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A B S T R A C T   

A simple dynamical model was used to explore the forest cover dynamics for two basins in the Sierra Nevada of 
California, Illilouette Creek Basin (ICB) in Yosemite National Park and Sugarloaf Creek Basin (SCB) in Sequoia- 
Kings Canyon National Park. Since the 1970s, fire management in these basins has attempted to restore a near- 
natural fire regime, after nearly a century of fire exclusion and suppression. The model describes two canopy 
layers, representing mixed conifer and shrub-dominated landcover types, and is calibrated using landcover maps 
and fire recurrence and severity data from the ICB. The calibrated model is used to explore several scenarios 
pertaining to increasing fire severity and return interval in the ICB, and to explore the differences between the 
ICB and SCB. The results indicate that (i) the ICB in 2012 had not yet reached steady state forest cover, (ii) 
potential future changes in fire severity and frequency will yield reductions in forest cover, and (iii) differences in 
forest cover change in response to fire regime restoration between basins can be explained by differences in fire 
histories.   

1. Introduction 

Prior to European settlement, California’s Sierra Nevada, like many 
Mediterranean regions worldwide, supported ecosystems and cultures 
that were ecologically and socially adapted to frequent fire (Taylor et al., 
2016; Collins and Stephens, 2007; Taylor and Skinner, 1998). European 
colonization disrupted these adaptations, preventing cultural burning by 
Indigenous groups, and suppressing natural, lightning-driven, ignitions 
(Parsons, 1976; Stephens et al., 2007). For example, the US National 
Park Service (NPS) in the Sierra Nevada held a fire suppression policy 
from its founding in 1916 until the late 1960s (Rothman, 2007). Under 
these policies, fire was almost absent in many areas (other than where 
infrequent, high-severity wildfires occurred) for nearly 100 years 
(Collins and Stephens, 2007; Collins et al., 2011; Miller et al., 2012). 
Removing frequent fire from the landscape may have facilitated forest 
expansion and shifted forest stands to become more homogeneous and 
dense (Boisrameé et al., 2022). Ecological changes cascaded as recruit-
ment of fire-adapted vegetation species declined, and the vegetation 
community composition shifted toward later successional species, with 

implications for other parts of the ecosystem, for example pollinator 
diversity (Collins et al., 2011; Collins and Stephens, 2007; Ponisio et al., 
2016). 

Following the Leopold committee’s recommendations that fire be 
recognized as an ecological process within the US National Parks (Leo-
pold, 1963), the NPS was able to experiment with new fire management 
approaches. Consequently, in the late 1960s/early 1970s, two remote 
basins in Yosemite and Sequoia-Kings Canyon National Parks began to 
burn again. In these basins, naturally occurring fire ignitions were no 
longer suppressed, and fires were allowed to burn, provided that they 
did not violate management criteria targeting, for instance, air quality, 
fire hazards, or protection of sensitive ecosystems (North et al., 2012; 
Boisramé et al., 2017; Collins and Stephens, 2007). These two basins, 
Illilouette Creek Basin (ICB) in Yosemite National Park and Sugarloaf 
Creek Basin (SCB) in Sequoia-Kings Canyon National Park, have now 
been subject to approximately 50 years of a fire management strategy 
that approximates a natural fire regime by avoiding suppression of 
lightning-ignited fires when possible (often referred to as Amanaged 
wildfire’). The multi-decadal duration of managed wildfire policies in 
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Illilouette and Sugarloaf Creek basins provides an invaluable opportu-
nity to learn about the effects of fire on the landscape. Consequently, the 
basins have been subject to intense research over the past 20 years 
(Stephens et al., 2021). 

Prior to European intervention in the fire regime, most fires in ICB 
and SCB were thought to be lightning-ignited but Indigenous burning 
could have occurred. Most fires during the managed wildfire period – 
initiated in 1969 in SCB and in 1972 in ICB – have been lightning- 
ignited. Both basins have remained free from logging and roads. Ge 
focus on years 1972–2012 for two reasonsD firstly, high quality vegeta-
tion mapping is available for this period (Boisramé et al., 2017); and 
secondly, it avoids the extreme 2012–2016 California drought, during 
which fire suppression was increased to reduce fire risks during abnor-
mally dry conditions. Fire remains relatively less frequent in the basins 
than it was in the 1700–1900 period, as indicated by fire scar records in 
trees (Collins and Stephens, 2007). SCB experienced less frequent fire 
than ICB in all time periods, and a smaller increase in fire frequency in 
response to the managed wildfire policy. The reasons for this are not 
fully understood, but may be due to lower forest productivity in SCB, or 
to the fact that fire suppression has been employed more frequently in 
SCB during the managed wildfire period than in ICB (Stevens et al., 
2020). 

The restoration of fire in ICB coincided with large-scale reductions in 
conifer forest cover, from ∼82H cover in 1969 to ∼62H cover in 2012, 
as estimated from forest plot surveys, vegetation mapping and aerial 
photographic records (Boisramé et al., 2017; Kane et al., 201E). Iow-
ever, similar changes in forest cover did not occur in the SCB, where 
forest cover remained nearly constant at 83H between 1973 and 2012 
(Stevens et al., 2020). 

The research undertaken at ICB and SCB over the past 20 years has 
produced rich datasets that can be used to explore the dynamic inter-
action of fire and forests. For example, detailed explorations of how fire, 
land cover change and forest growth have altered the hydrological dy-
namics of ICB (and the sensitivity of these changes to climate change) 
have previously been conducted using the process-based ecohydro-
logical model RIESSys (Boisramé et al., 2019; Rakhmatulina et al., 
2021). Similar process-based models are available to describe fire igni-
tion and spread (Mann et al., 2016; Coen et al., 2020), as well as forest 
disturbance and demography (Butler and Cickinson, 2010; Seidl et al., 
2011). Iowever, highly resolved process-based models have well- 
known limitations, including large data requirements to support cali-
bration and validation, computational expense, uncertainty associated 
with typically high levels of parameterization, and challenges in inter-
preting cause-and-effect amidst complex interactions between modeled 
processes. Models of this nature are suitable for making specific quan-
titative forecasts, and exploring individual scenarios in great detail. An 
alternative modeling approach is exploratory modeling, which provides 
an opportunity to relate data and process descriptions to the develop-
ment and testing of first-order hypotheses (Casagrandi and Rinaldi, 
1999; Larsen et al., 201E; Larsen et al., 2016; Rastetter, 2017). In this 
approach, complex models are replaced by simpler representations of 
hypothesised underlying processes or dynamics. Such models can use-
fully synthesize observed phenomena (Gilkening et al., 2021; C’Odorico 
et al., 2006). They sacrifice process complexity for several benefitsD 
lower computational complexity, clear and even analytical interpreta-
tion of the system dynamics and associations between cause and effect, 
and lower requirements for parameterization, calibration and 
validation. 

A number of important first-order questions about fire-vegetation 
dynamics in the ICB and SCB, suitable for such exploratory modeling 
investigations, remain unanswered. In this study, we developed a simple 
dynamic model describing forest growth in response to fire, and used it 
to synthesize observations from the basins to address these knowledge 
gaps. Specifically, we aimed to understandD  

1. The long-term response of ICB vegetation cover to the managed 
wildfire (1972–2012) regime,  

2. The implications for the long-term vegetation cover of ICB, if the fire 
regime were to change relative to the 1972–2012 period, and  

3. Ghy the post-1970 fire regimes in ICB and SCB produced such 
different vegetation outcomes to date. 

The dynamical model we developed draws on elements of several 
previous simple fire-vegetation models. It follows Casagrandi and 
Rinaldi (1999) in representing vegetation as an upper and lower canopy, 
which we interpret as corresponding to forest versus shrub layers. 
Iowever, we avoid the time-continuous description of fire used by 
Casagrandi and Rinaldi (1999) and Ursino and Rulli (2011), and instead 
adopt a stochastic description of discrete fire disturbance events, similar 
to that used by C’Odorico et al. (2006). The model makes a major spatial 
simplification in representing the basin as an ensemble of independent 
point locations, each of which experiences an independent fire history. 
This means that the model cannot represent the inJuence of topographic 
position on fire ignition or severity, and is not suitable for spatial 
interpretation. Instead, it can be used to predict spatially lumped out-
comes such as the basin-wide forest cover fraction, and the proportion of 
the basin undergoing vegetation cover transitions (forest to shrub or vice 
versa) in a given period. 

The model further simplifies by prescribing fire return intervals and 
severity. This limits its suitability to represent potential future fire re-
gimes, in which fire severity and frequency will likely be inJuenced by a 
number of interacting climatic, vegetation, and human factors (Allen 
et al., 2015; Abatzoglou et al., 2018). Similarly, the modeling framework 
does not consider increasing global CO2 levels, CO2 fertilization and 
changing water use efficiency (Ioffmann et al., 2000; Cuan et al., 2018; 
Khu et al., 2016), or dynamic feedbacks between fire regime and soil/ 
fuel moisture (Miller and Urban, 1999; Rakhmatulina et al., 2021). 
Thus, long-term drivers of change in forest growth dynamics and fire 
regimes associated with varying CO2 concentration and climate are 
absent from the model. Cespite these limitations, the model is amenable 
to analytical solutions, provided suitable simplifying assumptions are 
made, allowing for exploration of the system dynamics (e.g., parameter 
sensitivities). 

2. Methods 

Casagrandi and Rinaldi (1999) proposed that the growth of season-
ally dry, fire-impacted forests could be represented by two coupled 
differential equations describing the biomass (G, Lkg/m2M) of an upper 
(u) and lower (l) canopy. The biomass growth of the upper canopy is 
logistic, and is not affected by the lower canopy biomass. The lower 
canopy growth is described by a modified logistic model, in which 
shading from the upper canopy reduces its growth rate via a suppression 
term proportional to the upper canopy biomass (such that its maximum 
rate occurs when there is no upper canopy present). Ge follow Ursino 
and Rulli (2011) in allowing the growth rate to depend on the soil 
moisture content within the root zone S L-M, which ranges from 0 (no 
water) to 1 (saturation). The sensitivity of this dependence is controlled 
by an exponent β, which ranges from 0 (no effect of soil water on growth 
rates) to 1 (imposing a strong dependence between soil water and 
growth). 

Mathematically, these dynamics are represented byD 

dGu

dt = ruSβ
uGu

(
1 − Gu

ku

)
(1)  

dGl

dt = rlSβ
l Gl

(
1 − Gl

kl

)
− αGuGl, (2)  

where r is the specific biomass growth rate L1/yrM, and α represents the 
degree of shade inhibition of shrubs by trees Lm2 kg−1 yr−1M. k is the 
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carrying capacity of biomass Lkg/m2M, which determines the steady state 
biomass if fire is removed from the system (the upper canopy biomass Gu 
approaches kl, and the lower canopy biomass Gl approaches kl if shade 
suppression is also removed). 

Fires are stochastically represented as a Poisson process, meaning 
that the modeled time between two consecutive fires is exponentially 
distributed (Li et al., 1999; Favier et al., 200E). Ge specify the expo-
nential rate parameter as λ = 1/RI, where RI is the return interval (the 
mean interval between ignitions). In each modeled year, a fire ignition 
occurs at a given point with probability p = 1/RI. If no ignition occurs, 
the upper and lower canopies continue growing. Fires produced by an 
ignition event have a random severity (ϕu or ϕl) which describes the 
proportional loss of biomass in each canopy layer (i.e. ΔGu = ϕuGuand 
ΔGl = ϕlGl). The distribution from which fire severities are sampled is 
described in Section 2.5.2 “Fire severity distribution”. 

Treating the fire regime as exogenous neglects the inJuence of 
topographic position on fire extent and severity (Bradstock et al., 2010; 
Cillon et al., 2011), which cannot be accommodated in the 1-dimen-
sional modeling framework. Curing the 1972–2012 calibration period, 
basin-scale effects of complex topography are implicitly accounted for 
through model calibration to remotely-sensed fire severity data from the 
ICB, as described in Section 2.5.2. This approach is reasonable provided 
that modeled scenarios occur within conditions similar to the calibration 
period - however, it does not address potential non-stationary relation-
ships between topography and fire severity under climate change 
(Mackey et al., 2021). 

In reality, soil moisture and biomass likely feedback upon both 
ignition probabilities and severities (Rakhmatulina et al., 2021). Such 
feedbacks, however, are (i) only one factor among many that inJuence 
fire behavior, (ii) difficult to characterize, and likely less important than 
drivers such as fire weather (Collins et al., 2009; Gayman and Safford, 
2021). To avoid imposing an uncertain relationship between fire and 
vegetation characteristics, we treat all fire parameters (RI and ϕ) as 
exogenous. Similarly, we assume that soil moisture at a point is inde-
pendent of the vegetation biomass (which is reasonable for the study 
sites when considering shrub/forest transitions on annual timescales, 
see Boisramé et al. (2018)), and we do not address feedbacks between 
vegetation and hydrological dynamics in the model. 

2.1. Analytical stochastic steady state solutions 

Analytical solutions for the long-term mean biomass of upper and 
lower canopies can be obtained subject to the simplifying assumptions 
that fires occur deterministically every τ years, with a fixed severity ϕ 
that is identical for the upper and lower canopies. These assumptions fix 
the biomass density immediately before and after each fire, as illustrated 
in supporting information Figure S1. 

The logistic equation for the upper canopy has the analytic solutionD 

Gu =
kuGuo

Guo + (ku − Guo)e−r′ut (3)  

where Guo is the initial biomass (in this case, the biomass immediately 
after each fire), t is the time in years, and r′u = ruSβ is an Aeffective’ 
growth rate of biomass, which combines the growth rate ru and growth- 
limiting factor Sβ into a single term. 

Integrating Eq. 3 from time t = 0 (immediately after a fire) to t = τ 
(immediately before the next fire), yields, after simplification, the mean 
upper canopy biomass density Ĝu D 

Ĝu = ku

r′uτ log
(

1 + Guo(er′uτ − 1)
ku

)
(E)  

Eq. E describes Ĝu as a function of the model parameters and the initial 
biomass density Guo. To determine Guo, the biomass densities at times 
t = 0 and t = τ can be related using Eq. 3D 

Guτ =
kuGuo

Guo + (ku − Guo)e−r′uτ (5)  

By definition, Guτ and Guo are also related by the fire severityD 

ϕu = ΔGu

Guτ
= Guτ − Guo

Guτ
. (6)  

Rearranging for GuτD 

Guτ =
Guo

(1 − ϕ) (7)  

Combining Eqs. 5 and 7 and solving for GuoD 

Guo

(1 − ϕ) =
kuGuo

Guo + (ku − Guo)e−r′uτ (8)  

Guo = ku
1 − ϕ − e−r′uτ

1 − e−r′uτ (9)  

Substituting Eq. 9 into Eq. E yields the solution for Ĝu D 

Ĝu = ku

(
1 + 1

r′uτ log
(

1 − ϕ
))

(10)  

An approximate analytic solution for the mean biomass density of the 
lower canopy, Ĝl, may be obtained by replacing Gu with Ĝu in the lower 
canopy equation (Eq. 2)D 

dGl

dt ≈ rlSβGl

(
1 − Gl

kl

)
− αĜuGl, (11)  

The equation for the lower canopy can then be written in logistic formD 

dGl

dt ≈ r′l
(

1 − Gl

k′l

)
(12)  

where r′l = rlSβ −αĜu is a modified growth rate, and k′l = klr′l/rlSβ is a 
modified carrying capacity. 

Integrating the solution to Eq. 12 (i.e., the solution to the logistic 
equation, following the same approach as for the upper canopy) yields 
an approximate solution for the mean lower canopy biomass density, ĜlD 

Ĝl = k′l
(

1 + 1
r′lτ

log
(

1 − ϕ
))

(13)  

As detailed in the supporting information Section S1, the errors in this 
analytical solution compared to numerical simulations were < 3H when 
the assumptions of fixed RI and severity were numerically imposed, and 
< 9H when ignition was allowed to be random, with fixed severity. 
Ghile clearly a simplification, the analytic solution enables direct 
exploration of how the stochastic steady state solutions depend on 
changing vegetation, fire regime parameters and soil moisture regimes. 

2.2. Study Area 

Illilouette and Sugarloaf Creek are remote, mid-elevation, conifer- 
dominated basins located in Yosemite and Sequoia-Kings Canyon Na-
tional Parks. They are similar in size (ICBD 150 km2; SCBD 125 km2) and 
elevation (ICBD 1800–3000 m; SCBD 2000–3200 m), and have Mediter-
ranean climates featuring winter snow. ICB receives approximately 
1000 mm of precipitation annually. There are no long-term in situ 
weather observations available near SCB, however a variety of in-
dicators point to SCB being drier than ICB (Stevens et al., 2020). Conifer 
forests in the basins are dominated by Pinus jeffreyi, Abies magnifica, 
Abies concolor and P. contorta. Other common vegetation types include 
whitethorn ceanothus Ceanothus cordulatus shrublands, wet and dry 
meadows supporting mixed grasses and forbs, and extensive exposed 
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bedrock (Collins and Stephens, 2007). 

2.3. Research studies synthesized 

In developing and parameterizing the numerical model for ICB and 
SCB, we synthesized datasets and findings from nearly two decades of 
research on the fire, forest and water dynamics of these basins. A full 
history of the research conducted in the basins is summarized by Ste-
phens et al. (2021). Iere, we specifically drew on work from several 
projects, including vegetation classification and mapping projects 
(Boisramé et al., 2017; Stevens et al., 2020), soil moisture mapping and 
prediction efforts (Boisramé et al., 2018; Stevens et al., 2020), and an-
alyses of fire perimeters and severity (Collins et al., 2009; Boisramé 
et al., 2017; Rakhmatulina et al., 2021), which we brieJy summarize 
next. 

Vegetation classification, mapping and landscape ecological 
analyses for the ICB and SCB (Boisramé et al., 2017; Stevens et al., 
2020!D This work drew on object-oriented classification of aerial pho-
tographs of the basins, along with a validated vegetation map of 
Yosemite National Park produced by the National Park Service. The 
earliest photos pre-date the first fires occurring under the managed 
wildfire policies, while later photos coincide with the creation of the 
Parks Service vegetation map and field visits when vegetation was 
mapped using handheld GPS units, allowing validation of the classifi-
cations used. In the numerical modeling study we use the landcover 
maps produced for the years 1969 and 2012 from this project. The maps 
identify regions of sparse meadow (including sparse shrub and/or her-
baceous cover), dense meadow (including wetlands and areas of dense 
herbaceous cover), shrubland, aspen, and mixed conifer forest. 

Soil moisture mapping and predictions for ICB and SCB, 
(Boisramé et al., 2018; Stevens et al., 2020!D This work used over 6220 
individual soil moisture measurements across 90 sites and three years in 
ICB, to train a random forest model to predict soil moisture using 
topography, vegetation and fire history at a site. The random forest 
model was then used to produce maps of summer soil moisture for the 
basins. Vegetation type was the most important predictor of soil mois-
ture in the basins. 

"nalyses of fire perimeters and se#erity for ICB and SC$ (Collins 
et al., 2009; Boisramé et al., 2017; Rakhmatulina et al., 2021!D Fire 
perimeters were obtained from the Cal Fire, and included all fire extents 
within Yosemite National Park since 1930. Githin each fire perimeter, 
Landsat observations were used to estimate fire severity, using the 
RdNCVI (Relative difference Normalized Vegetation Index) and RdNBR 
(Relative difference Normalized Burn Ratio) indices. RdNBR requires a 
short-wave infrared band, which is only available after 198E (Collins 
et al., 2009); prior to this we approximate RdNBR with RdNCVI. The two 
indices produce comparable values in ICB and SCB (Rakhmatulina et al., 
2021). All RdNBR/RdNCVI values were derived from the Google Earth 
Engine code described in Parks et al. (2018), using threshold values 
entered from Miller and Thode (2007). These fire datasets have been 
used in multiple studies of ICB and SCB including those characterising 
fire regime, as well as its effects on vegetation, resilience and hydrology. 

2.4. Model domain and initialization 

Ge represented the ICB with an ensemble of E00 points sampled 
from the vegetated portion of the ICB, where sampling excluded the 
small (< 2H) fraction of the basin supporting dense meadow or aspen 
(which are not represented in the model). Ge randomly sampled these 
locations from a 30× 30 m vegetation map of ICB and initialized E00 
independent model simulations based on the conditions at these sites. To 
initialize the model, vegetation type was selected for each point from the 
1969 landcover map (Boisramé et al., 2017), and used to specify the 
upper and lower canopy biomass densities, Gu and Gl. For points that 
were classified as mixed conifer forest in the vegetation map, the upper 
canopy was initialized at carrying capacity and the lower canopy was 

initialized at equilibrium with the upper canopy, with Gl =
kl⋅(1−α⋅ku/rl/Sβ). For points that were classified as shrub or sparse 
meadow, the lower canopy was initialized at its carrying capacity kl, and 
the upper canopy was initialized at 10H of this biomass (Gu = kl/10 kg/ 
m2), to ensure that some upper canopy biomass is initially present. 
Shrub and sparse meadow classifications were grouped in this manner 
because in both cases, the dominant vegetation type is a lower canopy 
community. Soil moisture maps were previously produced for the same 
model domain using a random forest model based on extensive soil 
moisture sampling (Boisramé et al., 2018), and we drew the soil mois-
ture for each pixel from these maps. The distribution of the sampled soil 
moisture is shown in supporting information Figure S6. 

2.5. Model Parameterization 

Vegetation and fire severity parameters were obtained from obser-
vations in ICB and literature reported values. 

2.5.1. Vegetation parameters: growth rates and carrying capacities 
The model contains four vegetation growth parametersD two carrying 

capacities (kl,ku) and two growth rates (ru,rl). Ge estimated these values 
based on previous studies. Gonzalez et al. (2015) measured biomass 
density in mixed conifer forests in the Sierra Nevada, from which we 
estimated ku = 30 kg/m2 (by converting the carbon density of 120 Mg 
ha−1 for mixed conifer forests to kilograms per m2 and assuming a 
carbon fraction of 0.E7 g carbon (g biomass)−1) (Gonzalez et al., 2015). 

Ge estimated the upper canopy growth rate of ru = 0.15 yr−1 using 
the assumptions that sexual maturity for the coniferous forest occurs at 
35 years (the median of the dominant conifer species in the basins; 
Loudermilk et al., 2013; Maxwell and Scheller, 2020), and that conifers 
reached 80H of the carrying capacity within this time frame. The lower 
canopy growth rate of kl = 6 kg/m2 was estimated from reported mea-
surements of the biomass density in Ceanothus cordulatus (Iuff et al., 
2018). Ge estimated rl as 1.5 yr−1, assuming that the time to reach 
sexual maturity in Ceanothus sp. is E years (Bullock, 1982), and that the 
biomass densities would be 80H of carrying capacity at this time. 

2.5.2. Fire severity distribution 
The severity distribution of fires within ICB was estimated using 

Landsat images of ICB (Boisramé et al., 2017; Collins et al., 2009). The 
RdNBR data within ICB fire perimeter maps was used to quantify 
severity in these images using the methods of Miller and Thode (2007), 
who classified fire severities (unchanged, low, moderate, and high) from 
remotely sensed RdNBR by comparing them to field observations of the 
Composite Burn Index. Ge linearly rescaled the RdNBR observations to 
severity values ϕ using the bounds of the Miller and Thode (2007) 
classes, with RdNBR = 316 corresponding to ϕ = 0.5 and RdNBR = 6E1 
corresponding to ϕ = 0.99. The resulting distribution of fire severity is 
shown in Fig. 1. Ghere RdNBR > 6E1, we set ϕ = 0.99, resulting in the 
bimodal distribution in Fig. 1. This severity distribution was sampled for 
each ignition event to obtain ϕu and ϕl values. 

2.6. Model Calibration 

The remaining model parameters, namely the fire return interval RI, 
the soil moisture sensitivity exponent β, and the competition term α, 
were set by calibration. The parameters β and α are unknownD we cali-
brated β over a range of 0–1 (the space on which it is defined), and α over 
a range of 0–0.06 (outside of which no realistic lower canopy biomass 
values were obtained). Ghile it would be preferable to avoid calibration 
of the fire return interval and rely on observational values, the E0 year 
1972–2012 period is not long enough to allow a robust estimation of RI 
for use in a stochastic model. Ge therefore estimated RI through cali-
bration, and constrained the estimate using observed rotation periods, 
defined as the number of years for an area equal to the size of the basin 
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to burn. The fire rotation interval is more appropriate for the 1-dimen-
sional model than the fire return interval, defined as the mean interval 
between burns anywhere in the basin. For the ICB, the rotation intervals 
were 2E.7 and 32.9 years in pre-European and managed wildfire pe-
riods, respectively (see Table 1, which summarizes fire frequency 
characteristics for the basins for the pre-European and managed wildfire 
periods). 

The model performance was assessed in terms of its ability to 
reproduce four metricsD  

1. The change in forest fraction between 1972 and 2012D Δfu(E0) =
−0.2.  

2. The fraction of the landscape that transitioned from shrub to conifer- 
dominated between 1972 and 2012, f l→u =−0.06 (computed from 
the vegetation maps).  

3. The fraction of the landscape that transitioned from conifer to shrub- 
dominated between 1972 and 2012, fu→l = 0.25 (also computed 
from the vegetation maps).  

E. The difference between the forest cover fraction in 1972 and the 
model prediction of the forest cover fraction following 100 years of 
fire suppression, Δfu(100). 

Evaluating theses metrics requires mapping the simulated biomass 
fractions, Gl and Gu, to the dominant landcover type - that is, into the 
binary forest or shrub classes. Ge treated this classification as simply as 
possible, setting cases with Gl > 0.5Gu as shrub-dominated, and other-

wise as forest-dominated. This is an uncertain choice, but sensitivity 
analysis revealed minimal changes in the model results when this ratio 
was set to 0.25 (see supporting information Figure S7). Ge used this 
classification to compute the fraction of forest-dominated simulations fu 
at any point in time, along with the transition metrics f l→u and fu→l. 
Errors in these metrics are reported as the model predictions minus the 
ICB observations. Thus a positive error in Δfu indicates a model bias 
towards over-predicting forest cover (equivalently, underestimating the 
decrease in forest fraction during the suppression period). 

To test the model against these metrics, we initialized the model with 
1972 conditions, following the procedure described in Section 2.E 
“Model domain and initialization”. The model was initialized for 11EE 
unique parameter sets, formed by all possible combinations of the pa-
rameters listed in Table 2. For each parameter set in the ensemble, E00 
independent model simulations were initialized, one for each of the E00 
sampled ICB points (for a total of E57,600 simulations). Fig. 2A illus-
trates an example model run, showing Gu and Gl as functions of time. For 
a given parameter set i, we computed the forest fraction as a function of 
time asD 

f U,i

(
t
)

= 1
n
∑n=400

j
xu,j

(
t
)

(1E)  

where xu,j is a binary variable indicating whether simulation j is classi-
fied as Aforest’ at time t. Ge similarly computed Gu,i and Gl,i as the mean 
biomass densities across the E00 simulations per parameter set. 

The simulations were initialized in the year 1972 and run for E0 
years for comparison with the year 2012. The simulations at year E0 
were used to test the model performance against the first three test 
metrics. For each parameter set, the errors associated with metrics 1–3 
were obtained from the forest fraction in the year 2012 and the vege-
tation transitions between 1972 and 2012. 

Addressing the fourth test metric required two assumptions. Firstly, 
we assumed that running the model to steady state under a natural fire 
regime would approximate the forest conditions prior to fire suppres-
sion. For this purpose, the simulations were run for an additional 960 
years, at which point in time the forest cover trajectories had reached 
stochastic steady states. That is, we assumed that simulation year 1000 
can approximate forest cover in the year 1872, when fire suppression 
was imposed. Next, we tested that the 1972 forest cover conditions 
would be recovered by imposing fire suppression for 100 years on this 
steady state condition, allowing for comparison of the predicted Afire 
suppressed’ forest cover and the observed 1972 forest dataset. Subject to 
these assumptions, we treated the simulation year 1000 as the initial 
(1872) condition, and ran the model for an additional 100 years with no 
fire ignitions. Ge then computed the errors associated with metric E as 

%ig. 1. Fire severity distributionsD Arescaled RdNBR’ shows the distribution 
obtained by rescaling RdNBR data from the ICB, using the severity classes 
identified in Miller and Thode (2007), and Aseverity 1x’ shows the increased 
severity scenario derived by extending the E0 year RdNBR trend for the Sierra 
Nevada by an additional 20 years (described in Section 2.5.2 “Severi.ty Sce-
narios”). LSee online article for color version of this figure.M 

&a'le 1 
Comparison of fire rotation and return intervals for the ICB and SCB basins in the 
time periods considered in this study Miller and Thode, 2007. In calibrating the 
model to ICB, the 1972–2007 period (line 5) was used to estimate the fire 
rotation period. The return interval is not included for the managed wildfire 
period for SCB, because only two fires were identified using tree rings in this 
period, with a 12-year interval between the fires.  

Basin Time period Fire Rotation Interval 
(years) 

Fire Return Interval 
(years) 

ICB 1700–1900 2E.7 6.3 
SCB 1700–1900 E9.2 9.3 
ICB 1900–1972 All fires suppressed All fires suppressed 
SCB 1900–1968 All fires suppressed All fires suppressed 
ICB 1972–2007 32.9 6.8 
SCB 1969–2007 79.8 -  

&a'le 2 
Model parameters for the calibration simulations. Ghere multiple parameter 
values are listed, the simulations were run for factorial combinations of the 
parameter values.   

Variable Units Values Cescription 

Estimated vegetation parameters  
ku kg m−2 30 Carrying capacity of the upper canopy  
kl kg m−2 6 Carrying capacity of the lower canopy  
ru yr−1 0.15 Specific growth rate of the upper 

canopy  
rl yr−1 1.5 Specific growth rate of the lower 

canopy 
Calibration parameters  

α m2 kg−1 

yr−1 
0.0, 0.005, 
0.01, …0.06 

Factor limiting growth of the 
understory due to competition 
between species for light  

β  0.0, 0.1, … 
1.0 

Vegetation parameter that quantifies 
drought tolerance  

RI yr 20, 22, …3E Fire return interval (1/λ for random 
ignition simulations)  
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the difference in forest fraction between simulation years 0 (i.e., using 
observed 1972 vegetation) and 1100 (which uses the model estimate of 
what vegetation cover would be in 1972). 

2.7. Model prediction 

Ge identified the 30 parameter sets with the lowest errors across all 
four test metrics. This group, which we refer to as the calibrated 
parameter ensemble, was used for all subsequent simulations. To use the 
model for prediction, independent simulations were run for each 
parameter set in the ensemble (with E00 simulations per parameter set, 
corresponding to the E00 sampled locations within the basin), producing 
30 separate model predictions. The ensemble-mean forest fraction 〈fu(t)〉
was then computed asD 
〈

fu

(
t
)〉

= 1
N
∑N

i
fu,i

(
t
)
, (15)  

where N denotes the 30 parameter sets in the parameter ensemble. 
Cifferences in the ensemble forest fraction between time points t1 and t0 
were computed per parameter setD 
〈

Δfu

(
t0, t1

)〉
= 1

N
∑N

i

(
fu,i
(
t1
)
− fu,i

(
t0
))
. (16)  

Significance was attached to these computations using bootstrapped 
confidence intervals of the means (i.e., bootstrapping from the results of 
the 30 selected parameter sets). 

2.8. Topic 1: What is the projected long-term response of the ICB 
vegetation cover to the managed wildfire (1972–2012) regime? 

In the absence of temporal trends, a system subject to random 
disturbance will reach a stochastic steady state, in which the statistics 
describing the system do not change in time. After E0 years of managed 
wildfire, analysis of vegetation maps in ICB suggested that this condition 
was not yet reached (Boisramé et al., 2017). Ge therefore asked (i) 
whether the ICB had reached a stochastic steady state after E0 years of 
managed wildfire, (ii) if not, how Afar’ (in terms of mean forest cover) 
from a stochastic steady state condition the ICB was after E0 years of 
managed wildfire, and (iii) what the landcover composition of the sto-
chastic steady state condition would be. 

Ge evaluated these questions primarily by comparing the ensemble 
predictions at times ranging from E0 to 1000 years of simulations. Ge 

firstly confirmed that the model predictions were stationary after 1000 
years of simulation. Ge then asked whether predictions at E0, 100, 200, 
E00, 600, and 800 years were significantly different from the stationary 
conditions at year 1000, and if so, by how much. This approach re-
interprets the simulation year from the calibrated ensemble simulations 
– instead of interpreting simulation year 1000 as calendar year 1872, we 
interpret simulation years E0–1000 as calendar years 2012–2972. This 
approach allows an assessment of whether contemporary (2012) vege-
tation is approaching stochastic steady state, whether it would be ex-
pected to do so within a reasonable policy horizon (100 years), and at 
what point in time the vegetation dynamics would reach a stochastic 
steady state. 

The aim of these analyses is not to forecast future states of the basinD 
future changes in landcover composition will reJect interactions be-
tween vegetation and fire regime, and external forcing such as 
continuing increases in CO2 and accompanying changes in hydro-
climate. For example, increasing atmospheric CO2 levels may promote 
faster growth rates (Conohue et al., 2013), while increased drought 
frequency or severity may have the opposite effect (Allen et al., 2015). In 
running the model simulations to steady state, we held the growth rates 
of the upper and lower canopy layers constant. This means that the long- 
term model predictions do not account for increasing CO2 levels, or 
other drivers of non-stationarity in forest growth behavior and fire re-
gimes that may occur in the coming years. Ghat the analysis provides is 
an estimate of a response timescale over which the forest would adjust to 
fire frequency changes, if all other factors were stationary. 

2.9. Topic 2: If the fire regime were to change relative to the 1972–2012 
period, what would be the implications for the long-term forest fraction of 
ICB? 

Ge addressed this topic by considering 2 fire regime change sce-
narios, which altered fire frequency or fire severity independently 
(described in 2.9.1 anf 2.9.2 and Table 3). For a given scenario, we 
initialized the calibrated parameter ensemble equivalently to the cali-
bration simulations (i.e., E00 simulations per parameter set). Firstly, the 
simulations were run for 50 years (to the year 2022), using the observed 
severity distribution and calibrated return intervals. After 50 years, each 
scenario was imposed as a step-change in the fire characteristics. Ge 
assessed the effects of these imposed regime changes at simulation years 
100 (2072) and 600 (by which time simulations were close to steady 
state). As in Topic 1, these simulations are not intended to forecast 
future states of the basin, but rather to estimate how forest would adjust 

%ig. 2. Panel A shows, for an example simulation, Gu and Gl as a function of time for a single point in space (E00 such simulations were averaged per parameter set to 
compute the forest fraction f u trajectories in Panel B). Panel B shows f u as a function of year, for all tested parameter sets (light blue) and the calibrated parameter 
sets (dark blue), where fire suppression was implemented in model year 1000. On the right, forest fractions increase above the initial (1972) values under this 
suppression scenario because the 1972 conditions do not represent steady state conditions (under fire suppressed conditions, the forest fraction approaches 100H in 
steady state). Panel C shows the distribution of α and RI in the calibrated parameter sets, with color indicating β. Note that in this figure, only 27 of the 30 parameter 
sets can be independently identified, due to overlapping data where different β are associated with the same α and RI. LSee online article for color version of 
this figure.M 
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to changes in the current fire regime, all other factors being stationary. 

2.9.1. Return interval scenario 
Assuming that managed wildfire policies are retained in ICB, climate 

change may result in increased frequency of ignitions (Gesterling and 
Bryant, 2008; Yue et al., 201E; Gesterling, 2018). Ge followed Gest-
erling and Bryant (2008) and Rakhmatulina et al. (2021) in considering 
the scenario in which fire frequency increases by 30H. This scenario was 
implemented for the post-2022 period by reducing the return interval by 
30H in each of the calibrated parameter sets. 

2.9.2. Severity scenario 
In the Sierra Nevada area surrounding ICB, fire severity has increased 

in recent decades, with RdNBR data for fires in this area from 1983 to 
2018 revealing an increase in RdBNR values of E.5 ± 3.7 year−1 

(Rakhmatulina et al., 2021). Iowever, over the managed wildfire 
period, ICB itself has not experienced a trend in fire severity (Rakhma-
tulina et al., 2021), making it challenging to predict future changes in 
fire severity. Ge therefore elected to explore the model sensitivity to fire 
severity by projecting the 1983–2018 Sierra Nevada trend 20 years into 
the future, resulting in a 90 unit increase in RdBNR (the Aseverity 1x’ 
scenario). To apply these projections as step changes, we uniformly 
shifted the RdNBR data for ICB by 90 or 180 units, and then rescaling to 
severity ϕ as per Section 2.5.2 “Fire severity distribution”. These 
transformations (see Fig. 1) result in an increase of the mean ϕ from 0.E5 
(observed) to 0.5E (severity 1x). 

2.10. Topic 3: Why did the post-1970 fire regimes in ICB and SCB 
produce such different vegetation outcomes to date? 

A number of hypotheses have been proposed to explain the differ-
ences between the ICB and SCB responses to fire management. The 
simplest of these include the greater fire frequency observed in ICB 
compared to SCB, while more complex hypotheses postulate that stand- 
replacing fire was more frequent in ICB than SCB, potentially due to 
differences in overall climate, soil and basin productivity, and fire 
management interventions themselves (Stevens et al., 2020; Stephens 
et al., 2020). Although we cannot use the simple model presented here to 
assess underlying feedbacks between vegetation and fire regime, we can 
use it to ask whether similar basins exposed to different fire frequencies 
over the managed wildfire period would produce the observed divergent 
outcomes, all other factors being equivalent, or whether additional 
changes (e.g. to forest growth rates) need to be included for the models 
to reproduce the minimal changes observed in SCB. Ge followed this 
strategy in part because there is not enough data to independently 
calibrate the model for SCB. Thus, the SCB simulations use the ICB 
calibrated parameter ensemble for α or β. Given the similarity in land-
cover and climate between basins, this is a reasonable assumption 
(Collins et al., 2016). SCB and IBC had similar forest cover fractions 

when fire suppression was reversed, so SCB simulations were initialized 
in the same way as ICB. 

Ge then considered several scenarios. Firstly, we held all drivers 
common between SCB and ICB, other than fire frequency, which was 
adjusted to match ICB. To perform this adjustment, we scaled the return 
intervals in the calibrated parameter set by a factor of 2.E, which is the 
approximate ratio of the rotation periods between basins during the 
managed wildfire period (Collins and Stephens, 2007). 

Next, we considered altering the severity distributions; however, for 
the managed wildfire period, the estimated proportion of area burned at 
high severity was comparable between the basins (based on Landsat- 
derived RdNBR data; (Parks et al., 2018)). 

Finally, we considered the various lines of evidence that point to SCB 
being drier than ICB (Stevens et al., 2020), and how this, in addition to a 
longer fire return interval, could affect forest cover changes. Ghile field 
measurements and associated models suggest higher mean soil moisture 
in ICB compared to SCB (Stevens et al., 2020; Boisramé et al., 2018), 
there is insufficient data to directly evaluate differences in the average 
water availability between the basins. Instead, we used the normalized 
difference vegetation index (NCVI) as a proxy for productivity and thus 
soil moisture. Ge rescaled the soil moisture in ICB pixels by the ratio of 
NCVI between the basins (NCVI in ICB was approximately 10H greater 
than in SCB for the 198E–1985 period; (Stevens et al., 2020)) and 
repeated the fire frequency simulations. 

For all modeled scenarios, we compared the 1972 forest fraction to 
model predictions after E0 years of managed wildfire policy. 

2.11. Analytical predictions 

To provide context for the forest-fire dynamics predicted by the 
numerically modeled scenarios, we applied the analytical solution to the 
ICB using the calibrated parameters. Making direct comparisons be-
tween modeled and analytical results required (i) replacing the distri-
bution of sampled severities with a single Aeffective’ fire severity, and (ii) 
obtaining an estimate of the forest cover fraction f̂ u from analytical 
predictions of upper and lower canopy biomass. To estimate the effec-
tive fire severity, we inverted Eq. 10 for Ĝu to obtain an effective upper 
canopy severity, ϕ̂uD 

ϕ̂u = 1− exp
(

ru
′RI
(

Ĝu

ku
− 1
))

(17)  

yielding a unique value of ϕ̂u for each of the 30 calibrated parameter sets 
(i.e., for each RI, β and α combination), using the mean S value for all 
sampled pixels. Ge repeated this process for the lower canopy and 
checked for agreement between the effective severities (see supporting 
information Figure A). To estimate the forest fraction from predicted Ĝl 

and Ĝu, we fit a random forest model to all data from the numerical 
simulations, predicting fu as a function of the ratio of Gl/Gu,α and β. This 
was needed because the analytic model predicts Ĝl and Ĝu, but not f̂ u; 
thus, model fit to the numerical simulations was used to relate these 
quantities. The model performed very well, with a test set score of R2 >
0.99 using cross validation. Analytical solutions were therefore pre-
sented in terms of the direct analytical solutions for Ĝu, and Ĝl, and the 
estimated f̂ u associated with them. 

(. )esults 

3.1. Calibration 

Selection of the 30 parameter sets with the lowest errors produced 
calibration errors less than 5.7H across all four test metrics (see sup-
porting information Figure S8 showing histograms of the calibration 
errors). The forest fraction trajectories predicted from the calibrated 

&a'le ( 
Scenarios implemented in ICB and SCB. For the AICB potential scenarios’, 
changes in RI or severity were applied in 2022, after 50 years of managed 
wildfire. The RdNBR trend referenced in the severity scenarios is described in 
Section 3.3 “Severity scenarios”.   

Scenario Cescription 

ICB potential scenarios  
RI +30H 30H increase in fire frequency (RI values decrease by 30H).  
Severity 1x Sierra Nevada 1982–2018 RdNBR trend continues for 20 

years (added 90 RdNBR units to the RdNBR distribution and 
applied the same transformation to obtain severity). 

SCB test scenarios  
RI× 2.E Calibrated RI scaled by a factor of 2.E, based on the observed 

difference in fire rotation periods.  
RI× 2.E, 10H 
drier 

Calibrated RI scaled by a factor of 2.E, with soil moisture 
reduced by 10H  
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parameter sets (dark blue lines in Fig. 2B) reproduce the 20H decrease in 
ICB forest fraction between 1972 and 2012 and recover the initial 
(1972) conditions following 100 years of fire suppression (simulation 
years 1000–1100 corresponding to calendar years 1872–1972). 

Associations between RI and β in the calibrated parameter set (see 
Fig. 2C) reJect opposing inJuences of these parameters on the system 
dynamics. Increasing RI favors higher Gu, because the slower-growing 
upper canopy benefits from longer periods of recovery. By contrast, 
increasing β, which reduces the drought tolerance, suppresses the 
growth rates of both canopies; however, in the case of the lower canopy, 
the benefits of suppressing the upper canopy outweigh the costs of 
reduced drought tolerance. Smaller return intervals are similarly asso-
ciated with larger α in the calibrated parameter set, because increasing α 
suppresses lower canopy growth, which compensates for the faster 
lower canopy growth rates. Thus, compensating effects of the parame-
ters with respect to Gu and Gl (and thus the forest fraction), result in 
correlation within the calibrated parameters. In spite of these compen-
sating effects, small errors across all four test metrics suggest that the 
parameters have been well identified (see supporting information 
Table S2, which lists the calibrated parameters – α, β and RI values – 
along with the errors in the calibration metrics). 

3.2. Steady state 

To confirm that the vegetation trajectories reached a steady state 
within 1000 years of simulation, we compared the forest fraction in the 
final century of managed wildfire policy to the prior century (i.e., be-
tween simulation years 900–1000 and 800–900). The fu distributions 
are not significantly different between these periods, in either the cali-
brated parameter ensemble or the ensemble of tested parameters (using 
the Kruskal–Gallis I-test). 

Summarizing the ensemble simulations, the results suggest that the 
vegetation in ICB was not in steady state in 2012. The ensemble pre-
dictions of the forest fraction between E0 and 1000 years did not overlap 
(Fig. 3A), and the ensemble average difference between timesteps did 
not cross zero (Fig. 3B). The predicted stochastic steady state forest 
fraction was 〈fu〉 = 0.E3 ± 0.02 (Table E), with approximately 100 years 
(from 1972) required for the ICB forest cover dynamics to approach 
within 10H of these steady state conditions. In 2012, the basin forest 
cover was approximately half-way between its fire-suppressed initial 
and a stochastic steady state condition in dynamic equilibrium with the 
(current) managed wildfire regime. (See Table 5). 

%ig. (. (Panel A) Iistograms show the calibrated ensemble prediction of the forest fraction at E0 and 1000 years. (Panel B) Iistogram of the changes in forest 
fraction Δf u between E0 and 1000 years, where Δfu was computed separately for each parameter set. In both panels, vertical lines show the bootstrapped 95H 
confidence intervals for the mean. LSee online article for color version of this figure.M 

&a'le * 
Ensemble predictions of ICB forest cover (calibration parameter sets only) over 
multiple simulation durations. The section AEnsemble prediction of 〈fu〉’ shows 
the ensemble prediction of the forest fraction fu, with bootstrapped confidence 
intervals in parentheses, for select simulation years ranging from E0 to 1000. 
Rows labeled ACifference from t = E0 years’ show the ensemble average differ-
ence between 2012 (simulation year E0) and two subsequent timesteps (simu-
lation years 100 and 1000). The final section, labeled ACifference from t = 1000 
years’ shows the ensemble average difference between the year 1000 and pre-
vious timesteps. The results suggest that the ensemble is in steady state by the 
year 600; however, the difference between the years 200 and 1000 is already 
small (〈Δfu〉 = −0.05 ± 0.02).  

Simulation year 〈fu〉

Ensemble prediction of 〈fu〉
0 0.83 (0.83, 0.83) 
E0 0.65 (0.6E, 0.66) 
100 0.5E (0.53, 0.55) 
200 0.E8 (0.E7, 0.50) 
E00 0.E5 (0.E3, 0.E6) 
600 0.E3 (0.E0, 0.E5) 
800 0.E3 (0.E0, 0.E5) 
1000 0.E3 (0.E1, 0.E5) 

Difference from t = E0 years 
100–E0 −0.11 (-0.12, −0.10) 
1000–E0 −0.22 (-0.2E, −0.21) 

Difference from t = 1000 years 
1000–0 −0.E0 (-0.E2, −0.38) 
1000–100 −0.11 (-0.13, −0.09) 
1000–200 −0.05 (-0.07, −0.0E) 
1000–E00 −0.02 (-0.03, −0.00) 
1000–600 0.00 (-0.01, 0.01) 
1000–800 0.00 (-0.01, 0.01)  

&a'le + 
Summary of the tested scenarios in simulation years 100 (2072) and 600. 〈fu〉 is 
the ensemble prediction of the forest fraction fu.  

Scenario 〈fu〉 Change from 2012 

Simulation year 100 
Calibration 0.55 (0.53, 0.56) −0.11 (-0.12, −0.10) 
Cecrease RI 30H 0.EE (0.E3, 0.E6) −0.22 (-0.23, −0.21) 
Increase severity 1x 0.50 (0.E8, 0.51) −0.17 (-0.18, −0.15) 
Simulation year 600 
Calibration 0.E3 (0.E1, 0.E6) −0.23 (-0.25, −0.21) 
Cecrease RI 30H 0.20 (0.18, 0.22) −0.E6 (-0.E8, −0.EE) 
Increase severity 1x 0.30 (0.27, 0.31) −0.37 (-0.39, −0.3E)  
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3.3. ICB Scenarios 

Increasing fire frequency produced significant declines in forest 
fraction 〈fu〉D by simulation year 100, 〈fu〉 decreased by 22 ± 2H for a 
30H decrease in RI (see Fig. EA). Compared to the return interval sce-
nario, the severity scenario resulted in a smaller but significant decline 
of 15 ± 2H in 〈fu〉 by simulation year 100 (see Fig. EB). 

3.4. SCB results 

Fig. EC shows the 〈fu〉 trajectories for the two SCB test scenarios, with 
the calibration simulations included for reference. The results indicate 
that the different return intervals between ICB and SCB are sufficient to 
explain the differences in 〈fu〉 in 2012. Ghile 〈fu〉 was reduced by 18H 
between 1972 and 2012 in the ICB simulations, 〈fu〉 decreased by only 
2H in the SCB RI × 2.E simulations, highly comparable to observations 
suggesting a decrease on the order of 1H for the same period (Stevens 
et al., 2020). The prediction is not notably changed by reducing soil 
moisture by 10H. 

3.5. Analytical results 

To understand the modeled scenarios in the context of possible fire 
regimes, analytical response surfaces are shown in RI−ϕspace in Fig. 5. 
As shown in these solutions, constant upper canopy biomass contours 
curve through the RI−ϕ space, so that upper canopy biomass is most 
sensitive to fire severity at moderate-high return intervals (≈ 20 years), 
and most sensitive to return interval at moderate-high severities (≈ 0.7), 
with biomass maximised at low severity and high return interval. A more 
complex surface emerges for the lower canopy biomass, where the peak 
understory biomass broadly falls along the contour for of Ĝu ≈ 5 kg/m2. 
This represents an optimum between conditions where light competition 
from a dense upper canopy suppresses understory growth (a situation 
arising for long fire return intervals and low fire severities), and con-
ditions where fire is so frequent and severe as to suppress both upper and 
low canopy biomass. Unsurprisingly, the ̂f u response is similar to that of 
Ĝu, although it saturates under conditions of relatively more frequent 
and severe fire. (See Table 6). 

Points marked on Fig. 5 show the specific model scenarios tested. The 
analytical results demonstrate that under the managed wildfire regime, 
the ICB lies in a reasonably Asensitive’ part of the parameter space, where 
large changes in forest fraction result from modest changes in fire fre-
quency or return interval. Conversely, the SCB is located in a AJatter’ 

region of the parameter space, where changes in return interval or in fire 
severity are unlikely to generate large changes in estimated forest 
fraction, even though the upper canopy biomass density may change 
more dramatically (panel A). Note that these surfaces treat all forest 
growth parameters as constant; different sensitivities to fire regime 
would arise if forest growth were to change in addition to fire frequency 
and severity. Illustrative responses to changes from calibrated parame-
ters are shown in supporting information Fig. E. 

*. ,iscussion 

The study investigates the long term response of forest cover to 
managed wildfire in two Sierra Nevada basins, its sensitivity to factors 
that differ between these basins, and the effects of potential climate 
scenarios in ICB. The model results reveal some of the value of explor-
atory modelsD despite its simplicity, the calibrated model results are 
consistent with the available data relating to landcover composition and 
responses to fire management in ICB. The model allows for synthesis of 
numerous observations and datasets pertaining to the fire and vegeta-
tion dynamics in the basin, and interprets their implications in terms of a 
variable of primary interest, the forest cover fraction. The model reveals 
sensitivities to different aspects of the fire regime and climate, and 
provides some clear indications for consideration when designing pol-
icy. This information complements detailed investigations undertaken 
using highly parameterized process models (Boisramé et al., 2019; 
Rakhmatulina et al., 2021), by allowing longer simulations and explo-
ration of more aspects of the fire regime than have been possible for 
these basins to date. 

The results firstly suggest that the ICB forest cover has not yet 
reached a stochastic steady state condition. This is consistent with the 
findings of Boisramé et al. (2017), who found no indication that rates of 
change in several landscape ecology indicators for the ICB were slowing 
by 2012. These model results suggest that approximately 200 years of 
fire suppression would be needed for the forest properties of ICB to reach 
stochastic steady state. This timescale is very similar to that needed for 
complete forest recovery following a restoration of the natural fire 
regime. That is - fire suppression and managed wildfire policies alter 
forest cover in the ICB over comparable time scales. 

The time scales of forest cover response to an increase in fire fre-
quency, however, are sensitive to the characteristics of the fire regime. 
As revealed by analysis of SCB, fire return intervals above a certain 
length may be insufficient to produce significant forest cover change in a 
basin, even following restoration of managed wildfire regimes. 
Conversely, shorter fire return intervals or increased fire severity 

%ig. *. Forest fraction 〈fu〉 trajectories for (Panel A) the shorter return interval and increased severity scenarios in ICB (Panel B) the SCB test scenarios. The cali-
bration ensemble is included for reference. LSee online article for color version of this figure.M 
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accelerate the rate of forest cover conversion (Coop et al., 2020; Ste-
phens et al., 2021). These changes do not necessarily represent a viable 
management approach, however, as the rapid rate of forest conversion is 
also associated with lower steady state forest cover. For example, a 30H 
reduction in fire return interval in ICB imposed in 2022 results in the 
forest cover approaching a value similar to the Anatural’ steady state over 
a 50 year timeframe (Fig. EA). Iowever, in the long term (600 years), 
such a frequent fire regime results in a very low stationary forest cover of 
0.2 in the basin. 

The simulations suggest that the distinction between ICB and SCB 
forest cover trajectories is explained by the difference in fire regime 
between the two basins. The simple model cannot, however, determine 
why the fire return intervals are so distinct between the two basins. 
There is a known management component associated with the use of fire 
suppression in SCB, but it is not clear if the different fire regimes in the 
basins are completely, or only partly attributable to these management 
differences. 

The modeled forest cover was very sensitive to the difference in fire 
return interval between the basins. As revealed by the analytical results, 
the steady state conditions are most sensitive to return interval for in-
termediate values of fire severity (ϕ̂u ≈ 0.7), with less sensitivity to re-
turn interval when fire severity is very high or low. Similarly, the results 
are most sensitivity to fire severity for intermediate return intervals 
(RI ≈ 20 years). Consequently, where both return interval and severity 
adopt moderate values, the outcomes for forest cover are likely to be 

sensitive to changes in fire conditions. Furthermore, as shown in the 
analytical results presented in the supporting information, and made 
clear in the expressions Eq. 10 and 13, forest cover is also inJuenced by 
growth rates. 

Ghile predicting the long-term forest cover is difficult, the findings 
suggest cautious optimism in applying the managed wildfire approach to 
new basins. Cecreasing fire return intervals within fire suppressed for-
ests appear to be likely to produce long-term changes in forest cover. 
Ghere fire return intervals are lengthy, the simplest management tool is 
to increase the fire frequency. If this can be achieved while managing the 
initial risk of extensive high severity fire, there is every reason to expect 
forest cover to be reduced without severely impacting the local ecology 
and ecosystem services in the process - an outcome which itself reduces 
the risk of extensive high severity fire long-term. Ghile the outcomes of 
managed wildfire remain uncertain, the model results suggest that tar-
geting a reduction in fire return intervals is a viable pathway for 
reversing the effects of fire suppression. 

The results suggest that changes in fire regime associated with a 
changing climate have the potential to alter the outcomes of a managed 
wildfire policy. To date, increases in fire severity within the managed 
basins have been negligible, and even projecting forward the changes in 
fire severity experienced across the broader Sierra Nevada shows com-
parable inJuence on forest cover to the differences in return interval 
between the basins. Most changes expected under a changing climate 
would tend to reduce forest cover in the managed wildfire basins. 

Iowever, despite the appeal and simplicity of the exploratory model, 
these Aextrapolated’ results must be interpreted within the limitations of 
the simple model structure and parameterization. Several processes that 
could importantly inJuence vegetation cover trajectories, including 
feedbacks between vegetation biomass and soil moisture, competition 
between canopy layers suppressing the upper canopies species, and the 
relationships between vegetation biomass and the fire characteristics of 
the landscape, are all omitted from the model. 

Future trends in fire severity will be determined by a number of 
interacting factors, which are not included in the simple model frame-
work presented here. For example, increasingly frequent and hotter 
droughts are expected to result in increasingly Jammable fuel condi-
tions (Brando et al., 201E) and heavy downed woody fuels from drought 
and bark beetle tree mortality can lead to increased fire severity (Ste-
phens et al., 2018; Stephens et al., 2022). Alternatively, increasing levels 
of drought-related tree mortality may reduce risks of high-severity 
stand-replacing fire by reducing ladder fuels (Iicke et al., 2012) and 
canopy fuels (Stephens et al., 2018). Predicting how these factors will 
play out in the Illilouette and Sugarloaf Creek Basins is challenging, and 
was not attempted here. 

%ig. +. Analytic predictions of the upper canopy biomass Ĝu (panel A), lower canopy biomass Ĝl (panel B), and forest cover fraction ̂f u (panel C), as functions of fire 
severity ϕ and return interval RI (all other parameters are equal to those used to calibrate the model). Circles show the ICB observations in parameter space, squares 
the RI scenarios, diamonds the severity scenarios, and triangles the SCB RI scenario. LSee online article for color version of this figure.M 

&a'le - 
Summary of SCB results at E0, 100 and 600 years for two scenarios, whereD (i) 
the return interval was increased by a factor of 2.E in the calibrated parameter 
ensemble (ARI× 2.E’), and (ii) the soil moisture was reduced by 10H in addition 
to the adjusted return interval (ARI × 2.E and 10H drier’). Results from the 
calibrated ensemble are included for reference.  

Scenario 〈fu〉 Change from 1972 

Simulation year 40 
Calibration 0.65 (0.6E, 0.66) −0.18 (-0.19, −0.17) 
SCB; RI× 2.E 0.81 (0.81, 0.82) −0.02 (-0.02, −0.01) 
SCB; RI× 2.E and 10H drier 0.79 (0.78, 0.79) −0.0E (-0.05, −0.0E) 
Simulation year 100 
Calibration 0.5E (0.53, 0.55) −0.29 (-0.30, −0.28) 
SCB; RI× 2.E 0.81 (0.80, 0.82) −0.02 (-0.03, −0.01) 
SCB; RI× 2.E and 10H drier 0.78 (0.77, 0.79) −0.05 (-0.06, −0.0E) 
Simulation year 600 
Calibration 0.E3 (0.E1, 0.E5) −0.E0 (-0.E2, −0.38) 
SCB; RI× 2.E 0.82 (0.80, 0.83) −0.01 (-0.03, 0.00) 
SCB; RI× 2.E and 10H drier 0.82 (0.80, 0.83) −0.01 (-0.03, −0.00)  
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The role of CO2 was similarly omitted from the long-term predictions 
(Topic 1) and fire regime scenarios (Topic 2) estimating forest cover 
changes over time. Global atmospheric CO2 levels have increased since 
managed wildfire regimes were implemented and will continue to in-
crease. Increasing CO2 inJuences vegetation growth (Ma et al., 2015; 
Saha et al., 2015), and interacts with other climate effects (e.g., drought 
stress, Cuan et al., 2018) and edaphic conditions, favoring the growth of 
some species over others under future conditions (Niinemets et al., 
2011). The projected long-term response of the ICB to the managed 
wildfire regime does not consider variable growth rates in response to 
rising CO2, nor how higher CO2 and associated changes in hydroclimate 
(e.g., increasing drought severity) will interact to change vegetation 
growth rates. 

These omissions mean that the model is most appropriately used 
within the context of its calibration, i.e., for forest cover in the range 
0.65–0.83. Results that extrapolate outside this range – and several of 
the results are based on such extrapolations – are necessarily specula-
tive. For example, as forest cover declines, the rate and extent of fire 
spread through ICB may change, relative to the 0.65–0.83 forest fraction 
case. Since spatial fire spread is not represented in the model, its effects 
on forest cover dynamics is accounted for using the calibrated return 
interval and forest growth parameters. The stationarity of these pa-
rameters across the simulated range of forest cover is not known - but it 
would be expected, for instance, that when forest cover becomes very 
sparse (Parks et al., 2015), fires might be spatially constrained by fuel 
limitations, as is known to already occur in ICB (Collins et al., 2009; 
Collins et al., 2016). Thus, the more extreme scenarios in which forest 
cover approaches zero may be exaggerated due to spatial constraints 
omitted from the model. Similarly, the stability of high forest cover 
across the parameter space (e.g. the large blue areas on Fig. 5C) may be 
exaggerated, as the probability of fires spreading rapidly across large 
areas is not well captured when calibrating to the fragmented ICB 
landscape. Consequently, the results are most reasonably interpreted 
when considering small shifts in forest and fire properties relative to ICB. 

The results suggest that, at present, the ICB has not yet reached a 
stochastic steady state, and that its forest cover will likely continue to 
decline if the managed wildfire regime continues. They suggest that 
forest change through manipulation of fire regimes is a slow and vari-
able process, with a final outcome likely to be inJuenced by ongoing 
changes in forest growth rates and fire regime properties. They suggest 
that insufficient decrease in fire return interval compared to suppressed 
conditions may result in little observable change in forests from today’s 
conditions. Managed wildfire remains an appealing instrument for forest 
restoration – but one which is likely to need ongoing monitoring and 
research to fully understand and shape its impacts on the landscape. 
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