sup> W m<sup>-2</sup> K<sup>-4</sup>) and  $T_a$  and  $T_w$  are the air and water temperature (°K) respectively.

While these equations may appear relatively simple, complexities arise from the range of different formulae available for the calculation of  $\varepsilon_{atm}$  (Table 2). Most models (1-4, 7, 8, 10, 11, 14-20) calculate  $\varepsilon_{atm}$  as a function of either air temperature or vapour pressure using simple empirically derived formulae (air temperature; Swinbank, 1963; Idso and Jackson, 1969; vapour pressure; Brunt, 1932; Anderson, 1954), while others (6, 12) use the physically derived method of Brutsaert (1975) to compute  $\varepsilon_{atm}$  as a function of both air temperature and vapour pressure. Some models (5, 12) even offer multiple or composite methods for characterising  $\varepsilon_{atm}$ . Additionally, because atmospheric emissivity is heavily influenced by cloud cover, a number of models (1, 4, 6, 7, 12, 14-19) offer the ability to correct computed emissivity values for the effect of cloud cover using the approach of Bolz (1949), something that is particularly useful in regions where cloudy/overcast conditions dominate. However, several models (5, 9, 13, 21) omit information detailing the method (or derivation thereof) used to compute  $\varepsilon_{atm}$ . This, coupled with the wide choice of formulae available, means that the choice of river temperature model should therefore be informed by both the availability of data required by the given  $\varepsilon_{atm}$  equation and an *a priori* assessment of the importance of the longwave radiation contribution to the given river's energy budget. Indeed, particular care should be taken when attempting to apply a river temperature model in environments with potential for a high proportion

of longwave fluxes (eg. those with substantial tree/vegetation cover, or cloud-dominated meteorology); in such instances, it may be advisable to quantify incoming radiative energy (eg. Hannah et al., 2008) using net radiometers.

### 3.1.3 Accounting for the effects of riparian vegetation/topography on radiative fluxes

The presence of near-stream vegetation and topography (ie. steep terrain such as canyons) can have a large influence on the amount of radiation received by a given river reach. Indeed, numerous studies have highlighted how shading from riparian tree cover or steep valley walls can moderate high temperatures, particularly in summer months (e.g. St-Hilaire et al., 2000; Malcolm et al., 2004; Hannah et al., 2008; Leach and Moore, 2010; Garner et al., 2014; Garner et al., 2015). As a result, it is necessary to account for the effect of trees and topographic shading on radiative fluxes when modelling stream temperature in such environments. While some models (3, 5, 9, 10, 13, 14, 20) do not contain any mechanism to account for the effect of vegetation/topography on radiation fluxes, most incorporate algorithms that are able to simulate the reduction in solar shortwave radiation received by the stream (Table 2). Although an in-depth appraisal of the various shading algorithms is beyond the scope of this article, it is pertinent to note that there are clear differences between them. Some models (16, 18, 19) compute the effects of shading using (amongst other variables) sun elevation, tree/topographic height and bank distance, canopy density and stream azimuth to compute a 'shade factor' coefficient that represents the fraction of radiation that does not reach the stream surface due to shading. This coefficient can then be applied to scale the solar radiation components of Equation 1. Other more complex algorithms (2, 6-8, 15, 17, 21) function similarly, but partition incoming solar radiation into its direct and diffuse components. The direct solar radiation received at the stream surface is subsequently calculated either through application of the 'shade factor' coefficient (2, 6, 17) or through modelling the amount by which the solar 'beam' is attenuated as it travels through the tree canopy (7, 8, 15, 21). The fraction of diffuse radiation received by the stream is then quantified separately, usually by means of an algorithm that computes the reach's sky view factor (e.g. 6, 7, 15, 21), a coefficient that represents the fraction of the hemisphere that is unblocked by tree cover/topography. Most shading algorithms are directly integrated within their given stream temperature model. However, some models (1, 4, 11, 12) require that the shading correction be computed externally. Generally, these models rely on GIS analysis or similar to compute either the shade factor coefficients (1, 11, 12) or canopy transmissivity values (4) which are then entered manually into the model. Although this additional step may mean that such models require more time to implement, the ability to manually enter shade correction values means that they are a) able to make use of advances in new shade correction algorithms or b) can be used with field-derived values for shade correction (e.g. Rutherford et al., 1997) that do not rely on the application of an algorithm.

Most shading algorithms are concerned with modifying solar radiation fluxes but some models also apply shading correction to longwave fluxes (4, 6, 7, 16, 17, 19, 21). Atmospheric longwave radiation is affected by riparian/topographic shading in much the same as the diffuse component of solar radiation flux (Hannah et al., 2008). As such, the impact of shading on the atmospheric longwave flux is generally calculated by computing a given reach's sky view factor (e.g. Cox and Bolte, 2007) and applying the resulting coefficient to scale the longwave flux given by Equation 4. Given that all objects with a temperature >0 °K emit longwave radiation, radiation from near-stream vegetation or topography can also represent a significant source of longwave energy. Indeed, studies show that longwave radiation from tree cover can contribute significantly to river temperature during night-time (in comparison to open reaches; Benyahya et al., 2012; Hannah et al., 2008). As a result, the same models also contain routines that compute incident longwave

radiation from riparian tree cover and/or topography. This allows such models to estimate longwave radiation fluxes in tree-covered reaches with a high degree of accuracy, potentially improving their utility for predicting water temperature in steep headwater streams or heavily forested catchments.

An additional consideration concerns the spatial discretisation of the computed impacts of riparian vegetation on stream temperature. Because riparian vegetation can vary substantially along a river, any correction for riparian shading or longwave fluxes must account for spatial variability in riparian vegetation. All of the models reviewed here contain routines capable of generating such spatially explicit data using either GIS polygons, tree height rasters or shading coefficients as input data to correct radiative fluxes at the scale of the model's structure (see section 4.3). However, it is important that the chosen model's resolution is sufficiently high to encapsulate true spatial variability in the impacts of riparian vegetation on stream temperature. Similarly, the riparian vegetation data provided to the model must be of a resolution equal to or better than that of the model itself. Recent studies have demonstrated the utility of LiDAR data for providing high resolution raster datasets of riparian vegetation height/shading (eg. Wawrzyniak et al., 2017); such data are therefore particularly appropriate if attempting to model the fine-scale (ie. sub-reach) impacts of vegetation on stream temperature.

SCR ANN

 Table 2. Methods used to compute radiative flux by reviewed temperature models

|     |              | Solar radiation    |               |                              | Longwave radiation         |                          |            |                        |
|-----|--------------|--------------------|---------------|------------------------------|----------------------------|--------------------------|------------|------------------------|
| No. | Model name   | Computed or        | Shading       | Solar radiation partitioning | Sky emissivity equation(s) | Sky emissivity corrected | Shading    | Incident longwave from |
|     |              | observed           | correction    | (direct, diffuse)            |                            | for cloud cover          | correction | vegetation/ topography |
| 1   | BasinTemp    | Computed           | Yes (computed |                              | Swinbank (1963)            | Yes                      |            |                        |
|     |              |                    | externally)   |                              |                            |                          |            |                        |
| 2   | CE-QUAL-W2   | Observed           | Yes           | Yes                          | Brunt (1932)               |                          |            |                        |
| 3   | CEQUEAU      | Observed           |               |                              | Anderson (1954)            |                          |            |                        |
| 4   | CrUSTe       | Both               | Yes (computed |                              | Swinbank (1963)            | Yes                      | Yes        | Yes                    |
|     |              |                    | externally)   |                              |                            |                          |            |                        |
| 5   | Delft3D-FLOW | Both               |               |                              | Brunt (1932)               |                          |            |                        |
|     |              |                    |               |                              | Modified Brutaseart (1975) |                          |            |                        |
| 6   | Heat Source  | Computed           | Yes           | Yes                          | Brutaseart (1975)          | Yes                      | Yes        | Yes                    |
| 7   | DHVSM-RBM    | Both               | Yes           | Yes                          | Swinbank (1963)            | Yes                      | Yes        | Yes                    |
| 8   | GIS-STRTemp  | Computed           | Yes           | Yes                          | Idso and Jackson (1969)    |                          |            | Yes                    |
| 9   | HEC-RAS      | Both               |               |                              | N/a                        |                          |            |                        |
| 10  | MIKE 11      | Both               |               |                              | Brunt (1932)               |                          |            |                        |
| 11  | MNSTREM      | Observed           | Yes (computed |                              | Idso and Jackson (1969)    |                          |            |                        |
|     |              |                    | externally)   |                              |                            |                          |            |                        |
| 12  | Qual2K       | Observed           | Yes (computed |                              | Brunt (1932)               | Yes                      |            |                        |
|     |              |                    | externally)   |                              | Brutaseart (1975)          |                          |            |                        |
|     |              |                    |               |                              | Koburg (1964)              |                          |            |                        |
| 13  | RAFT         | Computed (from     |               |                              | N/a                        |                          |            |                        |
|     |              | circulation model) |               |                              |                            |                          |            |                        |
| 14  | RMA11        | Both               |               |                              | Swinbank (1963)            | Yes                      |            |                        |
| 15  | SHADE-HSPF   | Observed           | Yes           | Yes                          | Swinbank (1963)            | Yes                      |            |                        |
| 16  | SNTemp       | Both               | Yes           |                              | Brunt (1932)               | Yes                      | Yes        | Yes                    |
| 17  | Streamline   | Observed           | Yes           | Yes                          | Swinbank (1963)            | Yes                      | Yes        | Yes                    |
| 18  | TVA-RMS      | Observed           | Yes           |                              | Swinbank (1963)            | Yes                      |            |                        |
| 19  | WAIORA       | Observed           | Yes           | Yes                          | Brunt (1932)               | Yes                      | Yes        | Yes                    |
| 20  | WASP7        | Both               | $\mathbf{V}$  |                              | Brunt (1932)               |                          |            |                        |
| 21  | WET-Temp     | Computed           | Yes           | Yes                          | Equation based on relative |                          | Yes        | Yes                    |
|     |              |                    | -             |                              | humidity                   |                          |            |                        |

### 3.2 Modelling latent and sensible heat fluxes

### 3.2.1 Latent heat flux

Latent (evaporative) heat loss is a significant energy sink at the river surface (Webb and Zhang, 1997, 2004), particularly in large or open rivers (Maheu et al., 2013; Caissie, 2016). Because direct measurements of energy gains or losses from latent or sensible heat fluxes are rare (Maheu et al., 2013; Caissie, 2016), all of the river temperature models reviewed here derive net latent and sensible heat from meteorological observations. The majority of equations for calculating latent heat fluxes take the same initial form:

### (6) $H_e = \rho W \cdot L_e \cdot \overline{E}$

where  $\rho W$  is the density of water (1x10<sup>3</sup> kg m<sup>-3</sup>),  $L_e$  is the latent heat of vaporisation (2.5x10<sup>6</sup> J kg<sup>-1</sup>) and  $\bar{E}$  is the rate of evaporation (m s<sup>-1</sup>). However, differences in computed latent heat fluxes arise from the choice of equation used to compute  $\bar{E}$  (Table 3). While some models (3) currently offer only relatively basic functionality for predicting evaporation rates as a function of air temperature and number of daylight hours (using the Thornthwaite (1948) formula), the majority (1, 2, 4, 5, 7, 9-21) use a variation on Dalton's equation for evaporation (see Lim et al., 2012) to compute evaporation rates using wind speed, actual vapour pressure and saturation vapour pressure. Most equations based around Dalton's equation involve some kind of empirical expression that estimates the adiabatic portion of evaporation as a function of wind speed and field-derived coefficients (referred to as the 'wind function', common coefficients for which can be found in Boyd and Kasper (2003) and Cole and Wells (2015). The accuracy of evaporation predictions can thus depend greatly upon the coefficients used.

In an attempt to reduce the uncertainty associated with such empirical approaches, other models (6, 8) offer the ability to use physically based equations (e.g. Penman, 1948; Monteith, 1965; Priestly and Taylor, 1972) that calculate evaporation rates based on a range of input hydrometeorological data (e.g. net irradiance, wind speed, saturation vapour pressure curve, aerodynamic conductance, etc). The use of a model that incorporates a physically-based evaporation routine may be advisable when implementing a river temperature model in an environment for which 'wind function' coefficients needed by Dalton-type approaches are unavailable. However, comparative studies present conflicting results regarding the relative accuracy of the various methods for computing evaporation (e.g. McJannet et al., 2013; Ouellet et al., 2014b; Alazard et al., 2015) meaning that is may not be advisable to apply these more complex routines unless evaporation rates predicted by simpler methods (e.g. Dalton's equation) are clearly erroneous. Conversely, while evaporative fluxes are generally of greater magnitude in warmer climates, they can represent a highly significant component of stream energy budgets in temperate regions (eg. Hannah et al., 2008). It may therefore be advisable to measure the importance of evaporative flux using an energy balance study (eg. Hannah et al., 2008) or evaporation pan experiments (eg. Maheu et al., 2014) prior to determining whether to apply a model with more complex routines for computing latent heat flux. As a result, model choice must be driven by a) an appreciation of the relative importance of evaporative flux in comparison to other heat fluxes and b) the availability of data required by a given model's evaporation routines.

**Table 3.** Methods used to calculate evaporation rate by reviewed river temperature models

| No. | Model name   | Evaporation rate equation        |
|-----|--------------|----------------------------------|
| 1   | BasinTemp    | Dalton's equation                |
| 2   | CE-QUAL-W2   | Dalton's equation                |
| 3   | CEQUEAU      | Thornthwaite (1948)              |
| 4   | CrUSTe       | Dalton's equation                |
| 5   | Delft3D-FLOW | Dalton's equation                |
| 6   | Heat Source  | Dalton's equation, Penman (1948) |
| 7   | DHVSM-RBM    | Dalton's equation                |
| 8   | GIS-STRTemp  | Penman (1948)                    |
| 9   | HEC-RAS      | Dalton's equation                |
| 10  | MIKE 11      | Dalton's equation (modified)     |
| 11  | MNSTREM      | Dalton's equation                |
| 12  | Qual2K       | Dalton's equation                |
| 13  | RAFT         | Dalton's equation                |
| 14  | RMA11        | Dalton's equation                |
| 15  | SHADE-HSPF   | Dalton's equation                |
| 16  | SNTemp       | Dalton's equation                |
| 17  | Streamline   | Dalton's equation                |
| 18  | TVA-RMS      | Dalton's equation                |
| 19  | WAIORA       | Dalton's equation                |
| 20  | WASP7        | Dalton's equation                |
| 21  | WET-Temp     | Dalton's equation                |

#### 3.2.2 Sensible heat flux

The magnitude of energy lost or gained through sensible heat exchange is generally lower than radiative or latent fluxes (Caissie, 2006). However, sensible heat fluxes can nonetheless impose a non-negligible control on river temperature (e.g. Webb and Zhang, 1997), acting as both a heat sink in the winter and a heat source during summer months. All of the models reviewed here calculate sensible heat exchanges in essentially the same way following the method of Bowen (1926), either through multiplying the product of the wind function and the air-water temperature gradient by an empirical coefficient, or by applying the Bowen ratio (itself a function of air and water temperature and vapour pressure) to the evaporative flux. Consultation of the literature for the various temperature models documented here reveals minor discrepancies between the various sensible heat flux equations and coefficients used therein (e.g. 4, 9, 10, 15, 16), largely resulting from either unit conversions and/or the necessity of accounting for different wind function coefficients. There is consequently little effective difference in sensible heat flux estimates yielded by the various models discussed here, meaning that model selection is generally driven by other (greater magnitude) sources of thermal energy (eg. radiative, latent and advective fluxes).

### 3.3 Heat fluxes at the streambed interface

#### 3.3.1 Bed heat flux

While generally smaller in magnitude than surface heat fluxes (Sinokrot and Stefan, 1994; Evans et al., 1998), energy exchange at the streambed-water interface has been noted an important component of the energy balance in some studies, particularly in the winter (e.g. Webb and Zhang, 1997; Hannah et al., 2004; Leach & Moore, 2014). Some river temperature models do not incorporate routines capable of calculating bed heat flux (Table 4), considering its effect on water temperature to be negligible (3-5, 8-10, 21). This is presumably because the majority of these models are designed for application in large river systems where the magnitude of heat exchanges at the streambed interface is particularly diminished in relation to other

fluxes (Caissie et al., 2014). However, many other models (1, 2, 6, 7, 11-20) do incorporate bed heat fluxes into their energy balance computations. This is generally accomplished using a variation on Fourier's Law (eg. Story et al., 2003) whereby bed heat flux is computed as a function of the streambed thermal gradient (change in temperature between the streambed-water interface and a given depth within the streambed; Theurer et al., 1984) multiplied by the bed thermal conductivity (the product of bed sediment density, bed heat capacity and bed thermal diffusivity; Boyd and Kasper, 2003). Most of these models refer to this equation as quantifying heat flux arising from conduction between the bed and the water column. However, Hannah et al. (2004) note that it is extremely difficult to disaggregate bed conduction, convection and advection when estimating bed heat flux. Bed heat flux computed with this method may therefore be considered a combination of these three energy exchanges.

As with other heat fluxes detailed here, the quality of bed heat flux predictions is reliant on input data quality and availability. Bed temperature gradient is generally measured using temperature loggers installed at given depths within the bed or modelled numerically given a priori knowledge of the bed material and temperature gradients within the riverbed (e.g. Sinokrot and Stefan, 1993), while thermal conductivity is governed by the type of bed material (ie. lithology, porosity, etc) and derived from laboratory analysis of bed sediments (data for which are often available in the literature; Hondzo and Stefan, 1994). Observations of these parameters can be difficult to ascertain, and it is often necessary to provide estimates to the temperature model. However, owing to the high degree of heterogeneity often present in bed temperatures (eg. Birkel et al., 2016), obtaining even an average or estimate can be difficult. In such circumstances, care must be taken to ensure that modelled bed heat fluxes stay within realistic values. Furthermore, given the importance of conductive and advective (eg. hyporheic-driven) bed heat fluxes in some regions (eg. Leach & Moore, 2014), the use of such 'bulk' approaches for computing bed heat fluxes produces a highly simplified estimate of true bed energy transfer processes. Although recent research (eg. Kurylyk et al., 2016; Caissie and Luce, 2017) has proposed improved methods for quantification of bed heat fluxes (and subsequent partitioning into their conductive, convective and advective components), these approaches have not yet been integrated into existing river temperature models and accurate modelling of bed heat fluxes therefore remains a challenge.

In addition to the calculation of 'bulk' bed heat fluxes, some models (6, 13, 18) also include separate routines capable of estimating heat flux due to solar heating of the bed. In most cases, river temperature models function under the assumption that the channel is deep enough that all solar radiation is attenuated within the water column. However, in certain circumstances (ie. shallow headwater streams, streams with considerable exposed boulder material, very low turbidity environments; Chen et al., 1998a), solar warming of the streambed may contribute significantly to river temperature warming (e.g. Evans et al., 1998; Clark et al., 1999; Webb and Zhang, 1999; Johnson, 2004). Because the magnitude of such heat fluxes is both temporally or spatially variable (Webb and Zhang, 1997), it may be beneficial to choose a model that accounts for these processes when modelling temperature in environments where radiative streambed warming is thought to occur. Where possible, it is therefore advisable to quantify the magnitude of bed heat fluxes either by means of Fourier's law (eg. Story et al., 2003) or by using soil heat flux plates, in order to determine whether a) the use of a model capable of accounting for bed heat fluxes is necessary and b) the extent to which modelled fluxes approximate observed data.

| No. | Model name   | Computes bed<br>heat flux | Computes flux from<br>radiative warming of bed | Computes fluid friction with bed/banks |
|-----|--------------|---------------------------|------------------------------------------------|----------------------------------------|
| 1   | BasinTemp    | Yes                       |                                                |                                        |
| 2   | CE-QUAL-W2   | Yes                       |                                                |                                        |
| 3   | CEQUEAU      |                           |                                                |                                        |
| 4   | CrUSTe       |                           |                                                |                                        |
| 5   | Delft3D-FLOW |                           |                                                |                                        |
| 6   | Heat Source  | Yes                       | Yes                                            |                                        |
| 7   | DHVSM-RBM    | Yes                       |                                                |                                        |
| 8   | GIS-STRTemp  |                           |                                                |                                        |
| 9   | HEC-RAS      |                           |                                                |                                        |
| 10  | MIKE 11      |                           |                                                |                                        |
| 11  | MNSTREM      | Yes                       |                                                |                                        |
| 12  | Qual2K       | Yes                       |                                                |                                        |
| 13  | RAFT         | Yes                       | Yes                                            |                                        |
| 14  | RMA11        | Yes                       |                                                |                                        |
| 15  | SHADE-HSPF   | Yes                       |                                                |                                        |
| 16  | SNTemp       | Yes                       |                                                | Yes                                    |
| 17  | Streamline   | Yes                       |                                                |                                        |
| 18  | TVA-RMS      | Yes                       | Yes                                            |                                        |
| 19  | WAIORA       | Yes                       |                                                | Yes                                    |
| 20  | WASP7        | Yes                       |                                                |                                        |
| 21  | WET-Temp     |                           |                                                |                                        |

**Table 4.** Details of reviewed river temperature models' capacity to include bed heat fluxes

### 3.3.3 Fluid friction with the bed and banks

Heat gains from fluid friction can be a significant source of heat in steeper streams with high roughness coefficients (e.g. Hannah et al., 2004; Chikita et al., 2010; Khamis et al., 2015). Although only two publicly available models (16, 19) currently include routines for calculating fluid friction, a range of studies have used the same simple equation for manually estimating friction-driven heat fluxes (e.g. Marsh, 1990; Webb and Zhang, 1997; Hannah et al., 2004; Tung et al., 2006; Chikita et al., 2010; Cardenas et al., 2014). Should suspicions arise that the non-accounting for fluid friction by a given model is biasing temperature estimates (eg. in the case where the user is confident that all other heat flux parameters are accurately modelled but temperature simulations still do not match observed data), it should at least possible to estimate friction gains/losses outside of the model. Furthermore, many coupled hydraulic-water temperature models already include routines for quantifying fluid friction as part of their hydraulic computations. Given the ready ability to customise/script these models, it may be possible to devise routines which use the outputs of these computations to improve temperature estimates in high gradient streams. Nevertheless, with the exception of a few studies (e.g. Webb and Zhang, 1997, 1999) where fluid friction was estimated to be high, such heat exchanges are generally assumed to be minor and can be considered negligible for the majority of temperature modelling scenarios (e.g. Carrivick et al., 2012; Johnson et al., 2014). The ability of a model to account for fluid friction can therefore be considered a low priority during model selection, unless working in particularly high-energy environments.

#### 3.4 Advective heat fluxes

Inflows from tributaries or subsurface inputs can engender substantial temperature gradients in river systems (e.g. Torgersen et al., 1999; Torgersen et al., 2001). All of the models covered in this review contain routines capable of computing advective heat fluxes (Table 5) using the same general equation:

(6) 
$$T_{w,x} = \frac{(T_{w,x-1} \cdot Q) + (T_{in} \cdot Q_{in})}{Q + Q_{in}}$$

where Q and  $Q_{in}$  are the discharge of the main channel and inflow respectively and  $T_{in}$  is the temperature of the inflow (Boyd and Kasper, 2003). However, differences between the various models arise from a) the way in which boundary conditions are assigned to advective inputs, b) the way in which inflows arriving from different sources are disaggregated and c) the resolution at which inflows can be assigned within the model.

In terms of assigning boundary conditions to advective inputs, the majority of temperature models require the user to manually input discharge and temperature data associated with inflows. These observations are relatively easy to obtain for surface inflows by means of temperature loggers and discharge gauges. Subsurface inputs are harder to quantify, given the scarcity of groundwater temperature records in many locations and the difficulty of quantifying groundwater flux. Groundwater temperature is therefore often assigned a value equal to mean annual air temperature given the close correlation between these two variables (e.g. Karanth, 1987). However, in regions where groundwater temperature departs significantly from this trend, advective heat fluxes resulting from groundwater inflows may be over- or underrepresented. The need for flow or temperature observations can be minimised by using coupled hydraulic or hydrological models (e.g. 3, 7, 9, 10, 15; see sections 4.1 and 4.2) which are able to estimate the flows and temperatures associated with advective inputs. However, although these models are able to simulate surface water contributions with a reasonable degree of accuracy, the resolution of simulated groundwater inflows is often extremely course, requiring additional data on groundwater exfiltration/temperature to be manually entered.

In terms of the disaggregation of inflows resulting from different sources, some models discriminate between tributary inflows and those arising from groundwater processes, allowing tributary inflows to be assigned as point inputs, with groundwater inflows (or indeed, losses to the aquifer; Boyd and Kasper, 2003) modelled as diffuse inputs distributed along a given reach (e.g. 1, 4, 6, 8, 12, 19, 21). Because inflows from different subsurface zones (ie. hyporheic vs. shallow groundwater) have varying hydrologic characteristics (ie. groundwater flux generally involves a permanent change in water volume whereas hyporheic flux is characterised by recurrent exchanges to and from the bed over shorter distances and time periods), some models even offer the ability to model thermal inputs from different subsurface zones (ie. saturated vs unsaturated zones; 3; hyporheic flow; 7, 12, 18). However, other models (2, 5, 10, 14, 16-18, 21) require input of 'bulk' inflows at discrete intervals within the model which merge surface and groundwater inputs together. This means that the true location of a given inflow may not be accurately represented within the model as the 'merging' of several inflows will require that their input location is also a reflection of their combined values. Because subsurface inflows are often more diffuse than tributaries, the merging of advective inputs in this manner may result in a river temperature response that is not properly representative of true subsurface or surface water mixing processes (Pike et al., 2013). Assigning temperatures to these combined inflow data can be difficult given the likely temperature difference between surface and subsurface inflows owing to their different thermal characteristics. In such instances, it may therefore be advisable to apply Equation 6 to estimate the bulk temperature of the combined inflows before it is input into the model. However, it should be noted that through merging diffuse and discrete advective inputs in this manner, a model may produce a false representation of the location and magnitude of warm or cool water inputs which may have implications for certain studies focusing on such phenomena (eg. the ecological significance of cool water refuges; Dugdale et al., 2016).

The ability of a river temperature model to represent advective fluxes is also dependent upon its resolution and structure (covered in further detail in section 4.3). While less of an issue for models using a high resolution gridded structure (2, 5, 13, 14, 20) whereby inflows can be assigned to each grid cell (allowing for multiple advective inputs in a relatively small spatial scale), models operating at reach scales only allow for inflows to be assigned at the resolution of nodes/segments (2, 5, 7, 9, 12, 16-18, 20, 22). An appropriate segment resolution must be chosen in order to ensure that the river temperature response to local advective inputs is represented in the correct geographic location in order that modelled temperature accurate reflects observed data when conducting model calibration. Model selection should therefore be informed by an appreciation of both the relative importance of advective heat inputs (ascertained through flow accretion surveys, tributary gauging, piezometric measurements or similar techniques) and the distribution of these inputs along the study river; in the case of rivers found to have strong advective inflows, only those models capable of accurately representing these features should be considered.

Sole Marines

| No. | Model name   | Advective input separation | Details                                                                                                      |
|-----|--------------|----------------------------|--------------------------------------------------------------------------------------------------------------|
| 1   | BasinTemp    | Separate                   | Can incorporate groundwater inputs, assumes linear mixing along model segment                                |
| 2   | CE-QUAL-W2   | Bulk                       |                                                                                                              |
| 3   | CEQUEAU      | Separate                   | Hydrological model component allows for separate computation of inflows from surface and saturated and       |
|     |              |                            | unsaturated subsurface zones                                                                                 |
| 4   | CrUSTe       | Separate                   | Can incorporate groundwater inputs, assumes linear mixing along model segment                                |
| 5   | Delft3D-FLOW | Bulk                       |                                                                                                              |
| 6   | Heat Source  | Separate                   | Can incorporate point and diffuse groundwater inputs, hyporheic inflows                                      |
| 7   | DHVSM-RBM    | Separate                   | Hydrological model component allows for computation of groundwater inflows. Lagrangian (cellular)            |
|     |              |                            | structure of model permits inflows from different sources (tributaries/groundwater) at each cell             |
| 8   | GIS-STRTemp  | Separate                   | Can incorporate groundwater inputs, assumes linear mixing along model segment                                |
| 9   | HEC-RAS      | Separate                   | Models groundwater seepage/throughflow using Darcy's Law (see Drake et al., 2010)                            |
| 10  | MIKE 11      | Bulk                       | Hydrological component allows for computation of groundwater inflows                                         |
| 11  | MNSTREM      | Bulk                       |                                                                                                              |
| 12  | Qual2K       | Separate                   | Can assign separate point and diffuse advective fluxes                                                       |
| 13  | RAFT         | Separate                   | Lagrangian (cellular) structure of model permits inflows from different sources (tributaries/groundwater) an |
|     |              |                            | each cell                                                                                                    |
| 14  | RMA11        | Bulk                       |                                                                                                              |
| 15  | SHADE-HSPF   | Separate                   | Hydrological component allows for computation of groundwater inflows                                         |
| 16  | SNTemp       | Bulk                       |                                                                                                              |
| 17  | Streamline   | Bulk                       |                                                                                                              |
| 18  | TVA-RMS      | Bulk                       |                                                                                                              |
| 19  | WAIORA       | Separate                   | Can incorporate groundwater inputs, assumes linear mixing along model segment                                |
| 20  | WASP7        | Bulk                       |                                                                                                              |
| 21  | WET-Temp     | Separate                   | Can incorporate groundwater inputs, assumes linear mixing along model segment                                |
|     |              | AC                         | CEI                                                                                                          |

Table 5. Details of reviewed river temperature models' capacity to include advective heat fluxes (bulk inflows vs. separate surface and groundwater inputs)

### 4. Model implementation

The differences between the available temperature models are not limited simply to their representation of physical energy fluxes. Indeed, there is also substantial variability in the ways in which the various models are implemented. These differences lie in their ability to model hydraulic (ie. flow velocity and wetted cross-section) and/or hydrological (ie. discharge or rainfall-runoff) data, their structure (ie. their spatio-temporal resolution and dimensionality; Figure 3), considerations regarding their calibration, and the degree to which the models are publicly available and/or open to customisation. These differences have substantial implications regarding the choice of a suitable river temperature model for a given purpose, and require careful consideration prior to a given model's application (see Table 6 for guidance regarding key model features and contexts in which they may be advantageous). In this section, we review these logistical and operational differences.



**Figure 3.** Spatial and temporal resolution of reviewed process-based river temperature models. Red text indicates model with hydraulic coupling, green text indicates hydrological coupling. Figure is greatly simplified for sake of clarity. We acknowledge that spatial resolution can be variable and that it is possible to have node/segment-based models with higher resolution than gridded models.

#### Table 6. Key model features and contexts in which they may be advantageous

| Ability to estimate incoming solar<br>radiation as a function of date/time<br>and locationRegions for which observations of solar<br>radiation data are scarce.Shortwave fluxMultiple<br>computation/correction<br>atmospheric emissivityfor<br>significant cloud cover.Longwave fluxRoutines capable of accounting for<br>riparian and topographic shadingRivers in areas of high forest cover and/or<br>steep topography (ie. valleys, canyons).Routines capable of solarShortwave fluxRoutinesRivers in areas of high forest cover and/or<br>steep topography (ie. valleys, canyons).RoutinesRoutinesNB. Riparian | alej                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Multiplemethodsfor<br>ofAreas prone to overcast conditions and/or<br>significant cloud cover.Longwave fluxcomputation/correction<br>atmospheric emissivityofSignificant cloud cover.Longwave fluxRoutines capable of accounting riparian and topographic shadingfilvers in areas of high forest cover and/or<br>steep topography (ie. valleys, canyons).Radiative<br>fluxes.(shortwave<br>network fluxes.                                                                                                                                                                                                            |                                                  |
| Routines capable of accounting for<br>riparian and topographic shadingRivers in areas of high forest cover and/or<br>steep topography (ie. valleys, canyons).Radiative<br>fluxes.(shortwave<br>nd<br>fluxes.and<br>nd<br>vegetation                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| impacts turbulent fluxes (thro<br>alterations to the riparian microclim<br>see Dugdale et al., 2018), although<br>existing models account for this<br>section 5).                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wave)<br>also<br>rough<br>mate;<br>;h no<br>(see |
| Ability to enter external riparian/topographic shading data input of direct shading observations (eg. from hemispheric photography; Garner et al., 2014).                                                                                                                                                                                                                                                                                                                                                                                                                                                            | luxes                                            |
| Physically based latent heat flux<br>equations<br>when more basic (ie. Dalton-type) equations<br>fail to provide a reasonable estimate of<br>latent heat flux; areas with high latent heat<br>flux.<br>Turbulent (evaporative and sens<br>fluxes. Predominantly latent heat flux,<br>can also impact sensible heat flux thro<br>application of Bowen ratio (see sec<br>3.2.2).                                                                                                                                                                                                                                       | sible)<br>x, but<br>rough<br>ection              |
| Ability to model bed heat flux<br>Rivers with significant groundwater or Bed heat flux<br>hyporheic contributions; regions with<br>permeable bedrock and/or elevated water-<br>table.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Ability to disaggregate advective Rivers with strong spatial temperature Advective flux inflows from multiple different heterogeneity. sources (ie. surface vs groundwater)                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |
| Hydraulic model coupling Dynamic rivers; environments prone to rapid -<br>spatio-temporal changes in width:depth or<br>velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| Hydrological model coupling Regions where hydrometric data are scarce; -<br>prediction of potential climate change<br>impacts on rivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| Higher dimensionality (ie. 2D, 3D)<br>Rivers with strong vertical or lateral -<br>temperature gradients or stratification (eg.<br>impounded rivers, estuaries)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| Sub-daily model timestep Generation of advanced thermal metrics (ie<br>degree hours, time spent above a given<br>threshold)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |

### 4.1 Hydraulic model integration and representation of channel morphology

As accurate temperature predictions require a good representation of channel morphology, it is important to consider the methodology that a given temperature model uses to obtain these parameters. At the most basic level, a river temperature model requires input data concerning the area and time over which energy transfers occur (e.g. Theurer et al., 1984) in order to calculate total heat flux for a given section of river. Values of channel width, depth, and velocity for each element within a model must be available in order to compute Equation 2. While these data are generally derived from field measurements or GIS databases, one of the principal limitations of stream temperature models that require these data is their assumption that channel width, depth and velocity remain temporally stable. In reality, variations in discharge will inherently lead to changes in wetted cross-section and flow velocity, which will alter energy fluxes at the channel surface and bed. In ideal circumstances, time series of width, depth and velocity

change (obtained using dataloggers or similar) would enable the appropriate values to be input into the model at each timestep, but such data (especially spatially distributed observations) are rarely available in practise. Instead, some temperature models have a limited ability to account for changes in wetted cross-section and/or velocity either through the use of Manning's equation (e.g. Robert, 2003) to compute changes in width/depth as a function of stream gradient and velocity (e.g. 21) or by using empirically derived discharge-width and discharge-velocity ratings curves (e.g. 13, 17). However, given that these methods rely on empirical or semi-empirical functions, the temperatures predicted by such models may only hold true in relatively steady-state environments where there is little spatio-temporal change in channel morphology or flow velocity.

In an attempt to address these limitations, many river temperature models are now coupled to hydraulic models (Table 7), allowing them to simulate flow velocity and wetted cross-section as a function of input channel morphology data for the entire range of discharges exhibited by the river (2, 5, 6, 9, 10, 12, 14, 18, 20). The ability to incorporate spatially and temporally explicit hydraulic data into the temperature model means that such models are able to calculate energy fluxes in more dynamic fluvial environments with a greater degree of accuracy, improving temperature predictions. However, such models are necessarily more complex, and their increased data requirements and higher parameterisation may mean that their use is beyond the scope of some river temperature studies. Additionally, the hydraulic model's velocity/stage predictions must also be thoroughly calibrated/validated against observed data, meaning that the implementation of such models can be time consuming when compared to more simplistic systems. Nevertheless, when working in environments that are particularly dynamic and/or prone to rapid changes in width/depth ratio which could greatly impact stream temperature (eg. upland environments), the selection of a hydraulically-coupled model may be advisable.

22

| No. | Model name   | Hydraulically<br>coupled | Hydrologically | No. dimensions             | Minimum timestep | Model structure                                                                  |
|-----|--------------|--------------------------|----------------|----------------------------|------------------|----------------------------------------------------------------------------------|
| 1   | BasinTemp    | coupica                  | coupicu        | 1                          | Hourly           | Nodes/segments                                                                   |
| 2   | CE-QUAL-W2   | Yes                      |                | 2 (longitudinal, vertical) | None             | Cross-sections with vertical cells (2D)                                          |
| 3   | CEQUEAU      |                          | Yes            | 1                          | Daily            | Gridded hydrological model, but 1D temperature (node-based)                      |
| 4   | CrUSTe       |                          |                | 1                          | Hourly           | Nodes/segments                                                                   |
| 5   | Delft3D-FLOW | Yes                      | Yes            | 3                          | None             | Gridded (2D/3D)                                                                  |
| 6   | Heat Source  | Yes                      |                | 1                          | Minute           | Cross-sections                                                                   |
| 7   | DHVSM-RBM    |                          | Yes            | 1                          | None             | Nodes/segments (each segment subdivided into cells for Lagrangian functionality) |
| 8   | GIS-STRTemp  |                          |                | 1                          | Hourly           | Nodes/segment                                                                    |
| 9   | HEC-RAS      | Yes                      |                | 1                          | Minute           | Cross-sections                                                                   |
| 10  | MIKE 11      | Yes                      | Yes            | 1                          | None             | Cross-sections                                                                   |
| 11  | MNSTREM      |                          |                | 1                          | Minute           | Nodes/segments                                                                   |
| 12  | Qual2K       | Yes                      |                | 1                          | None             | Cross-sections                                                                   |
| 13  | RAFT         |                          | Yes            | 1                          | None             | Cellular (Lagrangian)                                                            |
| 14  | RMA11        | Yes                      |                | 1 to 3                     | None             | Nodes/segments (1D) or gridded (2D/3D)                                           |
| 15  | SHADE-HSPF   |                          | Yes            | 1                          | Hourly           | Nodes/segments                                                                   |
| 16  | SNTemp       |                          |                | 1                          | Daily            | Nodes/segments                                                                   |
| 17  | Streamline   |                          |                | 1                          | 15 minutes       | Nodes/segments                                                                   |
| 18  | TVA-RMS      | Yes                      |                | 1                          | Hourly           | Cross-sections                                                                   |
| 19  | WAIORA       |                          |                | 1                          | Daily            | Nodes/segments                                                                   |
| 20  | WASP7        | Yes                      |                | 1 to 3                     | None             | Nodes/segments (1D) or gridded (2D/3D)                                           |
| 21  | WET-Temp     |                          |                | 1                          | None             | Nodes/segments                                                                   |
|     |              |                          | ACC            | SER                        |                  |                                                                                  |

 Table 7. Details of hydraulic/hydrological coupling, dimensionality, and spatial and temporal resolution/structure for reviewed river temperature models

### 4.2 Hydrological model integration

In addition to hydraulic functionality, other river temperature models offer full hydrological coupling, enabling the simulation of discharge (as a function of input meteorology data) in addition to temperature (Table 7). Such models are useful for simulating river temperature in remote or sparsely gauged watersheds where hydrometric data are rare. Additionally, these models often allow for the representation of different thermal characteristics of multiple source water components, offering a high degree of utility for assessing the consequences of changing hydroclimatic conditions on stream temperature across watersheds with varying patterns of recharge and discharge. However, the prediction of water temperature is often not the prime function of such models. Indeed, of the coupled temperaturehydrological models detailed here, two were first conceived as hydrological models, with water temperature routines being added at a later date (3, 15), while (5) and (10) are principally hydraulic/hydrodynamic models which also offer routines for rainfall-runoff and water temperature simulation. This does not necessarily mean that temperature simulations from such models will be of lower accuracy than dedicated river temperature models. However, model implementation is generally more complex and the data requirements greater than dedicated water temperature models. Nevertheless, because coupled temperature-hydrological models allow for the simultaneous simulation of discharge and temperature, they offer increased utility with regards to predicting the effects of climate change to river ecosystems (e.g. Danner et al., 2012; van Vliet et al., 2012; Ficklin et al., 2014), given that climate change is expected to influence both of these metrics in the future. The use of a coupled temperature-hydrological model may therefore be advisable should the scope of a study extend to modelling the impacts of future climatic warming on river ecosystems or should temperature predictions be required for a river that lacks discharge measurements. However, the hydrological model's discharge simulations must be thoroughly calibrated/validated prior to use, a process which can be time consuming. This, coupled with the relative complexity of hydrological model implementation means that such models will generally be unnecessary for most 'conventional' stream temperature studies.

### 4.3 Model structure and resolution

### 4.3.1 Spatial resolution and dimensionality

The spatio-temporal resolution of river temperature simulations varies substantially between the various models discussed here (Figure 3). While some models are limited to providing temperature predictions at relatively coarse scales and time steps, others effectively offer no upper limit on resolution, allowing temperature predictions to be discretised at a scale of the user's choosing. In terms of spatial resolution, model choice is largely informed by the intended application. Models capable of providing data at fine spatial scales offer increased utility to understanding linkages between ecosystem dynamics and water temperature (through the use of models to locate cool or warm water refuges or determine the fine-scale response of stream temperature to vegetation), while lower resolution models may be more relevant for providing synoptic data to inform water resources management. In examining their spatial resolution, river temperature models can generally be separated into two classes: one-dimensional models, and multi-dimensional (gridded) models (Table 7).

In one-dimensional models (1, 3, 4, 6-13, 15-19, 21), the river channel is generally discretised as a series of segments or nodes of essentially homogeneous conditions whose length is dependent on the requirements of the study and/or the presence of longitudinal discontinuities (e.g. tributary inflows, substantial changes in channel morphology). Hydrometeorological data necessary for computing Equation 1 are attributed to

each segment/node. Because meteorological observations are rarely discretised at the resolution of each segment/node, meteorological data are either attributed to each model segment/node manually (4, 6, 10, 12, 15-18) or by interpolation from one or more nearby weather stations (3, 7, 9, 21). Channel morphology and hydrometric data necessary for computing Equation 2 are also attributed to each node or segment; in the case of 1D coupled hydraulic-temperature models (6, 9, 10, 12, 18) nodes are assigned detailed measurements of channel cross-section required by the hydraulic computations. Where applicable, measurements of riparian vegetation necessary for the shading routines of the model are also attributed to each segment/node. Equations 1 and 2 are subsequently computed for each segment/node, yielding temperature simulations in a single (longitudinal) dimension. The longitudinal resolution of simulated temperatures is thus dependent upon either the length of the segments or the spacing between model nodes, and is generally a user-defined property. In theory, this means that such models should allow for predictions at extremely fine spatial resolution where required. However, in practise, the resolution of temperature predictions is driven largely by the resolution of the input channel morphology and hydrometeorological data. While interpolation can be used to increase the resolution of input data allowing for finer scale simulations, the memory and processing/programming limitations of the model may prohibit the use of very high resolutions. Although some one dimensional temperature models focus on providing simulations for single thread channels (4, 8, 11, 17), most also allow for the computation of river temperature across entire networks, through representing the river network as a directed graph (1, 3, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21). Such models are particularly useful for providing basin-wide predictions of water temperature, should such information be needed for management purposes or similar.

Gridded models (2, 5, 14, 20) allow for the simulation of temperature in multiple dimensions. This facility is often unnecessary in smaller rivers but such models are useful in larger systems where significant vertical and/or lateral temperature gradients exist such as impounded rivers with deep stratified channels and reservoirs (e.g. Wang and Martin, 1991; Hanna et al., 1999) or large rivers/estuarine environments (e.g. Ouellet et al., 2014a). Gridded models function in the same general manner as 1D models using Equations 1 and 2. However, Equation 2 also computes advection/dispersion in multiple dimensions and is necessarily more complex. Furthermore, because most gridded temperature models are based on hydraulic/hydrodynamic models, temperature simulations are provided at the same resolution as the bathymetric grid used for hydraulic simulations (e.g. Deltares, 2014). While this means that temperature predictions from gridded models can be of a higher resolution than their 1D counterparts, input hydrometeorological data used in Equation 1 are generally interpolated up to the resolution of the model grid. Therefore, despite the higher spatial resolution, the accuracy of temperature predictions is largely dependent on the quality of the interpolation, and may not be better than 1D simulations. Furthermore, at particularly fine resolution, the extremely small modelled temperature differences between successive grid cells may indeed be smaller than the error of the model itself. In light of this and the fact that 2D and 3D river temperature models are generally more complex to implement than simpler 1D models (and have substantially increased processing requirements), the additional functionality of gridded models may be redundant unless a study specifically requires the ability to simulate water temperature in multiple dimensions (eg. in the presence of significant stratification or highly variable turbulence/mixing patterns).

### 4.3.2 Temporal resolution

Temporal resolution is also an important consideration when choosing a river temperature model. While some applications (ie. stream thermal regime classification) require only simple daily metrics (eg. mean/maximum temperature) generated by models operating at low temporal resolution, higher

frequency data are often important. Indeed, models operating at higher temporal resolution are able to generate more advanced thermal metrics (eg. period of time spent above a given threshold), which can be useful for detailed studies of stream thermal ecology or for informing river management decisions.

The difference between models in terms of their temporal resolution is considerably more limited than in terms of their spatial resolution (Table 7). The lowest temporal resolution models reviewed here (4, 17, 20) provide temperature simulations on a daily timestep, allowing for broad characterisation of river temperature metrics. However, the majority of models offer considerably shorter timesteps, simulating temperature on hourly or sub-hourly steps (1, 4, 6, 8, 9, 11, 15, 17, 18) or even offering no effective minimum temporal resolution (2, 5, 7, 10, 12-14, 20, 21). Such models are readily able to reproduce diurnal temperature variability and allow for the extraction of key temperature metrics relevant to fluvial ecology or water quality studies. However, similar to that noted in section 4.3.1, the minimum timestep of a model is essentially governed by the temporal resolution of the input hydrometeorological data used to drive it, meaning that model choice should be advised by both the requirements of the study and the available discharge and meteorology observations. Given that model runtime is intrinsically linked to the number of model timesteps (ie. the length of the simulation period divided by the temporal resolution), model selection must be made with an appreciation of the processing time required to generate a temperature simulation.

### 4.4 Model calibration/validation

Most river temperature models require calibration/validation to ensure that they produce an accurate representation of true river temperature. This is because models contain a simplified representation of true energy fluxes and basin physiography (see section 3, 4.1-4.3), meaning that simulations do not provide a perfect analogue of true river temperature. In order to ensure that simulated temperatures are as close to observed data as possible, the model must be calibrated by tuning coefficients related to the empirical elements of the heat budget equations (see Ouellet et al., 2014b) or channel morphology (e.g. bed thermal conductivity, Manning's roughness) of the study river. Descriptive statistics are then used to quantify the relative performance of the model against temperature observations recorded in-situ. Because of the strong seasonal component present in river temperature series, the use of the model's root mean-squared error (RMSE) is generally preferred to the Nash-Sutcliffe model efficiency coefficient (NSE; see Janssen and Heuberger, 1995) or other similar measures due to the fact that RMSE remains unbiased by seasonal cyclicity. Some river temperature models are relatively highly parameterised, meaning that model calibration can be laborious. In such cases, it may be advisable to calibrate the model using algorithmic approaches (e.g. Zheng and Wang, 1996; Hansen and Ostermeier, 2001; Arsenault et al., 2014) that optimise model calibration by iteratively refining parameters to minimise the difference between observed and predicted values (ie. by minimising RMSE). However, when using such algorithms, care must be taken to ensure that physically plausible bounds are used to constrain the calibration coefficients to ensure that the algorithm does not automatically arrive at a calibration which produces good temperature simulations at the expense of unrealistic energy fluxes. It may also be advisable, when calibrating highly parameterised models, to conduct sensitivity analyses to better understand how changes to the various parameters influence model predictions. Such an exercise may help to reveal not only important information regarding model functionality and the influence of various parameters on simulated temperatures, but may also infer the dominant processes controlling the thermal regime of the modelled river.

In terms of data required for model calibration/validation, the vast majority of studies involving river temperature modelling use temperature loggers to provide observations of true water temperature. Loggers are typically installed within the active channel and housed in shielding to prevent bias from solar radiation and damage from collision with bedload. The spatial distribution and logging frequency (temporal resolution) of temperature observations acquired using loggers is informed by the study and chosen model. While loggers are an appropriate source of data for calibration/validation in most studies, models operating at particularly fine longitudinal scales may require data at higher spatial resolutions. Indeed, spatially-continuous data from fibre-optic distributed temperature sensing (FO-DTS) technology (eg. Bond et al., 2015) or airborne thermal infrared (TIR) data (eg. Boyd and Casper, 2003; Cristea and Burges, 2009) have been successfully used as data sources for river temperature model calibration/validation (models 6, 12). However, it should be noted that all three of these methodologies (loggers, FO-DTS and airborne TIR) have limitations; loggers in terms of their inability to provide spatially-continuous data, FO-DTS in terms of the relatively short distance over which it can be used and airborne TIR in terms of its ability to provide only a temporal 'snapshot' of longitudinal river temperature variability. Where possible, efforts should therefore be made to combine these approaches for achieving the best possible model calibration/validation.

#### 4.5 Model availability and customisability

Another key consideration when determining the most appropriate river temperature model for a given study is the model's availability and potential for customisation to a specific application (Table 1). Of the models discussed in this paper, the majority are either publicly available (as of 2016) or have been made available at some point during their development cycle. However, it is necessary to differentiate between models that are freely available to download (2, 5-7, 9, 11, 12, 15, 16, 19, 20) or on request from the authors (3, 17, 18, 21) and those that are either proprietary (1, 14) or only available commercially (10). Although some studies will require the additional functionality of proprietary/commercial models (eg. full hydrodynamic integration; 10, 14), the range of publicly available models that now exists means that opensource/freeware alternatives are often the preferred option for studies involving river temperature modelling. Additionally, the source code of many publicly available models is also available for modification (2, 3 5-7, 11, 12, 15, 16, 18, 20, 21), allowing the user to edit the model routines and develop new modules as required. Such a facility offers increased flexibility to a given temperature model, with user-driven development of new functions allowing it to stay abreast of advances in river temperature research. For example, the authors are aware of at least one river temperature model where ready access to the model's source code is driving user development of improved evaporative flux and canopy shading functions (see St-Hilaire et al., 2015).

#### 5. Current limitations and opportunities for future research

Despite the generally high degree of accuracy with which modern process-based temperature models are able to simulate thermal processes in rivers (e.g. RMSE  $\leq 1.0$  °C at sub-hourly to hourly timesteps over seasonal to annual periods; Garner et al., 2014; Hébert et al., 2015; Woltemade and Hawkins, 2016), there remain several limitations to their application. Primarily, these limitations relate to issues associated with the energy balance calculations or input resolution (see sections 3 and 4.3). In terms of energy balance, models are often limited by the relative simplicity of their process representation. Surface fluxes usually dominate the energy budget (Caissie, 2006) and so models have focused on quantifying surface heat transfers with a good degree of detail. However, there is still room for improvement, particularly with

regards to modelling the impacts of riparian vegetation on heat fluxes at the air-water interface. While most models are now capable of computing the impact of riparian tree cover on radiative fluxes, none are currently able to quantify how bankside vegetation alters turbulent heat fluxes through alterations to the riparian microclimate (eg. Dugdale et al., 2018). Improvements in this regard would aid model performance in forested regions and help efforts to understand future impacts of land-use or climate change on river temperature regimes.

Energy fluxes at the streambed interface are less well represented by currently available models, and many provide only a relatively generalised ability to quantify bed heat fluxes or advective heat transfer. Because of this, modelling river temperature in systems with major groundwater contributions requires special attention. The limited ability of currently available models to represent heat and mass transfers from different sources (eg. soil water, groundwater) coupled to the lack of large-scale estimates of certain inflow types (eg. hyporheic flow) is a major challenge, and future research should therefore focus on improving model representation of subsurface fluxes. The potential coupling of river temperature models to detailed groundwater-surface water flux routines (e.g. Kurylyk et al., 2014) could help to address this shortcoming, as could further research characterising the spatio-temporal variability (and driving mechanisms) of hyporheic fluxes (eg. Birkel et al., 2016). Such advances would help improve model performance in groundwater dominated regions and also shed new light on the role of subsurface hydrological processes in driving river temperature (a research gap noted by Hannah and Garner, 2015).

In addition to groundwater, the representation of energy advected by other phenomena such as precipitation (e.g. Null et al., 2013) or meltwater (e.g. Greene and Outcalt, 1985) is often omitted from the energy balance. While these energy transfers are sometimes covered by coupled hydrological-water temperature models (e.g. van Vliet et al., 2012), more 'unusual' fluxes such as heat generated through fluid viscosity (resulting from friction generated by the movement of water molecules against each other) or energy contributions from in-stream chemical and biological processes (Webb & Zhang, 1997) or precipitation are very rarely quantified. The development of model routines capable of computing these heat fluxes would help to 'close' the model's energy balance, minimising errors resulting from the non-representation of such fluxes. Indeed, such data would reduce uncertainty regarding whether model errors arise from the simplicity of the model's heat budget or from other sources. Further research is therefore needed into how best to implement these 'unusual' energy fluxes within river temperature models and the circumstances where they may represent a significant source (sink) of energy. However, it is important to remember that in the majority of cases, the conventional energy balance equation (Equation 1) produces a more-than-adequate representation of heat fluxes, and the addition of such extra layers of complexity is generally unnecessary.

Another limitation of current process-based river temperature models relates to the availability and resolution of input meteorological and physiographic data. Because process-based models require input meteorology or land-use data, their utility for modelling temperatures in remote locations is limited. Furthermore, even when data does exist, river temperature model inputs are often based on point data (i.e. single isolated meteorological stations or coarse-resolution land-use data) which are unable to encapsulate variability in hydrometeorology or basin physiography. Difficulties in scaling up model inputs from these point locations to the resolution of the chosen model can impact simulation quality. There is consequently a need to develop approaches for the acquisition and/or upscaling of data necessary for modelling temperatures in inaccessible regions or at increased resolutions. Geostatistical approaches have previously been used with success to upscale meteorological data (e.g. air temperature; Spadavecchia and Williams, 2009) and channel morphology (e.g. Legleiter and Kyriakidis, 2008; Merwade, 2009). However, neither of these approaches has been applied in a river temperature modelling context, and more research

is therefore needed in order to facilitate the application of process-based models in data-poor regions. Similarly, while remote sensing has shown strong potential for deriving fine scale observations of meteorology (e.g. Rienecker et al., 2011; Vinukollu et al., 2011) and/or channel morphology (e.g. Marcus and Fonstad, 2008; Fonstad et al., 2013) that would be suitable as inputs to river temperature models, studies combining these remote sensing approaches with river temperature modelling are uncommon. Future research combining statistical upscaling methods with remote sensing should thus be prioritised with a view to generating high resolution meteorology and physiographic inputs necessary for improving river temperature model performance, particularly in remote locations. Given that remote sensing has been demonstrated useful both for deriving and providing fine scale temperature data needed for model calibration/validation (through the application of thermal infrared imagery; Handcock et al., 2012), the combination of river temperature models with remote sensing data (e.g. Vatland et al., 2015) clearly has potential.

A final limitation to the use of water temperature models concerns the necessity of specifying boundary conditions to the model and the implications of this for reach- to watershed-scale temperature models. In all process-based water temperature models, water temperature is both the product and a boundary condition of the energy balance because it is required for the calculation of outgoing longwave radiation, turbulent heat fluxes and bed heat flux (see sections 3.1.2, 3.2 and 3.3.1) which are in turn used to compute water temperature (Moore et al, 2005). This means that data concerning water temperature are actually required by the model to then simulate temperature. For small reach-scale models with few advective inputs, a single upstream temperature boundary condition may suffice. However, in the case of larger models with multiple inflows, it is necessary to attribute a temperature boundary condition to each of these inputs, meaning that additional input river temperature observations are required. Unfortunately, this can lead to considerable data requirements when modelling entire river networks. The use of coupled hydrological-water temperature models (which effectively simulate river discharge and temperature from source to confluence; e.g. 3, 7, 15) may alleviate this problem, as only the boundary condition required is the water temperature of the headwater exfiltration (which can be approximated by mean annual air temperature; e.g. Karanth, 1987). Alternatively, spatial regression models or spatial statistical network models (eg. Jackson et al., 2017; Isaak et al., 2015) could be used to provide boundary conditions at locations for which temperature observations do not exist. However, it is necessary to note that composite model approaches such as these may increase model error due to the multiple layers of uncertainty associated with the simulated data.

In their review paper, Benyaha et al. (2007) noted the importance of the newer generation of statistical models for understanding the influence of environmental variables on stream temperature. We suggest that process-based temperature models have an equally important role to play in the river sciences and that the two approaches are highly complementary. Because of process-based models' unique ability to illuminate the fundamental processes driving river temperature dynamics, they are ideally positioned to inform appropriate metrics to be used in larger-scale statistical approaches. Conversely, statistical approaches provide a potential solution for addressing issues of data or boundary condition availability within process-based models. There is therefore substantial scope to combine statistical and process-based models in a complementary capacity, not only to improve the quality of river temperature simulations from existing models, but also to better identify and understand the fundamental linkages between hydrometeorology, river basin properties, and river temperature. Such advances will allow for more accurate river temperature projections in space and time, and will be of great use to water resource managers and other environmental practitioners charged with better understanding and protecting sensitive river environments. We hope that the information presented here spurs further investigations

using process-based river temperature models, in terms of both their continued refinement and their use for addressing fundamental questions in the river sciences.

### Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 702468. This research contributes to Marine Scotland Service Level Agreement FW02G, with IAM's work funded directly by Marine Scotland Project FW02G.

Scher Colle
#### References

Alazard, M., Leduc, C., Travi, Y., Boulet, G., & Ben Salem, A. (2015). Estimating evaporation in semi-arid areas facing data scarcity: Example of the El Haouareb dam (Merguellil catchment, Central Tunisia). *Journal of Hydrology: Regional Studies, 3*, 265-284

Allen, D.M. (2008). *Development and application of a process-based, basin-scale stream temperature model.* PhD thesis. University of California, Berkeley, CA

Allen, D.M., Dietrich, W., Baker, P., Ligon, F., & Orr, B. (2007). Development of a Mechanistically Based, Basin-Scale Stream Temperature Model: Applications to Cumulative Effects Modeling. In R.B. Standiford, G.A. Giusti, Y. Valachovic, W.J. Zielinski, & M.J. Furniss (Eds.), *Proceedings of the redwood region forest science symposium: What does the future hold? General Technical Report PSW-GTR-194* (pp. 11-24). Albany, CA: US Forest Service

Anderson, E. (1954). Energy Budget Studies. *Water-loss investigations; Lake Hefner studies, technical report, USGS Professional Paper 269*, Washington, D.C.: US Geological Survey, 71-119

Arsenault, R., Poulin, A., Côté, P., & Brissette, F. (2014). Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration. *Journal of Hydrologic Engineering*, *19*, 1374-1384

Bärlocher, F., Seena, S., Wilson, K.P., & Dudley Williams, D. (2008). Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. *Freshwater Biology*, *53*, 368-379

Bartholow, J.M. (1989). *Stream temperature investigations: field and analytic methods. Biological Report 89(17)*. Washington, D.C.: US Fish and Wildlife Service, 139 p

Benyahya, L., Caissie, D., Satish, M.G., & El-Jabi, N. (2012). Long-wave radiation and heat flux estimates within a small tributary in Catamaran Brook (New Brunswick, Canada). *Hydrological Processes, 26*, 475-484

Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T.B.M.J., & Bobée, B. (2007). A Review of Statistical Water Temperature Models. *Canadian Water Resources Journal / Revue canadienne des ressources hydriques, 32*, 179-192

Birkel, C., Soulsby, C., Irvine, D.J., Malcolm, I., Lautz, L.K., & Tetzlaff, D. (2016). Heat-based hyporheic flux calculations in heterogeneous salmon spawning gravels. *Aquatic Sciences*, 78, 203-213

Bloomfield, J.P., Williams, R.J., Gooddy, D.C., Cape, J.N., & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. *Science of The Total Environment, 369*, 163-177

Bolz, H.M. (1949). Die Abhängigkeit der infraroten Gegenstrahlung von der Bewölkung. Zeitschrift für Meteorologie, 3, 201-203

Bond, R.M., Stubblefield, A.P., & Van Kirk, R.W. (2015). Sensitivity of summer stream temperatures to climate variability and riparian reforestation strategies. *Journal of Hydrology: Regional Studies, 4, Part B*, 267-279

Bowen, I.S. (1926). The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. *Physical Review*, *27*, 779-787

Boyd, M., & Kasper, B. (2003). Analytical methods for dynamic open channel heat and mass transfer: *Methodology for Heat Source model version 7.0.* Portland, OR: Oregon Department of Environmental Quality, 193 p

Boyer, C., St-Hilaire, A., Bergeron, N.E., Daigle, A., Curry, R.A., & Caissie, D. (2016). RivTemp: A water temperature network for Atlantic salmon rivers in eastern Canada. *Water News*, *35*, 10-15

Breau, C., Cunjak, R.A., & Bremset, G. (2007). Age-specific aggregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events. *Journal of Fish Biology*, *71*, 1179-1191

Brown, L.E., & Hannah, D.M. (2008). Spatial heterogeneity of water temperature across an alpine river basin. Hydrological Processes, 22, 954-967

Brunner, G.W. (2016). *HEC-RAS River Analysis System: User's Manual (version 5.0)*. Davis, CA: US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center, 962 p

Brunt, D. (1932). Notes on radiation in the atmosphere. *Quarterly Journal of the Royal Meteorological Society, 58*, 389-420

Brutsaert, W. (1975). On a derivable formula for long-wave radiation from clear skies. *Water Resources Research*, 11, 742-744

Burkholder, B.K., Grant, G.E., Haggerty, R., Khangaonkar, T., & Wampler, P.J. (2008). Influence of hyporheic flow and geomorphology on temperature of a large, gravel-bed river, Clackamas River, Oregon, USA. *Hydrological Processes*, *22*, 941-953

Caissie, D. (2006). The thermal regime of rivers: a review. *Freshwater Biology*, *51*, 1389-1406

Caissie, D. (2016). River evaporation, condensation and heat fluxes within a first-order tributary of Catamaran Brook (New Brunswick, Canada). *Hydrological Processes, 30*, 1872-1883

Caissie, D., Kurylyk, B.L., St-Hilaire, A., El-Jabi, N., & MacQuarrie, K.T.B. (2014). Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover. *Journal of Hydrology*, *519*, *Part B*, 1441-1452

Caissie, D., Satish, M.G., & El-Jabi, N. (2007). Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). *Journal of Hydrology, 336*, 303-315

Caissie, D., & Luce, C.H. (2017). Quantifying streambed advection and conduction heat fluxes. *Water Resources Research*, *53*, 1595-1624

Caldwell, P., Segura, C., Gull Laird, S., Sun, G., McNulty, S.G., Sandercock, M., Boggs, J., & Vose, J.M. (2015). Short-term stream water temperature observations permit rapid assessment of potential climate change impacts. *Hydrological Processes*, *29*, 2196-2211

Cardenas, M.B., Doering, M., Rivas, D.S., Galdeano, C., Neilson, B.T., & Robinson, C.T. (2014). Analysis of the temperature dynamics of a proglacial river using time-lapse thermal imaging and energy balance modeling. *Journal of Hydrology, 519, Part B*, 1963-1973

Carrivick, J.L., Brown, L.E., Hannah, D.M., & Turner, A.G.D. (2012). Numerical modelling of spatio-temporal thermal heterogeneity in a complex river system. *Journal of Hydrology*, *414–415*, 491-502

Chapra, S., Pelletier, G., & Tao, H. (2012). *QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality, Version 2.12: Documentation and Users Manual*. Medford, MA: Department of Civil and Environmental Engineering, Tufts University, 97 p

Chen, Y.D., Carsel, R.F., McCutcheon, S.C., & Nutter, W.L. (1998a). Stream Temperature Simulation of Forested Riparian Areas: I. Watershed-Scale Model Development. *Journal of Environmental Engineering*, *124*, 304-315

Chen, Y.D., McCutcheon, S.C., Norton, D.J., & Nutter, W.L. (1998b). Stream Temperature Simulation of Forested Riparian Areas: II. Model Application. *Journal of Environmental Engineering*, *124*, 316-328

Chikita, K.A., Kaminaga, R., Kudo, I., Wada, T., & Kim, Y. (2010). Parameters determining water temperature of a proglacial stream: The Phelan Creek and the Gulkana Glacier, Alaska. *River Research and Applications, 26*, 995-1004

Clark, E., Webb, B., & Ladle, M. (1999). Microthermal gradients and ecological implications in Dorset rivers. *Hydrological Processes*, *13*, 423-438

Cole, T.M., & Wells, S.A. (2015). *CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.72*. Portland, OR: Department of Civil and Environmental Engineering, Portland State University, 797 p

Cox, M.M., & Bolte, J.P. (2007). A spatially explicit network-based model for estimating stream temperature distribution. *Environmental Modelling & Software, 22*, 502-514

Cristea, N.C., & Burges, S.J. (2009). Use of Thermal Infrared Imagery to Complement Monitoring and Modeling of Spatial Stream Temperatures. *Journal of Hydrologic Engineering*, *14*, 1080-1090

Daigle, A., Jeong, D.I., & Lapointe, M.F. (2015). Climate change and resilience of tributary thermal refugia for salmonids in eastern Canadian rivers. *Hydrological Sciences Journal, 60*, 1044-1063

Danner, E.M., Melton, F.S., Pike, A., Hashimoto, H., Michaelis, A., Rajagopalan, B., Caldwell, J., DeWitt, L., Lindley, S., & Nemani, R.R. (2012). River Temperature Forecasting: A Coupled-Modeling Framework for Management of River Habitat. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, *5*, 1752-1760

Datt, P. (2011). Latent Heat of Vaporization/Condensation. In V.P. Singh, P. Singh, & U.K. Haritashya (Eds.), *Encyclopedia of Snow, Ice and Glaciers.* Dordrecht: Springer Netherlands, pp. 703-703

Daufresne, M., Roger, M.C., Capra, H., & Lamouroux, N. (2004). Long-term changes within the invertebrate and fish communities of the Upper Rhône River: effects of climatic factors. *Global Change Biology, 10,* 124-140

Davies-Colley, R.J., Meleason, M.A., Hall, R.M.J., & Rutherford, J.C. (2009). Modelling the time course of shade, temperature, and wood recovery in streams with riparian forest restoration. *New Zealand Journal of Marine and Freshwater Research*, *43*, 673-688

Deas, M.L., Abbott, A., & Bale, A. (2003). *Shasta River flow and temperature modelling project*. Napa, CA: Watercourse Engineering, 166 p

Delpla, I., Jung, A.V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. *Environment International, 35*, 1225-1233

Deltares (2014). *Delft3D-FLOW. Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User Manual.* Delft, The Netherlands: Deltares Systems, 684 p

DHI (2016). *MIKE 11: A Modelling System for Rivers and Channels. Reference Manual*. Horsholm, Denmark: Danish Hydraulic Institute, 498 p

Drake, J., Bradford, A., & Joy, D. (2010). Application of HEC-RAS 4.0 temperature model to estimate groundwater contributions to Swan Creek, Ontario, Canada. *Journal of Hydrology, 389*, 390-398

Dugdale, S.J. (2016). A practitioner's guide to thermal infrared remote sensing of rivers and streams: recent advances, precautions and considerations. *Wiley Interdisciplinary Reviews: Water*, 3, 251-268

Dugdale, S.J., Bergeron, N.E., & St-Hilaire, A. (2015). Spatial distribution of thermal refuges analysed in relation to riverscape hydromorphology using airborne thermal infrared imagery. *Remote Sensing of Environment*, *160*, 43-55

Dugdale, S.J., Franssen, J., Corey, E., Bergeron, N.E., Lapointe, M., & Cunjak, R.A. (2016). Main stem movement of Atlantic salmon parr in response to high river temperature. *Ecology of Freshwater Fish, 25*, 429-445

Dugdale, S.J., Malcolm, I.A., Kantola, K., & Hannah, D.M. (2018). Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes. *Science of the Total Environment*, 610–611, 1375-1389

Durance, I., & Ormerod, S.J. (2007). Climate change effects on upland stream macroinvertebrates over a 25-year period. *Global Change Biology*, *13*, 942-957

Durance, I., & Ormerod, S.J. (2009). Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. *Freshwater Biology*, *54*, 388-405

Elliott, J.M., & Elliott, J.A. (2010). Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. *Journal of Fish Biology*, *77*, 1793-1817

Evans, E.C., McGregor, G.R., & Petts, G.E. (1998). River energy budgets with special reference to river bed processes. *Hydrological Processes*, *12*, 575-595

Ficklin, D.L., Barnhart, B.L., Knouft, J.H., Stewart, I.T., Maurer, E.P., Letsinger, S.L., & Whittaker, G.W. (2014). Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers. *Hydrol. Earth Syst. Sci., 18*, 4897-4912

Ficklin, D.L., Luo, Y., Stewart, I.T., & Maurer, E.P. (2012). Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. *Water Resources Research, 48*, W01511

Finlay, J.C. (2003). Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. *Biogeochemistry*, *62*, 231-252

Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L., & Carbonneau, P.E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. *Earth Surface Processes and Landforms*, *38*, 421-430

Garner, G., Malcolm, I.A., Sadler, J.P., & Hannah, D.M. (2014). What causes cooling water temperature gradients in a forested stream reach? *Hydrol. Earth Syst. Sci., 18*, 5361-5376

Garner, G., Malcolm, I.A., Sadler, J.P., Millar, C.P., & Hannah, D.M. (2015). Inter-annual variability in the effects of riparian woodland on micro-climate, energy exchanges and water temperature of an upland Scottish stream. *Hydrological Processes, 29*, 1080-1095

Garner, G., Malcolm, I.A., Sadler, J.P., & Hannah, D.M. (2017). The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics. *Journal of Hydrology*, 553, 471-485

Gooseff, M.N., Anderson, J.K., Wondzell, S.M., LaNier, J., & Haggerty, R. (2006). A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. *Hydrological Processes*, *20*, 2443-2457

Greene, G.M., & Outcalt, S.I. (1985). A simulation model of river ice cover thermodynamics. *Cold Regions Science and Technology*, *10*, 251-262

Handcock, R.N., Torgersen, C.E., Cherkauer, K.A., Gillespie, A.R., Tockner, K., Faux, R.N., & Tan, J. (2012). Thermal Infrared Remote Sensing of Water Temperature in Riverine Landscapes. *Fluvial Remote Sensing for Science and Management* (pp. 85-113): John Wiley & Sons, Ltd

Hanna, R.B., Saito, L., Bartholow, J.M., & Sandelin, J. (1999). Results of Simulated Temperature Control Device Operations on In-Reservoir and Discharge Water Temperatures Using CE-QUAL-W2. *Lake and Reservoir Management*, *15*, 87-102

Hannah, D.M., & Garner, G. (2015). River water temperature in the United Kingdom: Changes over the 20th century and possible changes over the 21st century. *Progress in Physical Geography, 39*, 68-92

Hannah, D.M., Malcolm, I.A., Soulsby, C., & Youngson, A.F. (2004). Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and sub-seasonal dynamics. *River Research and Applications, 20*, 635-652

Hannah, D.M., Malcolm, I.A., Soulsby, C., & Youngson, A.F. (2008). A comparison of forest and moorland stream microclimate, heat exchanges and thermal dynamics. *Hydrological Processes, 22*, 919-940

Hannah, D.M., Malcolm, I.A., & Bradley, C. (2009). Seasonal hyporheic temperature dynamics over riffle bedforms. *Hydrological Processes, 23*, 2178-2194

Hansen, N., & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies. *Evolutionary Computation*, *9*, 159-195

Hébert, C., Caissie, D., Satish, M.G., & El-Jabi, N. (2011). Study of stream temperature dynamics and corresponding heat fluxes within Miramichi River catchments (New Brunswick, Canada). *Hydrological Processes, 25*, 2439-2455

Hébert, C., Caissie, D., Satish, M.G., & El-Jabi, N. (2015). Predicting Hourly Stream Temperatures Using the Equilibrium Temperature Model. *Journal of Water Resource and Protection*, *7*, 322-338

Hester, E.T., & Doyle, M.W. (2011). Human Impacts to River Temperature and Their Effects on Biological Processes: A Quantitative Synthesis. *JAWRA Journal of the American Water Resources Association, 47*, 571-587

Hondzo, M., & Stefan, H.G. (1994). Riverbed heat conduction prediction. *Water Resources Research, 30*, 1503-1513

Hrachowitz, M., Soulsby, C., Imholt, C., Malcolm, I.A., & Tetzlaff, D. (2010). Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures. *Hydrological Processes*, *24*, 3374-3391

Idso, S.B., & Jackson, R.D. (1969). Thermal radiation from the atmosphere. *Journal of Geophysical Research*, 74, 5397-5403

Imholt, C., Soulsby, C., Malcolm, I.A., Hrachowitz, M., Gibbins, C.N., Langan, S., & Tetzlaff, D. (2013). Influence of scale on thermal characteristics in a large montane river basin. *River Research and Applications, 29*, 403-419

Isaak, D.J., Luce, C.H., Rieman, B.E., Nagel, D.E., Peterson, E.E., Horan, D.L., Parkes, S., & Chandler, G.L. (2010). Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. *Ecological Applications, 20*, 1350-1371

Isaak, D.J., Young, M.K., Nagel, D.E., Horan, D.L., & Groce, M.C. (2015). The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. *Global Change Biology*, *21*, 2540-2553

Jackson, F.L., Hannah, D.M., Fryer, R.J., Millar, C.P., & Malcolm, I.A. (2017). Development of spatial regression models for predicting summer river temperatures from landscape characteristics: implications for land and fisheries management. *Hydrological Processes*, *31*, 1225-1238

Jackson, F.L., Malcolm, I.A., & Hannah, D.M. (2016). A novel approach for designing large-scale river temperature monitoring networks. *Hydrology Research*, *47*, 569-590

Janssen, P.H.M., & Heuberger, P.S.C. (1995). Calibration of process-oriented models. *Ecological Modelling*, *83*, 55-66

Jeong, D.I., Daigle, A., & St-Hilaire, A. (2013). Development of a stochastic water temperature model and projection of future water temperature and extreme events in the Ouelle River basin in Québec, Canada. *River Research and Applications, 29*, 805-821

Johnson, M.F., Wilby, R.L., & Toone, J.A. (2014). Inferring air–water temperature relationships from river and catchment properties. *Hydrological Processes, 28*, 2912-2928

Johnson, S.L. (2004). Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. *Canadian Journal of Fisheries and Aquatic Sciences*, *61*, 913-923

Jonsson, B., & Jonsson, N. (2009). A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. *Journal of Fish Biology*, *75*, 2381-2447

Jowett, I., Kingsland, S., & Collier, K. (2004). WAIORA User Guide. Water Allocation Impacts on River Attributes (Version 2.0). Hamilton, New Zealand: NIWA, 87 p

Kannel, P.R., Lee, S., Lee, Y.S., Kanel, S.R., & Pelletier, G.J. (2007). Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. *Ecological Modelling*, *202*, 503-517

Karanth, K. (1987). *Ground water assessment: development and management*. New Delhi: Tata McGraw-Hill Education, p

Kaushal, S.S., Likens, G.E., Jaworski, N.A., Pace, M.L., Sides, A.M., Seekell, D., Belt, K.T., Secor, D.H., & Wingate, R.L. (2010). Rising stream and river temperatures in the United States. *Frontiers in Ecology and the Environment*, *8*, 461-466

Khamis, K., Brown, L.E., Milner, A.M., & Hannah, D.M. (2015). Heat exchange processes and thermal dynamics of a glacier-fed alpine stream. *Hydrological Processes, 29*, 3306-3317

King, I.P. (2016). *RMA-11- A three dimensional finite element model for water quality in estuaries and streams. Version 9.1b.* Sydney, Australia: Resource Modelling Associates, 173 p

Koberg, G.E. (1964). *Methods to compute long-wave radiation from the atmosphere and reflected solar radiation from a water surface. Professional paper 272-F.* Washington, D.C.: US Geological Survey

Kurylyk, B.L., MacQuarrie, K.T.B., & Voss, C.I. (2014). Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. *Water Resources Research*, 3253-3274

Kurylyk, B.L., Moore, R.D., & MacQuarrie, K.T.B. (2016). Scientific briefing: quantifying streambed heat advection associated with groundwater–surface water interactions. *Hydrological Processes, 30*, 987-992

Leach, J.A., & Moore, R.D. (2010). Above-stream microclimate and stream surface energy exchanges in a wildfire-disturbed riparian zone. *Hydrological Processes, 24*, 2369-2381

Leach, J.A., & Moore, R.D. (2014). Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover. *Hydrol. Earth Syst. Sci.*, 18, 819-838

LeBlanc, R.T., & Brown, R.D. (2000). The Use of Riparian Vegetation in Stream-Temperature Modification. *Water and Environment Journal*, *14*, 297-303

LeBlanc, R.T., Brown, R.D., & FitzGibbon, J.E. (1997). Modeling the Effects of Land Use Change on the Water Temperature in Unregulated Urban Streams. *Journal of Environmental Management, 49*, 445-469

Legleiter, C.J., & Kyriakidis, P.C. (2008). Spatial prediction of river channel topography by kriging. *Earth Surface Processes and Landforms*, *33*, 841-867

Lim, W.H., Roderick, M.L., Hobbins, M.T., Wong, S.C., Groeneveld, P.J., Sun, F., & Farquhar, G.D. (2012). The aerodynamics of pan evaporation. *Agricultural and Forest Meteorology*, *152*, 31-43

Loinaz, M.C., Davidsen, H.K., Butts, M., & Bauer-Gottwein, P. (2013). Integrated flow and temperature modeling at the catchment scale. *Journal of Hydrology*, *495*, 238-251

Lowney, C.L. (2000). Stream temperature variation in regulated rivers: Evidence for a spatial pattern in daily minimum and maximum magnitudes. *Water Resources Research, 36*, 2947-2955

Maheu, A., Caissie, D., St-Hilaire, A., & El-Jabi, N. (2014). River evaporation and corresponding heat fluxes in forested catchments. *Hydrological Processes*, 28, 5725-5738

Malcolm, I.A., Hannah, D.M., Donaghy, M.J., Soulsby, C., & Youngson, A.F. (2004). The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream. *Hydrology and Earth System Sciences*, *8*, 449-459

Malcolm, I.A., Greig, S.M., Youngson, A.F., & Soulsby, C. (2008). Hyporheic Influences on Salmon Embryo Survival and Performance. In D.A. Sear, & P. DeVries (Eds.). *Salmonid Spawning Habitat in Rivers: Physical Controls, Biological Responses, and Approaches to Remediation.* 225-248. Bethesda, MD: American Fisheries Society

Marcus, W.A., & Fonstad, M.A. (2008). Optical remote mapping of rivers at sub-meter resolutions and watershed extents. *Earth Surface Processes and Landforms, 33*, 4-24

Marsh, P. (1990). Modelling water temperature beneath river ice covers. *Canadian Journal of Civil Engineering*, 17, 36-44

Matthews, K.R., Berg, N.H., Azuma, D.L., & Lambert, T.R. (1994). Cool Water Formation and Trout Habitat Use in a Deep Pool in the Sierra Nevada, California. *Transactions of the American Fisheries Society, 123*, 549-564

McJannet, D.L., Cook, F.J., & Burn, S. (2013). Comparison of techniques for estimating evaporation from an irrigation water storage. *Water Resources Research, 49*, 1415-1428

Merwade, V. (2009). Effect of spatial trends on interpolation of river bathymetry. *Journal of Hydrology, 371*, 169-181

Mohseni, O., Stefan, H.G., & Erickson, T.R. (1998). A nonlinear regression model for weekly stream temperatures. *Water Resources Research*, *34*, 2685-2692

Monteith, J.L. (1965). Evaporation and environment. Symp Soc Exp Biol, 19, 205-234

Moore, R.D., Spittlehouse, D.L., & Story, A. (2005). Riparian Microclimate and Stream Temperature Response to Forest Harvesting: A Review. *JAWRA Journal of the American Water Resources Association*, 41, 813-834

Morin, G., & Couillard, D. (1990). Chapter 5: Predicting river temperatures with a hydrological model. In N. Cheremisinoff (Ed.), *Encyclopedia of Fluid Mechanics: Surface and Groundwater Flow Phenomena* (pp. 171-209). Houston, TX: Gulf Publishing

Morin, G., & Paquet, P. (2007). *Modèle hydrologique CEQUEAU, rapport de recherche no R000926*. Québec, QC: Université du Québec, INRS-Eau,Terre et Environnement, 458 p

Muñoz-Mas, R., Lopez-Nicolas, A., Martínez-Capel, F., & Pulido-Velazquez, M. (2016). Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios. *Science of The Total Environment*, *544*, 686-700

Nielsen, J.L., Lisle, T.E., & Ozaki, V. (1994). Thermally Stratified Pools and Their Use by Steelhead in Northern California Streams. *Transactions of the American Fisheries Society*, *123*, 613-626

Norton, G.E., & Bradford, A. (2009). Comparison of two stream temperature models and evaluation of potential management alternatives for the Speed River, Southern Ontario. *Journal of Environmental Management*, *90*, 866-878

Null, S.E., Deas, M.L., & Lund, J.R. (2010). Flow and water temperature simulation for habitat restoration in the Shasta River, California. *River Research and Applications, 26*, 663-681

Null, S.E., Viers, J.H., Deas, M.L., Tanaka, S.K., & Mount, J.F. (2013). Stream temperature sensitivity to climate warming in California's Sierra Nevada: impacts to coldwater habitat. *Climatic Change, 116*, 149-170

Ouellet, V., Secretan, Y., St-Hilaire, A., & Morin, J. (2014a). Daily averaged 2D water temperature model for the St. Lawrence River. *River Research and Applications, 30*, 733-744

Ouellet, V., Secretan, Y., St-Hilaire, A., & Morin, J. (2014b). Water temperature modelling in a controlled environment: comparative study of heat budget equations. *Hydrological Processes, 28*, 279-292

Penman, H.L. (1948). Natural Evaporation from Open Water, Bare Soil and Grass. *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193,* 120-145

Pike, A., Danner, E., Boughton, D., Melton, F., Nemani, R., Rajagopalan, B., & Lindley, S. (2013). Forecasting river temperatures in real time using a stochastic dynamics approach. *Water Resources Research, 49*, 5168-5182

Poole, G.C., & Berman, C.H. (2001). An ecological perspective on in-Stream temperature: natural heat dynamics and mechanisms of human-Caused thermal degradation. *Environmental Management, 27*, 787-802

Priestly, C.H.B., & Taylor, R.J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. *Monthly Weather Review, 100*, 81-92

Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F.R., Ruddick, A.G., Sienkiewicz, M., & Woollen, J. (2011). MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. *Journal of Climate*, *24*, 3624-3648

Robert, A. (2003). *River Processes: An introduction to fluvial dynamics*. New York: Arnold, 214 p

Rounds, S.A. (2007). *Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon. Scientific Investigations Report 2007-5185*. Reston, VA: US Geological Survey, 34 p

Ruesch, A.S., Torgersen, C.E., Lawler, J.J., Olden, J.D., Peterson, E.E., Volk, C.J., & Lawrence, D.J. (2012). Projected Climate-Induced Habitat Loss for Salmonids in the John Day River Network, Oregon, U.S.A. *Conservation Biology*, *26*, 873-882

Rutherford, J.C., Blackett, S., Blackett, C., Saito, L., & Davies-Colley, R.J. (1997). Predicting the effects of shade on water temperature in small streams. *New Zealand Journal of Marine and Freshwater Research*, *31*, 707-721

Rutherford, J.C., Marsh, N.A., Davies, P.M., & Bunn, S.E. (2004). Effects of patchy shade on stream water temperature: how quickly do small streams heat and cool? *Marine and Freshwater Research*, *55*, 737-748

Sansone, A.L. (2001). A GIS-based temperature model for the prediction of maximum stream temperatures in the Cascade mountain region, MS thesis. University of Washington, Department of Civil and Environmental Engineering, Seattle, WA

Savenije, H.H.G. (2001). Equifinality, a blessing in disguise? *Hydrological Processes, 15*, 2835-2838

Shen, H., Cunderlik, J., Godin, G., Coombs, A., Rimer, A., & Dobrindt, I. (2014). Thermal Effects of the Proposed Water Reclamation Centre Discharge on the East Holland River. *Journal of Water Management Modeling*, DOI: 10.14796/JWMM.C14366

Sinokrot, B.A., & Stefan, H.G. (1993). Stream temperature dynamics: Measurements and modeling. *Water Resources Research, 29*, 2299-2312

Sinokrot, B.A., & Stefan, H.G. (1994). Stream Water-Temperature Sensitivity to Weather and Bed Parameters. *Journal of Hydraulic Engineering*, *120*, 722-736

Spadavecchia, L., & Williams, M. (2009). Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? *Agricultural and Forest Meteorology, 149*, 1105-1117

Sridhar, V., Sansone, A.L., LaMarche, J., Dubin, T., & Lettenmaier, D.P. (2004). Prediction of stream temperature in forested watersheds. *JAWRA Journal of the American Water Resources Association, 40*, 197-213

St-Hilaire, A., Boucher, M.-A., Chebana, F., Ouellet-Proulx, S., Zhou, Q.X., Larabi, S., Dugdale, S.J., & Latraverse, M. (2015). Breathing new life to an older model: the Cequeau tool for flow and water temperature simulations and forecasting. *Proceedings of the 22nd Canadian Hydrotechnical Conference*, Montréal, Québec, Canada, April 29th - May 2nd

St-Hilaire, A., El-Jabi, N., Caissie, D., & Morin, G. (2003). Sensitivity analysis of a deterministic water temperature model to forest canopy and soil temperature in Catamaran Brook (New Brunswick, Canada). *Hydrological Processes*, *17*, 2033-2047

St-Hilaire, A., Morin, G., El-Jabi, N., & Caissie, D. (2000). Water temperature modelling in a small forested stream: implication of forest canopy and soil temperature. *Canadian Journal of Civil Engineering*, *27*, 1095-1108

Steel, E.A., Beechie, T.J., Torgersen, C.E., & Fullerton, A.H. (2017). Envisioning, Quantifying, and Managing Thermal Regimes on River Networks. *BioScience*, 67, 506-522

Steel, E.A., Sowder, C., & Peterson, E.E. (2016). Spatial and Temporal Variation of Water Temperature Regimes on the Snoqualmie River Network. *JAWRA Journal of the American Water Resources Association*, 52, 769-787

Story, A., Moore, R.D., & Macdonald, J.S. (2003). Stream temperatures in two shaded reaches below cutblocks and logging roads: downstream cooling linked to subsurface hydrology. *Canadian Journal of Forest Research*, *33*, 1383-1396

Sun, N., Yearsley, J., Voisin, N., & Lettenmaier, D.P. (2015). A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds. *Hydrological Processes, 29*, 2331-2345

Swinbank, W.C. (1963). Long-wave radiation from clear skies. *Quarterly Journal of the Royal Meteorological Society, 89*, 339-348

Theurer, F.D., Voos, K.A., & Miller, W.J. (1984). *Instream water temperature model. Instream Flow Information Paper 16. FWS/OBS-84/15*. Washington, D.C.: US Fish and Wildlife Service, 321 p

Thornthwaite, C.W. (1948). An Approach toward a Rational Classification of Climate. *Geographical Review*, *38*, 55-94

Torgersen, C.E., Faux, R.N., McIntosh, B.A., Poage, N.J., & Norton, D.J. (2001). Airborne thermal remote sensing for water temperature assessment in rivers and streams. *Remote Sensing of Environment, 76*, 386-398

Torgersen, C.E., Gresswell, R.E., Bateman, D.S., & Burnett, K.M. (2008). Spatial Identification of Tributary Impacts in River Networks. *River Confluences, Tributaries and the Fluvial Network* (pp. 159-181): John Wiley & Sons, Ltd

Torgersen, C.E., Price, D.M., Li, H.W., & McIntosh, B.A. (1999). Multiscale thermal refugia and stream habitat associations of chinook salmon in northeastern oregon. *Ecological Applications*, *9*, 301-319

Tung, C.-P., Lee, T.-Y., & Yang, Y.-C. (2006). Modelling climate-change impacts on stream temperature of Formosan landlocked salmon habitat. *Hydrological Processes, 20*, 1629-1649

van Vliet, M.T.H., Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, D.P., & Kabat, P. (2013). Global river discharge and water temperature under climate change. *Global Environmental Change*, *23*, 450-464

van Vliet, M.T.H., Yearsley, J.R., Franssen, W.H.P., Ludwig, F., Haddeland, I., Lettenmaier, D.P., & Kabat, P. (2012). Coupled daily streamflow and water temperature modelling in large river basins. *Hydrol. Earth Syst. Sci.*, *16*, 4303-4321

Vatland, S.J., Gresswell, R.E., & Poole, G.C. (2015). Quantifying stream thermal regimes at multiple scales: Combining thermal infrared imagery and stationary stream temperature data in a novel modeling framework. *Water Resources Research*, *51*, 31-46

Vinukollu, R.K., Wood, E.F., Ferguson, C.R., & Fisher, J.B. (2011). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. *Remote Sensing of Environment*, *115*, 801-823

Wang, P.-F., & Martin, J.L. (1991). Temperature and Conductivity Modeling for the Buffalo River. *Journal of Great Lakes Research*, *17*, 495-503

Watanabe, M., Adams, R.M., Wu, J., Bolte, J.P., Cox, M.M., Johnson, S.L., Liss, W.J., Boggess, W.G., & Ebersole, J.L. (2005). Toward efficient riparian restoration: integrating economic, physical, and biological models. *Journal of Environmental Management*, *75*, 93-104

Wawrzyniak, V., Allemand, P., Bailly, S., Lejot, J., & Piégay, H. (2017). Coupling LiDAR and thermal imagery to model the effects of riparian vegetation shade and groundwater inputs on summer river temperature. *Science of The Total Environment*, 592, 616-626

Watts, G., Battarbee, R.W., Bloomfield, J.P., Crossman, J., Daccache, A., Durance, I., Elliott, J.A., Garner, G., Hannaford, J., Hannah, D.M., Hess, T., Jackson, C.R., Kay, A.L., Kernan, M., Knox, J., Mackay, J., Monteith, D.T., Ormerod, S.J., Rance, J., Stuart, M.E., Wade, A.J., Wade, S.D., Weatherhead, K., Whitehead, P.G., & Wilby, R.L. (2015). Climate change and water in the UK – past changes and future prospects. *Progress in Physical Geography*, *39*, 6-28

Webb, B., Walsh, A., Webb, B., Acreman, M., Maksimovic, C., Smithers, H., & Kirby, C. (2004). Changing UK river temperatures and their impact on fish populations. *Proceedings of the Hydrology: science and practice for the 21st century, Volume II. Proceedings of the British Hydrological Society International Conference, Imperial College, London, July 2004.*,

Webb, B.W. (1996). Trends in stream and river temperature. *Hydrological Processes, 10*, 205-226

Webb, B.W., Hannah, D.M., Moore, R.D., Brown, L.E., & Nobilis, F. (2008). Recent advances in stream and river temperature research. *Hydrological Processes, 22*, 902-918

Webb, B.W., & Zhang, Y. (1997). Spatial and seasonal variability in the components of the river heat budget. *Hydrological Processes*, *11*, 79-101

Webb, B.W., & Zhang, Y. (1999). Water temperatures and heat budgets in Dorset chalk water courses. *Hydrological Processes*, *13*, 309-321

Webb, B.W., & Zhang, Y. (2004). Intra-annual variability in the non-advective heat energy budget of Devon streams and rivers. *Hydrological Processes, 18*, 2117-2146

Woltemade, C.J., & Hawkins, T.W. (2016). Stream Temperature Impacts Because of Changes in Air Temperature, Land Cover and Stream Discharge: Navarro River Watershed, California, USA. *River Research and Applications*, 32, 2020-2031

Wool, T.A., Ambrose, R.B., & Martin, J.L. (2008). WASP7 Temperature and Fecal Coliform – Model Theory and User's Guide. Supplement to Water Quality Analysis Simulation Program (WASP) User Documentation. Athens, GA: US Environmental Protection Agency, 25 p

Yearsley, J. (2012). A grid-based approach for simulating stream temperature. *Water Resources Research*, *48*, W03506

Yearsley, J.R. (2009). A semi-Lagrangian water temperature model for advection-dominated river systems. *Water Resources Research, 45*, W12405

Yearsley, J.R., Karna, D., Peene, S., & Watson, B. (2001). *Application of a 1-D heat budget model to the Columbia River system. Report EPA 091-R-01-004*. Seattle, WA: US Environmental Protection Agency, 65 p

Zheng, C., & Wang, P. (1996). Parameter structure identification using tabu search and simulated annealing. *Advances in Water Resources*, *19*, 215-224