Genetic Dynamics of Mustang and Feral Horse Populations in the Western United States

E. Gus Cothran¹, Anas Khanshour¹, Stephan Funk², Eleanore Conant³, Rytis Juras¹, and Brian W. Davis¹

¹Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, 4458 TAMU, Texas A&M University, College Station, TX 77843 USA; <u>gcothran@cvm.tamu.edu</u>, <u>bdavis@cvm.tamu.edu</u>, <u>anas.khanshour@tamu.edu</u>, <u>rjuras@cvm.tamu.edu</u>

²Nature Heritage, St. Lawrence Jersey, Channel Islands, UK; <u>smf@natureheritage.org</u>

³Faculty in Biology, Northland Pioneer College, Winslow, AZ 86047, USA; <u>eleanore.hempsey@npc.edu</u>

The history and population dynamics of feral horse and wild mustang population in the Western United States has led to diverse populations of disparate ancestry. These iconic populations are currently managed by the Bureau of Land Management (BLM) and their genetic history is of great interest for both management and conservation purposes. We examined population genetic parameters using 12 well established microsatellite loci in nearly 8,500 horses representing 235 populations sampled across more than 20 years. Samples were collected by BLM or by members of other management agencies from 10 states. Genetic variability and genetic resemblance to domestic horse breeds using multiple methods were estimated. A wide range of variation levels were observed across the populations. In general, within-population variability was slightly lower than what has been found in domestic horse breeds, but still retains diversity. As expected, levels of population variation correlated to census size. Several populations were sampled longitudinally with intervals between sampling of about 5 years. For these longitudinal samples, there was no trend towards an increase or decline in diversity, indicating consistent management practices. Relationships between populations and domestic breeds ranged from close association to one or two specific breeds to extreme divergence of the feral horses to all breeds examined. Reasons for divergence are mainly related to the founding of the population and subsequent demographic history. Overall, there was a slight tendency for geographically close feral populations to be more similar to each other than to more distant populations. The results of this study show the feral horse populations in the western US have a considerable variation, though management practices can strongly influence variability levels.

Materials and Methods:

We tested over 8,520 horses representing 235 populations. Hair follicles or blood samples were collected by BLM personnel or by members of other management agencies from 10 states (summary statistics of herds per state are shown in Table 1 and the location of feral herds in the US is shown in Figure 1). Average sample size per population was about 38 horses. Some populations were sampled two or more times over the covered by this study which is over 20 years. Total DNA was extracted from hair follicle samples using the PUREGENE® DNA purification kit following the manufacturer's protocol. Microsatellite genotyping was performed using an ABI PRISM 3730 *xl* (Applied Biosystems, Foster City, CA, USA) following previously described methods (Juras, Cothran and Klimas, 2003; Khanshour, *et al.*, 2013).

We examine 12 autosomal microsatellite markers distributed across the horse genome. We calculated genetic diversity indices for each herd using GENEALEX 6 (Peakall and Smouse, 2012). These included observed heterozygosity (Ho), expected heterozygosity (He), estimated inbreeding level (Fis), Nei's unbiased heterozygosity (Hub), effective number of alleles (ENA), total number of alleles (NA), Mean number of alleles per locus (MNA), number of alleles at less than 5% frequency (termed as rare alleles here; RA), percentage of rare alleles (RARE) and mean rare alleles per locus (MRA).

For the following analyses 152 herds were used. For herds that were sampled multiple times only a single sampling period was used and only BLM herds were included except for two Forest Service herds from New Mexico. The genetic distance among populations was investigated by the Majority-rule consensus of Restricted Maximum Likelihood (RML) trees. We calculated the chord distances generated from 1000 bootstrapped allele frequency datasets using the CONTML and CONSENSE procedures in the PHYLIP 3.69 package (Felsenstein, 1989) http://evolution.genetics.washington.edu/phylip.html.

Trees were visualized by MEGA4 (Tamura, *et al.*, 2007). The Przewalski Horse was used as an out-group. Genetic distance was compared to geographic distance using the Mantel matrix correlation test in the SAS statistical package. We used a geographic information system (GIS; ArcMap 10, ESRI, Redlands, California) to determine the pairwise geographic distance between sampled administrative units (herd management areas, herd areas, and wild horse territories). Edge-to-edge distance was used for this measure, because it was assumed that horses could have used any part of that unit in which they were caught. Contiguous units had distance values of zero. For all other units, the pairwise distance used was the minimum distance between the two units' boundaries. The genetic distance used was Nei's modified distance *Da* (Nei, 1978).

To represent the structure and differentiation among herds, pairwise Fst values were calculated using Arlequin 3.5.1.3 (Excoffier and Lischer, 2010). We also ran the Principal Coordinate Analysis (PCoA) based upon the dissimilarity matrix of the Chord Distance using DARwin 5.0 (<u>http://darwin.cirad.fr/darwin</u>). Furthermore, we tested the evidence of immigration into most

herds by comparing the fit of each individual to a panel of reference breeds which included the population being examined using the program WHICHRUN (Banks and Eichert, 2000). Only selected herds were included in this analysis.

STRUCTURE 2.4.4 (PRITCHARD, STEPHENS AND DONNELLY, 2000) was used to infer genetic structure for 160 herds (the additional herds were mainly non-BLM herds not included in other analyses) assuming K=1 to K=12 ancestral populations. Analyses utilized correlated allele frequencies, applied information on the sample origin (with locprior) and allowed admixture accounting for recent gene flow between populations (Funk, et al., 2020). A total of 1,500,000 MCMC including 1,000,000 burn-in iterations was selected as the setting did not produce results differing from larger MCMC iterations in the data set of all breeds (Funk, et al., 2020). MCMC runs were repeated 20 times. For each run, posterior probabilities of the data were checked visually for convergence over increasing numbers of iterations (10). Visual presentation of the cluster's estimated membership coefficients for individuals and populations utilized DISTRUCT 1.1 (ROSENBERG, 2004) for the highest posterior probability of the data at each K. We evaluated visually how the range of K=2 to K=12 ancestral populations can explain the data in relation to known natural history data from the populations rather than using a point estimate such as the Evanno et al. (Evanno, Regnaut and Goudet, 2005) ΔK estimate. Funk et al. (Funk, et al., 2020) demonstrated with a large dataset of horses that such point estimates can be problematic lending support for forfeiting point estimates of an increasing number of studies including ones covering horses (Cortés, et al., 2017) or sheep (Leroy, et al., 2015). All STRUCTURE analyses were carried out on an SGI UV 2000 computing platform with 96 nodes, 192 cores and 1.5 teraflop.

FLOCK 3.1 (Duchesne and Turgeon, 2012) was applied using 20 re-allocations for the multilocus maximum likelihood procedure with 50 runs for each population cluster K and a LLOD threshold score of 0. The optimal number of clusters that explain the data was determined by ad hoc "stopping" rules (Duchesne and Turgeon, 2012). Clusters are hierarchically evaluated starting at K=2; K is stepwise increased until no stopping condition is found for four successive values of K. If no stopping condition is found at all, i.e. an "undecided stopping condition", then this may be due to the absence of genetic structure or too low a genetic information content of the genotyped loci (Duchesne and Turgeon, 2012). For the horse microsatellite loci we used, stopping conditions were encountered in a different breed set (Funk, *et al.*, 2020), demonstrating that the information content of the marker set is sufficient: thus, a "undecided stopping condition" means in this context that no genetic structure could be detected in the current data set.

Modularity analysis was performed to understand the division of a network, in this case a series of interconnected horse populations, into modules or groups. Nodes, for our purposes are concentrations of individuals in habitat patches, within a module are connected with respect to their genetic network. This connectivity is the primary metric affecting modularity, as measured

by within-module strength and participation coefficient, which measures the weight of a patch in connectivity maintainance within and among modules.

To accomplish this, we used the multilocus microsatellite data after filtration for presence of all 12 loci in all individuals, and consistent record of sampling latitude and longitude, resulting in 6070 samples. Code was modified based on the integrated analysis in Peterman *et al.* (Peterman, *et al.*, 2016), and relied on the methods of Dyer and Nason (Dyer and Nason, 2004). All calculations were performed using the gstudio and popgraph packages in R 4.0 (<u>http://CRAN.R-project.org/package=popgraph</u>). We constructed an incidence matrix of genetic covariance that identifies the most important connections between populations, which created the network that we subsequently evaluated for modularity. Modularity evaluation for our horse genetic network closely followed the methods of Fletcher *et al.*(Fletcher, *et al.*, 2013) and the equation described by Girvan and Newman (Girvan and Newman, 2002).

Results and Discussion

Mean measures of variability for all populations and for domestic breeds are shown in Table 2 and the total data set giving all measures for each population in Table 1. Observed heterozygosity ranged from 0.497 to 0.815 which essentially spans the range of variation for domestic breeds. The same could be said for all variability measures. However, on average, the different estimators for genetic variation levels tend to be lower in the feral horse populations than in domestic breeds (Table 2). This likely due to small population size and founder effect. A variety of factors can influence genetic variability in these relatively small populations. In addition to variability measures we obtained estimates of the percentage of individuals within the population that do not fit the genetic profile of the population and may represent recent immigrants into the herd. Also, we obtained the Appropriate Management Level (AML) for each herd. This is the number of horses that the BLM calculates that the herd area can support and thus is an estimate of population size (actual census numbers are almost never available). The herd will increase in size above the AML between "gathers" (round-ups of horses which are mainly used to remove what are considered to be excess animals) but the population size is usually reduced to a number below the AML at the time of a gather.

Variability was strongly associated with population size as measured by AML. All measures of variability were significantly (Figure 8) and positively associated with AML. Only Ho had a relatively low association with AML but even this was statistically significant at the p = 0.02 level. Relationships for each measure with AML are shown in Figure 8. Population sizes of the herds have fluctuated over time. When a herd was sampled on more than one occasion, levels of variation at the different time periods were compared (Table 3). In most cases no large change was evident, mainly because sampling periods spanned less than a generation interval (see below). However, some populations showed increases in variability over time (for example

OR0014 in 2001 compared to 2011) while others showed decreases; (for example NV0226 2001 compared to 2012) and there was no consistent trend across all multiply sampled herds. Some herds that were sampled three times had variation levels that increased from the first time period to the second then decreased in the third (NV0103 and NV0222 for example). There also was a significant association of the estimate of the number of migrants in a population and genetic variation with variation increasing as the number of migrants increased (Figures 9).

Various measures of genetic distance and genic differentiation among the populations were examined and genetic distance was compared to geographic distance based upon GPS coordinates for each herd (supplied by the BLM). In general, there was no strong correlation of genetic distance with geographic distance but those herds that are geographically closest to each other average lower genetic distances. We tested for a correlation of geographic distance to genetic distance (as measured by Nei's Da distance) with the Mantel test. The measures did show a highly statistically significant correlation (p< 0.0001) however, the correlation was low (r=0.181) which means the association explained less than 3.3 percent of the total variability. Figure 1 shows the relationship of most of the herds to each other geographically. Visualization of genetic relationships was done by construction of Restricted Maximum Likelihood trees and Factorial Correspondence analysis (Figures 2, 4 and 5). There is some tendency for herds from within the same state to cluster together (for example herds from CO and ID in Figure 2), however in many cases, although the herds in a cluster are from the same state they are not really in close geographic proximity. There are several clusters that are predominately made up of Herds from Nevada but to some extent this is due to the large number of herds from that state and not close relationship. Herds from California were scattered throughout the tree. In the FCA analyses, there are some clear outliers which are mostly herds with variability levels outside those near the mean values. The outlier herds tended to be those with low sample size which also tended to be those with low AML values. Figure 5 shows the FCA plot with some of the outlier herds removed to give a clearer view of relationships.

A heat diagram of the Fst values is shown in Figure 6. What this diagram shows is the relative degree of differentiation of each herd compared to all others. By following the row and/or column for each herd the degree of differentiation can be determined by the color of the line. The darker the line the higher the differentiation while the lighter the line the lower. Almost all herds with very dark lines had a small sample size thus differentiation was based largely on sample dependent variability measures. The first herd on the chart is the AZ0011-Cibola Trigo herd which had an acceptable sample size but the lowest levels of variation of any of the herds tested. The other herd that stands out is NV0628-Gold Mountain and this herd also has quite low variation levels.

STRUCTURE and FLOCK analyses were performed to test for any genetic pattern or substructure among all populations. STUCTURE did not produce any visually clearly identifiable population structure at K=2 (Figure 7). Twelve sample populations were assigned

with more than 90% to the ancestral population cluster "orange" in Figure 7: CIBOLO TRIGO AZ0011 (sample population number 1), JICARILLA NM0003 (31), DESATOYA MTN NV0606 (44), LITTLE OWHYEE TUS NV0200 (68), REVEILLE NV0619 (84), ROCKY HILLS NV0605 (87), STONE CABIN S NV0618(94), STONE CABIN N NV0618(95), STONE CABIN 2007 NV0618 (101), NORTH HILLS UT0447 (138), SULPHUR N UT0448 (141), and COOPER CREEK WY00370037 (145). With the exception of sample populations 68, 87 and 138, which showed increasing admixture, all other populations remained clustered with each other at higher K values (e.g. dark violet at K=8). At K=2, twelve populations were assigned with more than 90% to the ancestral population cluster "blue" in Figure 7: BITNER CA0267 (sample population number 3), CATNIP NVXXXX (42), NORTH STILLWATER NV0229 (79), SILVER PEAK NV0623 (93), STILLWATER NV (100), LIGGETT TABLE OR0037 (116), BIBLE SPRINGS UT0440 (127), 4 MILE UT0444 (128), CEDAR RIDGE TRAP UT0461 (131), COLD SPRINGS TRAP OR0013 (132), COLD SPRINGS OR0013 (133), and RANGE CREEK UT0641 (139). All of these showed increasing admixture with increasing K with the exception of COLD SPRINGS TRAP OR and CEDAR RIDGE UT (sample populations 131 and 133, "red" ancestral population at K=8) and LIGGETT TABLE OR (sample population 116, "light green" ancestral population at K=8). At K=8, one set of populations emerges with the "dark green" ancestral population of larger than 75%: FOX HOG CA0263 (sample population 9), CALICO MTNS NV0222 (38) and CALICO NV0222 (39). These results clearly do not show any pattern of population genetic clustering nor of geographic relationships except for those herds which are essentially in the same localities (94, 95, 101 and 79, 101)

No FLOCK stopping condition was reached when all populations were evaluated at K=2. We removed all 97 sample populations with less than 80% of horses allocated to a single population cluster and repeated the analysis with the remaining 63 sample populations. The repeat produced again no stopping condition. Stepwise increasing K to K=6 did not result in any stopping condition. This indicates no geographic clustering.

Possible ancestry of the feral herds to domestic breeds was estimated by constructing a RML tree from 55 selected feral herds and 31 domestic horse breeds with a focus on those from the New World (Figure 3). Most herds appeared to be of widely mixed ancestry with no clear, specific breed ancestor. This result is consistent with the other genetic results (STRUCTURE, FLOCK and FCA) and the history of most of the areas where the feral herds are located. All of these herds have been individually analyzed in reports provided to the BLM at the time the herds were sampled. These analyses consistently indicated that the herds had mixed-breed ancestry and the majority showed closest similarity to breeds of North American origin. Only a handful of herds show evidence of Iberian ancestry and those that do tend to be more isolated than other herds. Herds that were generally considered to be Spanish in origin were MT0251, OR0010 and

UT0448, but these herds were not clustered with Spanish breeds in Figure 3 which is largely due to a change in the make-up of the herds over time.

Modularity analysis results indicate that there is moderate modularity in the modeled genetic networks, meaning there is connection that correlates with the spatial estimates provided by longitude and latitude of sampling location. The density ratio, the ratio of links within to between modules, was 0.5668 which suggests that there are 1.76x more connections between modules than within modules. This is indicative of considerable gene flow between sampling locations. Both the non-spatial (modularity = 0.261) and spatial (modularity = 0.244) tests for modularity were significant (P < 0.001, respectively). These results indicate that there is greater movement of individuals among herd locations within the same module than among herds between modules, and using physical distance between sampling locations decreased our estimate of modularity, also indicating significant genetic connections between locations.

The general trend for feral herds on public lands has been a decrease in population size over time. This will inevitably lead to a long-term loss of genetic variability within individual HMAs. However, this loss of variation can be mitigated by a low level of exchange of individuals from geographically close herds. This process will tend to homogenize the herds but this would take many generations. Table 4 shows the possible number of migrants from herds that were geographically close to another herd (less than 100 km). In some cases, it appeared that there were a very large number of individuals that possibly originated from a nearby herd rather than the one they were captured in. However, this may simply be due to closer genetic similarity of geographically close herds rather that migration as well as possible subdivision within a herd. The relationship of the possible number of migrants within a herd and genetic variability measure was analyzed. All measures showed a statistically highly significant association. The results of the analysis are shown in Figure 8. Some consideration should be made to manage a few of the herds in such a way that they are preserved as is, as much as possible, for historical or, in the cases of the small number of herds with strong Spanish horse genetics, for breed type conservation.

To examine possible loss of variation within herds we looked at variability measure in herds that were sampled more than one time. In general, there was no clear pattern to the differences in variability measures from time 1 to any other time period (Table 3). There are several possible reasons for this. One is that insufficient time has elapsed between two or more sampling periods. Changes in variability take place over the period of generations and are not likely to be observable over a period of 4 to 10 years. Another is that in some cases it is likely that there was introgression of individuals from an outside area which would increase variability from time 1 to time 2 or later. In some cases, this may have been done intentionally to increase the variation within a herd. Another possibility is simply differences in sample sizes in different years. In

some cases, initial sample size was small and the second or later sample size was larger. The reverse also occurred.

This work shows that there is a great deal of genetic diversity within feral horse herds in the Western United States. The total diversity approaches that of domestic horse breeds. At least up to now, there has been no significant decrease in genetic variability over the past 20 years; however, population sizes of the herds is generally low so that loss of variation in these mostly closed herds is inevitable. Management practices applied by the responsible agencies can reduce the rate of loss of variation and practices such as intentional introductions of animals from outside herds are currently in use. Part of the basis for the current high levels of variation seen in many of the herds is that they have a mixed breed origin that depended upon what domestic breeds were in the area and became feral for whatever reason. There does not appear to be any large pattern of genetic structure across the total area where feral horses are found. There may be some small-scale structure within specific regions and this can be seen in the associations of herds within states seen in Figures 2 and 4. More work is needed to determine the scale of this structure and to understand the basis for it.

Acknowledgments

I wish to thank all the people with the Bureau of Land Management that helped make this work possible, in particular Dr. Paul Griffin, Alan Shepard, Dean Bolstad, Joseph Stratton, and Bea Wade. A special thanks to Linda Coates-Markle for her friendship and support. This work has been supported by funds from the BLM since 1992 in various forms and current work under Federal Assistance contract SF-424, 2009 and 2011.

Туре	Variable	Ν	Mean	Std Dev	Minimum	Maximum
	SIZ	229	37.84	29.31	4	209
	Но	229	0.722	0.059	0.492	0.867
	Не	229	0.718	0.059	0.448	0.801
	Fis	229	-0.008	0.071	-0.284	0.382
erds	Hub	229	0.733	0.055	0.462	0.808
ΗI	AE	226	3.965	0.646	1.988	5.253
era	NA	229	74.948	13.233	31	97
Ŧ	MNA	229	6.246	1.103	2.583	8.083
	RA	229	18.345	8.024	0	34
	RARE	229	0.234	0.087	0	0.4
	MRA	229	1.529	0.669	0	2.833
	SIZ	211	66.22	124.81	2	1195
	Но	211	0.725	0.073	0.264	0.879
	Не	211	0.722	0.066	0.213	0.812
spa	Fis	211	-0.007	0.079	-0.551	0.286
3ree	Hub	211	0.737	0.063	0.232	0.829
tic 1	AE	209	4.021	0.714	1.409	5.599
mes	NA	211	79.588	16.365	20	119
Dor	MNA	211	6.632	1.364	1.667	9.917
	RA	211	22.427	10.777	0	55
	RARE	211	0.267	0.099	0	0.462
	MRA	211	1.869	0.898	0	4.583

Table 2. Mean genetic variability measures for feral and domestic horse populations.

BNAM	Herd	YEAR	Ν	Но	Не	ENA	NA	MNA	%Rare
CA0242	TWIN PEAKS CA	2001	48	0.780	0.798	5.254	95	7.917	0.274
CA0242	TWIN PEAKS CA	2011	93	0.701	0.768	4.826	97	8.083	0.289
CA0262	BUCKHORN CA	2003	28	0.798	0.764	4.524	80	6.667	0.225
CA0262	BUCKHORN CA	2010	31	0.806	0.749	4.155	77	6.417	0.208
CA0269	CARTER RESERVOIR CA	2003	26	0.670	0.650	3.108	57	4.750	0.088
CA0269	CARTER RESERVOIR CA	2009	60	0.689	0.688	3.475	76	6.333	0.263
CO0162	WEST DOUGLAS CO	2001	32	0.753	0.712	3.568	70	5.833	0.286
CO0162	WEST DOUGLAS CO	2006	35	0.686	0.691	3.329	55	4.583	0.091
CO0766	LITTLE BOOKCLIFFS CO	2002	29	0.745	0.721	4.125	75	6.250	0.213
CO0766	LITTLE BOOKCLIFFS CO	2013	19	0.715	0.684	3.775	71	5.917	0.169
ID0005	CHALLIS ID	2002	46	0.743	0.735	3.938	77	6.417	0.247
ID0005	CHALLIS ID	2012	39	0.733	0.724	3.734	75	6.250	0.240
ID0007	HARDTRIGGER ID	2003	25	0.699	0.749	4.286	79	6.583	0.190
ID0007	HARDTRIGGER ID	2010	30	0.764	0.733	4.128	78	6.500	0.282
MT0251	PRYOR MOUNTAINS MT	2001	209	0.715	0.693	3.917	90	7.500	0.367
MT0251	PRYOR MOUNTAINS MT	2009	103	0.757	0.762	4.507	79	6.583	0.190
MT0251	PRYOR MOUNTAINS MT	2012	45	0.720	0.728	4.008	75	6.250	0.200
NM0001	BORDO ATRAVISADO NM	2011	27	0.787	0.749	4.338	73	6.083	0.164
NM0001	BORDO ATRAVESADO NM	2012	30	0.742	0.726	4.014	70	5.833	0.200
NV0102	LITTLE HUMBOLT NV	2002	17	0.779	0.728	4.158	72	6.000	0.153
NV0102	LITTLE HUMBOLT NV	2010	23	0.743	0.742	4.312	79	6.583	0.266
NV0103	ROCK CREEK NV	2002	25	0.687	0.700	3.758	67	5.583	0.194
NV0103	ROCK CREEK NV	2010	28	0.738	0.745	4.123	72	6.000	0.153
NV0103	ROCK CREEK NV	2016	30	0.717	0.729	3.926	76	6.333	0.289
NV0107	ANTELOPE VALLEY NV	2002	48	0.673	0.746	4.144	90	7.500	0.367
NV0107	ANTELOPE VALLEY NV	2011	28	0.765	0.756	4.305	81	6.750	0.235

Table 3: Genetic variability measures for herds tested at two or more time periods.

NV0108	GOSHUTE NV	2001	20	0.741	0.720	3.878	72	6.000	0.292
NV0108	GOSHUTE NV	2011	28	0.765	0.748	4.300	78	6.500	0.205
NV0220	BUFFALO HILLS NV	2002	16	0.668	0.679	3.440	68	5.667	0.206
NV0220	BUFFALO HILLS NV	2009	51	0.724	0.729	4.029	84	7.000	0.286
NV0221	GRANITE RANGE NV	2002	47	0.774	0.731	4.110	82	6.833	0.293
NV0221	GRANITE RANGE NV	2011	40	0.760	0.737	4.162	85	7.083	0.353
NV0222	CALICO MOUNTAINS NV	2005	22	0.685	0.733	4.043	70	5.833	0.129
NV0222	CALICO MOUNTAINS NV	2010	42	0.768	0.747	4.272	90	7.500	0.356
NV0222	CALICO MOUNTAINS NV	2011	40	0.748	0.723	4.009	83	6.917	0.337
NV0226	WARM SPRINGS CANYON NV	2001	26	0.792	0.769	4.662	86	7.167	0.233
NV0226	WARM SPRINGS CANYON NV	2012	27	0.701	0.742	4.361	85	7.083	0.235
NV0234	BLACK ROCK EAST NV	2005	24	0.712	0.695	3.675	81	6.750	0.358
NV0234	BLACK ROCK EAST NV	2010	28	0.690	0.719	3.814	76	6.333	0.237
NV0234	BLACK ROCK EAST NV	2011	31	0.710	0.753	4.266	84	7.000	0.274
NV0234	BLACK ROCK WEST NV	2005	25	0.700	0.708	3.795	80	6.667	0.313
NV0234	BLACK ROCK WEST NV	2010	28	0.708	0.707	3.732	75	6.250	0.227
NV0234	BLACK ROCK WEST NV	2011	19	0.675	0.654	3.226	68	5.667	0.265
NV0507	WHEELER PASS NV	2002	23	0.777	0.700	3.593	58	4.833	0.103
NV0507	WHEELER PASS NV	2007	26	0.756	0.763	4.636	85	7.083	0.259
NV0612	FISH CREEK NV	2005	23	0.790	0.758	4.529	84	7.000	0.298
NV0612	FISH CREEK NV	2014	183	0.781	0.782	5.287	98	8.167	0.327
NV0618	STONE CABIN NV	2007	50	0.763	0.775	4.712	92	7.667	0.337
NV0618	STONE CABIN NV	2012	46	0.792	0.783	4.827	91	7.583	0.253
NV0619	REVEILLE NV	2010	51	0.753	0.715	3.777	78	6.500	0.295
NV0619	REVELLIE NV	2014	44	0.723	0.718	3.842	78	6.500	0.282
NV0619	REVEILLE NV	2017	68	0.734	0.734	4.103	86	7.167	0.326
NV0620	SAULSBURY NV	2007	25	0.773	0.768	4.654	82	6.833	0.183
NV0620	SAULSBURY NV	2012	44	0.731	0.769	4.559	85	7.083	0.259
NV0621	PAYMASTER NV	2006	26	0.760	0.710	3.779	68	5.667	0.176
NV0621	PAYMASTER NV	2010	49	0.748	0.702	3.742	70	5.833	0.186

OR0002	BEATYS BUTTE OR	2002	42	0.676	0.770	4.585	92	7.667	0.304
OR0002	BEATYS BUTTE OR	2010	32	0.747	0.763	4.550	80	6.667	0.213
OR0002	BEATYS BUTTE OR	2018	34	0.772	0.772	4.558	89	7.417	0.326
OR0003	SOUTH STEENS OR	2004	41	0.784	0.761	4.466	89	7.417	0.315
OR0003	SOUTH STEENS OR	2010	31	0.758	0.741	4.137	83	6.917	0.301
OR0003	SOUTH STEENS OR	2016	50	0.758	0.742	4.196	83	6.917	0.313
OR0003	SOUTH STEENS OR	2018	30	0.731	0.724	3.768	79	6.583	0.329
OR0004	SHEEPSHEAD OR	2002	60	0.704	0.781	4.827	87	7.250	0.195
OR0004	SHEEPSHEAD OR	2011	48	0.790	0.787	4.870	87	7.250	0.264
OR0007	WARM SPRINGS OR	2001	56	0.803	0.789	5.014	93	7.750	0.290
OR0007	WARM SPRINGS OR	2010	83	0.766	0.778	4.607	96	8.000	0.344
OR0007	WARM SPRINGS OR	2019	50	0.770	0.764	4.420	89	7.417	0.337
OR0009	RIDDLE MTN OR	2003	14	0.762	0.698	3.612	63	5.250	0.143
OR0009	RIDDLE MTN OR	2009	13	0.724	0.677	3.407	65	5.417	0.215
OR0009	RIDDLE MTN OR	2011	20	0.717	0.657	3.221	66	5.500	0.318
OR0009	RIDDLE MTN OR	2015	29	0.733	0.670	3.369	65	5.417	0.169
OR0010	KIGER HERD OR	2009	12	0.729	0.688	3.391	63	5.250	0.238
OR0010	KIGER HERD OR	2011	40	0.694	0.694	3.530	69	5.750	0.246
OR0010	KIGER HERD OR	2015	56	0.722	0.707	3.710	80	6.667	0.300
OR0011	HOG CREEK OR	2003	14	0.815	0.739	4.048	72	6.000	0.194
OR0011	HOG CREEK OR	2018	33	0.798	0.745	4.340	75	6.250	0.147
OR0013	COLD SPRINGS OR	2005	34	0.790	0.777	4.648	81	6.750	0.259
OR0013	COLD SPRINGS OR	2010	24	0.806	0.754	4.214	72	6.000	0.222
OR0013	COLD SPRINGS OR	2018	41	0.748	0.767	4.461	81	6.750	0.296
OR0014	COYOTE LAKE OR	2001	73	0.746	0.743	4.035	86	7.167	0.291
OR0014	COYOTE LAKE OR	2011	50	0.792	0.766	4.578	88	7.333	0.250
OR0015	JACKIES BUTTE OR	2000	31	0.665	0.709	3.834	83	6.917	0.301
OR0015	JACKIES BUTTE OR	2011	40	0.750	0.742	4.129	86	7.167	0.314
OR0019	MURDERERS CREEK OR	2001	17	0.620	0.661	3.212	62	5.167	0.161
OR0019	MURDERERS CREEK OR	2009	71	0.696	0.707	3.566	75	6.250	0.267

OR0019	MURDERERS CREEK OR	2012	51	0.696	0.689	3.342	68	5.667	0.279
OR0019	MURDERERS CREEK OR	2019	50	0.717	0.758	4.426	78	6.500	0.244
UT0241	CEDAR MOUNTAIN UT	2002	20	0.742	0.726	4.067	73	6.083	0.260
UT0241	CEDAR MOUNTAIN UT	2017	97	0.740	0.739	4.451	94	7.833	0.330
UT0441	BLAWN WASH UT	2001	29	0.645	0.621	3.093	69	5.750	0.362
UT0441	BLAWN WASH UT	2018	25	0.683	0.724	3.786	70	5.833	0.214
UT0447	NORTH HILLS UT	2002	28	0.807	0.710	3.656	72	6.000	0.278
UT0447	NORTH HILLS UT	2020	47	0.691	0.705	3.693	70	5.833	0.214
UT0448	SULPHUR N	2006	56	0.740	0.736	3.933	80	6.667	0.338
UT0448	SULPHUR N	2009	53	0.682	0.732	3.964	76	6.333	0.303
UT0448	SULPHUR S	2006	12	0.625	0.679	3.613	65	5.417	0.169
UT0448	SULPHUR S	2009	41	0.679	0.715	3.723	70	5.833	0.271
UT0641	CEDAR RIDGE UT	2002	30	0.667	0.625	2.838	53	4.417	0.170
UT0641	CEDAR RIDGE UT	2006	14	0.702	0.655	3.010	51	4.250	0.157
UT0641	RANGE CREEK UT	2006	26	0.663	0.707	3.633	63	5.250	0.159
UT0641	RANGE CREEK UT	2018	50	0.682	0.652	3.005	65	5.417	0.246
WY0002	DIVIDE BASIN WY	2004	50	0.797	0.793	4.959	89	7.417	0.292
WY0002	DIVIDE BASIN WY	2011	60	0.785	0.787	4.929	93	7.750	0.333
WY0009	ADOBE TOWN WY	2003	40	0.773	0.771	4.681	90	7.500	0.278
WY0009	ADOBE TOWN WY	2010	103	0.776	0.776	4.748	93	7.750	0.280
WY0009	ADOBE TOWN WY	2017	25	0.790	0.778	4.836	76	6.333	0.132
WY0027	MUSKRAT BASIN WY	2004	27	0.731	0.727	3.851	72	6.000	0.222
WY0027	MUSKRAT BASIN WY	2013	77	0.759	0.765	4.440	81	6.750	0.222
WY0028	DISHPAN BUTTE WY	2004	30	0.768	0.743	4.099	76	6.333	0.211
WY0028	DISHPAN BUTTE WY	2013	30	0.756	0.726	4.002	70	5.833	0.200
WY0029	CONANT CREEK WY	2004	22	0.680	0.656	3.394	66	5.500	0.288
WY0029	CONANT CREEK WY	2013	28	0.714	0.688	3.590	72	6.000	0.208
WY0031	ANTELOPE HILLS WY	2004	25	0.747	0.733	3.914	76	6.333	0.237
WY0031	ANTELOPE HILLS WY	2012	34	0.767	0.758	4.343	87	7.250	0.333
WY0035	LOST CREEK WY	2006	48	0.767	0.791	5.015	84	7.000	0.190

WY0035	LOST CREEK WY	2009	30	0.775	0.788	4.899	80	6.667	0.200
WY0039	LITTLE COLORADO WY	2007	36	0.801	0.762	4.363	79	6.583	0.190
WY0039	LITTLE COLORADE WY	2011	45	0.761	0.768	4.541	80	6.667	0.188

Table 4. Estimates of the possible number of immigrants into a herd from nearby herds. N refers to the number of individuals and KM refers to the geographic distance in kilometers.

Herd State	compared heard	N./K
	· · · · · · · · · · · · · · · · · · ·	М
BUCKHORN CA	BLACK ROCK E NV	2./91
—	FOX HOG CA	1./72
CARTER RESERVOIR CA	BLACK ROCK E NV	1./87
COPPERSMITH CA	BUCKHORN CA	1./18
_	FOX HOG CA	1./63
	BLACK ROCK E NV	1./95
	BUFFALO HILLS NV	1./49
FOX HOG_CA	CALICO MTN NV	3./80
TWIN PEAKS_CA	BUCKHORN CA	7./38
	BUFFALO HILLS NV	12./35*
	GRANITE RANGE NV	1./60
SAND WASH CO	ADOBE TOWN WY	2./50
HARD TRIGGER_ID	SAND BASIN ID	1./18
SAND BASIN_ID	HARDTRIGGER ID	1./18
	COLD SPRINGS OR	2.67
BLACK ROCK EAST_NV	FOX HOG CA	1./87
	BLACK ROCK W NV	1./8
BLACK ROCK WEST NV	BLACK ROCK E NV	1./8
BUFFALO HILLS_NV	BLACK ROCK E NV	2./89
	GRANITE RANGE NV	5./26
	SHAWAVE MINS NV	1./82
CALICO MOUNTAINS_NV	BUCKHORN CA	1./58
	BLACK ROCK W NV	6./34
	BUFFALO HILLS NV	5./53
	GRANITE RANGE NV	1./2/
CALLACIIAN NV	FUX HUG CA	5./80
CALLAGHAN_NV	BALD MIN NV	2./34
	S SHOSONE NV	3./32
GRANITE RANGE NV	FOX HOG CA	1./44
IOHNNIE NV	WHEELER PASS NV	2 /42
LITTLE HUMBOLT NV	LITTLE OWHVEE NV	1 /43
MCGEE MOUNTAIN NV	BLACK ROCK E NV	1./45
Medel Moonthint_itt	BLACK ROCK W NV	2 /48
	BEATTY'S BUTTE OR	4 /58
NEW	BALD MTN NV	3/56
PASS/RAVENSWOOD NV	CALLAGHAN NV	1/35
_	DESATOYA MTN NV	7./48
NORTH STILLWATER NV	DESATOYA MTN NV	1./78
PAY MASTER NV	GARFIELD FLATS	1./88
—	NV	
REVEILLE_NV	STONE CABIN NV	4./31
ROBERTS MOUNTAIN_NV	ROCKY HILLS NV	2./34
ROCK CREEK NV	LITTLE OWHVEE NV	1 /47
ROCKVHILLS NV	ROBERTS MTN NV	1./4/
KOCKI IIILLO_IVV	BALD MTN NV	14/28
SAND SPRINGS FAST NV	COLD SPRING UT	8 /53*
SEVEN MILE NV	ROBERTS MTN NV	1 /72
SHAWAVE MOUNTAINS NV	GRANITE RANGE NV	2./91
STONE CABIN NV	REVELLE NV	1./31
SOUTH SHOSONE NV	BALD MTN NV	6./23
	ROBERTS MTN NV	4./76
	RAVENSWOOD NV	1./50

Herd State	compared heard	N/K
lield_State	compared heard	M
WARM CODDICC	DUCKNODNCA	101
WARM SPRINGS	BUCKHORN CA	4./44
CANTON_INV	BLACK ROCK E NV	1.23
	BLACK ROCK W NV	4.14
	CALICO MTNS NV	1./89
	DEATV'S DUTTE OP	5/86*
WARM SPRINGS NV	KIGER OR	2 /61
WARM SPRINGS_INV	S STEENS OR	6/65
WHEELED DASS NV	IOHNNIE	1 /42
BEATV'S BUTTE OP	FOX HOG CA	1./42
BEATTS BUTTE_OK	BLACK POCK W NV	2 /07
	MCGEE MTN NV	1/58
COLD SPRINGS OR	HOG CREEK OR	1./38
COLD SI KINGS_OK	SHEEPSHEAD OR	3/67
	STINKING WATER OR	1/53
COVOTE LAKE OR	JACKIES BUTTE OR	1./63
COTOTE EARL_OK	KIGER OR	3 /57
	SHEEPSHEAD OR	1 /41
	S STEENS OR	27 /49*
IACKIES BUTTE OR	SAND SPRINGS F OR	3 /48
menteb berre_or	ANTELOPE HILLS WY	7/63
	SHEEPSHEAD OR	1 /59
SHEEPSHEAD OR	COLD SPRINGS OR	4/67
SHEEP SHEEP_OR	COYOTE LAKE OR	2./41
	KIGER	2/38
	S STEENS OR	13./64*
SOUTH STEENS OR	KIGER OR	2./44
THREE FINGERS OR	COLD SPRINGS OR	1./44
	HOG CREEK OR	1./58
WARM SPRINGS OR	S STEENS OR	7./64
—	SHEEPSHEAD OR	1./99
	PAISLEY DESERT OR	2./93
	STINKING WATER OR	1./88
CONANT CREEK WY	DISHPAN BUTTE WY	3./27
DISHPAN BUTTE WY	CONANT CREEK WY	2./27
DIVIDE BASIN WY	DISHPAN BUTTE WY	1./88
_	ANTELOPE HILLS	6./39
	WHITE MTN WY	6./74
LITTLE COLORADO WY	WHITE MTN WY	2./52
LOST CREEK_WY	ANTELOPE HILLS WY	2./32
	STEWARD CREEK WY	36./41*
MUSKRAT BASIN WY	ANTELOPE HILLS	1./70
	WYC	
	ONANT CREEK WY	1./28
SALT WELLS	WHITE MTN WY	6./73
EAST/WEST_WY	ADOBE TOWN WY	3./54
STEWARD CREEK_WY	LOST CREEK WY	1./41
	DISHPAN BUTTE WY	3./68
	MUSKRAT BASIN WY	1./68

Figure 1. Location of herd management areas in the western US.

Western USA. Wild Horse and Burro Herd Areas

Figure 2. Restricted Maximum Likelihood dendrogram based upon Chord Distance of feral herds (152) color coded by state.

Figure 3. RML dendrogram from Chord distance of 55 selected feral herds and 31 domestic breeds plus Przewalski Horse as an out-group.

Figure 4. PCoA using the same 152 populations in Figure 2. Only axes 1 and 2 are plotted.

Figure 5. PCoA (axes 1 and 2) based upon removal of outlier herds UT2641, UT1641, CO2161, CO1384, NV0628, AZ0011, NV2234, NV2201 and ID0002 but otherwise using the same populations as Fig. 4.

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.28.577652; this version posted January 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 6. Pairwise Fst matrix.

Figure 7. Structure analysis for K=2, K=4, K=6, and K=8, respectively (from left to right).

Figure 8. Plots of associations of different genetic measures with AML.

bioRxiv preprint doi: https://doi.org/10.1101/2024.01.28.577652; this version posted January 31, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 9. Plots of association of different genetic measures with percent of likely migrants.

References

BANKS MA, EICHERT W. 2000 WHICHRUN (version 3.2): a computer program for population assignment of individuals based on multilocus genotype data. J Hered. 91(1):87-89.

BENNETT D. 1998 *Conquerors: The Roots of New World Horsemanship.*, Amigo Publications, Solvang, CA. CORTÉS O, DUNNER S, GAMA LT, MARTÍNEZ AM, DELGADO JV, GINJA C, JIMÉNEZ LM, JORDANA J, LUIS C, OOM MM, SPONENBERG DP, ZARAGOZA P, VEGA-PLA JL. 2017 The legacy of Columbus in American horse populations assessed by microsatellite markers. J Anim Breed Genet. 134(4):340-350.

DUCHESNE P, TURGEON J. 2012 FLOCK Provides Reliable Solutions to the "Number of Populations" Problem. Journal of Heredity. 103(5):734-743.

DYER RJ, NASON JD. 2004 Population Graphs: the graph theoretic shape of genetic structure. Mol Ecol. 13(7):1713-1727.

EVANNO G, REGNAUT S, GOUDET J. 2005 Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology. 14(8):2611-2620.

EXCOFFIER L, LISCHER HE. 2010 Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 10(3):564-567.

FELSENSTEIN J. 1989 PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 5:164-166. FLETCHER RJ, JR., REVELL A, REICHERT BE, KITCHENS WM, DIXON JD, AUSTIN JD. 2013 Network modularity reveals critical scales for connectivity in ecology and evolution. Nat Commun. 4:2572. FUNK SM, GUEDAOURA S, JURAS R, RAZIQ A, LANDOLSI F, LUÍS C, MARTÍNEZ AM, MUSA MAYAKI A, MUJICA F, OOM MDM, OURAGH L, STRANGER YM, VEGA-PLA JL, COTHRAN EG. 2020 Major inconsistencies of inferred population genetic structure estimated in a large set of domestic horse breeds using microsatellites. Ecol Evol. 10(10):4261-4279.

GIRVAN M, NEWMAN ME. 2002 Community structure in social and biological networks. Proc Natl Acad Sci U S A. 99(12):7821-7826.

JURAS R, COTHRAN EG, KLIMAS R. 2003 Genetic analysis of three Lithuanian native horse breeds. Acta Agriculturae Scandinavica Section a-Animal Science. 53(4):180-185.

KHANSHOUR A, CONANT E, JURAS R, COTHRAN EG. 2013 Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J Hered. 104(3):386-398.

LEROY G, DANCHIN-BURGE C, PALHIÈRE I, SANCRISTOBAL M, NÉDÉLEC Y, VERRIER E, ROGNON X. 2015 How do introgression events shape the partitioning of diversity among breeds: a case study in sheep. Genetics, selection, evolution : GSE. 47(1):48-48.

LIBRADO P, KHAN N, FAGES A, KUSLIY MA, SUCHAN T, TONASSO-CALVIERE L, SCHIAVINATO S, ALIOGLU D, FROMENTIER A, PERDEREAU A, AURY JM, GAUNITZ C, CHAUVEY L, SEGUIN-ORLANDO A, DER SARKISSIAN C, SOUTHON J, SHAPIRO B, TISHKIN AA, KOVALEV AA, ALQURAISHI S, ALFARHAN AH, AL-RASHEID KAS, SEREGELY T, KLASSEN L, IVERSEN R, BIGNON-LAU O, BODU P, OLIVE M, CASTEL JC, BOUDADI-MALIGNE M, ALVAREZ N, GERMONPRE M, MOSKAL-DEL HOYO M, WILCZYNSKI J, POSPULA S, LASOTA-KUS A, TUNIA K, NOWAK M, RANNAMAE E, SAARMA U, BOESKOROV G, LOUGAS L, KYSELY R, PESKE L, BALASESCU A, DUMITRASCU V, DOBRESCU R, GERBER D, KISS V, SZECSENYI-NAGY A, MENDE BG, GALLINA Z, SOMOGYI K, KULCSAR G, GAL E, BENDREY R, ALLENTOFT ME, SIRBU G, DERGACHEV V, SHEPHARD H, TOMADINI N, GROUARD S, KASPAROV A, BASILYAN AE, ANISIMOV MA, NIKOLSKIY PA, PAVLOVA EY, PITULKO V, BREM G, WALLNER B, SCHWALL C, KELLER M, KITAGAWA K, BESSUDNOV AN, BESSUDNOV A, TAYLOR W, MAGAIL J, GANTULGA JO, BAYARSAIKHAN J, ERDENEBAATAR D, TABALDIEV K, MIJIDDORJ E, BOLDGIV B, TSAGAAN T, PRUVOST M, OLSEN S, MAKAREWICZ CA, VALENZUELA LAMAS S, ALBIZURI CANADELL S, NIETO ESPINET A, IBORRA MP, LIRA GARRIDO J, RODRIGUEZ GONZALEZ E, CELESTINO S, OLARIA C, ARSUAGA JL, KOTOVA N, PRYOR A, CRABTREE P, ZHUMATAYEV R, TOLEUBAEV A, MORGUNOVA NL, KUZNETSOVA T, LORDKIPANIZE D, MARZULLO M, PRATO O, BAGNASCO GIANNI G, TECCHIATI U, CLAVEL B, LEPETZ S, DAVOUDI H, MASHKOUR M, BEREZINA NY, STOCKHAMMER PW,

KRAUSE J, HAAK W, MORALES-MUNIZ A, BENECKE N, HOFREITER M, LUDWIG A, GRAPHODATSKY AS, PETERS J, KIRYUSHIN KY, IDERKHANGAI TO, BOKOVENKO NA, VASILIEV SK, SEREGIN NN, CHUGUNOV KV, PLASTEEVA NA, BARYSHNIKOV GF, PETROVA E, SABLIN M, ANANYEVSKAYA E, LOGVIN A, SHEVNINA I, LOGVIN V, KALIEVA S, LOMAN V, KUKUSHKIN I, MERZ I, MERZ V, SAKENOV S, VARFOLOMEYEV V, USMANOVA E, ZAIBERT V, ARBUCKLE B, BELINSKIY AB, KALMYKOV A, REINHOLD S, HANSEN S, YUDIN AI, VYBORNOV AA, EPIMAKHOV A, BEREZINA NS, ROSLYAKOVA N, KOSINTSEV PA, KUZNETSOV PF, ANTHONY D, KROONEN GJ, KRISTIANSEN K, WINCKER P, OUTRAM A, ORLANDO L. 2021 The origins and spread of domestic horses from the Western Eurasian steppes. Nature. 598(7882):634-640. NEI M. 1978 Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 89(3):583-590.

PEAKALL R, SMOUSE PE. 2012 GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics (Oxford, England). 28(19):2537-2539.

PETERMAN W, BROCATO ER, SEMLITSCH RD, EGGERT LS. 2016 Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages. PeerJ. 4:e1813.

PRITCHARD JK, STEPHENS M, DONNELLY P. 2000 Inference of population structure using multilocus genotype data. Genetics. 155(2):945-959.

ROSENBERG NA. 2004 distruct: a program for the graphical display of population structure. Molecular Ecology Notes. 4(1):137-138.

TAMURA K, DUDLEY J, NEI M, KUMAR S. 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 24(8):1596-1599.