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Abstract To test the hypothesis that wildfire smoke can cool summer river and stream water
temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire 
smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the 
lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion 
heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water 
temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water 
temperatures. Wildfire smoke is difficult to quantify, but we successfully used a newly available daily 
high-resolution (1 km) data set of aerosol optical thickness (AOT) derived from satellite imagery to represent 
smoke density during 6 years with extensive wildfire activity (2006, 2008, and 2012–2015). Smoke reduced 
solar radiation by 121 W m�2 per 1.0 AOT relative to clear-sky conditions. Linear mixed-effects models 
showed that on average, smoke cooled daily maximum and mean air temperatures by 0.98 °C and 0.47 °C per 
1.0 AOT, respectively, across 19 remote automated weather stations. Smoke had a cooling effect on water 
temperatures at all 12 river and stream locations analyzed. On average, smoke cooled daily maximum and 
mean water temperatures by 1.32 °C and 0.74 °C per 1.0 AOT, respectively. This smoke-induced cooling has 
the potential to benefit cold-water adapted species, particularly because wildfires are more likely to occur 
during the warmest and driest years and seasons. 

1. Introduction

Water temperature is a fundamental regulator of river ecosystems (Beitinger & Fitzpatrick, 1979; Beschta 
et al., 1987). Temperature influences ecosystem metabolism (Yvon-Durocher et al., 2012), growth rates 
(Armstrong et al., 2010), reproduction (Ward & Stanford, 1982), and species distributions (Shuter & Post, 
1990). For example, the freshwater distributions of Pacific salmon and trout (Oncorhynchus spp.) are often 
constrained by high summer water temperatures (Dunham et al., 2001; Keleher & Rahel, 1996; 
McCullough, 1999). Indeed, human-induced increases in lotic (stream and river) water temperatures 
(Caissie, 2006; Poole & Berman, 2001; Webb et al., 2008) have contributed to declines of salmon and trout 
populations (McCullough, 1999; NAS (National Academy of Sciences), 1996). To guide the restoration of 
natural thermal regimes in rivers and streams for the benefit of salmonids and other cold-water adapted 
species, we need to understand the factors that create spatial and temporal thermal variation across the 
landscape. One phenomenon that can drive variation in lotic water temperatures is wildfire 
(Gresswell, 1999). 

Here we evaluated whether wildfire smoke can reduce lotic water temperatures during the season of peak air 
and water temperatures within a climatically Mediterranean watershed. While wildfire is a distinctly terrestrial 
phenomenon, fires can substantially influence aquatic ecosystems (Gresswell, 1999; Minshall et al., 1989; 
Rieman et al., 2012). Studies of wildfire effects on lotic water temperatures have focused on the effect of 
the heat of combustion on water temperatures during a fire and the effect of riparian vegetation losses on 
postfire water temperatures (Beakes et al., 2014; Dunham et al., 2007; Hitt, 2003; Isaak et al., 2010; Mahlum 
et al., 2011). Water temperatures can rise as a result of direct heating from a fire (Beakes et al., 2014; 
Gresswell, 1999; Hitt, 2003), although such increases are not ubiquitous and are often short-lived (Beakes 
et al., 2014; Hitt, 2003; Mahlum et al., 2011). More prolonged impacts have been documented following 
wildfires on summer water temperatures, which can increase as a result of reduced riparian shading and 
changes to channel morphology, sometimes for over a decade (Beakes et al., 2014; Dunham et al., 2007; 
Isaak et al., 2010; Mahlum et al., 2011). 
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In contrast, to our knowledge, there are no published studies of the effects of wildfire smoke on the water 
temperatures of streams and rivers, potentially due to the unpredictable nature of wildfires and the chal-
lenges of sampling during wildfires. However, indirect evidence suggests that wildfire smoke has the poten-
tial to cool river water temperatures. Wildfire smoke particles scatter and absorb incoming solar radiation 
(Robock, 1988, 1991; Stone et al., 2011), reducing the amount of solar radiation that reaches the Earth’s sur-
face (Yu et al., 2016; Zhang et al., 2016), and can consequently reduce air temperatures (Robock, 1988, 1991; 
Stone et al., 2011; Zhang et al., 2016). Solar radiation and air temperature are important drivers of stream and 
river water temperatures (Beschta et al., 1987; Caissie, 2006; Johnson, 2004); therefore, wildfire smoke may 
have the capacity to cool lotic water temperatures. Additionally, Mahlum et al. (2011) and Minshall et al. 
(1989) speculated that wildfire smoke could shade and cool rivers and streams. Thus, we propose that wildfire 
smoke can reduce lotic water temperatures via scattering and absorption of solar radiation and associated 
reductions in air temperature. 

Here we examined whether wildfire smoke can cool lotic water temperatures and evaluated the magnitude 
of the effect of smoke on water temperatures relative to other variables known to influence lotic water tem-
peratures. We also evaluated the effect of wildfire smoke on surface solar radiation and air temperatures. To 
address these goals we assembled multiyear data on water temperatures, wildfire smoke, solar radiation, air 
temperatures, precipitation, and river discharge from a large watershed in Northern California. If wildfire 
smoke does reduce lotic water temperatures, this phenomenon may suggest that historical presuppression 
fire regimes with greater fire activity may have attenuated maximum summer water temperatures in some 
watersheds, potentially benefiting salmonids and other cold-water adapted species. 

2. Study Area

We conducted our analysis in the lower Klamath River Basin, California, USA (Figure 1). The Klamath River 
Basin is the third largest watershed draining to the Pacific Ocean in the coterminous USA at ~41,000 km2. 
The Klamath River originates in the Cascade Mountains of Southern Oregon and Northern California and then 
flows into the upper Klamath River Basin, a low relief plateau that historically contained extensive shallow 
lakes and wetlands (NAS, 2004; VanderKooi et al., 2011). The river then cuts through the southern end of 
the Cascade Mountains, where it is impounded by a series of five dams. These dams mark the transition from 
upper to lower basin and divide the watershed by preventing fish passage and altering transport of water 
and sediment. Below the dams, the Klamath River enters the Klamath-Siskiyou Mountains. In contrast to 
the upper basin, the lower basin is high relief and the Klamath River and its tributaries primarily flow through 
confined canyons (NAS, 2004; VanderKooi et al., 2011). Overall the watershed has a Mediterranean climate 
with warm, dry summers and cool, wet winters (Skinner et al., 2006). However, the climate changes dramati-
cally from interior to coastal and also at finer scales according to elevation, topography, and aspect. The 
upper basin is generally semiarid and river flows are primarily driven by snowmelt and groundwater, while 
the lower basin is more mesic and river flows are primary driven by rainfall and snowmelt (NAS, 2004; 
Williams & Curry, 2011). Conifer and mixed conifer-hardwood forests are the primary vegetation types in 
the lower Klamath River Basin (Skinner et al., 2006). 

We focused our analysis on the lower Klamath River Basin for three reasons. First, the forests of the Klamath-
Siskiyou Mountains are fire-prone ecosystems that experience fires of a variety of sizes, intensities, and 
frequencies (Skinner et al., 2006; Taylor & Skinner, 1998, 2003). In addition to lightning ignitions, Native 
Americans traditionally used fire to manage natural resources in the basin (Lake, 2007, 2013). Like many 
forested ecosystems in the western USA, the Klamath-Siskiyou Mountains have been altered by fire suppres-
sion and logging, generally resulting in less frequent fires (Skinner et al., 2006; Taylor & Skinner, 1998, 2003). 
Mean fire size and total area burned have increased recently, however, potentially due to climate change and 
increased fuel loading resulting from fire suppression (Miller et al., 2012). Second, qualitative evidence 
suggested that river temperatures are reduced in the basin during periods of heavy smoke from summer 
wildfires, stimulating interest by natural resource agencies, Native American tribes, and others responsible 
for recovering Pacific salmon populations in the region (e.g., Robinson, 2013; SRRC (Salmon River 
Restoration Council), 2014). Third, like many watersheds, the Klamath has been substantially impacted by 
human activities, including mining, logging, fire suppression, road building, livestock grazing, water diver-
sion, wetland conversion, and impoundment (Klamath River Basin Fisheries Task Force (KRBFTF), 1991; 
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Figure 1. The lower Klamath River Basin with watersheds containing temperature monitoring locations, U.S. Geological 
Survey gaging stations, and the Redding U.S. Climate Reference Network station indicated. 

NAS, 2004). These landscape modifications have resulted in elevated warm-season water temperatures that 
are a limiting factor for salmon populations in the basin, including spring-run Chinook salmon (Oncorhynchus 
tshawytscha) and Endangered Species Act-listed coho salmon (Oncorhynchus kisutch; Bartholow, 2005; 
KRBFTF, 1991; NAS, 2004; North Coast Regional Water Quality Control Board (NCRWQCB), 2010). 

3. Methods
3.1. Water Temperature 

An overview of our data sources and analytical methods is found in Figure 2. We confined all data and ana-
lyses to 1 June through 30 September of each year because this is the season when water temperatures are 
typically the highest and most likely to be stressful to cold-water adapted species in the region and when 
wildfires are most likely to be burning and producing smoke. 

We assembled water temperature records from throughout the lower Klamath River Basin that were collected 
between 1996 and 2015, with the goal of obtaining broad spatial coverage while prioritizing temperature 
records collected consistently at the same location for multiple years. We identified three temperature 
records for main stem Klamath River locations and nine for Klamath River tributaries that fit our criteria, each 
with 15 to 20 years of data (Table 1). These temperature data were collected primarily by the U.S. Forest 
Service and U.S. Fish and Wildlife Service, supplemented with data collected by the U.S. Bureau of 
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Figure 2. Flow chart and overview of data sources and major data analysis steps used to determine the effects of wildfire smoke on solar radiation, air temperature, 
and water temperature. For simplicity and clarity, some steps and details are omitted. 

Reclamation, Karuk Tribe, and California Department of Water Resources. Water temperatures were measured 
using digital data loggers and standard protocols (Dunham et al., 2005). Within a year at a location, 
temperature monitoring did not always encompass the entire 1 June to 30 September period. Because of 
the multiyear record at these monitoring locations, the type of data logger used and the measurement 
frequency often changed through time (range: 15–96 min). We calculated daily means, minimums, and 
maximums from the raw water temperature data. All temperature time series were visually examined and 
compared with nearby concurrent temperature time series to identify erroneous measurements, which 
were then removed. Data coverage at individual locations ranged from 81% to 99% (Table 1). 

Instead of using the observed temperatures as our response variable in the analyses of wildfire smoke effects on 
water temperatures, we converted daily mean and maximum water temperatures to deviations from long-term 
averages on each calendar day. We did this for two reasons. First, we wanted to remove the seasonal pattern 
water temperatures often exhibit that is not fully captured by variation in air temperature and other meteoro-
logical variables (Benyahya et al., 2007; Caissie, 2006). Second, because wildfires and wildfire smoke were not 
evenly distributed throughout the summer season (see results), we did not want to confound effects of smoke 
with otherwise normal seasonal variation in water temperatures. For each year at each location, we calculated 
the long-term average of daily mean and maximum temperatures for each calendar day, excluding data for the 
current year from the calculation. To smooth out random noise in our long-term averages, we fit a locally 
weighted second-degree polynomial regression to the daily long-term averages for each year as a function 
of calendar day. The regression used 20% of the data in fitting each point. We then subtracted the fitted 
long-term daily average means and maximums from the observed daily means and maximums. The resulting 
daily mean and maximum water temperature deviations from normal were the values we used for analysis. 

3.2. Wildfire Smoke 

To determine if wildfire smoke was present over any part of the lower Klamath River Basin for each day 
between 1 June and 30 September, we examined 250-m resolution, true-color imagery from the Moderate 
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Table 1 
Locations and Characteristics for the 12 Water Temperature Time Series We Analyzed 

Location/watershed Years with data 
Number 
of years 

Percent 
coverage 

Data 
sources Latitude Longitude 

Drainage 
area (km2) USGS discharge gages 

Bluff Cr 1996–2004, 
2006–2015 

19 81% FS 41.24054 �123.65453 191.9 Salmon R @ Somes Bar 

Clear Cr 1998, 2000–2012, 
2014, 2015 

16 97% FS 41.70993 �123.44892 288.5 Indian Cr near Happy Camp 

Klamath R above Clear Cr 1996, 1998–2001, 
2003–2014 

17 95% FS, FWS 41.72968 �123.42939 7108.3 Klamath R near Seiad Valley + 
Indian Cr near Happy Camp 

Klamath R above Salmon R 1996–2015 20 81% FS, FWS 41.37908 �123.49777 8138.4 Klamath R @ Orleans -Salmon 
R @ Somes Bar 

Klamath R above Trinity R 1997–2015 19 94% FS, FWS 41.18607 �123.70179 10790.1 Klamath R @ Orleans 
North Fork Trinity R 2001–2015 15 98% BR, FWS 40.77083 �123.12833 394.2 Salmon R @ Somes Bar 
Salmon R 1997–2015 19 85% FS 41.37639 �123.47706 1944.3 Salmon R @ Somes Bar 
Scott R 1998, 2000, 

2003–2015 
15 93% FS, KT, BR 41.77509 �123.03471 2107.0 Scott R near Ft. Jones 

Shasta R 2000–2015 16 99% FWS, BR, DWR 41.82415 �122.59449 2055.0 Shasta R near Yreka 
South Fork Trinity R 1997–1999, 

2001–2015 
18 89% FWS, FS 40.88944 �123.60278 2412.3 South Fork Trinity R 

below Hyampom 
Trinity R 1998–2015 18 92% FS, FWS 41.18446 �123.70673 5826.2 Trinity R @ Hoopa 
Wooley Cr 1998–2001, 

2003–2015 
17 83% FS 41.37824 �123.42122 384.9 Salmon R @ Somes Bar 

Note. Percent coverage = percentage of days within the years with data that have temperature data; FS = U.S. Forest Service; FWS = U.S. Fish and Wildlife Service; 
BR = U.S. Bureau of Reclamation; KT = Karuk Tribe; DWR = California Department of Water Resources. 

Resolution Imaging Spectroradiometer (MODIS) instruments on board the National Aeronautics and Space 
Administration’s (NASA) Terra and Aqua satellites. This imagery was available starting with 2004 from 
NASA Worldview (https://worldview.earthdata.nasa.gov/). Terra and Aqua have Sun-synchronous, near-
polar orbits. Terra passes over Northern California each morning and Aqua each afternoon. Smoke was 
typically easy to distinguish in imagery (Figure 3a). To confirm we were not misinterpreting the imagery, 
we used a spatial database of U.S. wildfires (Short, 2014, 2017) to identify when fires were burning in or 
near the lower Klamath Basin. The database and our observations in the region both indicated that the 
MODIS imagery accurately captured the occurrence of wildfire smoke in the lower Klamath Basin and that 
2006, 2008, and 2012–2015 were moderately to very smoky summers. Unless otherwise stated, all further 
analyses use only those years. 

We also used MODIS data to quantify the distribution and density of wildfire smoke. The measure of smoke 
we used was aerosol optical thickness (AOT), the degree to which aerosols prevent the transmission of light 
through the atmosphere by absorption or scattering. AOT is a unitless number that ranges from near 0 
(completely clear skies with no dust, haze, or smoke) to 4 (exceptionally smoky or hazy conditions). We 
used 1-km resolution gridded AOT data derived from multiple MODIS spectral bands processed according 
to the multiangle implementation of atmospheric correction algorithm (MAIAC; Di et al., 2016; Lyapustin, 
Martonchik et al., 2011; Lyapustin, Wang et al., 2011; Lyapustin, Korkin et al., 2012; Lyapustin, Wang, 
Laszlo, Hilker et al., 2012; Lyapustin, Wang, Laszlo, Korkin, 2012), downloaded from the NASA Center for 
Climate Simulations FTP portal (ftp://maiac@dataportal.nccs.nasa.gov/DataRelease). These AOT data were 
available from 1 to 3 times per day, depending on the location of satellite passes. While the MAIAC algo-
rithm improves upon other AOT retrieval methods, it is often unable to retrieve AOT from grid cells where 
clouds or dense smoke are present (Figure 3b; Lyapustin, Martonchik et al., 2011; Lyapustin, Wang et al., 
2011; Lyapustin, Korkin et al., 2012; Lyapustin, Wang, Laszlo, Korkin, 2012; Superczynski et al., 2017). 
These null values are nonrandom and thus need to be infilled to avoid bias. We used the Fire INventory 
from NCAR (FINN; Wiedinmyer et al., 2011) fire occurrence data set along with a spatial interpolation algo-
rithm to infill the null values. FINN is a spatially explicit fire occurrence data set derived from MODIS thermal 
anomaly data with a 1-km spatial resolution and a daily temporal resolution (Wiedinmyer et al., 2011). If an 
AOT grid cell with a null value contained a FINN fire occurrence for the same day, we assigned that grid cell 
an AOT of 3.0 (75% of the maximum possible value of 4.0, selected based on visual exploration). After 
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Figure 3. (a) Visible Moderate Resolution Imaging Spectroradiometer imagery for an example satellite pass (Terra on 12 
July 2008); (b) original multiangle implementation of atmospheric correction algorithm-derived aerosol optical thickness 
(AOT) before interpolation of null values due to clouds or dense smoke; (c) AOT with Fire INventory from NCAR (FINN) 
points inserted and then interpolated; (d) AOT interpolated to fill null values without FINN points. The black lines are 
boundaries of subbasins (level 4 hydrologic units) in the Klamath River Basin. 

assigning the FINN fire occurrences, we used the Close Gaps with spline function (Conrad, 2010) from the 
System for Automated Geoscientific Analyses (Conrad et al., 2015), implemented within the R software for 
statistical computing (R Core Team, 2015) using the rsaga package’s (Brenning, 2008) rsaga.geoprocessor 
function, to spatially interpolate the remaining null-value grid cells in each satellite pass. The Close Gaps 
with spline function uses observed values where present and fills in gaps by fitting spline functions to 
the observed data (Mitášová & Mitáš, 1993). Advantages of this method include allowing interpolated 
values to be greater than input values, which is necessary given that some null values were due to 
dense smoke whereas nearby areas of lighter smoke were not null (Reid et al., 2015). After interpolation, 
all values greater than 4.0 (the maximum possible AOT value) were reduced to 4.0. We also ran the same 
interpolation algorithm for each satellite pass without the FINN data for comparison. The results were 
two sets of fully infilled gridded AOT data for each MODIS pass over Northern California (FINN-interpolated, 
Figure 3c; and no-FINN interpolated, Figure 3d). To choose which gridded AOT data from each satellite pass 
to use in analyses, we visually examined the original AOT data with null values, the FINN-interpolated AOT 
data, the no-FINN interpolated AOT data, and the corresponding MODIS true color image. We discarded all 
satellite passes when the AOT data did not fully encompass our study area (239 of 1,748 passes). For most 
passes we chose the FINN-interpolated version but substituted no-FINN interpolations when the FINN 
interpolations performed poorly (100 of 1,509 passes), typically due to a combination of smoke and 
cloud cover. Finally, we discarded two passes for which neither the FINN nor the no-FINN interpolations 
produced gridded AOT data that reasonably matched the associated true-color MODIS image. Across all 
satellite passes selected for analysis on days when wildfire smoke was present over the lower Klamath 
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Basin, the mean proportion of infilled grid cells was 19.8% for the watersheds upstream of the temperature 
monitoring locations. 

Once we finalized our sets of AOT data for analysis, we calculated mean AOT values for the watersheds 
upstream of the 12 water temperature monitoring locations during each day within our period of interest. 
For the main stem Klamath and Trinity river monitoring locations we truncated their upstream watersheds 
at the lower most dams because the thermal inertia of the upstream reservoirs and the long distance 
between the dams and monitoring locations should make temperatures at these locations relatively insensi-
tive to smoke upstream of the dams. If there were more than a single pass for each satellite in a day, we first 
calculated the mean AOT value of each satellite within that day, and then calculated the mean AOT value of 
the two satellites for each day. On cloudy, smoke-free days, the interpolation algorithm often appeared to 
overestimate AOT values. Thus, within each watershed, for all days when we had previously determined there 
was no smoke present anywhere in the lower Klamath Basin using the MODIS true-color imagery, we 
assigned those days the lower quartile of all that watershed’s daily mean AOT values for smoke-free days. 
The mean difference between the original daily AOT values and the uniform lower quartile AOT values across 
the 12 watersheds was 0.11 (range: 0 to 0.90). Because the Klamath Basin is situated along the Pacific Coast in 
an area of low population density, wildfire smoke is the primary producer of aerosols in the region (e.g., CARB 
(California Air Resources Board), 2013). Thus, assigning a uniform low AOT value to all smoke-free days should 
not bias our analysis. Finally, for 11 days that were classified as smoky but did not have at least one valid set of 
AOT data, we assigned those days the mean of the AOT values from the day before and the day after. 

3.3. Solar Radiation, Air Temperature, Precipitation, and River Discharge 

We assembled meteorological and river discharge data to assess the influence of smoke density (AOT) on sur-
face solar radiation and air temperature in our study region and to evaluate as drivers of water temperature 
variation. We used the Redding, California station of the U.S. Climate Reference Network (USCRN; https:// 
www.ncdc.noaa.gov/crn/) to quantify the effect of wildfire smoke on surface solar radiation. Hourly solar 
radiation data were available starting in 2003. For each day between 1 June and 30 September, we calculated 
the mean solar radiation (W m�2) between 09:00 and 17:00 LST across 2003–2015. Next, we identified the 
maximum value of mean solar radiation for each calendar day across this time period. We assumed this 
maximum value represented completely clear-sky conditions (i.e., no clouds or smoke). For the six focal years, 
we then calculated the difference between the observed mean solar radiation on each day and the maximum 
solar radiation value under clear-sky conditions for the same calendar day. Using the process described in the 
Wildfire Smoke section, we also calculated daily mean AOT values for a 1-km radius circle around the Redding 
USCRN station for the six focal years. 

Air temperatures from 19 remote automated weather stations (RAWS; Table S1 in the supporting information) 
in the lower Klamath Basin were used to quantify the effect of wildfire smoke on air temperature and for eva-
luation as a driver of water temperature variation. Daily maximum and minimum air temperatures for each 
RAWS were downloaded from the Western Regional Climate Center (https://wrcc.dri.edu/) and were aver-
aged to obtain daily means. We examined time series of temperatures at nearby RAWS to identify erroneous 
observations, which were then removed. Short, within-year gaps due to missing or erroneous observations 
were filled using quality assured and infilled temperatures at their respective RAWS from the Topography 
Weather gridded meteorological data set (Oyler et al., 2015). For two RAWS that were not installed until after 
2008, we used separate generalized least squares regressions (Zuur et al., 2009) and daily mean temperatures 
from two neighboring RAWS to predict the missing temperatures. The regressions were implemented using 
the function gls in the nlme R package (Pinheiro et al., 2017) and included a first-order autoregressive corre-
lation structure nested within years to account for the temporal nature of the data. Predicted temperatures 
from the two neighboring RAWS were averaged to produce the final temperature estimates. The results were 
daily mean air temperatures for 1 June through 30 September 2006, 2008, and 2012–2015 for the 19 RAWS. In 
total, 7.7% of air temperature observations were infilled using either the Topography Weather data set or the 
regressions. Similarly to the solar radiation data, we used the process described in the Wildfire Smoke section 
to calculate daily mean AOT values for a 1-km radius circle around each RAWS for the six focal years, except 
that we applied a uniform lower-quartile AOT value for nonsmoky days across all 19 RAWS. 

We assembled daily mean accumulated precipitation for the watersheds upstream of the 12 temperature 
monitoring locations from the University of Idaho gridded meteorological data set (Abatzoglou, 2013), 
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processed through the U.S. Geological Survey geo data portal (Blodgett et al., 2011; https://cida.usgs.gov/ 
gdp/). These precipitation data are derived at a 4-km spatial resolution for the coterminous USA using a com-
bination of daily data from the North American Land Data Assimilation System Phase 2 (Mitchell et al., 2004) 
and monthly data from the Parameter-Elevation Regressions on Independent Slopes Model (Daly et al., 2008). 
Finally, we compiled daily mean discharges for eight gaging stations on the Klamath River and its tributaries 
from the U.S. Geological Survey (Table 1; http://waterdata.usgs.gov/nwis). 

3.4. Analysis 

We used linear regression to evaluate the effect of wildfire smoke (daily mean AOT) on daily differences 
between observed solar radiation and maximum potential clear-sky solar radiation at the Redding USCRN sta-
tion. To isolate the effect of smoke, we used only cloud-free days in the regression, as determined by visual 
examination of MODIS true-color imagery. While these data constitute a time series, we did not incorporate 
any temporal correlation structure in the regression. In the absence of external forcing (e.g., smoke and 
clouds), daily solar radiation varies in a predictable manner and there should not be any lagged effects, pre-
cluding the need to account for the temporal structure of these data. 

We used linear mixed-effects models (Zuur et al., 2009) to evaluate the effect of wildfire smoke on daily mean 
and maximum air temperatures. The models were implemented using the function lme in the nlme R pack-
age (Pinheiro et al., 2017). We calculated differences between daily air temperatures and AOT values at each 
RAWS and all other RAWS across the six focal years, except for the two RAWS installed after 2008, for which 
we calculated differences only for 2012–2015. We used air temperature differences instead of raw air tem-
peratures to partition out the influence of natural drivers of air temperature such as cloud cover, atmospheric 
pressure, and day length that vary day-to-day, but that should be relatively homogeneous across the lower 
Klamath Basin within a day. For each RAWS, we fit separate models of daily mean and maximum air tempera-
ture differences as a function of AOT differences. Each model included nested random intercepts of RAWS 
and year within RAWS to account for natural air temperature differences due to elevation, distance from 
the coast, and other aspects of geography, along with potential variation in these differences among years. 
Within each RAWS by year combination we incorporated a first-order autoregressive correlation structure to 
account for the temporal nature of the data. 

Because we were concerned that including air temperatures affected by wildfire smoke as an explanatory 
variable in our water temperature models would result in biased estimates of the effect of smoke, we next 
calculated estimates of smoke-free air temperatures. We adjusted air temperatures upward at each RAWS 
by multiplying the AOT coefficient from the mean air temperature difference model for a RAWS with the 
observed AOT values at that RAWS and then added the resulting values to the daily mean air tempera-
tures at that RAWS. For the two RAWS installed after 2008, we used the infill regressions developed earlier 
with the AOT-adjusted air temperatures at the two neighboring RAWS to estimate the 2006 and 2008 
AOT-adjusted air temperatures. For each of the 12 water temperature monitoring locations, we then cal-
culated average daily air temperatures using all relevant RAWS (Table S1, almost exclusively those RAWS 
within the watershed upstream of the monitoring location), both for AOT-adjusted and unadjusted 
air temperatures. 

We also used linear mixed-effects models to evaluate the effect of wildfire smoke and other variables on 
daily mean and maximum water temperature deviations. A random intercept of year was included in the 
models because water temperatures can vary overall year to year. Within each year we incorporated a 
first-order autoregressive correlation structure to account for the temporal nature of the data and the 
thermal inertia of water. For each of the 12 water temperature monitoring locations and two response 
variables, we fit 15 separate models that represented all possible combinations of the explanatory vari-
ables wildfire smoke (AOT), adjusted air temperature, precipitation, and river discharge. Specifically, we 
used 3-day trailing averages of AOT, air temperature, and precipitation, and daily values of river discharge. 
We ranked model performance using Akaike’s information criterion (AIC), a relative measure of model fit 
to the data, with a penalty for increasing model complexity. The model with the lowest AIC value is con-
sidered the best performing model of those evaluated. If two models had identical AIC values, we chose 
the simpler model as the best-performing. We then refit the best-performing models with unadjusted air 
temperatures to assess changes in the effect of AOT. To evaluate the robustness of our results to two of 
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our major methodological decisions (using a uniform AOT value on non-
smoky days and using water temperature deviations from normal as the 
response variable rather than observed water temperatures), we also fit
two alternate formulations of the water temperature models (Text S1 in 
the supporting information). 

As a simple alternative measure of the effect of smoke on water tempera-
tures, we calculated the average differences in daily mean and maximum 
water temperature deviations between nonsmoky (3-day average 
AOT < 0.1) and at least moderately smoky (3-day average AOT ≥ 0.5) days 
at each water temperature monitoring location within each year.
Differences were only calculated when there were at least 5 days within 
each category. 

4. Results
4.1. Solar Radiation 

Wildfire smoke had a strong negative effect on solar radiation at the 
Redding USCRN station (F1 ,550 = 1703, P < 0.001, β = �121 W m�2 per
1.0 AOT; Figure 4), explaining 76% of the variation in daily differences 
between observed and clear-sky potential radiation on cloud-free days. 
This represents an approximately 14% decrease in daily mean solar radia-
tion per 1.0 AOT. On the single smokiest day (3.75 AOT), solar radiation was 
reduced by more than 450 W m�2 relative to clear-sky potential, while on 
other moderate and heavy smoke days (i.e., AOT ≥ 0.5) solar radiation was 
often reduced between 50 and 350 W m�2 relative to clear-sky potential. 

Figure 4. Differences between observed and clear-sky potential daily mean 
solar radiation at the U.S. Climate Reference Network station near Redding, 
California on cloud-free days between 1 June and 30 September 2006, 2008, 
and 2012–2015 as a function of remotely sensed wildfire smoke (daily 
mean aerosol optical thickness). The solid line is the regression line, and the 
dotted lines are 95% confidence intervals for the prediction of new values. 

4.2. Air Temperature 

Wildfire smoke had a cooling effect on both daily mean and maximum air temperatures at all 19 lower 
Klamath Basin RAWS (Table S1 and Figures S1 and S2 in the supporting information). The effect was stronger 
for maximum than mean temperatures, with an average expected reduction in maximum air temperature of 
0.98 °C per 1.0 AOT and an average expected reduction in mean air temperature of 0.47 °C per 1.0 AOT across 
the 19 RAWS. Expected reductions in maximum air temperatures ranged from 0.40 °C to 1.47 °C per 1.0 AOT, 
while expected reductions in mean air temperatures ranged from 0.14 °C to 0.75 °C per 1.0 AOT (Table S1). 

4.3. Water Temperature 

During the six focal years, significant wildfire smoke production generally began in late July and continued 
through early to mid-September, with the exception of 2008, when widespread fires throughout California 
produced extensive smoke beginning in late June (Figure S3). Maximum observed values of 3-day averaged 
AOT varied among the watersheds upstream of the 12 temperature monitoring locations, from 1.255 for the 
Klamath River above Clear Creek to 2.661 for Bluff Creek (Table 2). The best-performing models of both daily 
mean and maximum water temperature deviations included wildfire smoke for all 12 monitoring locations 
(Tables 2, S2, and S3). Wildfire smoke had a cooling effect on water temperatures in all the best-performing 
models, with the second largest effect size after air temperature in all 12 maximum temperature models and 
10 of 12 mean temperature models (Table 2 and Figure 5). The average expected reduction in daily maximum 
water temperature deviations was 1.32 °C per 1.0 AOT across the 12 monitoring locations. Expected reduc-
tions in maximum water temperatures ranged from 0.56 °C per 1.0 AOT for Wooley Creek to 2.73 °C per 1.0 
AOT for the Shasta River (Table 2). The average expected reduction in daily mean water temperature devia-
tions was 0.74 °C per 1.0 AOT across the 12 monitoring locations. Expected reductions in mean water tem-
peratures ranged from 0.28 °C for Wooley Creek to 1.23 °C for the Shasta River (Table 2). When we refit the 
best-performing models using air temperatures unadjusted for AOT, the estimated effects of wildfire smoke 
on water temperatures were generally 0.1 to 0.2 °C per 1.0 AOT smaller than in the models with adjusted air 
temperatures (Table 2). Discharge was included in five of the best-performing models of maximum tempera-
tures and seven of the best-performing models of mean temperatures. Precipitation was included in eight of 
the best-performing models of maximum temperatures and six of the best-performing models of mean 
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Table 2 
Best-Performing Models of Daily Maximum and Mean Water Temperature Deviations for the 12 Water Temperature Monitoring Locations in the Lower Klamath 
River Basin 

Daily maximum water temperatures Daily mean water temperatures 

Unadjusted 
TA Δ TW per 
1.0 AOT (°C) 

Unadjusted 
TA Δ TW per 
1.0 AOT (°C) 

Location/ 
watershed 

Max 
AOT 

Best-performing 
model 

Δ TW per 1.0 
AOT (°C) 

SE 
(°C) 

Best-performing 
model 

Δ TW per 1.0 
AOT (°C) 

SE 
(°C) 

Bluff Cr 2.661 TA � AOT 1.29 0.13 1.23 TA � AOT � Q + P 0.61 0.08 0.56 
Clear Cr 2.036 TA � AOT 0.86 0.13 0.78 TA � AOT � Q 0.38 0.09 0.30 
Klamath R above Clear Cr 1.255 TA � AOT � P 1.83 0.25 1.67 TA � AOT � P 1.14 0.19 0.98 
Klamath R above Salmon R 1.285 TA � AOT � Q � P 0.82 0.17 0.69 TA � Q � AOT 0.55 0.14 0.42 
Klamath R above Trinity R 1.370 TA � AOT � Q 0.85 0.16 0.74 TA � AOT � Q 0.67 0.13 0.56 
North Fork Trinity R 2.396 TA � AOT � P 1.07 0.15 0.93 TA � AOT � P 0.51 0.10 0.38 
Salmon R 1.728 TA � AOT � Q � P 0.93 0.15 0.81 TA � AOT � Q 0.46 0.10 0.34 
Scott R 1.394 TA � AOT � P 2.35 0.32 2.23 TA � AOT 1.16 0.18 1.02 
Shasta R 1.314 TA � AOT � P 2.73 0.42 2.55 TA � AOT � P 1.23 0.25 1.02 
South Fork Trinity R 2.277 TA � AOT + Q � P 1.50 0.19 1.39 TA � AOT + Q 0.93 0.11 0.81 
Trinity R 2.321 TA � AOT � Q � P 1.10 0.16 0.98 TA � Q � AOT � P 0.92 0.14 0.81 
Wooley Cr 2.458 TA � AOT 0.56 0.11 0.45 TA � AOT � P 0.28 0.10 0.17 

Note. Variables in the best-performing model columns are ordered from left to right in terms of decreasing effect size according to variable t scores. The sign in 
front of a variable indicates the direction (positive or negative) of that variable’s effect. Max AOT = the highest 3-day averaged AOT observed in the watershed 
upstream of each temperature monitoring location during the six focal years; Δ TW per 1.0 AOT = AOT parameter coefficient (expected water temperature reduc-
tion); SE = standard error of the AOT parameter coefficient; TA = air temperature; Q = discharge; P = precipitation. Unadjusted TA = air temperature unadjusted for 
the effect of AOT. 

temperatures. Both discharge and precipitation had cooling effects on water temperature except discharge 
in the South Fork Trinity River and precipitation on mean temperatures in Bluff Creek (Table 2). The two 
alternate formulations of the water temperature models produced similar results (Text S1 and Tables S4, 
S5, S6, S7, S8, and S9), suggesting that our results were robust to two of our major methodological decisions. 

Days that were at least moderately smoky (3-day average AOT ≥ 0.5) were generally cooler relative to normal 
than smoke-free days (3-day average AOT < 0.1) within years at individual monitoring locations (Figures 6 
and 7). Average differences within locations and years ranged from 0.77 °C warmer relative to normal on 
smoky days for the Trinity River in 2006 to 4.49 °C cooler relative to normal on smoky days for the North 
Fork Trinity River in 2015. 

5. Discussion
5.1. Summary 

We used a novel application of a recently developed data set of atmospheric AOT at high spatial and tem-
poral resolutions to evaluate the effect of wildfire smoke on lotic water temperatures and two of the primary 
drivers of lotic water temperatures: solar radiation and air temperature. While other studies have explored the 
effects of wildfire smoke on solar radiation and air temperature, to our knowledge, this study is the first to 
formally test the hypothesis that wildfire smoke can cool river water temperatures. Our results support this 
hypothesis, indicating that wildfire smoke had a cooling effect on water temperatures at all 12 locations ana-
lyzed within the lower Klamath River Basin. We also found that wildfire smoke had a negative effect on solar 
radiation and a cooling effect on air temperatures. Together, these results suggest that wildfire smoke can be 
a natural mechanism to reduce summer water temperatures in watersheds where wildfires occur frequently. 

5.2. Smoke Effects on Solar Radiation and Air Temperature 

Theory and previous analyses have also demonstrated that wildfire smoke can reduce the amount of solar 
radiation that reaches the Earth’s surface through a combination of absorption and scattering of radiation 
by the aerosols that comprise wildfire smoke (Robock, 1988, 1991; Stone et al., 2011; Yu et al., 2016; Zhang 
et al., 2016). Precise comparisons of the magnitude of smoke’s effect on solar radiation among studies are 
hampered by methodological differences such as solar zenith angle (i.e., season and time of day) and AOT 
measurement; nonetheless, our estimate of a 121-W m�2 reduction in solar radiation per 1.0 AOT is similar 
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Figure 5. Daily maximum water temperature deviations at an example location (the Salmon River) as a function of 
remotely sensed wildfire smoke (mean aerosol optical thickness, AOT), AOT-adjusted mean air temperature, mean 
accumulated precipitation, and mean river discharge. Points in the air temperature panel are shaded according to their cor-
responding AOT values. AOT, air temperature, and precipitation are 3-day trailing averages, while discharge is a daily value. 

to three recent estimates of the effects of wildfire smoke on solar radiation. Measurements across multiple 
solar zenith angles and two locations during a wildfire in Colorado by Stone et al. (2011) averaged 
136 W m�2 per 1.0 AOT, resulting in a diurnally integrated estimate of 61.5 W m�2 per 1.0 AOT. Our 
estimate also matched the lower range of estimated reductions of 120 to 140 W m�2 per 1.0 AOT around 
solar noon identified by Yu et al. (2016) for a large wildfire in the California Sierra Nevada Mountains and 
was almost identical to the estimated reductions at three of four locations in the midwest USA analyzed 
by Zhang et al. (2016). 

The attenuation of solar radition by smoke resulted in cooler air temperatures. Because of different meth-
odologies, it is difficult to compare our results with other studies that evaluted the effects of wildfire smoke 
on air temperatures. However, most estimates of the cooling effect of smoke in Zhang et al. (2016) ranged 
from 0.25 °C to 1.0 °C per 1.0 AOT for early afternoon air temperatures, which fall within the range of effects 
we observed on mean and maximum air temperatures. Our results mirror previous analyses showing that 
wildfire smoke has a stronger cooling effect on maximum than mean air temperatures. For example, 
Robock (1988) found that smoke trapped by an inversion in the Klamath River canyon during wildfires in 
September 1987 resulted in daily maximum air temperatures reduced to 20 °C below normal, while daily 
minimum air temperaturs were only slightly affected. This difference is likely because smoke strongly affects 
shortwave (visible) solar radiation during the day, when maximum temperatures usually occur. In contrast, 
smoke only nominally affects longwave (infrared) radiation, the dominant radiational forcing at night when 
minimum temperatures usually occur (Robock, 1988, 1991; Stone et al., 2011). 
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Figure 6. Time series for each year of daily maximum water temperature deviations at an example location (the Salmon 
River), fitted values from the best-performing model of Salmon River water temperatures, and 3-day averaged mean 
aerosol optical thickness in the Salmon River watershed. 

5.3. Smoke Effects on Water Temperature 

The reduction of solar radiation by wildfire smoke and associated reductions in air temperature likely form 
the physical basis for the cooling effect of smoke on water temperatures we observed. Solar radiation and 
air temperature are two of the most important determinants of stream and river water temperatures 
(Beschta et al., 1987; Caissie, 2006; Johnson, 2004). Wildfire smoke had a stronger cooling effect on maximum 
than mean water temperatures at all 12 monitoring locations, likely for similar reasons as air temperature. 
Smoke has significant effects on solar radiation and air temperatures during the day when maximum water 
temperatures usually occur but has little effect at night when minimum water temperatures usually occur. 

Notably, there was greater than a fourfold difference between the largest and smallest smoke effects among 
the monitoring locations for both daily mean and maximum water temperatures. These differences may in 
part be due to variation in sensitivity to solar radiation among the upstream watersheds. For example, the 
Shasta and Scott river watersheds, which had the largest smoke effects, both contain large alluvial valleys 
with minimal topographic shading of the river channels. Additionally, these valleys have been modified 
extensively for agricultural production, leading to lower streamflow, reduced shading by riparian vegetation, 
and simplification of the river channels. Together, these factors likely make these rivers more sensitive to daily 
variation in solar radiation and air temperature. In contrast, Wooley Creek, which had the smallest effect of 
smoke, is in a steep, confined watershed that is almost entirely forested, reducing the sensitivity of the creek 
and its tributaries to variation in solar radiation. Wooley Creek is also almost entirely within a wilderness area, 
with few human impacts that could increase sensitivity to external energy inputs. We suggest future studies 
on this topic to identify watershed features that influence sensitivity to the effect of smoke. Other features 
that may be useful to consider include topography, elevation, aspect, and drainage area. 
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Figure 7. Average differences in daily maximum and mean water temperature deviations between nonsmoky (3-day aver-
age aerosol optical thickness [AOT] < 0.1) and at least moderately smoky (3-day average AOT ≥ 0.5) days at each moni-
toring location within each year. Differences were only calculated when there were at least 5 days within each category. The 
color gray indicates no data or insufficient days within a category. 

When we refit the best-performing models for each monitoring location using air temperatures unadjusted 
for the effect of smoke, the effect of smoke on water temperatures was diminished at all locations. While the 
differences were modest (generally 0.1 to 0.2 °C per 1.0 AOT) relative to differences in the effects among mon-
itoring locations, these differences support our expectation that wildfire smoke influences lotic temperatures 
both directly by modulating solar radiation and indirectly by cooling air temperatures. 

5.4. Sources of Uncertainty 

While we are confident that both our approach and data were appropriate for testing the hypotheses we 
posed, there are sources of uncertainty in our analysis that are important to examine for potential future 
improvement. These include representation of temperature inversions, better methods for filling spatial gaps 
in AOT, improved quantification of AOT under cloudy and heavy smoke conditions, improved representation 
of multiday effects of smoke on air and water temperatures, and alternate water temperature 
modeling frameworks. 

Under stable atmopheric conditions, temperature inversions in the incised topography of the lower Klamath 
River Basin can trap smoke in river canyons (Estes et al., 2017; Robock, 1988; Skinner et al., 2006). This phe-
nomenom can be self-reinforcing because the inversion increases smoke pooling in the river canyons, which 
strengthens the cooling effect of smoke, further stabalizing the inversion (Estes et al., 2017; Robock, 1988; 
Skinner et al., 2006). We did not try to quantify the effect of inversions, but this would be a useful topic to 
explore. For example, a day when smoke is trapped under an inversion in the river canyons may overall only 
have a modest watershed mean AOT value due to the small area covered by smoke relative to the whole 
watershed; however, because the smoke is concentrated over the stream network, it may still exert a strong 
influence on water temperatures. Additionally, because of the inversions, alternate spatial interpolation tech-
niques such as local (i.e., moving window) regression kriging (e.g., Gräler et al., 2016) of AOT that use eleva-
tion or topographic position as predictor variables could improve upon the spline interpolation method that 
we used, which ignores topography. 
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Multiangle implementation of atmospheric correction algorithm is the best available algorithm for quantify-
ing AOT but may still be improved to perform better during cloudy or extremely smoky conditions. While the 
MAIAC AOT data in conjunction with our approach to filling null-value grid cells generally appeared to accu-
rately capture the distribution of smoke shown in MODIS imagery, during some satellite passes when there 
were both clouds and smoke, the infilled AOT data failed to accurately reflect the distribution of smoke in 
the corresponding true-color image. After we completed our analyses, an updated version of the MAIAC algo-
rithm and AOT data were released (Lyapustin et al., 2018); however, in regard to the above issues, our brief 
examination of the updated data did not indicate substantial improvement relative to the version we used. 

More complex representations of multiday smoke dynamics might also improve our analysis. By only analyz-
ing intraday differences in AOT, we did not account for potential cumulative effects of smoke on air tempera-
tures over longer time periods. In contrast, our water temperature models used a 3-day averaged value of 
AOT instead of a single daily value. Yet a 3-day averaged value of smoke may still have been too short of a 
period for the larger watersheds we analyzed (e.g., main stem Klamath River locations) and will not fully cap-
ture effects from multiple consecutive days of smoke coverage, which is likely when the strongest effects 
occur. For example, in late July 2008, after a month of extensive smoke distribution over Northern 
California, water temperatures at many of the monitoring locations were the lowest observed for those calen-
dar days across their entire respective time series. However, the cooling effect of smoke did not appear to be 
fully captured by the water temperature models during this period of time (Figure 6), possibly because water 
temperatures observed on these days were influenced by the persistent smoke coverage. For these reasons, 
we suspect that our modeled effects of wildfire smoke on water temperatures are likely underestimates of the 
true effects. 

An alternative to our statistical regression approach would be to use an energy budget model to simulate the 
underlying physics of heat flux between a stream and its environment. Two recent models of Klamath and 
Trinity river water temperatures used this approach (Jones et al., 2016; Perry et al., 2011). While these models 
did not consider potential effects of wildfire smoke, the models did incorporate daily solar radiation and air 
temperature as primary drivers of water temperatures, suggesting that this modeling framework could be 
adapted to further elucidate the effects of smoke on lotic water temperatures. 

5.5. Historical Context and Management Implications 

Despite sources of uncertainty, these results suggest that wildfire smoke can cool lotic water temperatures in 
an ecologically meaningful way. In the Klamath-Siskiyou Mountains (Skinner et al., 2006; Taylor & Skinner, 
1998, 2003), other regions of California (Stephens et al., 2007; Taylor et al., 2016), and much of the western 
USA (Marlon et al., 2012), wildfires occurred more frequently and annual area burned was greater prior to 
the onset of modern fire suppression in the early 20th century. This elevated wildfire activity would have 
resulted in extensive smoke production and frequently smoky skies during the summer and fall (Stephens 
et al., 2007). Thus, in watersheds where wildfires frequently occur under natural conditions, wildfire smoke 
can be a natural mechanism to reduce maximum river and stream water temperatures, conceivably benefit-
ing cold-water adapted species such as Pacific salmon, char (Salvelinus spp.), and amphibians (e.g., Pacific 
giant salamander, Dicamptodon tenebrosus). Furthermore, because forest fire activity is often positively asso-
ciated with air temperature and drought (Marlon et al., 2012; Taylor et al., 2016), significant smoke production 
is most likely to occur during years and seasons when water temperatures are highest and most stressful to 
cold-water adapted species. 

In the lower Klamath River Basin, summer water temperatures often reach levels that are harmful to salmon 
and other cold-water adapted species (Bartholow, 2005; KRBFTF, 1991; NAS, 2004; NCRWQCB, 2010). Under 
these circumstances, even modest reductions of water temperatures by 1–2 °C due to wildfire smoke could 
have benefits to imperiled aquatic species. For example, adult Chinook salmon in the Klamath River exploit 
reductions in water temperatures resulting from reduced solar radiation and air temperature associated with 
weather fronts to migrate upstream (Strange, 2010). Both adult and juvenile salmon could similarly exploit 
smoke-induced cooling to migrate. Juvenile salmon also use localized thermal refuges within the lower 
Klamath Basin to avoid high water temperatures (e.g., Brewitt & Danner, 2014; Sutton & Soto, 2012). 
Smoke-induced cooling could produce spatially and temporally dynamic thermal refuges that increase the 
duration of time and areal extent of the river network that is useable for juvenile salmon during summer. 
Conversely, wildfire smoke may also affect lotic ecosystems in ways that could mitigate benefits of 
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reduced water temperatures. For instance, deposition of smoke and ash in streams can result in dramatic 
increases in nutrient concentrations and fluctuations of pH during and after wildfires, potentially harming 
aquatic organisms (Gresswell, 1999; Spencer et al., 2003). 

While wildfire activity was greater in many watersheds of the western USA before the onset of modern fire 
suppression, fires generally burned at reduced intensities due to lower fuel loads (Steel et al., 2015). Lower 
fire intensities likely meant less smoke production per unit area burned than for fires in our analysis. It would 
be challenging to determine the net effect on water temperatures historically given a greater area burned but 
less smoke production per area burned. Even if less smoke was produced overall, more of the smoke may 
have remained in the river canyons historically because of fewer occurrences of smoke being injected far into 
the atmosphere by high intensity fires (e.g., Peterson et al., 2014; Val Martin et al., 2010), where it can be 
carried away by wind instead of remaining in the river canyons (see inversion discussion). 

5.6. Conclusions 

Wildfire smoke has well-documented negative effects on human health (Mott et al., 2002; Reid et al., 2016). 
These negative effects are often the only aspect considered in management of wildfire smoke, but there 
are opportunities for public health and ecological objectives to be aligned (Long et al., 2018). Here we eval-
uated an unappreciated but potentially important way in which wildfire smoke can influence lotic ecosys-
tems. We hope our results contribute to a more holistic understanding of wildfire-aquatic ecosystem 
interactions to inform management of wildfires and wildfire smoke. Our results also add to recent research 
documenting diverse mechanisms through which wildfire can positively affect lotic ecosystem productivity 
(e.g., Boisramé et al., 2017; Flitcroft et al., 2016; Malison & Baxter, 2010). Together, these studies imply that 
in fire-prone ecosystems, the restoration of more natural fires regimes may help recover Pacific salmon popu-
lations and other imperiled aquatic species. Indeed, it is possible that a focus on dramatic, high-intensity fires 
and implementation of studies in fire-suppressed ecosystems has resulted in a biased perception of wildfire-
aquatic ecosystem interactions. Ultimately, more research is needed on the ways that wildfire can shape lotic 
ecosystems. For example, we need to improve our understanding of the integrative thermal effects of wildfire 
smoke, the heat of combustion, and the loss of riparian vegetation on water temperature regimes in fire-
prone watersheds. 
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