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Abstract

Recent prolonged droughts and catastrophic wildfires in the western United States

have raised concerns about the potential for forest mortality to impact forest struc-

ture, forest ecosystem services, and the economic vitality of communities in the

coming decades. We used the Community Land Model (CLM) to determine forest

vulnerability to mortality from drought and fire by the year 2049. We modified

CLM to represent 13 major forest types in the western United States and ran simu-

lations at a 4‐km grid resolution, driven with climate projections from two general

circulation models under one emissions scenario (RCP 8.5). We developed metrics

of vulnerability to short‐term extreme and prolonged drought based on annual allo-

cation to stem growth and net primary productivity. We calculated fire vulnerability

based on changes in simulated future area burned relative to historical area burned.

Simulated historical drought vulnerability was medium to high in areas with observa-

tions of recent drought‐related mortality. Comparisons of observed and simulated

historical area burned indicate simulated future fire vulnerability could be underesti-

mated by 3% in the Sierra Nevada and overestimated by 3% in the Rocky Moun-

tains. Projections show that water‐limited forests in the Rocky Mountains,

Southwest, and Great Basin regions will be the most vulnerable to future drought‐
related mortality, and vulnerability to future fire will be highest in the Sierra Nevada

and portions of the Rocky Mountains. High carbon‐density forests in the Pacific

coast and western Cascades regions are projected to be the least vulnerable to

either drought or fire. Importantly, differences in climate projections lead to only 1%

of the domain with conflicting low and high vulnerability to fire and no area with

conflicting drought vulnerability. Our drought vulnerability metrics could be incorpo-

rated as probabilistic mortality rates in earth system models, enabling more robust

estimates of the feedbacks between the land and atmosphere over the 21st

century.
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1 | INTRODUCTION

Forests in the western United States support high species diversity

(Halpern & Spies, 1995; Kline et al., 2016) and include some of the

highest carbon‐density forests on earth (Law & Waring, 2015; Law

et al., 2018). Some of these forests are under increasing stress from

accelerated rates of drought‐related mortality (Allen et al., 2010;

Anderegg et al., 2015; van Mantgem et al., 2009) and wildfires (Lit-

tell, Mckenzie, Peterson, & Westerling, 2009), bringing urgency to

the question of where are forests likely to be most vulnerable to

mortality under future climate and atmospheric carbon dioxide con-

centrations. The ability to simulate forest mortality in this region

over the next several decades is critical for assessing forest manage-

ment strategies—including climate change mitigation, wildfire risk

reduction, and habitat preservation strategies—and the potential

feedbacks between the land and atmosphere (Bonan & Doney,

2018).

Earth system models (ESMs) have the potential to provide pro-

jections of forest vulnerability to mortality. However, the land sur-

face components of most ESMs currently include limited, if any,

representation of drought‐related forest mortality (McDowell et al.,

2011). Quantification of drought‐related mortality is essential for

estimating future carbon cycling and climate feedbacks (Bonan,

2008), but progress has been limited because of incomplete under-

standing of the mechanisms involved (McDowell et al., 2008; Sala,

Piper, & Hoch, 2010). However, species hydraulic traits explain pat-

terns of recent tree mortality (Anderegg et al., 2016), and there is

empirical evidence that both short‐term and prolonged drought influ-

ence tree mortality (Kane & Kolb, 2014; Macalady & Bugmann,

2014) in the western United States. Most land surface components

of ESMs are "big leaf" models in which individual trees are not rep-

resented. Therefore, we need to investigate how well this class of

models can identify the conditions under which trees are more likely

to die (Anderegg, Berry, & Field, 2012).

To address these limitations, our objectives are to modify the

Community Land Model (version 4.5, CLM) to improve simulated for-

est drought stress and fire, and develop metrics of forest vulnerabil-

ity to drought based on simulated net primary productivity. Our

ultimate objective is to map this vulnerability over the western Uni-

ted States to the middle of this century. Because of uncertainty in

human actions to reduce CO2 emissions, and the need for near‐term
assessments of carbon consequences of management actions, we

focused our analysis on vulnerability during 2020–2049.

2 | MATERIALS AND METHODS

We simulated carbon stocks and fluxes across the western United

States (Figure 1) with the Community Land Model (version 4.5,

CLM; Oleson et al., 2013). CLM is the land surface component of

the community earth system model (Hurrell et al., 2013). We ran

CLM at 1/24° × 1/24° (~4‐km × 4‐km) resolution over the western

United States with corresponding climate (details below) and land

surface input data (Supporting information Table S1). For efficiency,

calculations were performed only for grid cells with at least 10% for-

est (79,714 grid cells), as defined by a 250‐m resolution forest type

map (Ruefenacht et al., 2008).

Community Land Model calculates multiple biophysical and bio-

geochemical processes, including surface heat fluxes, photosynthesis,

evaporation, transpiration, carbon allocation to plant tissue, decom-

position, and nitrogen cycling. CLM's default plant functional types

(PFTs) represent broad plant categories, such as needle leaf ever-

green temperate trees, broadleaf deciduous temperate trees, and C3

grasses. Law et al. (2018) modified CLM physiological parameters to

represent major forest types in Oregon to capture species‐specific
physiological responses to environmental variables. Comparisons

with observations showed these modifications greatly improved pre-

dictions of biomass within ecoregions. Here, we build upon these

modifications to include additional forest types across the western

United States (Figure 1).

2.1 | Modifications to the community land model

In addition to having a high spatial resolution (4 km × 4 km), we also

enhanced the ecological resolution of CLM by refining the defini-

tions of PFTs. We combined mapped forest types, based on forest

inventory data (Ruefenacht et al., 2008), into thirteen PFTs and

assigned unique physiological parameters to each (Supporting infor-

mation Table S2). Because the native resolution of the forest type

map is 250 m, our grid cells could have a mixture of up to 13 PFTs.

Our number of forest PFTs is limited by the current model structure.

Initial physiological parameters for each PFT were selected based on

our measured (Berner & Law, 2016) and other published values for

the dominant tree species in each PFT. We then varied physiological

parameters within the range of observed values and compared simu-

lated aboveground carbon (AGC) with observations over the period

2001–2009 (Wilson, Woodall, & Griffith, 2013) at a subset of 100

grid cells, where each grid cell was composed 100% of a single PFT

(1,300 grid cells total), to determine the most appropriate parameter

settings (Supporting information Table S2). These calibration simula-

tions were started from equilibrium conditions in 1901 (details

below) and run through 2009 to temporally coincide with the grid-

ded AGC estimates in Wilson et al. (2013). The fractional cover of

PFTs was normalized to sum to one over the grid cell. We applied

the actual percent forest cover in each grid cell (Ruefenacht et al.,

2008) in our postprocessing calculations for each output variable of

interest. Because we focus on the vulnerability of existing forests,

we did not allow forest distributions to change through time by

2049, nor did we model bare ground, shrub, or grass PFTs.

Previous work with CLM in the western United States showed

that increased rates of biological nitrogen fixation were required to

achieve realistic productivity levels in the coastal forests (Hudiburg,

Law, & Thornton, 2013). We applied the same increase in biological

nitrogen fixation to forests west of the Cascade Mountains crest.

Community Land Model's relationship between soil moisture and

photosynthesis is important for this study's investigation of drought.

CLM scales photosynthesis by soil moisture using a factor, βt, which
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ranges from one when the soil is saturated to near zero when the

soil is completely dry. The maximum potential photosynthesis is

scaled by this factor to represent the effects of soil moisture stress

(Oleson et al., 2013). In CLM, βt is calculated using the soil water

potential at which stomata close. In this study, we have modified

this factor according to species‐specific soil water potential values at

which half of stem conductivity is lost (Supporting information

Table S2), allowing for a reduction in GPP due to drought stress.

Because drought stress can trigger trees to shed leaves (Camar-

ero, Gazol, Sanguesa‐Barreda, Oliva, & Vicente‐Serrano, 2015), we

introduced an algorithm to trigger a reduction in leaf area during

periods of drought stress. According to this algorithm, a tree will

experience drought stress when the soil moisture drops below the

water potential that would cause a 50% decline in hydraulic conduc-

tivity (Supporting information Table S2) for a period of 30 consecu-

tive days. Under these conditions, background leaf shed rate (leaf

longevity; Supporting information Table S2) increases by 10% until

the soil moisture recovers. Leaf shed rate and drought stress dura-

tion parameters (Supporting information Figure S1) were selected,

based on observations (Kelly, 2016) and comparisons of modeled

and plot‐level measurements of aboveground carbon in the Sierra

Nevada Mountains, CA (Das, Stephenson, & Davis, 2016). Because

there are limited empirical data available, we selected parameters

that resulted in small increases in leaf shed after severe drought con-

ditions occurred to simulate a conservative response to drought

stress.

The CLM fire module was developed to simulate fire at coarser

resolutions and across more simply defined vegetation types (Li,

Zeng, & Levis, 2012), and modifications were necessary to simulate

fire at finer scales. Without modification, area burned was drastically

overestimated near urban areas. Therefore, we reduced the effect of

large human populations on fire ignitions. We found that default

parameter settings for the upper and lower limits of fuel load that

allow fire to spread within a grid cell resulted in repeat burning of

some grid cells such that forest regeneration was precluded. This

model behavior occurred primarily in lodgepole pine forests in the

intermountain states of Wyoming and Colorado, where lodgepole

forests currently exist. We also found that fuel loads in our region

exceeded the default upper fuel limits, thereby prohibiting fire in

some forests in the Pacific Northwest regardless of ignitions. We

therefore modified the upper and lower fuel limits on fire spread

within grid cells to correspond to the range of forest biomass in our

domain.

2.2 | Simulations with the community land model

When first initialized, CLM needs to run long enough for the above

and belowground carbon pools to reach a steady state. To accom-

plish this, we ran CLM for 1,500 model years with bias‐corrected
1901–1929 CRUNCEP climate data (Mitchell & Jones, 2005) interpo-

lated from 0.5° resolution to our 1/24° resolution (see Supporting

information Appendix S1 for bias correction and interpolation

details), using our new forest type parameterizations. We set the fire

module to “no fire” and ran for 1,500 model years in accelerated

spin‐up mode to allow the soil carbon pools to build more quickly

(Thornton & Rosenbloom, 2005). We then ran CLM for another

1,000 model years with standard soil carbon accumulation rates and

verified that soil and aboveground carbon pools were stable. After

carbon stocks reached equilibrium, we ran CLM with bias‐corrected
CRUNCEP climate data and transient aerosols and CO2 (Lamarque

et al., 2010) from 1901 through 1978 and with our drought and fire

modifications active. For the period 1979–2014, we created 3‐hourly
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climate data by disaggregating (see Supporting information

Appendix S2 for details) daily 1/24° × 1/24° (4‐km × 4‐km) data

(Abatzoglou, 2013). The 1979–2014 climate data served as the refer-

ence for the CRUNCEP data bias correction. To account for past dis-

turbance and ensure appropriate spatial representation of stand ages

in CLM, we prescribed harvest to achieve stand ages reported for

2008 (Pan et al., 2011). Output from the 1979–2014 simulation was

used for model evaluation described below.

A second set of simulations spanning 1979–2049 were run with

climate input data from the IPSL‐CM5A‐MR and MIROC5 general

circulation models (GCMs) using historical concentrations (1979–
2005) and representative concentration pathway (RCP) 8.5 concen-

trations (2006–2049) of anthropogenic greenhouse gases (Taylor,

Stouffer, & Meehl, 2012) and downscaled as described above. The

CLM simulations used the identical concentrations of atmospheric

CO2 as the GCM‐derived climate data. We applied harvest during

1979–2008 to achieve 2008 stand age as described above. After

2008, we based harvest amounts on historical harvest data for each

state to represent a "business‐as‐usual" (BAU) scenario (See Support-

ing information Appendix S3 for details). The 1979–2049 simulations

were initialized with output from the simulation using observation‐
based climate data that ended in 1978 as described above.

We elected to use an RCP 8.5 emissions scenario because it

most closely mimics our current emissions (Peters et al., 2013).

Moreover, temperature projections under RCPs 4.5 and 8.5 are very

similar over the simulation period of 2020–2049 (Supporting infor-

mation Figure S2), and if there are no vulnerability impacts under an

RCP 8.5 scenario, they will not appear under RCP 4.5 (the milder

scenario). We selected the IPSL‐CM5A‐MR and MIROC5 projections

because they met the following criteria: (a) The required meteorolog-

ical variables had been bias‐corrected and downscaled to 4‐km × 4‐
km resolution for the western United States (Abatzoglou, Barbero,

Wolf, & Holden, 2014); (b) all required variables were archived for

CMIP5 at a 3‐hourly interval continuously over the years of interest

(Supporting information Table S3); (c) the GCMs sufficiently repro-

duced a large suite of observed 20th century climate metrics for

western North America and the northeast Pacific Ocean—though

this is not to say they do not suffer from deficiencies (Rupp, Abat-

zoglou, Hegewisch, & Mote, 2013). From this set of available GCMs,

we selected those that spanned the largest range in temperature

and precipitation projected for our region (Supporting information

Figure S2a). Across the western United States, the IPSL‐CM5A‐MR

projections are warmer and drier than MIROC5 projections (Support-

ing information Figure S2b–e). Globally, IPSL‐CM5A‐MR temperature

is approximately one degree higher than MIROC5 temperature by

2050 (Supporting information Figure S3). These two projections span

climate conditions that are representative of our current emission

trajectory (IPSL‐CM5A‐MR) and conditions that could be realized if

we achieved the globally acknowledged goal of limiting to a 2°C glo-

bal mean temperature increase (MIROC5).

We also ran a default CLM simulation (no modifications, standard

PFTs, 1° × 1° spatial resolution) to determine the magnitude of

differences in simulated carbon stocks and fluxes our model modifi-

cations made. This default CLM simulation was "spun‐up" as

described above and run through 2014 with CRUNCEP climate data

and harvest to achieve 2008 stand ages.

2.3 | Model evaluation

First, we quantified over‐ or underestimation of carbon stocks and

fluxes from the modified CLM and the default CLM to determine the

level of improvement. Next, we compared our improved CLM‐simulated

carbon stocks and fluxes with additional inventories and site observa-

tions. Where possible, we report the degree of correlation between

observations and simulations with linear regression, R2, root mean

square error (RMSE), and mean bias error (MBE). When observations

themselves span a range, we consider model performance to be satis-

factory when the simulated estimates fall with the observational range.

We evaluated simulated carbon stocks with gridded aboveground

carbon derived from Forest Inventory and Analysis (FIA) plot data

(Wilson et al., 2013) across the domain, by state, by PFTs, and by

ecoregions (Omernick, 2004). The grid cells that were used in PFT

parameter calibration were excluded from this evaluation. We evalu-

ated simulated carbon fluxes with state‐level net primary productiv-

ity (NPP) derived from MODIS sensors (Berner, Law, & Hudiburg,

2017), FIA‐derived carbon fluxes over Oregon, Washington, and Cali-

fornia (Hudiburg et al., 2009; Hudiburg, Law, Wirth, & Luyssaert,

2011) and observations from five AmeriFlux sites. We evaluated sim-

ulated area burned with observed area burned as recorded in the

Monitoring Trends in Burn Severity (MTBS) database (Eldenshenk

et al., 2007). We compared results of the two drought vulnerability

metrics derived from CLM simulations run with observed climate

(see below), using published records of forest mortality across the

western United States (specific locations and citations in Supporting

information Table S9).

2.4 | Vulnerability to drought and fire

Because CLM does not simulate drought‐related tree mortality, we

developed vulnerability metrics to rank the potential for drought‐re-
lated mortality based on simulated net primary productivity and tree

stem carbon accumulation. Both can decline prior to mortality. There

is evidence for the effects of both short‐term extreme and pro-

longed drought on tree mortality (Das, Battles, Stephenson, & Mant-

gem, 2007; Kane & Kolb, 2014; Macalady & Bugmann, 2014; Sala

et al., 2010), and we defined metrics to represent vulnerability to

either of these conditions.

We defined short‐term drought as the conditions that could lead

to tree mortality in one year. We used a metric common to many

dynamic vegetation models, in which 100% mortality occurs when

annual NPP = 0 (Krinner et al., 2005; Levis, Bonan, Vertenstein, &

Oleson, 2004; Sitch et al., 2003). For each decade (2020–2029,
2030–2039, 2040–2049), we defined low short‐term drought

vulnerability as 0 years with NPP = 0; medium short‐term drought
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vulnerability as 1 year with NPP = 0; and high short‐term drought

vulnerability as 2+ years with NPP = 0.

We defined vulnerability to prolonged drought as a function of

allocation to growth. Allocation to growth is a low priority for

mature trees (Waring, 1987), and the probability of mortality

increases as the number of years of no growth increases (Allen &

Breshears, 1998; Kane & Kolb, 2014; Wyckoff & Clark, 2002). Based

on the number of observed years with no growth and subsequent

mortality reported in these field studies, for each decade, we defined

low vulnerability to prolonged drought as 0 years with low allocation

to growth; medium vulnerability to prolonged drought as 1–3 years

with low allocation to growth; and high vulnerability to prolonged

drought as 4+ years with low allocation to growth. We defined low

allocation as stem allocation <0.1% of aboveground carbon based on

field observations (Baldocchi et al., 2010; Law, Thornton, Irvine,

Anthoni, & Tuyl, 2001).

Final drought vulnerability per decade was calculated as the max-

imum of either short‐term or prolonged drought during each decade

for each grid cell, for each climate projection. We explicitly incorpo-

rated uncertainty due to future climate projections into our vulnera-

bility metrics by defining final drought vulnerability classes where:

1. Uncertain = one GCM low and one high

2. Low = both GCMs low

3. Med‐Low = one low and one medium

4. Medium = both GCMs medium

5. Med‐High = one medium and one high

6. High = both GCMs high

We represented future vulnerability to fire based on the differ-

ence in simulated future (2020–2049) minus simulated past (1980–
2009) area burned weighted by the future area burned. We normal-

ized future area burned by the maximum area burned in any grid

cell, from either climate‐forcing simulation (IPSL‐CM5A‐MR or

MIROC5). We then weighted the difference in future minus past by

the normalized future area burned. The resulting distribution of

weighted differences in area burned was classified into low, medium,

and high fire vulnerability by terciles. Final fire vulnerability rankings

accounted for differences due to climate projections, as did final

drought vulnerability.

Because there were differences between the simulated and

observed area burned (see Results), we assessed the influence of this

uncertainty in simulated area burned on our vulnerability classifica-

tions. We calculated the ratio of CLM‐predicted versus observed

area burned during 1984–2012 at the spatial resolution of ecore-

gions (see Supporting information Figure S5e) and multiplied the

area burned over 1979–2049 for each grid cell by this ratio. We

then calculated fire vulnerability from these adjusted area burned

values and compared with the unadjusted vulnerability rankings to

identify where uncertainty in CLM‐simulated burn area may lead to

uncertainty in future fire vulnerability.

We determined combined drought and fire vulnerability in two

ways, (a) the maximum of either drought or fire and (b) the

combination of both drought and fire. For the second method, we

identified six vulnerability classes using the method described above

for combining results from the two climate projections.

We examined characteristics of grid cells that experienced

decreasing, constant, and increasing vulnerability to drought over

time by calculating the change in temperature, precipitation, soil

moisture stress (CLM transpiration beta factor), and carbon stocks

between decades. Since fire vulnerability was based on the differ-

ences between the past and future period, we assessed the above

characteristics in low, medium, and high vulnerability classes over

the future period 2020–2049.

3 | RESULTS

3.1 | Model evaluation

Our modifications strongly improved CLM's performance in forested

areas of the western United States. Using CLM with no modifica-

tions, total domain‐wide aboveground live‐tree carbon (AGC) in for-

ests was underestimated by a factor of 11 compared with

observation‐based AGC estimates during 2001–2009, and total simu-

lated annual area of forest burned was overestimated by a factor of

20 during 1984–2012 (Supporting information Figure S4). With our

modifications, both aboveground carbon and area burned were

overestimated by a factor of 2.

Our modifications produced satisfactory simulations of carbon

stocks and fluxes over the western United States. Simulated AGC

was highly correlated with observation‐based AGC when evaluated

across forest types (R2 = 0.84, Figure 2a) and across ecoregions

(R2 = 0.80, Figure 2b). Across the region, simulated mean above-

ground carbon (AGC) was within one standard deviation of observed

AGC (Obs. mean = 30.5 Mg C/ha, SD = 39.7 Mg C/ha, CLM mean =

59.1 Mg C/ha, SD = 45.5 Mg C/ha). Comparisons of observed and

simulated AGC for those grid cells with 100% single PFT composi-

tion, (Figure 2a), indicated the physiological parameterizations for

each PFT were appropriate. Simulated mean AGC for 12 of 13 PFTs

was within one standard deviation of the observed mean, and the

lodgepole pine mean was within two standard deviations (Supporting

information Figure S5). CLM tended to overestimate AGC more in

the intermountain regions than in the coastal regions (Supporting

information Figure S5).

The modified CLM satisfactorily simulated NPP. Domain‐ and

state‐wide CLM estimates of NPP fell within the range of NPP esti-

mates derived from MODIS and FIA data (Supporting information

Table S4) and were highly correlated with mean state‐level MODIS

NPP estimates (R2 = 0.98, RMSE = 16 Mg C/ha, MBE = −3 Mg C/

ha). Comparison with FIA data from Oregon indicates CLM overesti-

mated net primary productivity (NPP) by 6.9% and heterotrophic res-

piration by 15.1% and underestimated net ecosystem productivity

by 4.2% (Supporting information Table S5). Patterns of carbon flux

over‐ and underestimation varied by ecoregion within Oregon (Sup-

porting information Table S5). For 34 forested plots in Oregon and

California that were within 13 CLM grid cells, CLM tended to
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overestimate NPP and heterotrophic respiration, leading to an aver-

age 7% overestimation of annual NEP (Supporting information Fig-

ure S6). Across four coniferous forest AmeriFlux sites, CLM

underestimated gross primary productivity (GPP) by 6.8% (Support-

ing information Table S6), overestimated ecosystem respiration by

10.6% (Supporting information Table S7), and overestimated net

ecosystem productivity by 0.6% (Supporting information Table S8).

At an oak woodland AmeriFlux site (Ma, Baldocchi, Xu, & Hehn,

2007), CLM underestimated NPP by 12.3%.

Over the western United States, our modified CLM estimates of

area burned were highly correlated with observations (R2 = 0.75, Fig-

ure 3). CLM overestimated the total forested area burned during

1984–2012 by 28.6% relative to burn area reported in the MTBS

data (Eldenshenk et al., 2007; Supporting information Figure S7).

CLM tended to overestimate area burned in the lowest and highest

carbon‐density forests (Supporting information Figure S7). However,

Whittier and Gray (2016) determined that MTBS underestimates

burn area by 20% when compared with inventory data, which

implies CLM overestimates may be as low as 8%. We consider these

metrics to indicate satisfactory model performance. We address the

potential consequences of uncertainty in simulated area burned

below.

Observed plot‐level tree mortality corresponded well with our

drought mortality metrics. Twelve of thirteen sites with observed

mortality between 1989 and 2009 had at least one year with no

allocation to growth or zero NPP in the preceding 5 years, resulting

in medium to high vulnerability classification (Supporting information

Table S9). Of the six sites with observed mortality rates higher than

50%, four were classified with high drought vulnerability, one with

medium, and one with low. Widespread pinyon pine mortality was

observed in Arizona and New Mexico in 2003 and 2004 (Breshears

et al., 2005), and CLM simulations showed widespread occurrence of

years with no allocation to growth and NPP = 0 (medium to high

vulnerability) during 1997–2003 (Supporting information Figure S8).

Areas with multiple years with no allocation to growth and with

NPP = 0 (medium to high vulnerability) also coincide with observed

bark beetle mortality during 1997–2010 (Supporting information

Figure S8). Although we are not able to perform a test for omission,

these comparisons do not show high historical drought vulnerability

in regions without recorded tree mortality.

3.2 | Historical simulations with GCM climate
projections

Compared to CLM simulations run with observed climate, CLM sim-

ulations using IPSL‐CM5A‐MR and MIROC5 climate projections over

1979–2014 resulted in similar values for AGC and similar number of

years with no allocation to growth and with NPP = 0 (Supporting

information Figure S9). Area burned under GCM projections did not

increase as quickly as area burned using observed climate (Figure 4)

and was approximately 22% lower in the 2010s. We address this

source of uncertainty in our future estimates of fire vulnerability as

described below.

The IPSL‐CM5A‐MR climate projections tend to be drier and

warmer than the MIROC5 projections (Supporting information

Figure S10). Averaged over the domain, IPSL‐CM5A‐MR projections

are 3.5° warmer in the 2040s than the 1980s, and MIROC5 projec-

tions are 3.1° warmer. Neither projection shows substantial changes
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in precipitation between time periods when averaged across the

domain (Supporting information Figure S10).

3.3 | Future forest vulnerability to drought

Future forest vulnerability to prolonged drought (Supporting infor-

mation Figure S11) is expected to be more widespread than vulnera-

bility to short‐term drought (Supporting information Figure S12).

Future estimates of prolonged drought differ less between climate

projections than do estimates of short‐term drought vulnerability.

Combined drought vulnerability (Supporting information Figure S13),

described below, is the maximum of prolonged or short‐term drought

vulnerability.

Forest vulnerability to drought stress between 2020 and 2049

varies widely across the western United States (Figure 5a). Low

drought vulnerability, covering 64% of the domain (Table 1), is

expected across most of the coastal and western Cascade regions

and portions of northern Idaho and Montana. Widespread areas of

low to medium drought vulnerability are expected throughout the

intermountain west, covering about 9% of the forest area. Large por-

tions of the southern Rocky Mountains in Wyoming, Colorado, Utah,

Arizona, and New Mexico, covering 36% of the domain, are

expected to experience medium to high vulnerability to drought

regardless of climate projection (Figure 5a). Scattered pockets of

medium to high drought vulnerability are also expected throughout

the Sierra Nevada, northern Rocky Mountains, and eastern Oregon.

Importantly, differences between the climate projections do not

result in conflicting low and high drought vulnerability classifications

in near‐future decades and very little area with medium–low and

medium–high vulnerability rankings. Where drought vulnerability pre-

dictions differed between climate projections, the warmer IPSL‐
CM5A‐MR projections resulted in higher vulnerability (not shown).

Thus, areas with medium––low and medium–high vulnerability

(Table 1) indicate the differences in future drought vulnerability

under a current trajectory emission scenario (represented by the

IPSL‐CM5A‐MR climate projections) and a limited warming scenario

(represented by MIROC5 climate projections). Limited warming

would reduce drought vulnerability in 13% of the forested western

United States compared with a current trajectory scenario (Table 1).

Across the western United States, the potential for future forest

mortality from drought, as indicated by the area of forest in each

vulnerability category, is expected to remain similar to the past few

decades (Supporting information Figure S14).

From one decade to the next, drought vulnerability tended to

increase at the edges of forest type distributions. Grid cells at distri-

bution edges necessarily had a low percent cover of a given forest

type, and these were the grid cells that experienced an increase in

drought vulnerability (Supporting information Figure S15a). As

expected, drought vulnerability also increased where, from one dec-

ade to the next, soil moisture was more limiting as represented by

the change in the soil transpiration factor (Supporting information

Figure S16b), annual precipitation was lower (Supporting information

Figure S16c), and annual temperature was higher (Supporting infor-

mation Figure S16d). Changes in drought vulnerability did not appear

to be correlated with changes in AGC (Supporting information

Figure S16a).

The pinyon‐juniper forest type is expected to be the most vul-

nerable to drought, with only about 20% of its range expected to

have low vulnerability (Supporting information Figure S17). Most for-

est types are expected to experience high drought vulnerability in

some portion of their ranges. However, coastal Douglas‐fir, hemlock/

cedar, and redwood forest types are expected to experience only

low drought vulnerability by mid‐21st century (Supporting informa-

tion Figure S17). Relative vulnerability rankings across forest types

(Supporting information Figure S17) remain mostly consistent from

the 1990s through the 2040s (not shown).

3.4 | Future forest vulnerability to fire

Future area burned is expected to increase under both climate pro-

jections (Figure 4), primarily in the Sierra Nevada and Rocky Moun-

tains (Supporting information Figure S18). Between 2020 and 2049,

most (82%) of the western United States is predicted to experience

low vulnerability to fire regardless of climate projections (Table 1,

Figure 5b). High fire vulnerability, covering 14% of the domain, is

primarily expected in the intermountain region, the Sierra Nevada,

and Klamath Mountains. Differences between climate projections

lead to only 1% of the forested domain with conflicting low and high

fire vulnerability (Figure 5b). A limited warming scenario reduces fire

vulnerability in 5% of the forested domain compared with a current

trajectory scenario (Table 1). After incorporating uncertainty due to

differences between observed and simulated area burned, fire vul-

nerability over 87% of the domain remained unchanged, approxi-

mately 3% increased (mostly in CA and southern OR), 3% decreased

(mostly in the Rocky Mountains), and 7% switched to uncertain fire

F IGURE 4 Area burned from CLM simulations run with
observation‐based climate (FMEC) and projections from two general
circulations models (IPSL‐CM5A‐MR and MIROC5) under RCP8.5
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vulnerability (mostly in the CO Rocky Mountains and eastern WA;

Supporting information Figure S19).

Fire vulnerability tended to be highest where average decadal

precipitation during 2020–2049 increases was the smallest (Support-

ing information Figure S20). In general, grid cells that accumulated

AGC were in more mesic ecoregions and experienced low fire vul-

nerability. Relationships between fire vulnerability and changes in

soil moisture stress or temperature were not apparent (Supporting

information Figure S20).

Redwood is the only forest type expected to experience only

low vulnerability to fire (Supporting information Figure S21). The

expected area with high fire vulnerability is primarily composed of

inland Douglas‐fir, lodgepole pine, ponderosa pine, CA mixed conifer,

and mixed fir forest types, representing approximately 10%–20% of

each forest type's range (Supporting information Figure S21).

3.5 | Future forest vulnerability to fire and drought

Differences in the spatial distribution of drought and fire vulnerabil-

ity lead to 40% of the forested areas in the western United States

expected to experience medium to high vulnerability to drought or

fire at some time during 2020 through 2049 (Figure 5c). Pinyon‐ju-
niper is the most vulnerable forest type, with more than 40% of its

range expected to experience high vulnerability to drought or fire,

regardless of climate projections (Figure 6). Just over half of the

forested area, primarily in the coastal regions, is expected to have

F IGURE 5 Vulnerability of forested
areas during 2020–2049 to (a) drought, (b)
fire, and (c) either drought or fire. Colors
indicate agreement between CLM
simulations with two climate projections,
where one GCM low and one high
(uncertain) = gray, both GCMs low = dark
blue, one low one med = cyan, both
medium = yellow, one medium one
high = orange, and both high = magenta

TABLE 1 Forested area (km2) in each
drought, fire, and total (maximum of
drought or fire) vulnerability category
during 2020–2049

Uncertain Low Medium–Low Medium Medium–High High

Drought 0 815,600 108,960 86,960 63,248 201,936

Fire 13,728 1,046,160 33,840 17,680 25,520 139,776

Total 0 651,616 118,544 93,952 75,184 337,408

Note. Categories reflect agreement between CLM simulations run with two climate projections, as

described in the main text.
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low vulnerability to drought or fire (Figure 5c). The coastal Douglas‐
fir, hemlock/cedar, and redwood forest types are expected to experi-

ence low vulnerability to drought or fire (Figure 6). All other forest

types are expected to experience high vulnerability to drought or fire

in at least 10% of their range, regardless of climate projections (Fig-

ure 6).

Approximately 2% of the forested western United States is

expected to experience medium–high or high vulnerability to both

drought and fire (Supporting information Figure S22). The majority

of this high vulnerability area is composed of pinyon‐juniper, oak,
and ponderosa pine forest types, and represents less than 5% of

those PFTs ranges (Supporting information Figure S23).

4 | DISCUSSION

Our modifications to CLM were essential for characterizing forest

ecosystem processes with increased ecological resolution and esti-

mating forest vulnerability to drought and fire. Comparisons with

historical observations indicate that the physiological parameteriza-

tions we developed for specific forest types produced accurate simu-

lations of historical carbon stocks and fluxes, with both observation‐
based and GCM‐hindcast climate data. This increases our confidence

in our simulated near‐future carbon stocks and fluxes.

Here, drought stress triggered leaf shed, which limited photosyn-

thetic capacity. Our drought vulnerability metrics showed medium to

high vulnerability in places that recently experienced drought‐related
mortality, and vulnerability increased where soil moisture, tempera-

ture, and precipitation indicated drought conditions existed. These

metrics are therefore likely to identify areas that may experience

tree mortality due to drought stress in the near future.

Insects contributed to mortality in many of the documented

instances of recent drought‐related mortality in the western United

States (Allen et al., 2010; Anderegg et al., 2015). Our estimated

drought vulnerability during 1996–2010 corresponded with areas of

beetle mortality in the Rocky Mountains and Southwest United

States (Berner, Law, Meddens, & Hicke, 2017; Meddens, Hicke, &
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Ferguson, 2012); however, we do not account for direct effects of

climate on beetle development and survival (Bentz et al., 2010) that

can lead to beetle population increases. Therefore, our metrics may

identify forested areas vulnerable to beetle attack due to the pres-

ence of drought‐stressed trees (Boone, Aukema, Bohlmann, Carroll,

& Raffa, 2011; Breshears et al., 2005), but do not necessarily repre-

sent forest vulnerability to aggressive bark beetle outbreaks in which

healthy trees may be killed (Raffa et al., 2008). Consequently, we do

not include an interaction between insect outbreaks and fire. This is

unlikely to have a strong impact on estimated fire vulnerability

because wildlife likelihood does not consistently increase or decrease

following insect outbreaks (Hicke, Johnson, Jane, & Preisler, 2012;

Meigs et al., 2015).

Several studies have indicated that future forest mortality in the

western United States is likely to increase due to drought stress

(Allen et al., 2010; Jiang et al., 2013; Thorne et al., 2018; Williams

et al., 2013). Our analyses indicate strong potential for continued

levels of drought‐related forest mortality in the Southern Rocky

Mountains and southwestern regions of the United States in the

coming decades under both climate projections. Recent estimates of

climate change vulnerability across the southwestern United States

identified similar regions with high exposure to climate change

(Thorne et al., 2018). Together, this evidence suggests that forests in

the Southwest are likely to suffer from a changing climate. We show

a relatively constant area with high drought vulnerability through

time, which may be related to our categorical, instead of continuous,

drought vulnerability metric. Given the current lack of understanding

of direct mechanisms controlling tree mortality (McDowell et al.,

2008; Sala et al., 2010), we elected to use a categorical vulnerability

metric, based on observations of mortality under specific growth and

productivity conditions.

We expect Pinyon‐juniper, the most common forest type in the

Southwest, to be the most vulnerable to drought‐related mortality in

the near future. Pinyon‐juniper shows simulated vulnerability to both

short‐term and prolonged drought, as has been documented in field

studies (Macalady & Bugmann, 2014). Observations indicate recent

drought‐related mortality has affected pinyon pine more than juniper

(Breshears et al., 2005). Our physiological parameterizations for the

pinyon‐juniper forest reflect pinyon hydrologic traits. Juniper compo-

nents of these forests may therefore be less vulnerable to future

drought‐related mortality than our metrics indicate.

Previous studies have indicated a high level of climate change

exposure in the foothills of CA (Thorne et al., 2017, 2018 ). We do

not identify high drought vulnerability in this area, which can indi-

cate that either those forest types (primarily oak and CA mixed coni-

fer) are able to withstand a large deviation from their historical

climate conditions or that we have underestimated the influence of

drought on their physiology. Further field and modeling experiments

could help clarify forest sensitivity to drought in this region.

We identify low drought vulnerability across large areas of the

Pacific Northwest and Northern Rocky Mountains. Simulations with

a dynamic vegetation model show expanding forest area in these

regions at the end of this century (Shafer, Bartlein, Gray, & Pelltier,

2015). Other dynamic vegetation model simulations indicate con-

tracting needle leaf evergreen forest cover in some areas we identify

as having low drought vulnerability (Jiang et al., 2013). Given the

improvements our modifications made compared with standard CLM

evergreen needle leaf forest parameterizations, these differences

may well be due to species‐level physiological sensitivity to climate

extremes.

Anthropogenic climate change is a contributing factor in recent

increases in area burned in the western United States (Abatzoglou &

Williams, 2016), and future climate is expected to exert a strong

influence on fire occurrence (Pechony & Shindell, 2010). Our fire

vulnerability metric identified regions with high expected future

burned area as well as areas with large increases in area burned rela-

tive to the recent past. The central and southern Rocky Mountains,

where fire is most common, are expected to experience high vulner-

ability to fire in both absolute and relative area burned. Other areas

with high future fire vulnerability occur throughout the northern

Rocky Mountains, the East Cascades, and Sierra Nevada. Broadly,

the spatial distribution of increases in area burned and fire vulnera-

bility shown here agrees with results from several studies that took

a statistical approach to simulating future fire (Kitzberger, Falk,

Westerling, & Swetnam, 2017; Moritz et al., 2012). Our estimates of

high fire vulnerability also agree with projections of more frequent

fire in the Greater Yellowstone Ecosystem (Westerling, Turner, EaH,

Romme, & Ryan, 2011) and increasing area burned in the Klamath

and Sierra Mountains of CA (Westerling, Hidalgo, Cayan, & Swet-

nam, 2006). Notable areas with large projected increases in fire in

CA (Westerling et al., 2006) along the CA coast are in shrub types,

which we did not assess. Shortening of the historical fire return

interval has the potential to trigger a vegetation shift (Westerling

et al., 2011) in any of these regions.

Areas identified as highly vulnerable to fire are expected to be

more likely to burn in the near future than in the historical period.

With this statement, we do not imply that areas labeled highly vul-

nerable will burn or that if ignited they will burn with high intensity.

Simulated fire ignition outside of urban areas depends on lightning

strikes. Because lightning is difficult to predict, we rely on observa-

tions of historical lightning strikes to estimate future ignitions. Sever-

ity is a measure of the effect of fire intensity on the ecosystem and

is determined by fire weather, fuel conditions, terrain, and vegetation

type (Parks et al., 2018). Most contemporary fires in mixed conifer

forests of western North America are mixed‐severity fires. In the

Pacific Northwest, mixed‐severity fires include unburned and low

severity areas that account for 50%–60% of total burn area, and only

13% of total burn area experiences high severity (90% tree mortality;

Halofsky et al., 2011; Law & Waring, 2015). The current CLM fire

module does not estimate fire severity. Thus, a classification here of

highly vulnerable to fire does not imply those areas will experience

high severity fire. Finally, human efforts to suppress fires have a

strong influence of area burned, and the CLM fire module does not

account for fire suppression policies.

We expect total vulnerability, to either drought or fire, to be low-

est in Coastal Douglas‐fir, hemlock/cedar, and redwood forest types.
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Because of their high carbon‐density, longevity, mesic growing con-

ditions, and relatively long fire return intervals, these forests have

the greatest potential to sequester carbon of any forests in the

western United States (Law et al., 2018). Therefore, regional policies

that promote forest stewardship as a natural solution to climate

change mitigation (Griscom et al., 2017) should be investigated.

Widespread vulnerability to drought or fire, and therefore ele-

vated risk of forest mortality, is expected in the Rocky Mountains,

Sierra Nevada, Southwest, and Great Basin regions of the western

United States. Because mortality has the potential to lead to changes

in forest composition and transitions to non‐forest vegetation types

(Allen & Breshears, 1998; Anderegg, Kane, & Anderegg, 2012;

Veblen, Hadley, Reid, & Rebertus, 1991; Williams et al., 2013), our

vulnerability estimates indicate these regions have the potential to

experience substantial ecological change in the coming decades. In

these regions, research on the effects of land management practices,

for example, thinning effects on surface temperature, canopy heat-

ing, and seedling establishment (von Arx, Pannatier, Thimonier, &

Rebetez, 2013), on future drought and fire vulnerability and regional

carbon balance, could inform and guide land management policies.

We expect the greatest potential for ecological change to be

concentrated in Pinyon‐juniper, oak, and ponderosa pine forests

across the southern Rocky Mountains and Southwest United States,

where future vulnerability to both fire and drought is high. Forests in

these areas are primarily water limited (Nemani et al., 2003), and

mortality in these forests is of particular concern. Mortality can

increase the amount of forest edge, and productivity tends to

decrease along forest edges in water‐limited systems due to

increased drought stress (Smith, Hutyra, Reinmann, Marrs, & Thomp-

son, 2018). Additionally, we found increasing vulnerability in mixed

forests (low percent cover of any given forest type), indicating mor-

tality may be the highest at the margins of forest type distributions

and within ecotones (Neilson, 1993). Future climate conditions may

preclude reestablishment of existing species, thereby accelerating

shifts in forest distributions (Allen & Breshears, 1998). Additional

field research and model development to guide‐assisted migration

policies (Neilson et al., 2005) may be most relevant in this region.

We selected two GCM projections that cover a medium to high

regional response to greenhouse gas forcing. Even so, there was

very little variation in carbon stocks and fluxes between climate sim-

ulations, and no portion of the western United States was classified

with conflicting low and high drought vulnerability. This agreement

is likely due in part to variability at multiple temporal scales, whereby

the definitions of high vulnerability are exceeded in each climate

simulation at different times but still occurs during a decade.

Mortality events and vegetation state shifts can have long‐term
effects on carbon cycling and sequestration potential (Hudiburg,

Higuera, & Hicke, 2017; McLauchlan et al., 2014) and important

feedbacks to climate (Anderegg, Kane, et al., 2012; Bonan, 2008).

Therefore, simulating forest mortality is a critical component of earth

system models (Bonan & Doney, 2018). Our work is a step toward

incorporating more refined plant strategies and drought‐related mor-

tality in an earth system model (van der Molen et al., 2011). We

demonstrate that physiological representation of multiple forest

types is critical for reliable simulations of historical carbon stocks

and fluxes in the western United States (Duarte et al., 2016; Hudi-

burg et al., 2013). An assessment of available physiological data and

model sensitivity tests are necessary to determine which forest type

distinctions are achievable and most important at the global scale.

Given the uncertainty in the direct mechanisms of tree mortality due

to drought (McDowell et al., 2011, 2008 ; Sala et al., 2010), identify-

ing the conditions under which trees are likely to succumb to

drought‐related mortality may be a viable alternative to implement-

ing physiological mortality mechanisms in ESMs (Anderegg, Berry,

et al., 2012). Our drought mortality metrics could be implemented as

mortality algorithms by defining forest type‐specific probability of

mortality when the metric conditions are met (Hartmann et al.,

2018). A logical extension is to implement such algorithms in a

dynamic vegetation model, thereby allowing for the potential for

drought‐induced mortality to cause vegetation state shifts, which in

turn can influence fire occurrence and spread.

Under future climate conditions represented by two general cir-

culation models and the highest CO2 scenario (RCP8.5), forest vul-

nerability to drought‐related and fire mortality is likely to continue at

recent levels or increase in the near future, depending on location

and environmental conditions. Forests in the Southwest are the most

vulnerable and therefore have the greatest risk of conversion to a

different vegetation type in the near future. Forests in the Pacific

Northwest are least likely to experience future drought and fire mor-

tality. Our work demonstrates that increased physiological detail and

new drought stress algorithms in land surface models are critical for

simulating future forest mortality. These modifications have the

potential to be implemented in other near‐future regional assess-

ments. Implementation in a coupled land–atmosphere earth system

model will have the added benefit of representing forest mortality

and vegetation state shifts and their feedbacks to climate. These

abilities are essential for evaluating land management strategies and

energy policies.
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