

VIA Link: <https://www.fs.usda.gov/project/ipnf/?project=65300>

February 19, 2024

Doug Nishek
Bonners Ferry Ranger District
Idaho Panhandle National Forest
6286 Main Street
Bonners Ferry, ID 83895

Dear Doug:

On behalf of the American Forest Resource Council (AFRC) and its members, thank you for the opportunity to comment on the Katkee Fuels Project.

AFRC is a regional trade association whose purpose is to advocate for sustained yield timber harvests on public timberlands throughout the West to enhance forest health and resistance to fire, insects, and disease. We do this by promoting active management to attain productive public forests, protect adjoining private forests, and assure community stability. We work to improve federal and state laws, regulations, policies, and decisions regarding access to and management of public forest lands and protection of all forest lands. Many of our members have their operations in communities within and adjacent to the Idaho Panhandle National Forest and management on these lands ultimately dictates not only the viability of their businesses, but also the economic health of the communities themselves.

AFRC is writing this letter to support the Katkee Fuels Project that aims to improve forest health, address wildfire risk and resiliency, and provide useful timber products to the local communities. **This is exactly the type of project Secretary of Agriculture Vilsack, Forest Service Chief Moore and the Biden Administration have been seeking to plan and execute through the Wildfire Crisis Strategy.** The outlined goals of protecting communities from catastrophic wildfire and making our public lands healthier and more resilient align with my past conversations with the Chief, and I hope to be able to highlight this Project as a successful example of his and the agency's vision in future meetings.

The Project also has a specific focus on addressing fire risk in proximity to private lands, which we strongly support. The Project, which proposes 11,300 acres of hazardous fuels treatment, is

located about seven miles southeast of the City of Bonners Ferry and borders several miles of private land including homes, cabins, ranches, and tree farms. Over 400 landowners have property and improvements within a mile of the project boundary. Other important infrastructure is also located within the Project boundary including several community water associations as well as two powerlines.

The landscape in this Project area is highly prone to wildfire with the last large fire occurring in the early 1900's. Fortunately, all other wildfires since then have been quickly suppressed with the exception of the Katka fire that burned 400 acres in 2022. During that fire, local residents were put on notice for possible evacuation. However, these effective suppression efforts over the past century have had the unintended consequence of creating an unnaturally high level of fuel loading. The scoping document acknowledges the fire risk when it states that "post-fire findings indicate that the risk of severe wildfire(s) with adverse effects on a community is not a matter of "if" but "when" these events will occur." The relative exposure of this watershed to wildfire risk was highlighted in 2022 when the Secretary of Agriculture designated the Kootenai Complex as one of the firesheds at highest risk due to hazardous fuel buildup from congested forest conditions. Among the areas prioritized by the Secretary in this Complex is the Katkee Fuels Project.

A letter from the Chief, dated July 16, 2023, directed each Unit to use the emergency authorities described in the Bipartisan Infrastructure Law (BIL) as the "default way of conducting environmental reviews" for wildfire risk reduction projects with the 250 high-risk firesheds; the Katkee Fuels project is within one of those firesheds. Section 40807 of the BIL includes authorities for "emergency actions" that include preparation of Environmental Assessments (EA) with a single action alternative and a no-action alternative. This authority also ensures that Decisions are not subject to objection under the predecisional administrative review processes. We strongly urge the Forest Service to adhere to the Chief's direction by utilizing these authorities to expedite the implementation of the hazardous fuels reduction work outlined in the Kathee Fuels scoping document.

The Forest Service has recognized the need to leverage the private sector and non-profit organizations to accomplish the goals outlined in the Wildfire Crisis Strategy. AFRC believes there are opportunities to work cross-boundary utilizing partners such as the BLM and IDL through Shared Stewardship and Good Neighbor Authorities. We highly recommend using these tools to add capacity to the work you are undertaking in this important landscape. The Idaho Panhandle has an effective Shared Stewardship program that has developed projects such as Scattered Lands north of Coeur d'Alene. We urge the Forest Service to consider similar partnering tactics to assist with the timely implementation of the Katkee Project.

While AFRC supports the Katkee Fuels Reduction Project we would like you to consider the additional information below that could supplement and improve the ensuing assessment.

1. AFRC supports the Purpose and Need for this Project which includes:

- Decrease wildfire impacts on resource values and private land thought hazardous fuels reduction activities on public lands.

- Maintain and improve forest resiliency by managing the composition and structure of the stands that mimic historic landscapes.
- Decrease sediment to improve water quality and habitat.
- Maintain and improve habitat for grizzly bears.
- Enhance the local economy with the work needed for Forest restoration.

The Project description recognizes that adjacent private land is threatened by current forest conditions that have exacerbated fire risk on National Forest and BLM lands. Reducing those threats is acknowledged as critical to improving forest health and resiliency on both Federally managed land and private land. The Planning Document effectively describes the primary focus of the project of *reducing the hazardous fuels and initiating the restoration of forest stands in the project area where prudent and economically feasible, as well as guiding the project towards objectives listed in the Idaho Panhandle National Forests Land Management Plan.*

2. AFRC supports the proposed vegetation treatments listed in the table below.

Table 1. Proposed Vegetation Treatments – Approximate Acres

Restoration Objective	Acres
Intermediate Treatments – to include precommercial thinning, low thinning, commercial thinning.	4,349
Regeneration Treatment	4,684
BLM – Intermediate Treatments	732
BLM - Regeneration	316
Fuel Breaks	300
Burn Only Units	900
Total Vegetation Treatments	
	11,281

Figure 10 Table 1. Proposed Vegetation Treatments – Approximate Acres

We're pleased to see that 56% of the Project area will be treated in this entry. Maximizing treatment acres under any NEPA document is a critical component of increasing pace & scale of hazardous fuels reduction. The Project area will not likely be considered for additional treatment over the next 15-20 years and all urgent work needs to be accomplished with this entry.

3. To effectively address the high fuel loading conditions in the Project area, we urge the Forest Service to develop default silvicultural prescriptions that retain basal area levels of 40 sq. ft. per acre. This density level has proven effective for forest health and fire resilience objectives in similar stand types in the region.

AFRC also supports the proposed regeneration harvests in stands impacted by root diseases and consequent bark beetle infestations. This also helps to regenerate a young cohort of early seral species (western larch, western white pine, and/or ponderosa pine)

which are more fire resistant. Some of the areas of regeneration will need to be larger than 40 acres which would require Regional Forester approval, which we support.

4. AFRC also supports the use of fuel breaks proposed along the power line corridors and adjacent to private land boundaries. These accomplish both improved fire suppression opportunities in addition to enhancing residual tree growth. AFRC would further suggest that these fuel breaks be put along all ingress and egress roads accessing the Project area for the safety of the residents and projection of resources.
5. AFRC supports the proposed treatment of stands classified as old growth. Two of the ten stands classified as old growth in the Project area are in need of treatment. One stand would receive underburning and a second, which is adjacent to private lands, would receive a 200 ft. fuel break, where small trees would be thinned, piled, and burned. These actions not only protect the old growth stands, but also protect adjacent private land.
6. The proposed treatments would also provide the timber products that local sawmills need to operate. Without these sawmills and the forest infrastructure, much of the restoration work needed in the Katkee Project could not be accomplished. The timber products provided by the Forest Service are crucial to the health of our membership. Without the raw material sold by the Forest Service these mills would be unable to produce the amount of wood products that the citizens of this country demand. Specifically, studies in Idaho have shown that 18 direct and indirect jobs are created for every one million board feet of timber harvested. Without this material, our members would be unable to run their mills at capacities that keep their employees working, which is crucial to the health of the communities that they operate in. These benefits can only be realized if the Forest Service sells their timber products through sales that are economically viable. This viability is tied to both the volume and type of timber products sold and the manner in which these products are permitted to be delivered from the forest to the mills. There are many ways to design a timber sale that allows a purchaser the ability to deliver logs to their mill in an efficient manner while also adhering to the necessary practices that are designed to protect the environmental resources present on Forest Service forestland.
7. Consideration of economic viability is crucial to the effective implementation of the treatments proposed. Additionally, the value of any product harvested from the Project area can help offset the cost of doing the work. With that in mind, we would like to remind the District that there are many ways to design a timber sale or stewardship contract that allows a purchaser the ability to deliver logs to their mill in an efficient manner while also adhering to the necessary practices that are designed to protect the environmental resources present on Forest Service forestland. The primary issues affecting the ability of our members to feasibly deliver logs to their mills are firm operating restrictions. As stated above, we understand that the Forest Service must take necessary precautions to protect their resources; however, we believe that in many cases there are conditions that exist on the ground that are not in step with many of the restrictions described in Forest Service EA's and contracts (i.e. dry conditions during wet season, wet conditions during dry season).

We would like the Forest Service to shift their methods for protecting resources from that of firm prescriptive restrictions to one that focuses on descriptive end-results; in other words, describe what you would like the end result to be rather than prescribing how to get there. There are a variety of operators that work in the Idaho Panhandle National Forest market area with a variety of skills and equipment. Developing an EA and contract that firmly describes how any given unit shall be logged may inherently limit the abilities of certain operators.

For example, restricting certain types of ground-based equipment rather than describing what condition the soils should be at the end of the contract period unnecessarily limits the ability of certain operators to complete a sale in an appropriate manner with the proper and cautious use of their equipment. To address this issue, we would like to see flexibility in the EA and contract to allow a variety of equipment to the sale areas. We feel that there are several ways to properly harvest any piece of ground, and certain restrictive language can limit some potential operators. Though some of the proposal area will likely be planned for cable yarding, there are opportunities to use certain ground equipment such as fellerbunchers and processors in the units to make cable yarding more efficient. Allowing the use of processors and fellerbunchers throughout these units can greatly increase its economic viability, and in some cases decrease disturbance by decreasing the amount of cable corridors, reduce damage to the residual stand and provide a more even distribution of woody debris following harvest.

The effectiveness of harvesting and yarding low volume per acre on steep slopes is a significant obstacle to implementation. Tethered-assist logging is becoming a more economical, safe, and available method of yarding on steep slopes throughout the region. The weight displacement provided by tethering allows tracked equipment to operate on steep ground with limited soil displacement or compaction. Standard psi levels for that tracked equipment are transferred to the tethering uphill. Other Forests in the Region have permitted this equipment to be used on Forest Service thinning stands on slopes up to 70 percent. We urge the Forest to consider allowing this equipment to be used where appropriate on the Katkee Fuels Project to mitigate implementation obstacles.

Finally, AFRC would like the Forest to examine the days that operations and haul are shut down due to hunting seasons and other outdoor recreation. The logging community has limited operating time at best, and further reductions such as these only makes surviving in the logging business that much more difficult.

8. Climate resilience is discussed throughout the scoping document. AFRC appreciates the Forest's acknowledgement of the importance of forest management and its contribution to reducing greenhouse gas emissions and sequestering carbon long-term into forest products. We encourage the Forest to incorporate these elements into the ensuing EA.

AFRC would also like the District to consider the information below. While you have Forest wide information on carbon cycling and storage information, AFRC encourages the Forest to conduct a detailed analysis on the Project's impacts to climate change, carbon sequestration, and greenhouse gas emissions. Interim CEQ regulations pertaining

to the analysis of this resource have recently been updated and the Forest Service must conduct its analysis on this Project accordingly. Specifically, those regulations require that greenhouse gas emissions be analyzed for all federal actions. Those regulations also encourage federal agencies to consider the context of short-term emissions as a result of actions that will improve long term sequestration and storage. We strongly believe that the minor, short-term emissions associated with timber harvest and other associated treatments are dwarfed by the long-term benefits associated with such treatments.

We urge the District to clearly outline how the proposed treatments, while possibly emitting carbon in the near term, would ultimately benefit climate change mitigation goals by 1.) reducing the likelihood of carbon emissions through wildfire; 2.) increasing the rate of carbon sequestration by reducing competition to residual trees; and 3.) storing carbon in long lasting wood products that would otherwise be at risk of loss through wildfire. Carbon loss through high intensity wildfire has become a leading cause of our national forests transitioning from carbon sinks to carbon sources. Active management to reduce such a transition would not only reduce carbon loss but accelerate carbon sequestration. And ultimately, any timber products harvested to further these two objectives has been shown to have long lasting carbon storage potential.

Please consider the points below from a technical report by the Climate Change Vulnerability Assessment and Adaptation Project (SWOAP) in Southwest Oregon.

- Wood harvested from the forest, especially timber used for durable structures, can be reservoirs of long-term carbon storage (Bergman et al. 2014).
- Forests and their products embody a closed-loop system in which emissions associated with harvests and product use are eventually recovered as forests regrow.
- Although products may be retired in solid waste disposal sites, they decompose quite slowly, causing carbon to continue to be stored for many decades.
- Products derived from the harvest of timber from national forests reduce carbon emissions by substituting for more energy-intensive materials including concrete, steel, and plastics.

There is scientific support for the practice of regular harvests at an age where tree growth begins to slow, storage of that tree carbon in long-lasting wood products, and proactive reforestation. A failure to do so would hamper that acre's ability to maximize carbon sequestration through the replacement of slow growing large trees with fast growing small trees and the storage of those large trees in long-lasting wood products. Not storing that carbon in wood products also poses the risk of losing the carbon in standing trees from high intensity wildfire, which is becoming increasingly prevalent on public lands in western states. A 2022 study estimated that wildfires in California in 2020 emitted 127 million metric tons of carbon into the atmosphere, making the greenhouse gas (GHG) emissions from wildfires the second most important source in the state, after transportation. For context, the U.S. Forest Service recently disclosed that the agency only "commercially harvests one tenth of one percent of acres within the National Forest System each year. Harvests are designed to improve stand health and resilience by

reducing forest density or removing trees damaged by insects or disease that make up 86 percent of those acres. The remainder are final regeneration harvests that are designed to be followed by reforestation.” There is an extraordinary opportunity to increase the practice of sustainable forest management on federal lands as an effective tool to sequester carbon.

Harvesting trees and transferring the stored carbon to wood products allows a land manager to “stack” the sequestration potential of that land. For example, assume an objective to maximize carbon sequestration on 100 acres over a 150-year period starting at year zero. Without active management and timber harvest, those trees would grow to 150 years and represent the only carbon sequestered on those 100 acres at the end of the 150-year cycle (assuming they don’t burn in a wildfire). Alternatively, the trees could be harvested on a 50-year rotation and stored in wood products. After 150 years, there would be carbon stored in an existing 50-year-old stand, plus carbon stored in wood products from an additional two 50-year-old stands previously harvested. The figure below from the IPCC (2007) illustrates the concept of stacking. **Please consider adopting this graph into the Kathee Fuels Project analysis.**

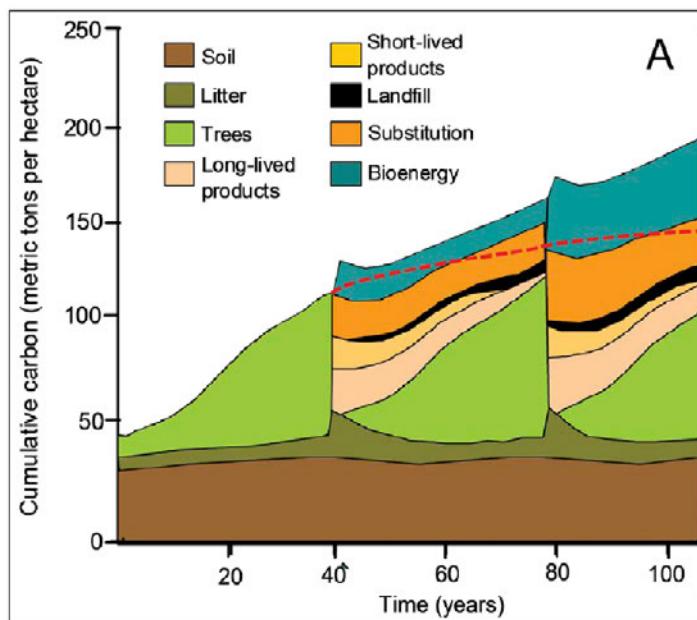


Figure 8.7—Carbon balance from a hypothetical forest management project in which the forest is harvested roughly every 40 years from land that started with low forest carbon stocks. This figure accounts for forest regrowth and carbon stored in wood products in use and landfills as well as the prevented release of fossil fuel carbon (also counted as stored carbon) via product substitution and biomass energy. It illustrates how forests can continue to accrue carbon over time with forest management. Figure is from McKinley et al. (2011) and adapted from IPCC (2007).

We believe that this graph encapsulates the forest management paradigm that would be most effective at maximizing carbon sequestration on a per-acre basis by “stacking” storage in wood products and regrowth of newly planted trees. A 2013 study from the Journal of Sustainable Forestry summarized these concepts well: *More CO₂ can be sequestered synergistically in the products or wood energy and landscape together than in the unharvested landscape. Harvesting sustainably at an optimum stand age will sequester more carbon in the combined products, wood energy, and forest than harvesting sustainably at other ages.*

We would like to encourage the Idaho Panhandle National Forest to consider several additional documents related to carbon sequestration related to forest management.

McCauley, Lisa A., Robles, Marcos D., Wooley, Travis, Marshall, Robert M., Kretchun, Alec, Gori, David F. 2019. Large-scale forest restoration stabilizes carbon under climate change in Southwest United States. *Ecological Applications*, 0(0), 2019, e01979.

Key points of the McCauley paper include:

- Modeling scenarios showed early decreases in ecosystem carbon due to initial thinning/prescribed fire treatments, but total ecosystem carbon increased by 9–18% when compared to no harvest by the end of the simulation.
- This modeled scenario of increased carbon storage equated to the removal of carbon emissions from 55,000 to 110,000 passenger vehicles per year until the end of the century.
- Results demonstrated that large-scale forest restoration can increase the potential for carbon storage and stability and those benefits could increase as the pace of restoration accelerates.

We believe that this study supports the notion that timber harvest and fuels reduction practices collectively increase the overall carbon sequestration capability of any given acre of forest land and, in the long term, generate net benefits toward climate change mitigation.

Gray, A. N., T. R. Whittier, and M. E. Harmon. 2016. Carbon stocks and accumulation rates in Pacific Northwest forests: role of stand age, plant community, and productivity. *Ecosphere* 7(1):e01224. 10.1002/ecs2.1224

Key points of the Gray paper include:

- Although large trees accumulated C at a faster rate than small trees on an individual basis, their contribution to C accumulation rates was smaller on an area basis, and their importance relative to small trees declined in older stands compared to younger stands.
- Old-growth and large trees are important C stocks, but they play a minor role in additional C accumulation.

We believe that this study supports the notion that, if the role of forests in the fight against climate change is to reduce global greenhouse gasses through maximizing the sequestration of carbon from atmospheric CO₂, then increasing the acreage of young, fast growing small trees is the most prudent management approach.

U.S. Department of Agriculture, Forest Service. 2023. Future of America's Forest and Rangelands: Forest Service 2020 Resources Planning Act Assessment. Gen. Tech. Rep. WO-102. Washington, DC. 348 p. <https://doi.org/10.2737/WO-GTR-102>.

To further support the concepts validated by Gray et al., the USDA recently published a Technical Report on the future of America's forests and rangelands.

Key points of the Report include:

- The projected decrease in young forests and increase in older forests will result in overall decreases in growth rates and carbon sequestration.
- The amount of carbon sequestered by forests is projected to decline between 2020 and 2070 under all scenarios, with the forest ecosystem projected to be a net source of carbon in 2070.
- Without active management, significant disturbance, and land use change, forests approach a steady state in terms of C stock change over time.
- Annual carbon sequestration is projected to decrease, indicating carbon saturation of U.S. forests, due in part to forest aging and senescence.

Gustavsson, L., Madlener, R., Hoen, H.-F., Jungmeier, G., Karjalainen, T., Klöhn, S., ... Spelter, H. (2006). The Role of Wood Material for Greenhouse Gas Mitigation. *Mitigation and Adaptation Strategies for Global Change*, 11(5–6), 1097–1127.

Lippke, B., O'Neil, E., Harrison, R., Skog, K., Gustavsson, L., Sathre, R. 2011 Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns, *Carbon Management*, 2:3, 303-333.

McKinley, D.C., Ryan, M.G., Birdsey, R.A., Giardina, C.P., Harmon, M.E., Heath, L.S., Houghton, R.A., Jackson, R.B., Morrison, J.F., Murray, B.C., Pataki, D.E., Skog, K.E. 2011. A synthesis of current knowledge on forests and carbon storage in the United States. *Ecological Applications*. 21(6): 1902-1924.

Skog, K.E., McKinley, D.C., Birdsey, R.A., Hines, S.J., Woodall, C.W., Reinhardt, E.D., Vose, J.M. 2014. Chapter 7: Managing Carbon. In: *Climate Change and United States Forests, Advances in Global Change Research* 57 2014; pp. 151-182.

In the absence of commercial thinning, the forest where this proposed action would take place would thin naturally from mortality-inducing natural disturbances and other processes resulting in dead trees that would decay over time, emitting carbon to the atmosphere. Conversely, the wood and fiber removed from the forest in this proposed action would be transferred to the wood products sector for a variety of uses, each of which has different effects on carbon (Skog et al. 2014). Carbon can be stored in wood products for a variable length of time, depending on the commodity produced. It can also be burned to produce heat or electrical energy or converted to liquid transportation fuels and chemicals that would otherwise come from fossil fuels. In addition, a substitution effect occurs when wood products are used in place of other products that emit more GHGs in manufacturing, such as concrete and steel (Gustavsson et al. 2006, Lippke et al. 2011, and McKinley et al. 2011). In fact, removing carbon from forests for human use can result in a lower net contribution of GHGs to the atmosphere than if the forest were not managed (McKinley et al. 2011, Bergman et al. 2014, and Skog et al. 2014). The IPCC recognizes wood and fiber as a renewable resource that can provide lasting climate-related mitigation benefits that can increase over time with active management (IPCC 2000). Furthermore, by reducing stand density, the proposed action may also reduce the risk of more severe disturbances, such as insect and disease outbreak and severe wildfires, which may result in lower forest carbon stocks and greater GHG emissions.

In addition to this study, a recent report by the Forest Service titled: [USDA: Forests Converting to Carbon Emitters](#) finds American forests may convert from being carbon absorbers to significant carbon emitters. Researchers say the shift is due to the increasing destruction from natural disasters and the aging of forests, which is reducing their carbon-absorbing capabilities.

Our forests currently absorb 11 percent of U.S carbon emissions, or 150 million metric tons of carbon a year, equivalent to the combined emissions from 40 coal power plants. However, starting in 2025, their ability to hold carbon may start plummeting and could emit up to 100 million metric tons of carbon a year as their emissions from decaying trees exceed their carbon absorption.

Below are several links that show the value of managing the Forest for the benefit of carbon and sequestration of wood into forest products.

- Carbon Sequestration in Wood and Paper Products
Kenneth E. Skog, USDA Forest Service, Forest Products laboratory
[Sequestration of carbon in harvested wood products for the United States \(usda.gov\)](#)
- An Assessment of Carbon Pools, Storage, and wood Projects Market Substitution Using Life-cycle Analysis Results
John Perez Garcis, Bruce Lippke
[840-Article Text-840-1-10-20141206.pdf](#)
- Investments in Fuel Removals to Avoid Forest Fires Result in Substantial Benefits
C. Larry Mason, Bruce R. Lippke, et. al
[Investments in Fuel Removals to Avoid Forest Fires Result in Substantial Benefits | Journal of Forestry | Oxford Academic \(oup.com\)](#)
- Using Wood Products to Reduce Greenhouse Gases
Jim Wilson, Corrim Inc.
[Using Wood Products to Reduce Global Warming \(corrim.org\)](#)
- To Manage or not to Manage: The Role of Silviculture in Sequestering Carbon in the Specter of Climate Change
Jianwei Zhang*, Robert F. Powers, and Carl N. Skinner
[Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate: Proceedings of the 2009 National Silviculture Workshop; 2009 June 15-18; Boise, ID \(usda.gov\)](#)
- Managing Forests because Carbon Matters: Integrating Energy, Products, and Land Management Policy
Robert W. Malmesheimer, James L. Bowyer et. al.
[Managing forests because carbon matters: integrating energy, products, and land management policy | US Forest Service Research and Development \(usda.gov\)](#)

- Carbon, Fossil Fuel, and Biodiversity Mitigation With Wood and Forests
Chadwick Oliver, Brice R. Lippke et.al.
[Full article: Carbon, Fossil Fuel, and Biodiversity Mitigation With Wood and Forests \(tandfonline.com\)](https://www.tandfonline.com/doi/full/10.1080/19424752.2020.1740002)
- Science Supporting Harvested Wood Products as a Carbon Negative Technology.
Dr. Arijit Sinha, et. al.
[CORRIM-scientists-letter-all-recipients-Dec-9-2020.pdf \(healthyforests.org\)](https://www.healthyforests.org/corrim-scientists-letter-all-recipients-Dec-9-2020.pdf)

9. AFRC is pleased to see how the Forest is addressing roads that may be placed in storage and using winter logging to mitigate possible impacts to grizzly bears. Stored roads would no longer be drivable. They would be blocked with an earthen berm or a short section of full recontour matching the original slope of the land to exclude motorized vehicles. Storage would remove high risk drainage structures and install additional drainage, such as waterbars and relief swales, to render the road stable and hydrologically inert. Additionally, to decrease the impacts to grizzly bear security, certain parts of the project area would be treated in the winter when bears are denning. These factors need to be planned ahead of implementation and followed due to the high sensitivity now present for the projection of grizzly bears and their habitat.

Again, the Katkee Fuels Project provides you and the Idaho Panhandle with a meaningful opportunity to implement key components of the Wildfire Crisis Strategy, protect our national forest and surrounding communities from catastrophic wildfire, and deliver multiple social, economic, and environmental benefits through strategic, proactive forest management. We hope this Project will be used as an example and template by the Chief and Forest Service leadership about what's possible on the landscape with strong local input and buy-in. Thank you for the opportunity to provide scoping comments for the Katkee Fuels Project. We look forward to its development and implementation.

Sincerely,

Travis Joseph
President