vent facies rocks display high susceptibilities similar to those of the early intrusives. Of the three samples measured (table 10), the high was 6.7×10^{-3} emu/cm³ and the mean was 4.7×10⁻³ emu/cm³, indicating that these rocks, given sufficient thickness relative to their distance from the detector, could cause significant anomalies. The 10 samples of volcaniclastic facies early intermediate rocks measured had a broad range in susceptibility but averaged about 0.8×10⁻³ emu/cm³. These rocks would be expected to produce only low-amplitude anomalies.

The flows of intermediate composition in the Henson and Burns Formations and the welded ash-flow tuffs in the Ute Ridge Tuff showed moderate to high susceptibilities, confirming the observation that these volcanic flows can produce significant anomalies where they are sufficiently thick on topographic highs. Measurements of Sapinero Mesa Tuff indicated that this unit was low in susceptibility.

TABLE 10.-Magnetic measurements of volcanic flows, breccias, and welded tuffs, Uncompangre Primitive Area and surrounding areas

AMANAGE CALING NO	Number of	Number of K×10-3	
Rock type	samples	Range	Mean
Henson and Burns Formations	5	0.1-1.5	1.3
Sapinero Mesa (and Eureka Member) Tuff	.3	.07	.2
Ute Ridge Tuff	`1	4.1	*****
Early intermediate-composition rocks:			
Volcaniclastic facies	10	.1-2.7	.8
Near-vent facies	3	2.5 - 6.7	4.7

^{1/}K=apparent volume magnetic susceptibility in emu/cm5 measured with an inductiontype apparatus.

WESTERN UNCOMPAHGRE PRIMITIVE AREA AND WESTERN CONTIGUOUS STUDY AREA

The aeromagnetic expression of the western contiguous area is dominated by a magnetic high with an amplitude of 800 gammas above the regional level in the vicinity of the intrusive stock underlying Mount Sneffels (anomaly A, fig. 3), and a similar high of 600 gammas above the regional level near the stock on the north side of Iron Mountain and Campbell Peak (anomaly B, fig. 3). Gabbro from Mount Sneffels measured for magnetic properties showed the rock to be highly magnetic (10.0×10⁻³ emu/cm³), which fact would cause high-amplitude anomalies. The broad gradient on the south side of anomalies A and B and the amplitude of the anomalies indicates that both stocks extend to considerable depths and suggests that they may be connected. The arcuate pattern of the anomaly probably reflects the shape of the intrusive body at depth, indicating emplacement along an arcuate fracture zone, but gradients are locally steepened by the influence of intrusive dikes occurring in swarms near the topographic highs and by thick near-vent flows. The laccolith at Whipple Mountain, owing to its limited thickness in relation to its distance from the detector, causes only a 60-gamma deflection of the gradient contours. North of the highs associated with the stocks at Mount Sneffels and Campbell Peak (anomalies A and B) are induced dipolar lows (anomalies C and D).

A magnetic high marked by a peak value of 1,024 gammas occurs north of the western contiguous area. The high is associated with an Upper Cretaceous intrusive sill of intermediate composition that crops out in the northwestern part of the western contiguous area northwest of Ouray and in the area of the Dallas Divide, not identified on the map but 2½ miles (4 km) north of the contiguous area. The continuity of the magnetic anomaly suggests that this sill underlies the entire area north of the western contiguous area. The linear gradient along the south side of the anomaly suggests that the sill's emplacement may have been partially controlled by an east-trending fault.

CENTRAL UNCOMPANGRE PRIMITIVE AREA AND CENTRAL CONTIGUOUS STUDY AREA

The aeromagnetic map to the south and southwest of Ouray is characterized by a broad bifurcated low of about 100 gammas below the regional level (anomalies E and F, fig. 3). The low appears to be caused by a composite effect of topography and a thin section of volcanic rocks, as one limb follows the Uncompanier River and Red Mountain Creek to the vicinity of Ironton. (See Burbank and Luedke, 1964, for detailed geology and topography.) The other limb follows a deep canyon southwest, crosses the topographic divide, and extends to the vicinity of Telluride over the canyon of the San Miguel River (anomaly F, fig. 3). South of Ouray Precambrian quartzites are exposed along the Uncompange River in the upthrown block of a fault shown as the Ouray fault by Luedke and Burbank (1962, sec. B-B'). North of the fault sedimentary rocks are exposed at the surface underlain by Precambrian quartzite known, from exposures in mine workings (Luedke and Burbank, 1962), to have a thickness of at least 3,300 feet (1 km). In the vicinity of Telluride, volcanic rocks are also absent, as the San Miguel River is deeply eroded into lower Tertiary and pre-Tertiary sedimentary rocks.

Several lines of evidence, however, suggest that the bifurcated low is not entirely due to topography and an absence of volcanic rocks. The Ouray fault is marked by a magnetic gradient with a low to the south, yet the thickest quartzite and sedimentary rocks lie north of the fault. The low is closed on the west at Telluride and its deepest part is east of Telluride, yet the area of greatest topographic relief and sedimentary section is west of Telluride. The low crosses volcanic rocks on the topographic divide that are known to be moderately magnetic in other areas, yet in this area they are apparently nonmagnetic. This fact, coupled with the fact that the low overlies rocks that are moderately to intensely altered and mineralized and crosses the generally northwest-trending veins in the area through their

most productive segments, suggests that the low marks an area of intense hydrothermal alteration where the original magnetite content of the volcanic rocks has been destroyed by leaching. This suggestion is supported by low measured susceptibilities of altered early intermediatecomposition volcaniclastic rocks from the main mine area.

EASTERN UNCOMPAHGRE PRIMITIVE AREA AND EASTERN CONTIGUOUS STUDY AREA

The eastern part of the Uncompangre Primitive Area and the eastern contiguous study area are characterized by a broad magnetic high that increases in steplike plateaus to maxima that extend from the divide southwest of Wetterhorn Peak northeastward and eastward to Crystal Peak (anomalies G, H, I, J, fig. 3). North of this peak-studded magnetic plateau, the magnetic pattern is characterized by a broad east-west low and local north-south lows over the West (anomaly K), Middle (L), and East Forks Cimarron River (M), Little Cimarron River (N), and Fall (O), Blue (P), and Elk Creeks (Q). The magnetic plateau is closely coincident with an area of high topography chiefly underlain by thick, early intermediate-composition flows (near-vent facies), Ute Ridge Tuff, and volcanics of Uncompangre Peak. The high crosses diverse geologic units and is of sufficient magnitude to suggest a cause that is not evident in surface geology. The steepness of the east-west gradient separating the high from the low to the north suggests that much of the high is caused by a mass whose top lies at or above 9,000 feet (2,700 m) altitude or only a shallow distance beneath the surface.

All the early intermediate-composition intrusives exposed within the Uncompandere Primitive Area and eastern contiguous area lie within the high or along its northern gradient, although the individual mapped intrusives do not produce characteristic highs similar to the intrusives at Mount Sneffels (anomaly A), Sultan Mountain, and elsewhere. Four possibilities may account for this fact: (1) The stocks in the eastern area are all somewhat altered and have had much of the original magnetite destroyed, (2) the thick lava flows capping the peaks and divides do not differ significantly in susceptibility from their related stocks, (3) topographic relief placed the relatively magnetic flow rocks near the magnetometer, causing localized high intensity anomalies, which may mask anomalies resulting from susceptibility contrast and greater thickness, and (4) the entire area may be underlain by Tertiary intrusives, and the exposed intrusives are not representative of their volume at depth.

The positive anomaly over Sheep Mountain (anomaly R, fig. 3) in the northwest part of the eastern contiguous area points up the high susceptibility of many of the near-vent facies flows. This anomaly stands out sharply within the general magnetic low in the northern half of the contiguous area. Sheep Mountain is capped by a single lava flow about 1,000 feet (300 m) thick. An analysis of the anomaly, assuming a contrast of 460+ gammas with the regional level, shows that this flow would need a susceptibility contrast of more than 13×10^{-3} emu/cm³ to match the observed values, thus requiring that the flow have a higher susceptibility than any of the sampled intrusives. Depth analysis shows that the anomaly originates at or near ground level. No exposures of intrusive rocks are known to exist in the area. The highs and lows along the northern profiles line up closely with topography, suggesting that the lava flow capping the ridge is the source of the Sheep Mountain anomaly. The series of lows located over the stream valleys is, therefore, caused by topography and edge effects of the more magnetic body capping the ridge. A similar positive anomaly caused by near-vent facies early intermediate flows capping a ridge is located northeast of Sheep Mountain and is marked by a peak of 894 gammas on the aeromagnetic map.

The overall magnetic buildup in the eastern part of the Uncompangre Primitive Area and eastern contiguous area, and the broad low that is developed to the north, however, must originate partly from a deeper source. The localized anomalies with steep gradients undoubtedly reflect shallow sources—probably the near-source lava flows and volcaniclastic sediments exposed at the surface—but these are superimposed on a more general widespread moderate-amplitude anomaly. This deeper source may be a relatively mafic facies of the parent batholith that underlies the San Juan Mountains (Plouff and Pakiser, 1972) from which the Matterhorn, Cimarron, and Larson volcanoes originated. The broad regional magnetic low that lies in the northern half of the central and eastern contiguous areas may be the dipole effect of this deeper source.

The localized anomaly of 1,800+ gammas over Wetterhorn Peak (anomaly H, fig. 3), which is capped by the Ute Ridge Tuff, is probably entirely related to topographic elevation of a relatively magnetic flow, as is anomaly G to the south. The magnetic high marked by a maximum value of 1,728 gammas northeast of Uncompangre Peak (anomaly I, fig. 3) similarly occurs over one of the largest knots of high topography in excess of 13,000 feet (4,000 m) in the western San Juan Mountains; the peaks are capped by thick, near-vent facies early intermediate-composition flows and are intruded by early intermediate-composition intrusives. The isolated magnetic high marked by 1,299 gammas (anomaly J, fig. 3) occurs over a thick section of intermediate-composition flows and breccias capping Crystal Peak.

The northeast-trending segment of caldera fill that overlies the structural margin of the Uncompander caldera north of Henson Creek does not exhibit a recognizable aeromagentic pattern, nor do the rhyolite intrusives that are emplaced along it. Samples of two of these intrusives measured for magnetic properties averaged a low susceptibility of 0.0006 emu/cm³. This value is not significantly different from that of many of

the measured samples of tuffaceous rocks that fill the Uncompangre caldera and into which these rhyolites were intruded.

Four closed aeromagnetic lows occur in or near the eastern part of the Uncompangre Primitive Area; these may be related to areas of alteration and thus have economic significance as exploration targets. One low occurs east of Matterhorn Peak (anomaly S, fig. 3) in the headwaters of the East Fork Cimarron River in an area of altered rocks containing anomalous concentrations of metals associated in part with the Matterhorn volcano and in part with the altered area at Iron Beds. Another closed low occurs across the topographic divide in the drainage of Henson Creek (anomaly T, fig. 3) and is a part of the Capitol City mining area. This anomaly lies near the structural margin of the Uncompange caldera in an area that shows high copper and zinc values.

A third very small closed low (anomaly U, fig. 3) occurs between El Paso and Pole Creeks adjacent to the Capitol City mining area. This area is cut by the metalliferous veins whose anomalous metal content was indicated by both the CxCu and CxHM chemical tests described earlier in the geologic section of this report. An untested, closed low (anomaly V, fig. 3) occurs in the headwaters of Slaughterhouse Gulch above Lake City. This area was not sampled for metal values, but it occupies a position similar to that of the Capitol City mining area relative to the structural margin and associated intrusives of the Uncompange caldera.

ECONOMIC APPRAISAL

By C. L. BIENIEWSKI and H. C. MEEVES, U.S. Bureau of Mines

MINING CLAIMS

Land-status records of the U.S. Bureau of Land Management were examined to determine existing patented mining claims, and the records of Hinsdale, Gunnison, Ouray, and San Miguel Counties were examined to determine the unpatented mining claims in and near the three contiguous areas. These examinations revealed 525 patented claims and approximately 4,300 unpatented claims in the area investigated. Of these, 93 patented and approximately 3,000 unpatented claims are within the contiguous areas. The locations of the patented claims, shown on plate 3, are taken from master title plats of the U.S. Bureau of Land Management; the locations of the unpatented claims are based on claim descriptions of the recorded location notices and on maps from individuals or companies. The configurations and locations of the unpatented mining claims are only approximations, for many of these claims were not clearly described. In addition, many unpatented areas have been restaked at different times, and claims shown on plate 3 represent only part of the total number of unpatented claims that have been recorded.

SAMPLING

All mineralized areas in the contiguous study areas were examined and sampled duirng this investigation. If numerous workings were dug in a closely spaced area, commonly, only selected ones were sampled. All sample localities are shown on plate 3.

Most of the underground workings at the old mines and prospects were inaccessible because of caving or flooding. At such places, dumps and surface exposures of veins, fractures, dikes, or similar structures were sampled. If the workings were accessible, samples were taken underground on structures and at the face of the adit or drift. In a few places, samples were taken of stream sediments and of sand and gravel deposits.

Chip samples weighing 1-3 pounds (0.45-1.4 kg (kilograms)) were taken at accessible underground workings and rock outcrops. On dumps, grab samples of 1-5 pounds (0.45-2.3 kg) were taken on a grid system. In a few instances, material considered to represent the dump was selected. Samples from streams were either grab samples of sediments or panned concentrates.

All but two samples were fire assayed for gold and silver and were analyzed spectrographically for 40 elements. Some were further analyzed by other methods for specific elements. The results of all analyses are shown in table 11. One sample of limestone and two samples of coal were analyzed to determine their economic value; the results of these analyses are shown in tables 12 and 13, respectively.

TABLE 12.—Chemical analysis, in percent, of limestone (sample 390) from Pony Express Limestone Member, Wanakah Formation

Calcium carbonate (CaCO ₃)	192.19
Silica (SiO ₂)	3.44
Iron oxide (Fe ₂ O ₃)	.57
Alumina (Al ₂ O ₃)	1.28
Lime (CaO)	51.35
Magnesia (MgO)	.73
Titanium oxide (TiO2)	.05
Volatile matter	40.84
Moisture	.13
Total	98.39

¹The percentage of calcium carbonate (CaCO₃) is calculated by adding the lime (CaO) and the volatile matter, which may be considered as carbon dioxide (CO₃).

HISTORY AND MINERAL PRODUCTION

The history of the mining activity and mineral production in an adjacent to the Uncompander Primitive Area up to 1966 was discussed by Fischer, Luedke, Sheridan, and Raabe (1968). The history of the Lake City area was discussed in detail by Irving and Bancroft (1911). Since 1966,

TABLE 13.-Analyses of coal, in percent, from west of San Miguel

Sample No	359	360
Proximate analysis:		
Moisture	1.5	1.0
Volatile matter	8.8	10.2
Fixed carbon	37.3	32.6
Ash	52.4	56.2
Total	100.0	100.0
Ultimate analysis:		VV. 1917
Hydrogen	2.1	2.2
Carbon	40.4	35.5
Nitrogen	.7	.6
Oxygen	3.9	5.1
Sulfur	.5	.4
Ash	52.4	56.2
Total	100.0	100.0
British thermal units	6.570	5.470

activity in the contiguous study areas discussed here has consisted mainly of claim location, assessment work, and exploration.

According to U.S. Bureau of Mines records, the only recorded mineral production during 1966–71 from within the contiguous areas was for stone produced in Gunnison County in 1969 and 1970 from two quarries on the east side of the Middle Fork Cimarron River. The northern quarry is 1½ miles (2.4 km) south of the junction of the East and Middle Forks; the other quarry is 1 mile (1.6 km) farther south. The stone was used for riprap in construction of the Silver Jack Dam on the Cimarron River (not shown on plates).

Gold, silver, copper, lead, zinc, limestone, and sand and gravel were produced during 1966–71 from mines near the contiguous areas. The precious- and base-metal production was from the Ute-Ulay (1966–68) and Capitol City (1968) mines in Hinsdale County; the Senorita (1966); Bachelor-Syracuse (1968–70), and Portland (1968) mines in Ouray County; and the Courthouse (1966) mine in San Miguel County. Limestone was quarried at the mouth of Deep Creek in San Miguel County from 1969 through 1971, and it was used at the Union Carbide Corp. uranium mill at Uravan, Colo., to neutralize plant effluent. Sand and gravel, obtained near the junction of the East Fork and West Fork Cimmarron River in 1969, was used in constructing the Silver Jack Dam (not shown on plates).

Exxon Corp. (1971-72) and Greater West Mining Co. (1969) have explored for uranium in the eastern contiguous area and adjacent parts of the original primitive area, and Dixilyn Corp. (1971) explored for molybdenum in the headwaters of the East Fork Cimarron River adjacent to the eastern contiguous area. Other exploration work was done by Eric

Benson (1960) for manganese in the eastern contiguous area, by Hughes Mining Co. (1966-69) for silver, lead, and zinc at the Ute-Ulay mine near the eastern contiguous area, and by Baumgartner Oil Co. (1971-72) for copper in the central contiguous area and adjacent parts of the Uncompander Primitive Area. In addition, assessment work on unpatented mining claims was done by other companies and individuals.

LEASING ACT MINERALS

All oil and gas leases that had been issued for land in or within 5 miles (8 km) of the contiguous study areas were cancelled or terminated before 1972; no holes had been drilled. Twelve holes were drilled on private land in T. 45 N., R. 8 W., New Mexico Principal Meridian. The nearest hole to the study area is a dry hole that lies about 1 mile (1.6 km) west of the boundary of the central contiguous area in the SE%SW% sec. 35; the hole was spudded in the Cutler Formation and abandoned in the Hermosa Formation. Two holes in SE%SW% sec. 11 and in NE%NE% sec. 15 yielded a small amount of natural gas from the Dakota Sandstone. The location of 8 of the 12 holes is shown on plate 3A; the other 4 holes are located in SW%SW% sec. 7, SE%SW% sec. 16, NW%NE% sec. 18, and SW%SE% sec. 30.

Coal-entry patents have been granted, and coal leases and coal permits have been issued for parcels of land in T. 46 N., Rs. 6 and 7 W., several miles northwest of the eastern contiguous area; none is within the contiguous areas. Many of the leases and permits have been cancelled or terminated, but Kemmerer Coal Co. controls some of the active leases and permits and has acquired leases for some private lands. Since 1964, the company has done considerable exploration work for coal on these properties, and in 1972 it was considering development of its coal west of Cimarron Ridge. The coal occurs in the Fruitland Formation in the southern part of the Tongue Mesa coal field. Landis (1959) estimated the reserve of this field at 2,355 million tons of subbituminous coal.

The northeasterly trending Ridgway fault that passes about 5 miles (8 km) northwest of the eastern contiguous area limits the Tongue Mesa coal field on the south. To the southeast, however, some of the Fruitland Formation may be covered by landslides, glacial deposits, and Tertiary volcanic rocks near the northern boundary of the study area in the vicinity of Cimarron Ridge.

MINES, PROSPECTS, AND MINERALIZED AREAS

Most of the study area is covered by Tertiary volcanic rocks, and intrusive bodies of Tertiary age are exposed throughout the area. Paleozoic and Mesozoic sedimentary rocks and the Telluride Conglomerate of Tertiary age are exposed in the central contiguous area. Mesozoic sedimentary rocks and the Telluride Conglomerate crop out in the western contiguous area, but no sedimentary rocks are exposed in the eastern contiguous area. Many of the formations have been fractured and structurally deformed.

WESTERN CONTIGUOUS AREA

The western contiguous area is north and west of the western part of the Uncompangre Primitive Area. The 45 square miles (115 km²) that compose the area are almost equally divided between Ouray and San Miguel Counties.

The western contiguous study area borders one of the most highly mineralized areas in Colorado, and numerous claims have been staked in and near it. The claims are most numerous near the southeastern part of the contiguous area where the large productive veins east of Telluride extend toward and in part into the area (pl. 3B). Some of the veins probably contain potential resources at depth. Another group of claims is concentrated near Whipple Mountain in the western part of the contiguous area where many small veins are associated with a laccolithic intrusive center. The economic potential of this area, however, seems low. A third group of claims lies mostly outside the contiguous area between the Uncompander River and the northeastern part of the contiguous area where many veins are associated with sills and laccoliths on the west flank of a mineralized intrusive center located just north of the town of Ouray. Some of the mineralized rock from this area may have economic potential. Many other claims are scattered throughout the western contiguous area; mineralized rock was evident on some of these, but many claims appear devoid of significant mineral deposits.

PLUMMER GULCH

The Millersburg property is a about one-half mile (0.8 km) southeast of Plummer Gulch, near the eastern end of the western contiguous area (pl. 3B). Three adits were driven west along a 4-foot (1.2-m) fault zone that is possibly the western extension of the Black Girl vein. The lowest adit, driven in the Morrison Formation, is inaccessible. The middle adit (fig. 4) is near the Morrison-Dakota contact; it is approximately 75 feet (23 m) higher on the steep slope and is 170 feet (52 m) long. The highest adit, approximately 150 feet (46 m) above the middle adit, was driven 65 feet (20 m) into the Dakota Sandstone. Other nearby workings are an adit, now caved, that was driven into the Dakota Sandstone and a small prospect pit exposing narrow quartz-clacite stringers in the Dakota Sandstone about one-half mile (0.8 km) west of the caved adit.

The workings on Plummer Gulch (fig. 5), about 1 mile (1.6 km) west of the Uncompander River (pl. 3B), consist of two connecting adits, one of which is caved. The main adit was driven northwest 300 feet (90 m) along the Morrison-Dakota contact.

Of the samples collected in the Plummer Gulch area, only those from the Millersburg property were significantly mineralized. A 1-foot (0.35-m) vein in a 2.5-foot (0.76-m) fault zone at the intersection of narrow cross veins is exposed in the back of the Millersburg middle adit. Chip samples 260 and 261 (table 11) taken across the vein assayed 45.1 and 38.0 ounces of

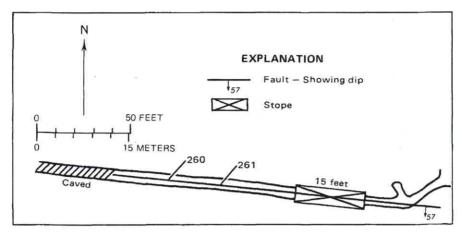


FIGURE 4.—Map of the Millersburg middle adit showing sample localities 260 and 261.

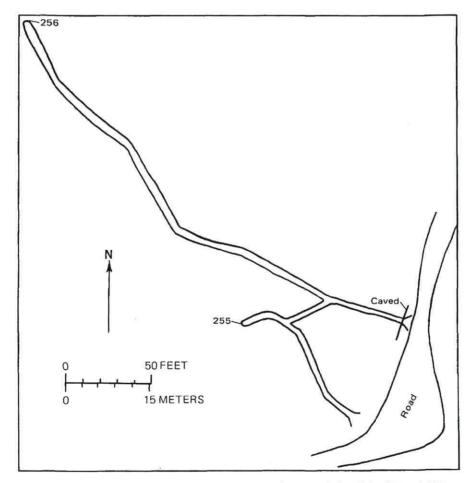


FIGURE 5.—Map of the Plummer Gulch adit showing sample localities 255 and 256.

silver per ton, 3.25 and 2.74 percent copper, and small amounts of lead, zinc, arsenic, and antimony.

Grab samples 262 and 263 taken from the dump at the lowest Millersburg adit contained, respectively 4.8 and 1.6 ounces of silver per ton, and small amounts of copper, lead, gold, and antimony.

MOONSHINE PARK

On the west edge of Moonshine Park in the eastern part of the western contiguous area, a shaft was sunk on a contact between quartzite and diorite porphyry; the shaft is now inaccessible. Sample 264 (table 11) from the dump assayed 0.1 ounce of silver per ton.

About one-half mile (0.8 km) south of Moonshine Park, on the crest of a north-trending ridge, a small prospect pit exposes narrow calcite-quartz stringers in porphyritic andesite. Analyses of sample 265 from the dump of the pit showed no metals of interest.

FORCEMAN CREEK

Just south of Forceman Creek and east of the western contiguous area, a number of workings were driven west in the Wanakah and Morrison Formations. Workings range from prospect pits to inaccessible adits and include the Little Gem mine, which has a 5,000-ton (4,500-t) dump. Generally the openings appeared to have been driven either along or in search of the productive Newsboy-Black Girl-Senorita vein systems that have been mined on the east side of the Uncompangre River.

The only significant metal values are those of samples 267-270 and 274-275 (table 11) which assayed from a trace to 4.3 ounces of silver per ton and from 0.06 to 1.44 percent copper; samples 269 and 270 contained some antimony.

CORBETT CREEK

Along Corbett Creek and its two tributaries, Pryor and Omaha Creeks, adjacent to the eastern part of the western contiguous area (pl. 3B), prospect pits, shafts, and adits were dug in the Morrison Formation and along the Morrison-Dakota and the Dakota-Mancos contacts. Most workings follow northwest-trending barite veins that dip steeply to the southwest; the veins contain galena, sphalerite, chalcopyrite, proustite, and tetrahedrite. Samples 276-289 were taken at these workings, and samples 295 and 296 were taken from outcropping veins in Corbett Creek above its junction with Pryor Creek. Except for samples 279, 288, and 289, the analyses indicated little metal of significance (table 11). Sample 279, a grab sample from a 2,000-ton (1,800-t) dump at the caved Chinaman adit, assayed a trace of gold, 1.9 ounces of silver per ton, 1.11 percent lead, and 0.23 percent zinc. Sample 288, from a 500-pound (226-kg) stockpile at the caved Teller adit, assayed a trace of gold, 3.1 ounces of silver per ton, 8.57

percent lead, and 4.86 percent zinc. Sample 289, from a 300-pound (130-kg) stockpile at the caved Sequin adit, assayed a trace of gold, 1.3 ounces of silver per ton, 2.55 percent lead, and 1.15 percent zinc.

About one-fourth mile (0.4 km) east of upper Forceman Creek, five adits, within a horizontal distance of 210 feet (64 m), were driven west in the upper part of the Morrison Formation. The adits are largely caved except for one which is accessible for about 50 feet (15 m) from the portal. The adits are on the projection of the Little Gem-Pony Express veins system which appears to horsetail in this area. Manganese-stained barite, galena, sphalerite, tetrahedrite, and argentite were identified in material from the dumps.

Sample 290, from an 800-pound (363-kg) stockpile, and sample 292, from a 1,000-pound (454-kg) stockpile, assayed, respectively, 20.8 and 9.8 ounces of silver per ton, 2.00 and 1.75 percent lead, and 4.29 and 4.62 percent zinc; sample 292 contains 0.2 ounce of gold per ton. Samples 291, 293, and 294 were taken at the accessible adit; sample 291, taken from a muck pile in a stope, assayed 1.6 ounces of silver per ton, 0.99 percent lead, 1.08 percent zinc, and 0.03 percent antimony, but analyses of other samples showed only small amounts of silver, lead, and zinc.

CORNET CREEK-PACK BASIN-MILL CREEK BASIN

Several old mines and numerous prospect workings were dug in the Cornet Creek-Pack Basin-Mill Creek basin area in the southeastern part of the western contiguous area (pl. 3B). The Liberty Bell mine, at the head of Cornet Creek, produced 2.3 million tons of ore valued at \$16 million during 1898-1921; less than 3,000 tons was shipped during 1922-35. Except for a small amount of copper and lead, only gold and silver were recovered. No ore production has been reported since 1935.

Figure 6 shows the underground workings of the largest mines (Liberty Bell, Smuggler-Union, Humboldt, and Mountain Top) and their relation to the western contiguous area. Since 1901, these mines have yielded ore valued at \$79.2 million, with most of the value coming from gold and silver. In addition, copper, lead, and zinc were recovered from the Smuggler-Union ores, copper and lead from the Mountain Top ores, and lead from the Humboldt ores. The most recent activity in the district was in 1967–71, when exploration for silver, partly financed by the Office of Mineral Exploration (OME), was done at the Mountain Top mine. No ore was found but the work disclosed some precious- and base-metal mineralization.

The only accessible underground workings in the area are three prospect adits, shown in figures 7, 8, and 9. Sample groups 329–335 and 341–346 were taken at these workings. Analyses of samples 329–335 show small amounts of gold, silver, copper, and lead (table 11). Samples 317–328, 336–340, and 347–358 also were taken in the area, but the only

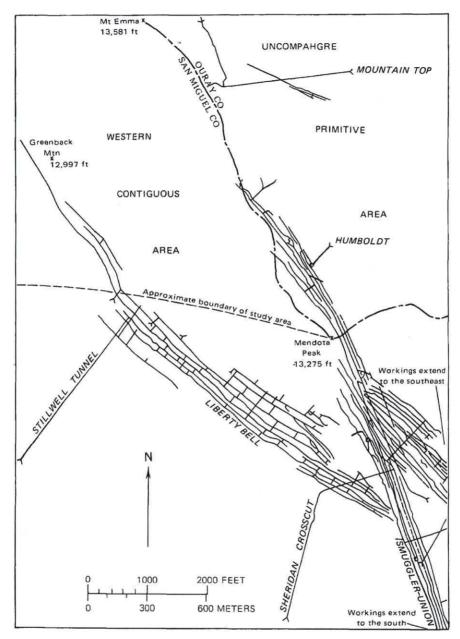


FIGURE 6.-Main underground mine workings in and near the southeast part of the western contiguous area. Modified from King and Allsman (1950, fig. 4a).

significant results came from sample 353, a grab sample from the dump of a caved adit at the head of Cornet Creek, which contained 0.02 ounce of gold and 1.2 ounces of silver per ton.

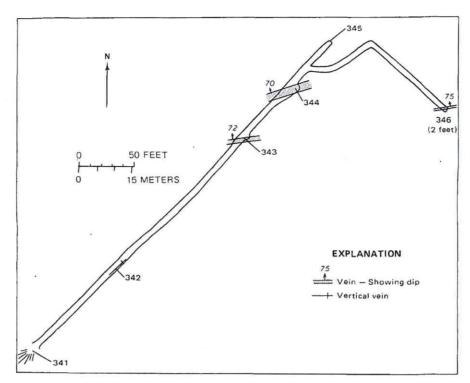


FIGURE 7.—Map of adit at head of Cornet Creek showing sample localities 341-346.



FIGURE 8.—Map of adit in Pack Basin showing sample localities 333-335.

SAN MIGUEL RIVER

Mesozoic sedimentary rocks, capped by the Telluride Conglomerate and by Tertiary volcanic rocks, are exposed in a strip of land about 2 miles (3.2 km) wide between the San Miguel River and southern boundary of the

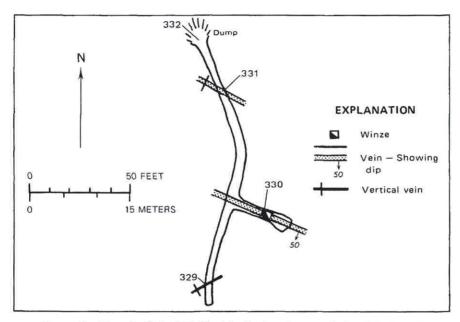


FIGURE 9.—Map of adit in Mill Creek basin showing sample localities 329-332.

western contiguous area (pl. 3B). Some ore has been produced from the area, but the only production recorded by the U.S. Bureau of Mines is for limestone that was mined in the late 1960's and early 1970's from a quarry at the mouth of Deep Creek. Gray-black limestone from the Pony Express Member of the Wanakah Formation was used to neutralize plant effluent at the Union Carbide Corp. uranium mill at Uravan, Colo. A chemical analysis of sample 390 from this location is shown in table 12.

About one-fourth mile (0.4 km) north of the limestone quarry, underground workings were driven to explore a 6-foot (2-m) vein that crops out along the cliffs. According to the Colorado Bureau of Mines, lead-silver ore was produced in 1969 from these workings; Sharon Spencer, one of the operators, stated that the ore was mined from a vein in the Pony Express Member at the bottom of a 115-foot (40-m) shaft.

A small coal mine about 14 miles (2 km) west of San Miguel near the top of the cliff on the north side of Colorado Highway 145 develops a coal seam in Dakota Sandstone. According to Frank Wilson of Telluride, the mine was operated in the 1880's and again about 1932; the coal was used for heating homes in the Telluride area. Sample 359 was taken across a 1.25-foot (0.4-m) coal seam exposed about 6 feet (2 m) from the portal of the western adit. About one-half mile (0.8 km) west of the coal mine, a dump on the north side of Deep Creek Mesa road marks a nearly obliterated mine opening at the base of the Dakota Sandstone. Sample 360 consisted of a few selected pieces of coal from the dump. Analyses of samples 359 and 360 (table 13) indicated that the coal is poor quality. It should be noted that these samples are weathered and probably are not as good quality as the unweathered coal. Along Summit Creek some prospect pits were dug in the Dakota Sandstone in search of coal; dumps at the prospects indicate that little or no coal was found.

An old quarry on the north side of Colorado Highway 145 about 1 mile (1.6 km) west of San Miguel supplied stone used in constructing some of the old buildings in Telluride. Estimated from the size of the excavation, less than 100 tons (91 t) of sandstone from the Morrison Formation was removed.

HAYDEN PEAK

Several unpatented mining claims have been located between Hayden Peak and North Pole Peak on an altered zone and on some dikes. No prospect workings were found, but stakes of the Vampire group of claims were found. Samples 381–384, taken from dikes and the alteration zone, assayed only a trace of gold and 0.1–0.2 ounce of silver per ton (table 11).

On the northeast side of Hayden Peak, three adits were dug at the base of a cliff where an east-trending shear zone is exposed. The upper and middle adits, about 100 feet (30 m) apart, were driven southwest for nearly 150 feet (46 m); both begin and end in talus. Sample 380 from the dump at the middle adit assayed a trace of gold and 0.1 ounce of silver per ton; no sample was taken at the upper adit because the dump rock was identical to that of the middle adit. The 300-foot (90-m) lower adit, 550 feet (160 m) east of the middle adit, penetrated talus for 40 feet (12 m); thereafter, it was driven in solid rock. Sample 379 of a 10-inch (0.3-m) vein that was cut about 230 feet (70 m) from the portal, and sample 378, taken across the face of the adit, contain some amounts of gold and silver. Sample 377 of the 500-ton (450-t) dump contains a little silver.

WHIPPLE MOUNTAIN

The south slope of Whipple Mountain, between Summit and Willow Creeks in the western part of the western contiguous area, is covered with talus consisting mostly of granodiorite. The exposed side of the rock fragments are black-brown and are covered with green lichen. The demand for this lichen-covered "moss rock" for use as decorative stone in home construction has been increasing; thus, this talus slope represents a significant resource. Moss Rock Nos. 1–6 placer claims located in June 1972 cover part of the talus slope, and some moss rock has been removed recently from along the Last Dollar road, about one-fourth mile (0.4 km) southeast of the spring on Willow Creek. The claims are partly in the western contiguous area.

LAST DOLLAR MOUNTAIN

Several workings, ranging from small prospect pits to inaccessible adits, are on the north and south slopes of Last Dollar Mountain in the western part of the western contiguous area. Most of the workings are

along contacts between the Mancos Shale and andesite porphyry sills. Altered rock occurs in steep, southeast-trending fracture zones. Analyses of samples 385-389, collected from Last Dollar Mountain, did not show metal concentrations of interest except for sample 389, which contained 0.15 ounce of gold per ton (5 ppm) (table 11).

COAL CREEK

Coal Creek flows north from Whitehouse Mountain into the Uncompahgre River. Near the head of the east fork of Coal Creek, about one-half mile (0.4 km) north of the Uncompahgre Primitive Area, a basalt dike trends N. 53° E. in the San Juan Formation. The dike is about 6 feet (1.8 m) wide and is nearly vertical. A 2-foot-wide (0.6-m-wide) hematite-stained breccia follows the northwest side of the dike, and quartz-calcite veinlets are interspersed through the dike. Sample 298, a chip sample across the dike, contains no significant values (table 11).

Near the head of the west fork of Coal Creek, another basalt dike, about 10 feet (3.0 m) thick, strikes N. 60° E. in the San Juan Formation. An 8-foot (2.4-m) granodiorite porphyry dike striking N. 42° E. cuts across the basalt dike. Sample 300 was taken across 2 feet (0.6 m) of brecciated material at the junction of the two dikes. Sample 299 was taken across 1 foot (0.3 m) of the middle part of the granodiorite dike approximately 10 feet (3 m) northeast of the junction. Analyses of the two samples showed no mineral values of interest.

BEAVER CREEK

An extremely altered dike crops out in the San Juan Formation near the head of Beaver Creek, about 1½ miles (2 km) south of the western contiguous area boundary; the dike strikes S. 15° E. and is nearly vertical. Limonite-stained, minute fractures paralleling the dike are exposed in a small prospect pit. About 750 feet (230 m) upstream, a 12-foot (3.7 -m) dike of altered hornblende-diorite porphyry strikes S. 50° E. and dips 78° NE. Quartz-calcite stringers are dispersed throughout the middle 3 feet (1 m) of the dike. Chip samples 301 and 302 from the pit and dike contained no significant values.

WILSON CREEK

Wilson Creek drains the northeast side of Mount Sneffels. The Cowboy adit, at the foot of a cliff about 600 feet (180 m) north of the junction of the east and west forks of Wilson Creek (figs. 10, 11; pl. 3B), was driven 287 feet (88 m) southeast along a 4-foot (1.2-m) fracture zone filled with quartz stringers. At the face of the adit the fracture zone strikes S. 77° E. and dips 73°SW. At 28 feet (8.5 m) from the portal, a crosscut was driven southwest and some stoping was done. Sample 304, a chip sample across the fracture zone in the face of the adit, and sample 305, a grab sample from a muck pile, showed no mineral values of interest.

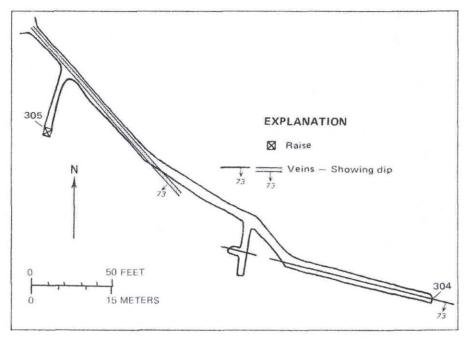


FIGURE 10.-Map of the Cowboy adit showing sample localities 304 and 305.

FIGURE 11.—Aerial view of Blaine Basin, looking southwest. (1) Cowboy adit, (2) Blaine mine, (3) locality for sample 311.

Near the head of the east fork of Wilson Creek, a caved adit appears to have been driven south. Analytical results of sample 303, a grab from the dump, showed no anomalous metal.

The west fork of Wilson Creek drains Blaine Basin (fig. 11) where several openings were examined. The Blaine mine, the largest working, is actually one-half mile (0.8 km) northwest of the location shown on U.S. Geological Survey Mount Sneffels quadrangle topographic map. The adit of the Blaine mine (fig. 12) was driven southwest 1,264 feet (380 m) to intersect three steeply dipping north-south veins. Samples 306-309, taken in the adit, assayed small amounts of gold, silver, lead, and zinc.

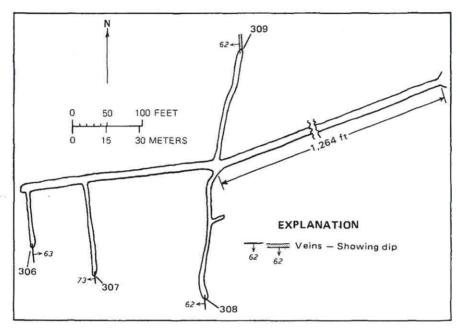


FIGURE 12.—Map of the Blaine mine showing sample localities 306-309.

About 300 feet (90 m) southwest of the Blaine portal, a fracture zone in granodiorite porphyry is exposed in a discovery pit; sample 310, taken across the zone, showed no mineral values of interest.

Several other prospect pits were dug in granodiorite porphyry about one-half mile (0.8 km) southwest of the Blaine portal, on the divide between west fork of Wilson Creek and East Fork Dallas Creek. Sample 312 was taken across a 2.5-foot (0.8-m) vein in the face of a 27-foot-long (8m-long) adit; the sample assayed a trace of gold, 1.2 ounces of silver per ton, 0.48 percent lead, and 1.98 percent zinc. Sample 313, taken from a 1,200-ton (1,100-t) dump at the caved Mountain Monarch adit, assayed a trace of gold, 14.4 ounces of silver per ton, 0.04 percent copper, 0.77 percent lead, 0.80 percent zinc, and 0.04 percent antimony. Another caved

adit, apparently driven S. 63° W., is about 225 feet (70 m) southeast of the Mountain Monarch adit. The analysis of sample 311 (fig. 11) from the dump showed small amounts of silver, copper, lead, and zinc.

BLUE LAKES

Three prospect workings in granodiorite porphyry were examined in the Blue Lakes area west of Mount Sneffels. The first, a short adit 300 feet (90 m) below the lower Blue Lake, exposes a limonite-stained, quartz-filled fracture zone 4 feet (1.2 m) wide. Chip sample 314 taken at the face contains no significant values. The second excavation, about 50 feet (46 m) east of the lower Blue Lake, is a 42-foot (13-m) adit driven S. 78° E. on a 3-foot (1-m) limonite-stained, quartz-filled fracture zone. Sample 315 taken across the face showed no mineral values of interest.

The third prospect, about 150 feet (45 m) northwest of the outlet of the upper Blue Lake, consists of a 15-foot (4.5 m) adit driven along a 1-foot (0.3-m) fracture zone, a 12-foot (3.7-m) shaft, and a 45-foot (14-m) drift that was driven S. 5° E. from the bottom of the shaft. Chip sample 316 was taken across a 4-foot (1.2-m) width of manganese-stained, quartz-filled fracture zone exposed in the face of the drift. The sample yielded a trace of gold, 0.1 ounce of silver per ton, 0.24 percent lead, and 0.48 percent zinc (table 11).

CENTRAL CONTIGUOUS AREA

The central contiguous area is immediately north of the eastern part of the Uncompandere Primitive Area. The area consists of about 25 square miles (64 km²) in Ouray County between the Uncompandere River and Cow Creek.

The southwest side of the central contiguous area borders a highly mineralized area associated with a major intrusive center located just north of Ouray. Many productive veins and replacement bodies containing precious and base metals have been developed in the drainage basins of Dexter and Cutler Creeks, and numerous claims have been staked on the nearby slopes to the north, within the adjacent contiguous study area (pl. 3A). An excellent possibility exists that mineralized rock similar to that mined along Dexter Creek extends northeast beneath younger volcanic cover into the central contiguous area.

Other mineralized material in sedimentary rocks beneath the younger volcanic cover is exposed along Cow Creek on the east and northeast sides of the central contiguous area. The buried sedimentary rocks between the mineralized area on Cow Creek and the mineralized intrusive center near Ouray, thus, may contain significant hidden mineral resources.

A younger intrusive center cuts the volcanic rocks on Bighorn Ridge, west of upper Cow Creek and largely within the Uncompander Primitive Area. Samples from this center indicate that some potential exists for low-grade disseminated copper mineralization.

COW CREEK

Cow Creek is the eastern border of the central contiguous area. Numerous claims have been located along Cow Creek. In the Courthouse Creek area, three caved adits, one reportedly 1,100 feet (335 m) long, appear to have been driven northeast in Dakota Sandstone. Analyses of samples 157–159 from the dumps revealed no mineral values of interest (table 11).

At the mouth of Winchester Gulch, about one-fourth mile (0.4 km) north of the New York mine area, numerous prospect pits and adits were examined. Most of the openings are on east-trending calcite-barite veins along fractures and fault zones in the Wanakah Formation. The largest working in the area is the Silver Queen adit, which is now caved. Sample 167, from a 600-ton (540-t) dump, assayed 0.3 ounce of silver per ton, 0.02 percent copper, and 0.31 percent lead. Approximately 450 feet (137 m) east of the Silver Queen dump and 75 feet (23 m) higher, near the contact between the Wanakah and Morrison Formations, the Hidden Silver adit (fig. 13) was driven southeast for over 200 feet (60 m) on the Silver Queen vein. Samples 160–166 contain as much as 4.4 ounces of silver per ton, 0.01 percent copper, 0.32 percent lead, and 0.16 percent zinc which is present in a sample of a 15-ton (13.5-t) dump.

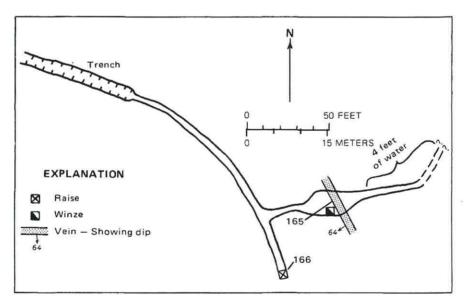


FIGURE 13.—Map of the Hidden Silver adit showing sample localities 165 and 166.

The New York adit (fig. 14) was driven 450 feet (137 m) east in a manganese-stained fault zone about on the contact between the Cutler and Dolores Formations. Analyses of samples 168 and 169 revealed no metals of value. About one-fourth mile (0.4 km) south of the New York adit and 600 feet (180 m) west of Cow Creek, two adits were driven south

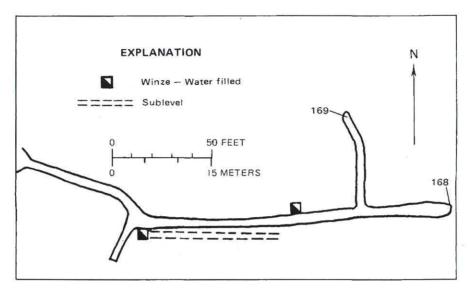


FIGURE 14.—Map of the New York adit showing sample localities 168 and 169.

along kaolinized fault zones in rhyolite. The lower of the two adits is 127 feet (38 m) long, and the higher is 167 feet (50 m) long. Samples 170 and 171 contained no mineral values of interest.

Two prospects—a short adit and a small pit—high up on the west side of Cow Creek and southwest of the New York mine were examined; spectrographic analyses of samples 173 and 174 indicated no values of interest.

The partially caved and water-filled Williams adit, near the head of Winchester Gulch, was reportedly driven 300 feet (90 m) southwest and several crosscuts were turned from the main drift. Samples 175-177 yielded no anomalous values.

On the north end of Bighorn Ridge (fig. 15), along the northern boundary of the original Uncompangre Primitive Area, a quartz-latite porphyry intrusive center with associated andesitic and rhyolitic dikes (Foss, 1964) cuts the San Juan Formation. A small quartz monzonite plug within the center is strongly pyritized and kaolinized and the contacts are obscured by the alteration. Chip samples 178–183 were taken of the altered material; sample 182 contains 200 ppm copper, and most assayed a trace of gold and from a trace to 0.2 ounce of silver per ton. Baumgartner Oil Co., Denver, Colo., staked a group of claims in the area and conducted geological mapping and geochemical sampling in 1971–72.

DEXTER CREEK

Dexter Creek is along the south boundary of the central contiguous area. Although only a very small segment of Dexter Creek is within the study area (pl. 3A), workings on the north side of the creek project toward

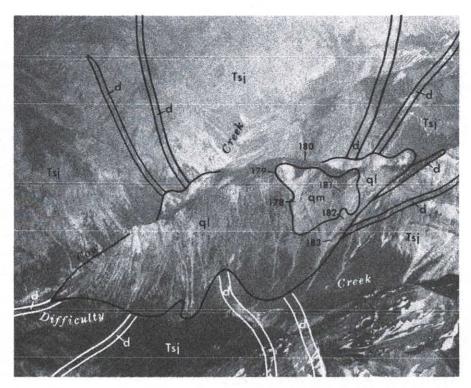


FIGURE 15.—Aerial view of the northern end of Bighorn Ridge, looking east, showing sample localities 178-183. Tsj, San Juan Formation; ql, quartz latite porphyry; d, andesitic and rhyolitic dikes; qm, quartz monzonite plug.

the contiguous area and some may extend into it. The Bachelor group of workings (fig. 16)-consisting of the Old Maid and El Mahdi (Almadi) shafts, the Bachelor and Khedive adits, and the Calliope group of openings-accounted for the recorded production from the Dexter Creek area.

Five prospects were examined in the upper reaches of Dexter Creek, and samples 184-188 were taken. Assay results show negligible amounts of metal. Numerous mine workings and prospects exist in the area from the Old Maid shaft (site of sample 189) west to a small prospect adit (site of sample 208). These include prospect pits, shafts as much as 300 feet (90 m) deep, and adits as long as 1,400 feet (430 m) dug mostly along north- to east-trending fractures in the Morrison Formation or the Dakota Sandstone that are filled with quartz, calcite, and barite. Most of the workings along or near the creek level are shafts sunk to develop ore bodies in the Pony Express Member of the Wanakah Formation. According to Burbank (1940), the ore bodies generally consist of manganese-stained barite with galena, sphalerite, chalcopyrite, tetrahedrite, proustite, and local argentite that form local shoots, or "rolls," along the veins.

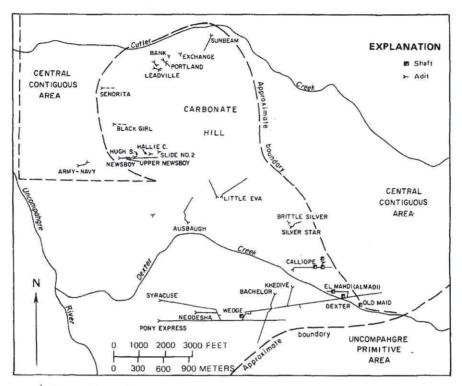


FIGURE 16.—Major underground mine workings of the Carbonate Hill area.

Samples 189-208, collected in the Dexter Creek area, all contained significant amounts of precious and base metals (table 11). The sample localities are as follows:

Sample No.	Locality
189	Old Maid dump.
190	The 600-ton (540-t) El Mahdi (Almadi) dump.
191	The 250-ton (230-t) dump at the upper Calliope caved adit.
194	An 800-ton (730-t) dump at an unnamed caved adit.
196	The 250-ton (230-t) Brittle Silver dump.
200	The 1,500-ton (1,360-t) dump at the eastern Little Eva adit.
205	Across the face of the Ausbaugh adit.

CARBONATE HILL

Carbonate Hill is between Dexter and Cutler Creeks. The major underground workings in and near Carbonate Hill are shown in figure 16. Sedimentary rocks exposed on the hill range from the Cutler Formation, at the base of the hill, to the Mancos Shale. These rocks are overlain by the volcanic San Juan Formation. Many adits were driven east into the west side of the hill. The main workings are the Newsboy, Army-Navy, Black Girl, and Senorita mines (fig. 17). Because access to the Black Girl and Senorita

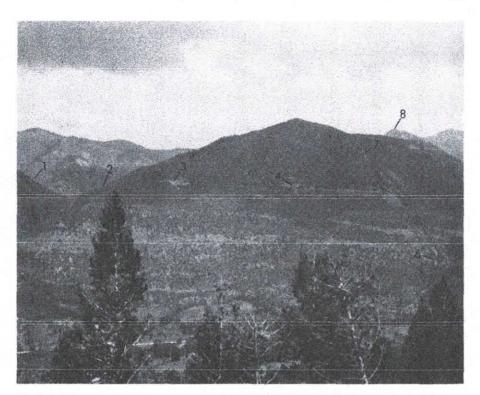


FIGURE 17.-View looking east toward Carbonate Hill from Little Gem mine area. (1) Storms Gulch, (2) Cutler Creek, (3) Senorita portal, (4) Black Girl portal, (5) lower Newsboy portal, (6) Army-Navy portal, (7) Slide No. 2 portal, (8) Dexter Peak.

mines was denied by the operators, only the Newsboy and Army-Navy mines were examined.

The Newsboy group of workings—consisting of the Newsboy mine and the upper Newsboy, Hugh S., Hallie C., and Slide No. 2 adits-is controlled by Depco, Inc., and Husky Oil Co., Denver, Colo. The Newsboy mine consists of two adits about 40 feet (12 m) apart. The north adit is 325 feet (100 m) long; the south adit is accessible for only 350 feet (107 m), but it is reported to be 2,200 feet (670 m) long. Sample 213 (table 11), of the 600pound (270-kg) stockpile by the south adit, and sample 214, taken across the 2.5-foot (0.76-m) vein at the face of the north adit, assayed significant amounts of silver and minor amounts of base metals. Official recorded production from the Newsboy mine is 1,985 tons of ore valued at \$71,595; however, company records show that considerably more ore was mined.

The Army-Navy adit (fig. 18) was driven along the Newsboy vein about 600 feet (180 m) below the Newsboy mine near the contact between the Entrada and Wanakah Formations. The vein is only about 1-1.5 feet (0.3-0.45 m) wide at this mine. Sample 215, taken across a 1.5-foot (0.45m) vein at the face at the adit, assayed 0.3 ounce of silver per ton. The north

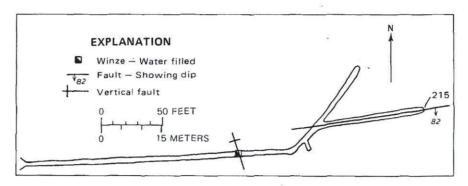


FIGURE 18.—Map of the Army-Navy adit showing sample locality 215.

crosscut from the Army-Navy was probably driven to intersect a cross vein from the Black Girl mine, but no vein was seen in the crosscut. Recorded production of the Army-Navy property is 5 tons of ore valued at \$1,091.

Samples 209-212 were grab samples taken from 500- to 3,000-pound (230- to 1,360-kg) stockpiles on the dumps at the caved adits of the Newsboy group of workings. Assay results are (table 11): trace to 0.2 ounce of gold per ton, 6.2 to 29.5 ounces of silver per ton, 0.45 to 8.28 percent lead, 0.13 to 6.36 percent zinc, and 0.02 to 0.08 percent antimony.

CUTLER CREEK

Numerous workings have been developed along Cutler Creek where the Wanakah Formation crops out. Openings on the south side of Cutler Creek were driven south to intersect the east-trending Senorita vein. An ore shoot along the vein in the Wanakah Formation is exposed in one of the Leadville adits and in the Bank, Portland, Exchange, and Sunbeam adits (fig. 16); the Sunbeam workings are shown in figure 19. On the north side of Cutler Creek, adits (fig. 20) as much as 200 feet (60 m) long were driven north on mineralized fractures in the Wanakah Formation. Most of the mineralized rock is in the black, limy shale of the Pony Express Member of the formation. Some adits were driven in the Morrison Formation and in the Dakota Sandstone. The only recorded production from the area is 312 tons (283 t) of ore valued at \$6,874; this production was from the Portland mine, which is on the south side of Cutler Creek.

In the Cutler Creek area, samples 216–238, 240–243, 245 and 246 were taken from accessible adits and samples 239 and 244 are grab samples from dumps. Highest values were contained in samples 220 and 221 (table 11) from the Portland adit (fig. 21). Chip sample 220 across 2 feet (0.6 m) of black, siliceous limestone that strikes S. 65° W. and dips 18° SE. assayed 0.27 ounce of gold and 22.7 ounces of silver per ton, 0.30 percent copper, 1.32 percent lead, 0.44 percent zinc, 0.03 percent arsenic, and 0.21 percent antimony. Chip sample 221 from a 2-foot (0.6-m) vein that strikes S. 5° E.

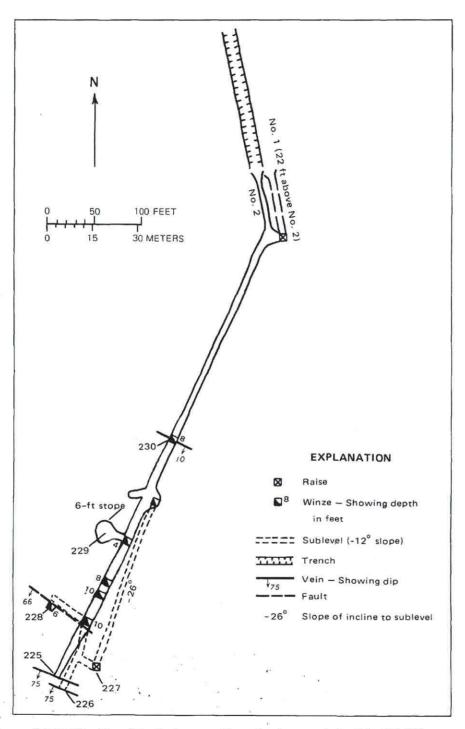


FIGURE 19.—Map of the Sunbeam workings showing sample localities 225-230.

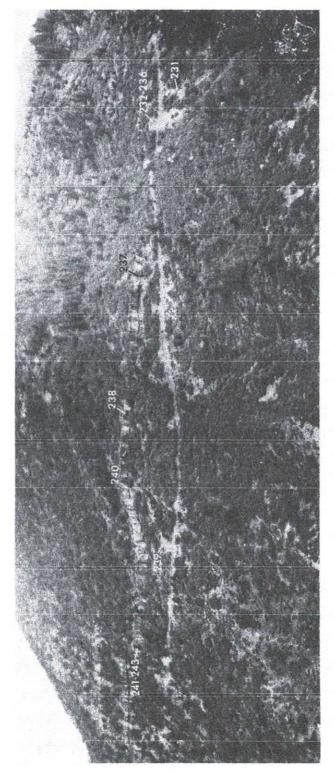


FIGURE 20.—Prospects in Wanakah Formation on north side of Cutler Greek showing sample localities 231-243.

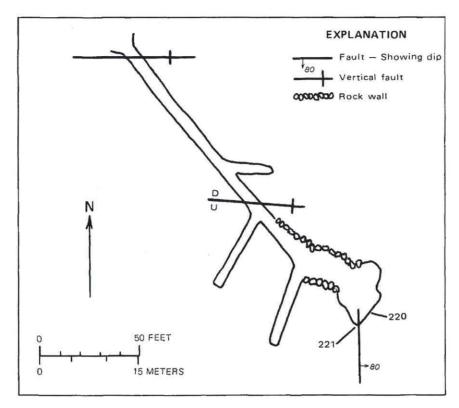


FIGURE 21.—Map of the Portland adit showing sample localities 220-221.

and dips 80° E., assayed 0.12 ounce of gold and 10.8 ounces of silver per ton, 0.16 percent copper, 1.23 percent lead, 0.19 percent zinc, 0.04 percent arsenic, and 0.14 percent antimony. The other samples contain lesser amounts of these metals; samples 226 and 229 assayed 0.015 percent molybdenum.

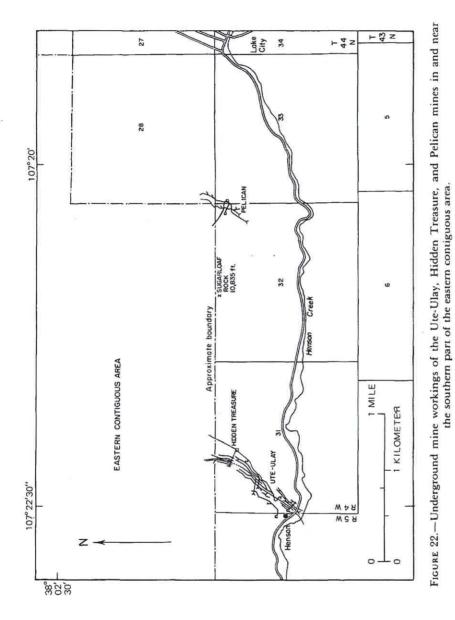
CROOKED TREE GULCH

In Crooked Tree Gulch, two caved adits appear to have been driven north on fracture zones in the Dakota Sandstone. North of the gulch, two prospects adits were driven east on an andesite porphyry dike in the Cutler Formation. On the southwest slopes of Baldy Peak, a 35-foot (10.7-m) shaft was sunk on the intersection of two mineralized veins in the San Juan Formation. A small prospect pit is on a small, north-trending, kaolinized zone in the San Juan Formation. Samples 250-254, taken from dumps at these workings, assayed no values of interest.

EASTERN CONTIGUOUS AREA

The eastern contiguous area is east of the eastern part of the Uncompahgre Primitive Area and consists of more than 100 square miles (255 km²) between the Middle Fork Cimarron River and the Lake Fork Gunnison River. Approximately two-thirds of the area is in Hinsdale County and the remaining part is in Gunnison County (pl. 3A). Numerous veins containing precious and base metals cut volcanic rocks on the lower slopes above Henson Creek, just south of the eastern contiguous area. Some potential exists for similar deposits in the immediately adjacent area to the north, within the southernmost part of the area studied.

Rhyolite intrusive bodies in the southern part of the eastern contiguous area are anomalously radioactive, and have been widely prospected for uranium. Surface samples of these bodies are generally low in grade, and large masses of rock containing appreciably more uranium would have to be found at depth before significant economic potential would be indicated.


Altered monzonitic intrusive centers were examined north of Matterhorn Peak and between the Silver Jack mine and Porphyry Basin. Anomalous metal contents, particularly of molybdenum, were detected at both of these centers, and some potential exists for low-grade disseminated molybdenum or copper deposits at depth.

HENSON CREEK

Old mines and prospects are in the area between Henson Creek and the southern boundary of the eastern contiguous area. The early history and geology of these mines and prospects were described by Irving and Bancroft (1911). The principal mines are the Ute-Ulay, Hidden Treasure, Pelican, and Yellow Medicine (fig. 22); these have supplied most of the gold, silver, copper, lead, and zinc mined in Hinsdale County. Galena, sphalerite, chalcopyrite, pyrite, and barite were identified in the dump rock of the mines. According to Irving and Bancroft (1911), the Ute-Ulay mine was among the largest sources of silver and lead in Colorado in the early days, when it was reported to have yielded \$10-\$12 million worth of metals. The U.S. Bureau of Mines records show that the mine was worked intermittently from 1911 to 1969, producing about \$600,000 worth of gold, silver, copper, lead, and zinc.

The relationship of the underground workings of the Ute-Ulay, Hidden Treasure, and Pelican mines to the south boundary of the eastern contiguous area is shown in figure 22. Some of the northernmost workings of the Hidden Treasure and Pelican mines extend into the eastern contiguous area.

Old prospects pits, adits, and shafts are on the east side of Neoga Mountain 1 mile (1.6 km) west of Lake City (pl. 3A). The largest of these sampled is the Neoga shaft, which is about 40 feet (12 m) deep. Short drifts were driven north and south from the bottom of the shaft on a 3-foot (1-m) vein, which includes a veinlet of barite as much as 0.5 foot (0.2 m) wide. The vein strikes N. 30° E. and is nearly vertical. Sample 33, taken from this vein in the face of the north drift, assayed a trace of gold, 5.9 ounces of

silver per ton, and small amounts of copper and lead (table 11). The vein is also exposed in a small pit 50 feet (15 m) southeast of the shaft. Sample 34 was taken across the barite veinlet, which is 0.25 foot (0.1 m) wide at this place, and sample 35 was taken across the rest of the vein, which is 2.5 feet (0.7 m) wide. The barite veinlet assayed a trace of gold and 8.8 ounces of silver per ton, whereas the whole vein assayed 6.7 ounces of silver per ton. Both samples contain only small amounts of copper and lead. Sample 36, taken across a 1.5-foot-wide (0.46-m-wide) gouge zone adjacent to the east side of the vein, assayed only 0.3 ounce of silver per ton and a very small amount of lead. A small pit and a trench about 150 feet (46 m) south of Neoga shaft were examined; sample 37, consisting of specimens from a 50-pound (23-kg) stockpile by the trench, assayed a trace of gold, 62.1 ounces of silver per ton, 0.62 percent copper, 0.51 percent lead, and 0.68 percent antimony.

The Pelican mine is near the southeastern corner of the eastern contiguous area in sec. 32, T. 44 N., R. 4 W.; most of the workings are just outside the study area boundary (pl. 3A). Samples 47–50 (table 11), taken in the upper adit, assayed from a trace to 0.07 ounce of gold per ton, 2.7 to 14.3 ounces of silver per ton, 0.07–0.94 percent lead, and 0.12–1.70 percent zinc. Gold and silver values from sample 51 from the dump (700 tons, or 635 t) at the upper adit and sample 46 from the dump (400 tons, or 360 t) by the shaft above the upper adit fall within the above ranges.

Joker Gulch, east of the Pelican mine and 1 mile (1.6 km) north of Henson Creek, is the site of numerous old prospect workings. The two largest workings are the Joker adit and shaft. Sample 44 (table 11) of the dump (200 tons, or 180 t) by the Joker adit assayed a trace of gold and 0.5 ounce of silver per ton; sample 45 of the dump (250 tons, or 230 t) by the Joker shaft assayed a trace of gold and 1.0 ounce of silver per ton. Sample 43 of a dump (30 tons, or 27 t) by a caved adit north of the Joker shaft assayed 2.4 ounce of silver per ton. Sample 42, specimens from a 1-ton (0.9-t) stockpile by a small trench north of the Joker adit, assayed 0.01 ounce of gold and 7.4 ounces of silver per ton.

The Ute-Ulay mine is about 3 miles (4.8 km) west of Lake City and is about one-half mile (0.8 km) south of the study area boundary. It was possible to examine only the No. 5 level of the workings. Sample 52 (table 11), taken across the 3.75-foot (1.1-m) vein in the face at the end of the 4,000-foot (1,220-m) drift, assayed a trace of gold and 2.3 ounces of silver per ton. Sample 53, a grab sample from a muck pile on the floor near the face, assayed 5.4 ounces of silver per ton. Both samples contain some copper, lead, and zinc.

The Hidden Treasure mine lies northeast of the Ute-Ulay workings. The workings, which are inaccessible, are mostly south of the eastern contiguous area, but some extend into it.

The workings of the Vermont mine on El Paso Creek, which are also inaccessible, are 1 mile south of the study area boundary. Sample 101, a grab from altered and mineralized rock in the dump (4,000 tons, or 3,600 t), assayed 0.02 ounce of gold and 9.8 ounces of silver per ton, 0.41 percent copper, 4.15 percent lead, and 2.22 percent zinc. Chip sample 102 across a 7-foot (2.1-m) vein cropping out along the south side of the dump assayed a trace of gold and 1.4 ounces of silver per ton, 0.99 percent lead, and small amounts of copper and zinc.

North of Capitol City, sample 103 was taken at the Czarina shaft, samples 104-108 at the Czar mine, and sample 109 in an adit near the Yellow Medicine mine. The workings lie approximately 1 mile (1.6 km) south of the study area boundary. Sample 106, taken across a 2-foot (0.6m) vein in a stope 35 feet (11 m) from the portal of the upper adit of the Czar mine, assayed 0.05 ounce of gold and 11.6 ounces of silver per ton, 1.74 percent copper, 19 percent lead, and 4.56 percent zinc. The other samples assayed from a trace to 0.02 ounce of gold per ton, 1.4 to 5.9 ounces of silver per ton, 0.13 to 1.01 percent copper, 1.48 to 5.32 percent lead, and 0.32 to 3.74 percent zinc. In the summer of 1972, Joe Gomez of Crested Butte, Colo., was doing development work at the Yellow Medicine mine (site of sample 109) and was constructing a 25-ton-per-day mill nearby.

UNCOMPAHGRE PEAK-NELLIE CREEK-LARSON CREEK

The Uncompandere Peak-Nellie Creek-Larson Creek area is in the southern part of the eastern contiguous area (pl. 3A). Rhyolite intrusives exposed between Uncompangre Peak and Larson Creek have been of interest to uranium prospectors since the late 1950's. Numerous claims have been staked in this area, but very few prospect workings were found during our investigation. The only known uranium production is a small quantity (less than 100 tons, or 90 t) of ore mined about 1960 from the Beth claims (site of sample 117) located on the south slope of Uncompange Peak.

In 1969, Greater West Mining Co. drilled four diamond-drill holes on claims at the head of the east branch of Nellie Creek. Drilling results are not known; after the exploration, the company abandoned the project. In 1971 and 1972, Exxon Corp. conducted an exploration program consisting of geologic mapping, geochemical sampling, and diamond drilling near Nellie Creek and Matterhorn Peak.

Most samples collected in the Nellie Creek area were only weakly radioactive and did not register more than three times background count when checked with a Geiger counter. Radiometric analysis of certain selected samples gave the following results:

Sample	U ₃ O ₈ (percent)	Sample	U ₅ O ₈ (percent)
59	0.01	83	0.01
61	.10	110	.01
77	.01	115	.10
79	.01	117	.07
80	.01	136	.01

Only samples 61, 115, and 117 contained significant quantities of uranium. Sample 61 was a 1-foot (0.3-m) chip of rhyolite in the wall of one of the trenches at the head of the east fork of Nellie Creek; this sample was from near the site of one of four holes drilled by the Greater West Mining Co. Sample 117 was a grab sample of rhyolite fragments at the portal of the caved adit on the Beth claims which are on the border of the primitive area. Sample 115 was taken near the discovery pit of the Ace claim in the primitive area; the sample consisted of a single selected specimen (a cube slightly more than an inch (3 cm) on a side) of rhyolite with visible uranophane. Sample 114, taken at the same spot, was a selected specimen of rhyolite without any visible uranophane; it registered only about twice background on the Geiger counter.

On the El Chaddai Ithiel group of claims, about 1 mile (1.6 km) north of the Larson Lakes, six trenches 50-100 feet (15-30 m) long and 2-6 feet (0.6-1.8 m) deep were dug with a bulldozer. The work was done in 1959 or 1960 by Eric Benson, one of the locators. The trenches are in rhyolite containing some stringers of iron and manganese oxides. Sample 68, taken horizontally across 10 feet (3 m) of a wall at one of the trenches, contained 31.9 percent manganese and 0.06 percent molybdenum; the spectrographic analysis showed only small amounts of copper, cobalt, nickel, tin, and vanadium (table 11). A 60-foot-wide (18-m-wide) zone of vitrophyre is exposed on the trail about 600 feet (180 m) northwest of the trenches. Sample 67 of this material contained no mineral values of interest.

The Treasure Hill Spar claim, about 1 mile (1.6 km) north of Henson Creek and one-fourth mile (0.4 km) east of Nellie Creek, was patented in 1883. In the center of the claim, a trench (designated as an opencut on the mineral survey plot) 160 feet (50 m) long, 8 feet (2.4 m) wide, and 1-2 feet (0.3-0.6 m) deep exposes four 1.5- to 6-foot (0.46- to 1.8-m) calcite veins. Assay results of samples 90-96, taken from the veins and float in the floor of the trench, indicated no mineral values of interest. Grab sample 99 was taken from a small pile of calcite that is near the remains of two log cabins on Nellie Creek; the material probably came from the trench on the patented claim. The sample contains only a trace of gold.

Two other prospect pits near the Treasure Hill Spar claim were sampled. Grab sample 97 of a dump at the pit south of the claim contained no mineral values of interest. At the pit west of the claim, sample 98 was taken across a 1.8-foot (0.55-m) vein exposed in the pit; assays indicate 0.9 ounce of silver per ton, 0.2 percent copper, 0.04 percent lead, and 0.07 percent antimony.

MATTERHORN PEAK

An altered monzonite intrusive on the north side of Matterhorn Peak, at the head of the East Fork Cimarron River (pl. 3A), is surrounded by a halo of altered andesite. About 240 unpatented claims, consisting of the Cimarron Chief group (50 claims) and the Dix group (190 claims), have been located in the area. These claims have been explored for molybdenum; the latest work, in 1971, consisted of trenching and geochemical sampling by Dixilyn Corp. which had located the Dix claims and had leased the Cimarron Chief claims.

Samples 121-124, taken from bulldozed trenches in the alteration zone, showed only small amounts of molybdenum. The largest amount, 60 ppm molybdenum, was reported for sample 121; the other samples show less than 20 ppm molybdenum (table 11). These traces of molybdenum possibly indicate that higher grade material may be at depth.

SILVER JACK MINE AREA

The Silver Jack mine area is on the East Fork Cimarron River, about 3 miles (4.8 km) north of Uncompangre Peak. Six patented lode claims, one patented placer claim, and several unpatented claims are in the area. The Silver Jack mine is on Silver Creek, about one-fourth mile (0.4 km) from its mouth. Two adits, one on each side of the creek, probably were driven to investigate the nearby outcropping dikes; both adits are caved. Samples 136 and 141-143 (table 11) were taken from the dumps; assay results indicated no mineral values of interest. Sample 138, from a dump at a small pit on the north bank of Silver Creek below the two adits, assayed 0.09 ounce of gold and 0.2 ounce of silver per ton.

Samples 131 and 132, panned concentrates of sand and gravel, and samples 133 and 134, chip samples of dikes, were taken along the East Fork Cimarron River; analyses of samples showed no mineral concentrations of significance.

Samples 144-147 were chip samples taken across dikes exposed on the west side of the East Fork Cimarron River. The spectrographic analyses of these samples showed small amounts of copper (40-100 ppm), lead (100 and 400 ppm), and molybdenum (30 ppm); both samples 144 and 147 assayed 0.1 ounce of silver per ton.

Sample 149 was a panned concentrate of sand and gravel from the East Fork Cimarron River on the Pay Day patented placer claim. The analyses of this sample showed no mineral concentration of significant value.

PORPHYRY BASIN

Porphyry Basin lies west of the Silver Jack mine area and is between the East and Middle Forks Cimarron River. At the time of the field investigation, one of the claim owners was doing assessment work. At the junction of the two forks that drain the basin, a 35-foot (11-m) adit was being driven due east in the hope of intersecting a gold vein reported to have been mined in the north-trending streambed about 1910. Samples 153 and 154, taken at the face of the adit, contained no mineral values of interest. Sample 155, taken from a 0.5-foot (0.2-m) gouge zone in the streambed about 300 feet (90 m) east of the adit, assayed a trace of gold. Sample 150 from across a 0.5-foot (0.2-m) vein near a caved adit on the south bank farther upstream and sample 151 from a similar vein on the north bank each assayed a trace of gold. Sample 152, a grab sample from a dump near a caved shaft on the south bank of the northern streambed, assayed a trace of gold and 0.1 ounce of silver per ton. The analysis of sample 156, a sediment sample taken from the Porphyry Basin stream about one-quarter of a mile (0.4 km) above the Middle Fork Cimarron River, indicated traces of gold and silver.

REFERENCES CITED

- Burbank, W. S., 1930, Revision of geologic structure and stratigraphy in the Ouray district of Colorado, and its bearing on ore deposition: Colorado Sci. Soc. Proc., v. 12, no. 6, p. 151-232.
- ——1940, Structural control of ore deposition in the Uncompangre district, Ouray, County, Colorado: U.S. Geol. Survey Bull. 906-E, p. 189-265.

- Burbank, W. S., and Luedke, R. G., 1964, Geology of the Ironton quadrangle, Colorado: U.S. Geol. Survey Geol. Quad. Map GQ-291.
- ——1966, Geology of the Telluride quadrangle, Colorado: U.S. Geol. Survey Geol. Quad. Map GQ-504.
- ——1968, Geology and ore deposits of the western San Juan Mountains, Colorado, in Ore deposits of the United States, 1933–1967 (Graton-Sales Volume): Am. Inst. Mining, Metall. Engineers, p. 714–733.
- Bush, A. L., Bromfield, C. S., Marsh, O. T., and Taylor, R. B., 1961, Preliminary geologic map of the Gray Head quadrangle, San Miguel County, Colorado: U.S. Geol. Survey Mineral Inv. Field Studies Map MF-176.
- Christiansen, R. L., and Lipman, P. W., 1972, Cenozoic volcanism and plate-tectonic evolution of the Western United States; II, Late Cenozoic: Royal Soc. London Philos. Trans., v. 271, p. 249-284.
- Clark, K. F., 1972, Stockwork molybdenum deposits in the western cordillera of North America: Econ. Geology, v. 67, no. 6, p. 731-758.

- Cross, Whitman, and Larsen, E. S., Jr., 1935, A brief review of the geology of the San Juan region of southwestern Colorado: U.S. Geol. Survey Bull. 843, 138 p.
- Cross, Whitman, and Purington, C. W., 1899, Description of the Telluride quadrangle, Colorado: U.S. Geol. Survey Geol. Atlas, Folio 57, 18 p.
- Cross, Whitman, Howe, Ernest, and Ransome, F. L., 1905, Description of the Silverton quadrangle, Colorado: U.S. Geol. Survey Geol. Atlas, Folio 120, 34 p.
- Cross, Whitman, Howe, Ernest, and Irving, J. D., 1907, Description of the Ouray quadrangle, Colorado: U.S. Geol. Survey Geol. Atlas, Folio 153.
- Dickinson, R. G., Leopold, E. B., and Marvin, R. F., 1968, Late Cretaceous uplift and volcanism on the north flank of the San Juan Mountains, Colorado, in Epis, R. C., ed., Cenozoic volcanism in the southern Rocky Mountains: Colorado School Mines Quart., v. 63, no. 3, p. 125-148.
- Fischer, R. P., Luedke, R. G., Sheridan, M. J., and Raabe, R. G., 1968, Mineral resources of the Uncompangre Primitive Area, Colorado: U.S. Geol. Survey Bull. 1261-C, 91 p.
- Foss, T. H., 1964, Chemical and mineralogic variations in the radial dikes of the Difficulty Creek intrusive center, San Juan Mountains, Colorado: Houston, Tex., Rice Univ. Ph. D. thesis, 72 p.
- Godwin, L. H., Haigler, L. B., Rioux, R. L., White, D. E., Muffler, L. J. P., and Wayland, R. G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U.S. Geol. Survey Circ. 647, 18 p.
- Haffty, Joseph, and Noble, D. C., 1972, Release and migration of molybdenum during the primary crystallization of peralkaline silicic volcanic rocks: Econ. Geology, v. 67, no. 6, p. 768-775.
- Irving, J. D., and Bancroft, Howland, 1911, Geology and ore deposits near Lake City, Colorado: U.S. Geol. Survey Bull. 478, 128 p.
- Kelley, V. C., 1946, Geology, ore deposits, and mines of the Mineral Point, Poughkeepsie, and Upper Uncompahgre districts, Ouray, San Juan, and Hinsdale Counties, Colorado: Colorado Sci. Soc. Proc., v. 14, no. 7, p. 287-466.
- King, W. H., and Allsman, P. T., 1950, Reconnaissance of metal mining in the San Juan region, Ouray, San Juan, and San Miguel Counties, Colorado: U.S. Bur. Mines Inf. Circ. 7554, 109 p.
- Landis, E. R., 1959, Coal resources of Colorado: U.S. Geol. Survey Bull. 1072-C, p. 131-232.
- Larsen, E. S., Jr., 1911, The economic geology of Carson Camp, Hinsdale County, Colorado: U.S. Geol. Survey Bull. 470-B, p. 30-38.
- Larsen, E. S., Jr., and Cross, Whitman, 1956, Geology and petrology of the San Juan region, southwestern Colorado: U.S. Geol. Survey Prof. Paper 258, 303 p.
- Lindsley, D. H., Andreasen, G. E., and Balsley, J. R., 1966, Magnetic properties of rocks and minerals, in Clark, S. P., Jr., ed., Handbook of physical constants [revised ed.]: Geol. Soc. America Mem. 97, p. 543-552.
- Lipman, P. W., Christiansen, R. L., and Van Alstine, R. E., 1969, Retention of alkalis by calc-alkalic rhyolites during crystallization and hydration: Am. Mineralogist, v. 54, nos. 1-2, p. 286-291.
- Lipman, P. W., Steven, T. A., and Mehnert, H. H., 1970, Volcanic history of the San Juan Mountains, Colorado, as indicated by potassium-argon dating: Geol. Soc. America Bull., v. 81, no. 8, p. 2329-2352.
- Lipman, P. W., Steven, T. A., Luedke, R. G., and Burbank, W. S., 1973, Revised volcanic history of the San Juan, Uncompandere, Silverton, and Lake City calderas in the western San Juan Mountains, Colorado: U.S. Geol. Survey Jour. Research, v. 1, no. 6, p. 627-642.
- Luedke, R. G., 1972, Geology of the Wetterhorn Peak quadrangle, Colorado: U.S. Geol. Survey Geol. Quad. Map GQ-1011.

- Luedke, R. G., and Burbank, W. S., 1962, Geology of the Ouray quadrangle, Colorado: U.S. Geol. Survey Geol. Quad. Map GQ-152.
- Mayor, J. N., and Fisher, F. S., 1972, Middle Tertiary replacement ore bodies and associated veins in the northwest San Juan Mountains, Colorado: Econ. Geology, v. 67, no. 2, p. 213-230.
- Mehnert, H. H., Lipman, P. W., and Steven, T. A., 1973, Age of the Lake City caldera and related Sunshine Peak Tuff, western San Juan Mountains, Colorado: Isochron West, no. 6, p. 31-33.
- Noble, D. C., Smith, V. C., and Peck, L. C., 1967, Loss of halogens from crystallized and glassy silicic volcanic rocks: Geochim. et Cosmochim. Acta, v. 31, no. 2, p. 215-223.
- Nockolds, S. R., and Allen, R., 1953, The geochemistry of some igneous rock series, Pt. 1: Geochim. et Cosmochim. Acta, v. 4, no. 3, p. 105-142.
- Olson, J. C., Hedlund, D. C., and Hansen, W. R., 1968, Tertiary volcanic stratigraphy in the Powderhorn-Black Canyon region, Gunnison and Montrose Counties, Colorado: U.S. Geol. Survey Bull. 1251-C, 29 p.
- Parker, J. M., ed., 1962, Colorado-Nebraska oil and gas field volume, 1961: Rocky Mtn. Assoc. Geologists, 390 p.
- Pearl, R. H., 1972, Geothermal resources of Colorado: Colorado Geol. Survey Spec. Pub. 2, 54 p.
- Plouff, Donald, and Pakiser, L. C., 1972, Gravity study of the San Juan Mountains, Colorado, in Geological Survey research 1972: U.S. Geol. Survey Prof. Paper 800-B, p. B183-B190.
- Popenoe, Peter, and Luedke, R. G., 1970, Interpretation of the aeromagnetic pattern of the Uncompandere Primitive Area, San-Juan Mountains, Colorado: U.S. Geol. Survey open-file report.
- Purington, C. W., 1898, Preliminary report on mining industries of the Telluride quadrangle, Colorado: U.S. Geol. Survey 18th Ann. Rept., pt. 3, p. 745-850.
- Ratté, J. C., and Steven, T. A., 1967, Ash flows and related volcanic rocks associated with the Creede caldera, San Juan Mountains, Colorado: U.S. Geol. Survey Prof. Paper 524-H, 58 p.
- Rosholt, J. N., and Noble, D. S., 1969, Loss of uranium from crystallized silicic volcanic rocks: Earth and Planetary Sci. Letters, v. 6, no. 4, p. 268-270.
- Staatz, M. H., 1963, Geology of the beryllium deposits in the Thomas Range, Juab County, Utah: U.S. Geol. Survey Bull. 1142-M, 36 p.
- Staatz, M. H., and Griffitts, W. R., 1961, Beryllium-bearing tuff in the Thomas Range, Juab County, Utah: Econ. Geology, v. 56, no. 5, p. 941-958.
- Steven, T. A., 1960, Geology and fluorspar deposits, Northgate district, Colorado: U.S. Geol. Survey Bull. 1082-F, p. 323-422.
- Steven, T. A., and Epis, R. C., 1968, Oligocene volcanism in south-central Colorado, in Epis, R. C., ed., Cenozoic volcanism in the southern Rocky Mountains: Colorado School Mines Quart., v. 63, no. 3, p. 241–258.
- Steven, T. A., Luedke, R. G., and Lipman, P. W., 1974, Relation of mineralization to calderas in the San Juan volcanic field, southwestern Colorado: U.S. Geol. Survey Jour. Research, v. 2, no. 4, p. 405-409.
- Steven, T. A., Mehnert, H. H., and Obradovich, J. D., 1967, Age of volcanic activity in the San Juan Mountains, Colorado, in Geological Survey research 1967: U.S. Geol. Survey Prof. Paper 575-D, p. D47-D55.
- Steven, T. A., and others, 1973, Magnetic tape containing spectrographic and chemical analyses of rocks and stream sediment from the study areas contiguous to the Un-

- compander Primitive Area, Colorado: U.S. Dept. Commerce, Natl. Tech. Inf. Service, Springfield, Va. 22161, PB220-818.
- Turekian, K. K., and Wedepohl, K. H., 1961, Distribution of the elements in some major units of the Earth's crust: Geol. Soc. America Bull., v. 72, no. 2, p. 175-191.
- U.S. Geological Survey, 1972, Aeromagnetic map of the Ridgeway-Pagosa Springs area, southwestern Colorado: U.S. Geol. Survey Geophys. Inv. Map GP-840.
- Vanderwilt, J. W, ed., 1947, Mineral resources of Colorado: Colorado Mineral Resources Board, 547 p.
- Vine, J. D., and Tourtelot, E. B., 1970, Geochemistry of black shale deposits—a summary report: Econ. Geology, v. 65, p. 253-272.
- White, D. E., 1965, Geothermal energy: U.S. Geol. Survey Circ. 519, 17 p.
- Zietz, Isidore, and Kirby, J. R., 1972, Aeromagnetic map of Colorado: U.S. Geol. Survey Geophys. Inv. Map GP-880.

7.

TABLES 5-8, 11

Table 5.—Analyses of stream-sediment

[See plate 2.4 for sample localities, ppm, parts per million; N, not detected; L, detected but below lower limit looked for in spectrographic analyses, and either not found or found in amounts normal for the type Co (5), Cr (10), La (20), Ni (5), Sb (100), Sc (5), Sn (10), Sr (100), V (10), W (50), Y (10), and Zr (10)]

	141	semiquan	titative spect		yses		
Sample	Hn (10)	Ag (.5)	(ppm Ba (20)	Be (1)	Cu (5)	Mo (5)	Nb (10)
		1.21	Matterhor			ti .	
548	700	N	700	L	15	N	L
\$49	1,000	N	700	L	20	15	L
\$50	700	N	1,500	L	30	20	L
\$51	700	N	700	L	20	10	L
S52	700	N	500	L	20	5	N
\$53	1,000	N	500	2	50	N	N
.554	1,000	N	700	L	20	5	L
\$55	1,000	N	700	L	15	N	N
S56 S57	1,000	N N	700 1,000	L I	20 15	N N	L N
	1,000						
\$58	700	N	700	1	20	5	N
559	700	N	500	1	15	N	Ľ
\$60 \$61	1,000	N N	700	į.	20	N	N
\$62	1,000	N N	1,500 700	7	30	N	Ľ
s63				3	20		N
\$64	1,000	. N N	500 500	5	20	N N	N
\$65	1,000	N	500	í	20	Ä	N
~			El Paso	Creek			
J51	1 000		1 000		10		
J52	1,000	N N	700	N N	10 15 .	N L	N
J53	1,000	N	1,000	î	10	N	N
J54	1,000	N	700	Ī	15	N	H
J55	1,500	N	1,000	ī	15	N	N
J56	1,500	N	700	E	15	N	N
J57	700	N	700	1	20	N	N
J59	700	N	500	1	7	N	N
J60 J61	2,000	N N	1,500	1.5	10	L N	20 N
J62	2,000	N	700	1.5	15	N	N
J63	1,500	N	1,000	1.5	10	Ň	N
J85	1,000	N	700	î	10	N	N
J86	1,500	N	1,000	i	10	Ň	N
J87	1,500	N	700	i	10	N	N
J88	1,500	N	700	t	15	N	N
J89	1,000	N	500	L	20	N	N
J90	1,000	N	700	L	15	N	N
J91	1,000	N	700	Ľ	15	N	N
J92	1,000	N	700	L	20	N	N
J93	1,000	N	700	Ļ	15	N	N
J94	1,000	N	700	1	15	N	N
J95 J96	1,000	N	700	1	15	N	N
\$37	1,000	N	700 700	-1	30 15	N N	N
S38	1,000	N	700	L	15	N	N
S39	700	N	700	Ĺ	20	N	N
\$40	1,000	N	700	. 1	7-	N	N
541	1,000	N	700	L	10	N	N
S42	1,000	N	700	r	15	N	N
S43 S44	1,000	N	700	1	20	N	N
544	1,000	N	700 700	1	10 7	N N	N
546	700	N	500		-	N N	n

samples from the eastern contiguous area

of measurement. Number in parentheses below element symbol is the usual lower limit of determination. Also of material sampled, were Fe (0.05), Mg (0.02), Ca (0.05), Ti (0.002), As (200), Au (10), B (10), Bi (10), Cd (20),

3.4		(ррі	nued m)			analyses pm)	
Sample	Pb (10)	Sr (100)	Zn (200)	Au (.05)	CxCu (1)	C×HM (1)	Sb (.5
	(10)		atterhorn Creel			117	1.2
S48	50	500	N	N	3	3 4	2
S 49	70	300	N	N	3		2
\$50	70	300	N	N	4	1	3 2
\$51	70	300	N	N	2	L	2
\$52	20	150	N	N	4	N	1
\$53	30	200	N	N	4	N	1
\$54	20 20	300	N N	N N	6	1	2 .
\$55	30	500	N N	N N	3	2	.5 1
S56 S57	30	500 500	Ë	N	4	2	2
	20	200			2 8	N	
558	30	300	N N	N	3	N N	2
S59 S60	20 30	300		N	3 8		2
561	30	300	200 200	N N	8	7	2
562	20	300 500	500	N N	10	40	3
563	20	500	300	N	8	17	4
564	20	300	300	N	8	20	3
\$65	20	300	N	N	8	5	2
		E	l Paso Creek	Continued		" , , , , , , , , , , , , , , , , , , ,	
J51	50	700	N	N	4	N	1
J52	70	500	Ñ	N	4		
J53	70	500	N	N	6	1	1 .
J54	50	500	N	H	8	3	, .5
J55 .	50	500	N	N	6	ĩ	î
J56	70	500	N	N	3	2	.5
J57	30	500	N	N		Ñ	1
J59	30	200	N	N	3	4	î
J60	70	500	N	N	2	Ñ	2
J61	50	300	N	N	ī	ï	.5
J62	50	300	N	N	2	2	1
J63	50	500	N	N	L	N	.5
J85	50	300	N	N	ī	E	1
J86	50	300	N	N	N	Ñ	.5
J87	50	500	N	N	2	14	1
J88	50	500	N	N	12	N	.5
J89	30	500	N	N	1	N	1
J90	50	500	N	N	1	N	1
J91 J92	50 50	500 500	N N	N N	4	L L	1
J93 J94	50	500	N	N	4	4	1
	50	300	N	N	3	3	1
J95	30	300	N	N	2	.5	Ī
J96	100	300	N 	N	8	11	2
\$37	30	300	N	N	4	2	3
538	50	300	N	N	2	4	3
539 540	30	300	N	N	4	1	
	50	300	N	N	2	5	1
S41 S42	50 30	300 500	N N	N N	2 1	2 N	1.5
645							
S43 S44	50 50	300	N N	N	3	2	1
545	20	300 300	N N	N N	2	2	1
	20	300	N N	N N	3 8	2 14	1

TABLE 5.—Analyses of stream-sediment samples

ample	Mn	Ag	Ва (рр	Be	Cu	Mo	Nb
ampre	(10)	(.5)	(20)	(1)	(5)	(5)	(10
			East Fork Cim	arron River			
54	1,000	N N	500 700	N	30	N	N
S 5 S 6	1,000	N	700	N L	20 20	N N	N
57	700	N	500	ũ	20	N	N
88	700	N	700	L	20	N	L
S9	1,000	N .	1,000	L	15	N	N
10 511	1,000	, N	1,000	N	20 30	N N	N
\$12	1,500	N.	1,000	č	20	N	N
\$13	1,500	N	1,000	ī	20	N	N
514	1,000	N	1,000	L	20	N	N
\$15	1,600	N	700	L	20	N	N
S16 S17	1,000	N N	1,000	L	20 15	N N	N
518	1,000	N	1,000	į	20	N	N
519	1,000	N	1,000	Ċ	20	N	N
S20	1,000	N	1,000	L	30	N	N
521 522	1,000	N	1,000	L	30	N	N
523	1,000	N N	1,000	L L	20 15	N N	N
524	1,000	N	700	L	20	22	N
\$25	1,000	N	1,000	N	15	N	N
526	1,000	N	1,000	N	50	N	N
S27 S28	1,000	N	700	N N	30	N	H
	1,500	N	1,500		20	N	N
529 530	1,000 700	N N	1,000	N N	20	N N	N
\$31	1,000	N	1,000	Ñ	20	Ň	N
\$32	700	N	700	N	10	N	N
533	1,000	N	1,500	N	15	N	N
534 535	1,500	l N	700	N	20	N	N
335 3146	1,000	N N	700 1,000	N L	15 10	N N	N
G147	1,000	N	1,000	ĭ	20	N	N
G148	1,000	N	700	N	15	N	N
G149	1,000	N	1,000	1	15	N	N
G150 G151	1,000	N N	1,000	L	20	N	N
G152	1,500	N	1,000	ĭ	15 20	N	N N
1153	1,000	N	1,000	ĩ	15	N	N
3154	1,000	N	1,000	L	15	N	N
1155	1,000	N	1,000	ι	20	N	N
3156	1,000	N	700	L	15	N	N
5157 5158	700 1,000	N	700	L N	10	N N	N
3159	1,000	N	1,000	ι	15	N	N
160	1,000	N	700	L	20	H	H
161	1,000	N	700	Ļ	15	N	N
1162 1163	1,000	N N	700 700	ť	15	N	H
3164	1,000	N	500	N		N	N
165	1,000	N	700	L	15 15	N	N
166	1,000	N	1,000	L	15	N	N
3167 3168	1,000	N	700 700	L L	7 15	N	N N
1169	1,000	N	700	N	15	N	N
170	1,000	N	700	Ĺ	15	Ñ	N
171	1,000	N	1,000	L	15	N	N
172	1,000	N	700	L	15	N	N
3173	1,500	N	700	N	15	N	N
3174	1,500	N	700	N	20	N	N

CONTIGUOUS AREAS, UNCOMPAHGRE PRIMITIVE AREA, COLO. E95

from the eastern contiguous area-Continued

		titative spec alysesConti			Chemical	region north	
Sample	Pb (10)	(ppm) Sr (100)	Zn (200)	Au	C×Eu	C×HM (1)	Sb (.5)
	(10)		Fork Cimarron	(.05) RiverConti	nued (1)	(1)	(-5)
54	20	300	200	N	10	2	0.5
55	20	500	N	N	6	N	.5
56	20	500	N	N	2	1	. 5
S 7	20	300	ι	N	6	2	1
\$8	20	300	N	N	8	2	-5
S9 S10	30 20	300 500	N 200	N N	8	2 N	.5 .5
\$11	50	300	N N	N	10	2	
512	30	700	N N	N	6	î	l
\$13	30	.500	N	N	15	2	į
\$14	30	500	N	N	10	3	¥
515	20	300	N	N	10	1	1
\$16	30	500	200	N	8	2	1
\$17	20	700	N-	N	4	2	. 5
518	15	500	N	N	8	2	2
519	10	500	L	N	8	2	.5
S20	20	500	L	N	6	1	.5
S21 S22	20	500 500	N N	N N	3 10	L 2	2 .
\$23	20	700	Ľ	N	4	í	-5 -5
524	20	300	200	N	10	2	٠Ś
525	15	500	N	N	6	ĩ	1
526	15	500	N	N	6	î	i e
527	20	300	Ň	N	6	1	.5
528	20	1,000	N	N	2	N	. 5
\$29	20	500	N	N	8	2	1
\$30	10	500	N	N	6	1	- 5
531	20	500	200	N	8	3	- 5
S32 S33	20	500 500	N 200	N N	8	2	L -5
534	20	500	300	N	4	N	L
\$35	15	700	N	N	ï	N	.5
G146	15	700	N	N	6	N	1
G147	20	700	L	N	. 8	4	. 5
G148	15	700	N	N	2	N	. 5
G149	15	700	N	N	4	N	T.
G150	20	700	200	N	10	7	.5
G151	15	1,000	200	N	2	N	L
G152 G153	15 20	700 700	200 N	N	10	2 N	.5 .5
G154 G155	15 15	700 500	: 200	N N	10	N	- 5 - 5
G156	15	500	200	or 44 f		7 5	.5
G157	15	700	N	N -	-4	í	.5 .
G158	20	700	١.,	, N	- L	N	ı.
6159	15	700	N	N	8	ž	-5 -
G160	15	500	N	N	8	3	L
G161	20	700	L	N	2	L	.5
G162	20	500	L	N -	6	1	.5
G163	20	700	N	N	. 8	2	.5
G164 G165	15	500	Ľ	- N	3 6 6	N	t)
G166	15 15	700 700	N L	N	6	N 3	.5
G167	15	700	N	N		3 N	.5
G168	15	700	N	N	L 8	ĩ	١.,
G169	15	700	N	N	3	2	.5
G170	15	700	N	N	3	Ñ	
G171	15 15	700	N	N	1	N	.5
G172	15	700	N	N	8	5 L	.5 .5
G173	15	700	N	N	2	Ü	. 5
G174	15	500	300	N	6	3	T.

TABLE 6.—Analyses of rock samples from

[See plate 2A for sample localities, ppm, parts per million, N, not detected, L, detected but below lower looked for in spectrographic analyses, and either not found or found in amounts normal for the type La (20), Ni (5), Sb (100), Sc (5), Sn (10), V (10), W (50), Y (10), and Zr (10)]

			Semi	quantita		ectrog: ppm)	aphic	anal	yses			
Sample	Mn (10)	Ag (.5)	Ba (20)	B1 (10)	Cd (20)	Co (5)	Cu (5)	Mo (5)	Nb (20)	Pb (10)	Sr (100)	Zn (200)
				100000	imarron		ed are					
\$85A	300	N	100	N	N	7	Ľ	N	20	70	150	N
5858	1,000	N	1,000	N	N	L	7	N	N	15	500	N
585C	1,000	N	1,000	N	N	15	50	N	N	50	500	N
\$850 \$85E	1,000	N	1,000	N	N	15 L	70 10	N	N L	20 30	300	N
\$85F	700			N	N	ii.	20	N	L	150	500	N
585G	700	. 5 N	1,000	N	N	L	20	N	Ĩ.	100	500	N
S85H	700	.7	700	N	N	N	7	10	L	100	300	N
5851	1,000	N.	1,000	N	N	5	15		ī	100	500	N
\$85J	1,000	N	700	N	N	10	50	7	Ĺ	70	500	N
586A	1,000	N	1,500	N	N	10	20	N	N	20	1,000	N
S868	1,500	N	700	N	N	15	5	N	N	20	700	N
S86C	1,500	N	1,000	N	N	15	5	N	N	70	1,500	N
S860	1,000	N	1,500	N	N	10	7	N	N	15	1,000	N
S86E	150	1	300	N	N	10	5	15	L	70	N	N
S86F	1,000	L	2,000	N	N	20	70	10	L	100	300	N
586G	1,000	N	700	N	N	10	L	N	L	20	500	N
586H	2,000	7	300	N	N	20	20	15	N	1,000	500	700
5861	1,000	N	1,000	N	N	5	20	7	L	70	300	N
S170A	1,500	N	1,500	N	N	20	15	N	Ľ	20	1,000	N
S170B	1,000	N	1,000	N	N	10	15	N	L	5C	500	N
\$171	100	L	1,000	N	N	N	10	N	L	20	300	N
\$172	70	N	1,500	N	N	-	15	N	L	15	300	N
S173	70 300	N N	2,000 700	N	N	L N	15	7 N	·N.	- 20	300 300	N
							- 3	-		1.1.7.3.5		3-3
\$175	70	N	2,000	N	И	N	10	5	r	. 15	500	N
				Matt	erhorn	altere	darea					
S89A	500	N	1,000	N	N	N	15	N	N	20	200	N
S89B	150	N	300	L	N	N	L	5	N	50	500	N
589C	200	N	1,000	N	N	N	5	5	N	30	500	N
589E	1,000	. 7	300	N	N	5	10	15	N	70	300	L
589F	700	- 5	200	N	N	10	20	15	Ν .	70	N	N
S90B	1,000	N	1,000	N	N	15	20	N	N	30	700	N
591	20	N	700	15	N	5	10	7	L	1,500	2,000	N
S93A	30	N	700	- 10	N	N	L	7	20	70	1,000	N
S938	1,000	N	700	N	N	. 7	20	N	N	20	300	N
\$93C	700	N	700	N	N	15	30	N	N	20	500	N
5930	1,000	N	700	N	N	10	50	5	N	50	500	N
\$93E	1,000	N	1,000	N	N	10	20	Ν .	· L	70	700	N
593F	700	N	1,000	N	N	7	20	N	N	70	700	N
S94 S95	1,000	N N	700	N	N	L 30	10	15 N	N N	70 L	200 100	L
	700	w	700	N	N	.50			KH1		500	N
506	30	N	500	10	N	7 10	10	5	N	10 200	500 1,500	N
S96				N	N	7	15	N	L	200	300	N
597		N										
\$97 \$163	200	N N	200 150									
597		N N 1	150 700	N N	N	20 N	20 20	15	Ĺ	20 500	100 700	N N

altered areas, eastern contiguous area.

limit of measurement. Number in parentheses below element symbol is the usual lower limit of determination. Also of material sampled, were Fe (.05), Mg (0.02), Ca (0.05), Ti (0.002), As (200), Au (10), Be (1), Cr (10),

			Chen	nical a	analyse m)	15			
Sample	Au (.05)	Hg (.02)	Cu (5)	Pb (5)	Zn (5)	As (10)	5b (.5)	Te (.5)	Sample description
=				Cima	arron a	altered a	areaCo	ont i nue	d
S85A	N	1.2	5	40	45	160	1	2	Altered monzonite dike; pyrite.
S85B	N	. 35	10	15	80	N	1	L	Altered andesite breccia; pyrite.
S850	N	N	45	10	80	10	5	N	Altered andesite breccia.
\$85D \$85E	N	N .65	55 20	5 20	80 20	10 700	1	N . 5	Propylitized andesite breccia. Altered monzonite; pyrite.
\$85F	N	,	30	60		N		- 8	53305
585G	N	.04	30	60	45 45	20	3	2	Fines from altered monzonite talus. Do.
S85H	N	N	10	65	35	10	2	ĩ	Do.
5851	N	.04	30	35	65	10	ĩ	î	Do.
S85J	N	.04	50	30	70	60	i	î	Do
\$86A	N	.60	25	·	40	10		75	VI
S868	N	. 90	35	5 15	160	N	.5 .5	Ľ	Altered monzonite dike; pyrite.
S86C	N	.14	5	25	190	160	1.5	L N	Altered andesite breccia; pyrite. Monzonite dike; pyrite.
586D	N	.40	5	10	65	160	1	Ë	Altered monzonite dike; pyrite.
586€	N	. 70	10	75	90	10	i	ì	Altered monzonite dike; limonite.
S86F	N	.12	35	75	95	E	1	3	Altered andesite breccia.
586G	N	N	5	10	80	N	2	N	Monzonite dike.
S86H	N	N	25	600	750	60	3	3	Altered andesite breccia; limonite.
5861	N	.90	25	35	90	1,600	í	Ĺ	Altered monzonite dike; pyrite.
S170A	N	. 20	25	20	90	L	L	Ĺ	Altered contact; monzonite intrusive
\$1708	N	N	25	35	65	20	.5	E	Do.
5171	N	N	15	5	30	N	()	ì	Altered monzonite; pyrite.
\$172	N	.95	15	5	15	N	L	2	Do.
\$173	N	- 95	10	10	N	N	L	. 5	Do.
\$174	N	.04	15	10	30	10	.5	.5	Soft argillized monzonite.
\$175	N	.92	5	t	N	N	L	ι	Altered monzonite; pyrite.
				Matte	erhorn	altered	areaC	Continu	ied
	N								
S89A		0.10	25	20	50	40	1	2	Altered contact, monzonite stock.
S898	N	.10	5	25	5	60	1	2	Altered contact, monzonite stock.
\$898 \$890	N N	.10	5	25 20	5	60 N	.5	2	Do. Do.
\$898 \$890 \$89E	N N N	.10 .12 .12	5 5 20	25 20 60	5 5 150	60 N 80	1 .5 1	2 1.1 2	Do. Do. Argillized monzonite.
\$898 \$890	N N	.10	5	25 20	5	60 N	.5	2	Do. Do.
\$898 \$890 \$89E \$89F \$908	N N N	.10 .12 .12 .80	5 5 20 40	25 20 60 60	5 150 120	60 N 80 L	1 .5 1 .5	2 1.1 2 .5	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite.
\$898 \$890 \$89E \$89F \$908 \$91	N N N N N N N N N N N N N N N N N N N	.10 .12 .12 .80 N	5 5 20 40 30 5	25 20 60 60 10 270	5 150 120 40 N	60 N 80 L N L	.5	2 1.1 2 .5	Do. Do. Argillized monzonite. Altered monzonite; pyrite.
\$898 \$890 \$89E \$89F \$908 \$91 \$93A	N N N N N N N N N N N N N N N N N N N	.10 .12 .12 .80 N 2	5 5 20 40 30 5	25 20 60 60 10 270 50	5 5 150 120 40 N	60 N 80 L N L 20	.5	2 1.1 2 .5 N	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus.
\$898 \$890 \$896 \$896 \$908 \$91 \$93A \$938	N N N N N	.10 .12 .12 .80 N 2 .16	5 5 20 40 30 5 5 30	25 20 60 60 10 270 50 25	5 5 150 120 40 N N 55	60 N 80 L N L 20 40	.5 1 .5 1	2 1.1 2 .5 N .5	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do.
\$898 \$890 \$896 \$896 \$896 \$908 \$91 \$93A \$93B \$93C		.10 .12 .12 .80 N 2 .16 .12 .18	5 20 40 30 5 5 30 40	25 20 60 60 10 270 50	5 5 150 120 40 N N 55 70	60 N 80 L N L 20	.5	2 1.1 2 .5 N .5	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus.
\$898 \$890 \$896 \$896 \$996 \$91 \$93A \$93B \$93C \$93D		.10 .12 .12 .80 N 2 .16 .12 .18	5 5 20 40 30 5 5 30 40	25 20 60 60 10 270 50 25 25	5 5 150 120 40 N N 55 70	60 N 80 L N L 20 40 60	1 .5 1 .5 1 1 .5 .5	2 1.1 2 .5 N .5	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do.
\$898 \$890 \$896 \$896 \$908 \$91 \$93A \$93B \$930 \$930 \$930		.10 .12 .12 .80 N 2 .16 .12 .18	5 5 20 40 30 5 5 30 40	25 20 60 60 10 270 50 25 25 25	5 5 150 120 40 N N 55 70	60 N 80 L 20 40 60 N 20	1 .5 .5 .5 .5 .5 .5	2 1.1 2 .5 N .5 1 1	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do.
\$898 \$890 \$896 \$896 \$896 \$91 \$93A \$93B \$930		.10 .12 .12 .80 N 2 .16 .12 .18	5 5 20 40 30 5 5 30 40	25 20 60 60 10 270 50 25 25 25 30 55 30	5 5 150 120 40 N N 55 70 45 60 45	60 N 80 L N L 20 40 60	1 .5 .5 .5 .5 .5 .5 .5 .2	2 1.1 2 .5 N .5 1 1	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do. Do.
\$898 \$890 \$896 \$896 \$908 \$91 \$93A \$93B \$930 \$930 \$935	222 2222 222	.10 .12 .12 .80 N 2 .16 .12 .18	5 5 20 40 30 5 5 30 40 35 35 35 30	25 20 60 60 10 270 50 25 25 25	5 5 150 120 40 N N 55 70	60 N 80 L 20 40 60 N 20 20	1 .5 .5 .5 .5 .5 .5	2 1.1 2 .5 N .5 1 1	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do.
\$898 \$890 \$896 \$896 \$91 \$930 \$938 \$930 \$930 \$936 \$936 \$936 \$936 \$936	2222 2222 2222	.10 .12 .12 .80 N 2 .16 .12 .18	5 5 20 40 30 5 5 30 40 35 35 30 10 20	25 20 60 60 10 270 50 25 25 25 30 75 5	5 5 150 120 40 N N 55 70 45 60 45 15 50	60 N 80 L N L 20 40 60 N 20 20 120	1 .5 .5 .5 .5 .5 .1 1 2 2 1	2 1.1 2 .5 N .5 1 1 1 1 .5 1 2 L	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do. Do. Altered andesite breccia. Propylitized monzonite; pyrite.
\$898 \$896 \$896 \$896 \$996 \$908 \$91 \$938 \$936 \$936 \$936 \$936 \$937 \$938 \$936 \$936 \$936 \$936 \$937 \$938	2222 22222 2222	.10 .12 .12 .80 N 2 .16 .12 .18 .12 .14 .20 .12	5 5 20 40 30 5 5 30 40 35 35 30 10	25 20 60 60 10 270 50 25 25 30 75	5 5 150 120 40 N N 55 70 45 60 45 15	60 N 80 L 20 40 60 N 20 20 120	1 .5 .5 .5 .5 .5 .2 2 2	2 1.1 2 .5 N .5 1 1 1	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do. Do. Altered andesite breccia.
\$898 \$896 \$896 \$896 \$91 \$93A \$93B \$93C \$93C \$93D \$93F \$93F \$94 \$95 \$95		.10 .12 .12 .80 N 2 .16 .12 .18 .12 .14 .20 .12	5 5 20 40 30 5 5 30 40 35 35 30 40 20 75	25 20 60 60 10 270 50 25 25 25 30 75 5	5 5 150 120 40 N N 55 70 45 60 45 15 50 75	60 N 80 L N L 20 40 60 N 20 120 20	1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	2 1.1 2 .5 N .5 1 1 1 2 .5 1 2 L	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do. Do. Altered andesite breccia. Propylitized monzonite; pyrite.
\$898 \$896 \$896 \$897 \$908 \$91 \$930 \$930 \$930 \$930 \$935 \$935 \$95 \$95 \$95 \$95 \$95 \$95 \$95 \$95 \$95 \$9	N	.10 .12 .80 N 2 .16 .12 .18 .12 .14 .20 .12 .12	5 5 20 40 30 5 5 30 40 35 35 30 10 20 75 30 55 30 55 30 10 20 50 50 50 50 50 50 50 50 50 50 50 50 50	25 20 60 60 10 270 50 25 25 30 55 30 75 5	5 5 120 120 40 N N 55 70 45 60 45 15 50 75 L 45 90	60 N 80 L 20 40 60 N 20 20 20 20 1,200 600 100 40	1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	2 1.1 2 .5 N .5 1 1 1 2 L	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do. Altered andesite breccia. Propylitized monzonite; pyrite. Do. Do.
\$898 \$896 \$896 \$896 \$91 \$93A \$93B \$93C \$93C \$93D \$93F \$93F \$94 \$95 \$95		.10 .12 .80 N 2 .16 .12 .18 .12 .140 .12	5 5 20 40 30 5 5 30 40 35 35 30 10 20 75 30 55 55	25 20 60 60 10 270 50 25 25 30 75 5 5 10 300 20	5 5 150 120 40 N N 55 70 45 60 45 15 50 75 L	60 N 80 L 20 40 60 N 20 20 120 20 1,200 600 10	1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	2 1.1 2 .5 N .5 1 1 1 .5 1 2 L	Do. Do. Argillized monzonite. Altered monzonite; pyrite. Propylitized monzonite. Silicified and pyritized monzonite. Altered fines from monzonite talus. Do. Do. Do. Do. Do. Altered andesite breccia. Propylitized monzonite; pyrite. Silicified monzonite; pyrite. Do. Altered andesite.

TABLE 6.—Analyses of rock samples from altered

				iquantita		ppm)						
Sample	Mn (10)	Ag (.5)	Ba (20)	Bi (10)	Cd (20)	Co (5)	(5)	Mo (5)	Nb (20)	РЬ (10)	Sr. (100)	Zn (200
		2		Iro	n Beds	altere	d area	1				
G328A	700	N	700	N.	N	5	7	N	L	15	. 300	N
G3288	70	L	700	10	N	10	15	15	L	150	700	N
G328C	100	N	1.000	N	N	N	15 5 5	L	L	50	100	N
G3280	50	N	500	N	N	N	5	L	L	30	100	N
G328E	50	N	1,000	N	N	N	5	N	20	15	200	N
G328F	1.000	N	1.000	N	· N	7	20	N	Ĺ	20	700	N
G328G	100	N	700	N	N	N	7	5	20	50	1,000	N
G328H	20	N	150	10	N	N	10	N	L	20	1,500	N
G3281	30	N	700	N	N	N	L	N	L	30	700	N
G328J	1,000	N	1,000	N	N	15	50	N	N	50	1,000	N
G328K	1,000	N	2,000	N	N	N	20	N	L.	30	500	N
G328L	30	N	700	20	N	N	5	N	L	30	2,000	N
G328M	50	.5	300	N	N	N	5	10	L	70	3,000	N
G328N	1.000	N	700	N	N	15	5 5 20	N	N	30	700	N
G3280	20	N	500	L	N	N	L	N	L	30	500	N
G328P	70	N	700	N	N	N	N	N	L	20	500	N
G328Q	1,000	N	700	N	N	15	20	N	N	15	1,000	N
G328R	50	'n	700	N	N	N		L	L.	15	100	N
G3285	300	N	500	N	N	5	L 5 L	N	N	15	150	N
5164A	150	N	1.000	N	N	N	Ĺ	N	N L	50	200	N
\$167	50	N	700	N	N	N	Ē	5	Ĺ	10	200	N
\$168	20	N	700	N	N	7	15	7	L	100	1,000	N
\$169	50	N	1,500	N	N	N	15	5	20	50	1,000	N

areas, eastern contiguous area -Continued

			Cher	nical a (ppm		es			
Sample	Au (.05)	Hg (.02)	Cu (5)	Pb (5)	Zn (5)	As (10)	Sb (.5)	Te (.5)	Sample description
				Iron	Beds	altered	areaC	ontinu	red
G328A	N	N	10	5	25	N	L	N	Slightly altered Fish Canyon Tuff.
G328B	N	. 70	10	10	N	10	2	.5	Highly altered sediments.
G328C	N	N	10	25	35	10	.5	N	Highly altered Crystal Lake Tuff.
G328D	N	. 02	L	15	L	10	ι	N	Slightly altered Carpenter Ridge Tuff
G328E	N	. 24	L	5	N	L	L	.5	Highly altered lava flow.
G328F	N	.02	25	15	40	N	ũ	N	Unaltered lava flow,
G328G	N	.08	5	25	L	10	2	4	Altered fines in pit on lava flow.
G328H	N	-04	L	L	N	10	L	.5	Highly altered lava flow.
G3281	N	. 02	L	10	N	20	1	2	Altered fines in pit on lava flow.
G328J	N	. 60	40	20	75	10	L	L	Unaltered lava flow,
G328K	N	. 20	30	15	20	10	Ľ	2	Altered lava flow.
G328L	N	. 06	L	10	N	10	1	L	Altered tuff.
G328M	N	- 70	5	15	N	20	5	3	Narrow altered zone in lava flow.
G328N	N	L	40	5	35	N	ũ	N	Unaltered lava flow.
G3280	N	.08	L	30	N	L	Ĺ	L	Highly altered Carpenter Ridge Tuff.
G328P	N	.16	5	10	N	120	.5	î	Altered Carpenter Ridge Tuff.
G328Q	N	· N		5	30	L	ι	H	Altered vitrophyre Crystal Lake Tuff.
G328R	N-	- 10	40 5 5	10	5	10	L	N	Highly altered Fish Canyon Tuff.
G328S	N	. 20	5	5	ũ	10	L	N	Unaltered sediments.
S164A	N	N	5	15	5	20	L	L	Highly altered Crystal Lake Tuff.
\$167	N	.68	£	10	N	L	Ľ	N	Highly altered lava flow.
\$168	N	1	10	20	N	20	1	L	Highly altered monzonite dike; pyrite
\$169	N	.90	5	5	25	N	L	L	Altered Fish Canyon Tuff; pyrite.

E100 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

TABLE 7.—Analyses of rhyolite intrusive rocks

[See plate 24 for sample localities. ppm, parts per million, N, not detected, L, detected but below lower of determination. Also looked for in spectrographic analyses, and either not found or found in amounts B (10), Bi (10), Cd (20), Co (5), Cr (10), La (20), Ni (5), Sb (100), Sc (5), W (50), Zn (200), and Zr (10)]

				Jennyo	anci cac		pm)	raphic a				
Sample	Mn (10)	Ag (.5)	8a (20)	Be (1)	Cu (5)	Mo (5)	Nb (20)	РЬ (10)	Sn (10)	Sr (100)	V (10)	Y (10
			PLI	G ALONG	EAST F	ORK OF	NELLIE	CREEK				
					Intrus	ive ro	ck					F440.T.U
547D	1,000	N	70	15	N	N	50	30	N	N	N	N
547F	1,000	N	200	20	L	15	30	50	N	L	N	L
S98A	700	N	200	7	L	N	30	30	N	100	N	15
S988	700	N	100	7	L	N	20	30	N	N	N	L
598C	700	N	100	10	Ł	N	30	30	N	L	N	10
\$103	1,000	N	150	7	Ē.	N	30	70	N	L	N	15
\$104	1,500	N	150	10	10	N	20	50	N	N	N	N
\$105	1,500	N	150	10	5	N	30	50	N	ï	N	15
5106A	700	N	150	10	Ĺ	5	30	50	N	N	N	10
\$1068	700	N	150	7	5	7	30	50	N	100	10	10
SIIOA	1,500	N	500	20	5	15	70	50	N	300	N	10
S110B	700	N	100	10	5	5	30	30	N	N	N	L
S112A	700	N	150	15	Ĺ	N	50	50	N	L	N	ũ
5113	700	N	100	7	L	7	30	50	N	N	N	Ĺ
L47		N	520	19	2	8	80	40	N	160	<10	<20
					Wa	llrock						
S47A	>5,000	N	700	1.5	20	N	N	20	N	700	70	150
\$47B	>5,000	N	1.000	1.5	50	N	N	20	N	500	100	100
S47C	>5,000	N	700	3	20	N	N	30	N	500	70	70
547E	200	N	1,000	2	L	N	N	70	N	300	15	20
S106C	1,500	N	700	2	15	N	20	50	N	150	70	20
\$107	500	N	700	L	5	L	L	30	N	100	20	20
\$108	500	N	1,500	L	10	N	L	70	N	200	20	20
5111	2,000	N	1,000	3	20	N	L	30	N	1,000	150	30
S112B	1,500	N	1,000	L	20	N	N	30	N	700	300	20
S114A	200	N	500	L	L	N	L	20	N	100	20	20
S114B	300	N	700	1	Ĺ	N	L	20	N	100	15	30
S114C	1.000	N	300	3	L	N	L	30	N	200	15	30
51140	1,000	N	700	1.5	L	N	L	30	N	200	20	15

and associated wallrocks, eastern contiguous area

limit of measurement, ..., not analyzed. Number in parentheses below element symbol is the usual lower limit normal for the type of material sampled, were, Fe (0.05), Mg (0.02), Ca (0.05), Ti (0.002), As (200), Au (10),

			Ch		anal	yses			Instrumental	
					pm)				radioactivity reading1/	
Sample	Au (.05)	Hg (.02)	(5)	Pb (5)	Zn (5)	As (5)	Sb (.5)	F. (50)	reading-	Sample description
			P	LUG AL	ONG E	AST F	ORK OF	NELLIE C	REEKContinued	
. 8						Intru	sive ro	ckCont	inued	
S470	N	N	N	10	5	N	L	800		Devitrified rhyolite. Topa:
S47F	N	.02	L	5	5	N	-5	700	-22	Marginal vitrophyre.
S98A	N							270	0.15-0.575	Devitrified rhyolite.
598B	N		17.713			10.00	7.77	700	.15600	Do.
S98C	N							900	.15575	Do.
\$103	N							375	.15570	Do.
5104	N			555		7.7.7	3.55	N	.15575	Do.
\$105	N							Ĺ	.15450	Porous devitrified rhyolite
S 106A	N							N	.15430	Do.
\$1068								L	.15540	Marginal vitrophyre.
SIIOA	N	***						80	.15660	Do
\$1108								N	.15585	Devitrified rhyolite.
S112A	N							300	.15600	Do.
5113	N			555				N	.15600	Do.
L47		****						***	***	Marginal vitrophyre.
						Wa	llrock-	-Continu	ed	
\$47A	0.05	0.02	35	10	40	N	0.5	80	¥== !	Carbonate concretion.
5478	.1	.02	60	95	45	L	L	90		Do.
547C	.05	L	30	30	75	Ĺ	Ĩ.	90	5.55	Do.
S47E -	N	Ν .		10	Ĺ	N	.5	- 150	. No	Crystal Lake Tuff. Topaz.
S 106C								170		Soil near contact.
\$107	N	•••			7.77			N	0.15-0.375	Crystal Lake Tuff.
\$108	N	222	-	***				L	.15340	Do.
5111	N							100	.15425	Bentonitic sediments.
S1128	N							80	.15380	Red sediments.
S114A	N	-04	L	L	5	10	2			Fault zone.
S1148	N	N	L	5	5	N	2			Do.
S114C	N	L	L	15	5	L	.5			00.
\$1140	N	N	5	10	5	20				

See footnote at the end of the table.

TABLE 7.—Analyses of rhyolite intrusive rocks and

	SemiquantItative spectrographic analyses (ppm)													
Sample	Mn (10)	Ag (.5)	Ba (20)	Ве (1)	Cu (5)	Mo (5)	Nb (20)	Pb (10)	Sn (10)	Sr (100)	V (10)	(10		
		s	ILL BETWEEN	EAST	AND WEST			ELLIE CR	EFK					
\$117	1,000	t	200	15	ı.	7	30	50	N	150	10	10		
\$118														
5119	1,000	N	200	10	10	N	20	50	N	150	10	15		
\$120	1.000	N	500	7	L	N	L	50	N	500	15	15		
S121	700	L	200	15	L	N	50	50	N	500	10	10		
\$122	1,000	N	200	10	5	N	30	50	N	100	10	10		
S123														
5124	777	55.55		777					7.77	- 37500		-		
\$125	700	N	300	7	7	N	30	30	N	100	20	10		
\$126														
\$127	777	7.77												
\$128	1,000	N	500	7	5	N	30	30	N	200	15	15		
\$129														
S130 S131	700	N	200	10	L	7	30	30	N	N	15	15		
		A455	1757	9.757						00-55%				
5132										• • • •				
133B	700	N	300	7	5	N	50	30	L	150	20	20		
133C 5134	1,000	N	300	7	5	N	50	30	N	200	20	20		
135A	1,000	N	150	10	L	L	50	50	10	100	L	10		
	* ***	100	1020.00		N.	2000		0000	10.07	200000	M.	1100		
135B 5136	1,000	N	100	15	L	N	30	50	L	L	L	10		
\$137	700	N	500	10	7	N	20	50	L	500	20	15		
\$138					-1-									
\$138														
					Wall	rock								
133A	1,000	N	1,000	N	20	N	N	30	N	1,000	200	30		
5133				***										
\$133											2000	1222		
S133 S134														
20000000														
\$137	***													
S137 S138														
			SILL	WEST	OF WEST	FORK	OF NELI	LIE CREE	K					
\$139	700	N	300		N	N	20	30		100	L	10		
\$140	700	N	300	7			20		L					
5141	700	N	300	7	N	N	20	50	L	200	10	10		
\$142	1,000	N	300	7	N	N	20	30	L	150	10	20		
S143	700	N	300	10	N	N	30	30	L	150	15	20		
5145		2755					5550							
\$146			•••											
\$146	***				3444									
5147	700	N	150	10	N	N	50	50	L	100	L	15		
5148			***			7.5	57.5			7.77				
S148														

associated wallrocks, eastern contiguous area—Continued

	Chemical analyses	Instrumental		
Sample -	(ppm)	radioactivity	Sample description	
sample -	F (50)	reading_/	sample description	
	SILL BET	EEN EAST AND WEST FOR	KS OF NELLIE CREEKContinued	
		Intrusive	rockContinued	
\$117	700	0.15-0.475	Devitrified rhyolite.	
5118	*	.15600	Do.	
\$119	700	.15600	Do.	
S120 S121	500 300	.15400	Do. Do.	
	,00	.17 .700		
\$122	<50	.15525	Do.	
S123 S124		.15540	Do.	
\$125	<50	.15475 .15475	Do . Do .	
\$126	-20	.15475	Porous devitrified rhyolite.	
			50 St.	
S127		.15525 .15450	Devitrified rhyolite.	
S128 S129	<50	.15450	0o. 0o.	
S130	200	.15480 .15475	Do.	
\$131		.15440	Do.	
DAME.				
\$132		.15360	Porous devitrified rhyolite.	
S133B	<50	.15325	Do.	
S133C	<50	.15425 .15400	Devitrified rhyolite.	
S134 S135A	<50	.15400	Porous devitrified rhyolite. Do.	
	5			
\$135B	<50	.15500	Devitrified rhyolite.	
\$136 \$137	<50	.15350 .15425	Do.	
5138	< 50	.15500	Do.	
\$138	***	1.5600	Sheared rhyolite with uranophane.	
		Wallro	ckContinued	
S133A	<50	0.15-0.175	Green sediments at contact.	
\$133		.15300	Devitrified Crystal Lake Tuff.	
5133	7.55	.15275	Crystal Lake Tuff vitrophyre.	
S133 S134	***	.15125 .15175	Red sediments near contact. Fish Canyon Tuff.	
			STORES CONTRACTOR STORES	
S137 S137	***	.15175	Do.	
\$138	***	.15160 .15175	Sediments. Do.	
	SILI	. WEST OF WEST FORK OF	NELLIE CREEKContinued	
\$139	N	0.15-0.525	Porous devitrified rhyolite.	
5140		.15225	Andesite wallrock.	
5141	N	.15450	Devitrified rhyolite.	
S142 S143	N	.15350	Porous devitrified rhyolite.	
3143	N	.15375	Do.	
\$145		.15150	Andesite wallrock.	
\$146	7.7.	.15150	Sediments, wallrock	
5146		.15150	Andesite wallrock.	
S147 S148	N	.15375	Porous devitrified rhyolite.	
3,40		.15375	Devitrified rhyolite.	
5148	*	.15150	Variegated sediments, wallrock.	
5149		.15375		

See footnote at the end of the table.

			Semi	quantita		pectros (ppm)	raphic	analyse	S			
Sample	Mn (10)	Ag (.5)	Ba (20)	Be (1)	Cu (5)	Mo (5)	Nb (20)	Pb (10)	Sn (10)	Sr (100)	V (10)	(10
				s	ILL ON	BROKE	HILL					
G324A				222			7.57					
G324B	27.7		***				***	***		ST. 75.75		
G324C		~~~										
G324D	1,000	N	50	10	L	N	30	50	N	N	L	10
3324E	1,500	N	50	10	L	5	20	70	L	N	L	10
324F	1,000	N	30	20	L	N	50	50	L	N	L	1
3324G	1,000	N	30	10	L	N	30	50	N	N	L	
G324H	1,000	N	70	30	L	L	50	30	N	300	L	L
G3241	1,000	N	50	20	5	N	30	50	L	N	N	L
5324J	700	N	50	15	10	5	50	50	L	N	L	Ĺ
G324K	1,000	N	70	15	L	N	30	50	N	N	L	L
G324L	700	N	50	15	Ľ	N	50	50	N	N	N	ĩ
G324H	1,000	N	30	20	L	N	50	50	Ü	N	N	ĩ
G324N	1,000	N	70	20	20	N	50	50	N	N	N	٨
G3240	700	N	50	20	5	N	50	50	• N	N	N	L
				INTRUSIV	ES IN I	JPPER E	L PASO	CREEK				
3325A	1,000	N	50	15	N	L	50	50	N	N	N	L
G325B	1,000	N	30	15	N	10	50	70	N	N	N	L
G325C	100	N	70	20	N	15	50	50	20	500	N	10
G3250	1,000	N	50	15	N	L	50	50	N	N	N	L
G326A	1,000	N	50	15	N	10	30	70	N	N	N	L
G3268	1,000	N	50	15	N	10	50	70	L	200	N	ι
G326C	1,500	N	30	15	L	15	50	50	L	N	N	10
326D	1,000	N	50	20	N	N	50	70	L	500	N	L
327A	1,000	N	30	10	N	5	50	70	L	N	N	ı
G3278	1,500	N	200	15	N	10	30	70	L	N	N	1
327C	1,000	N.	30	15	N	L	50	70	L	N	L	10
					LARSON	CREEK	PLUG					
\$150									777		5.77.1	
5151	1,000	N	300	7	N	N	30	50	L	150	10	15
5152		***			***							
\$153	500	N	300	7	N	N	30	50	N	150	10	20
\$154	1,000	N	300	7	N	N	30	50	L	150	15	30
\$155	700	N	500	7	N	N	30	50	L	150	15	15
\$156	700	N	300	7	N	N	20	30	L	100	10	20
\$157	700	N	300	7	N	N	20	30	N	100	15	20
\$158	700	N	300	7	N	N	30	30	N	100	15	20
\$159	700	N	300	7	N	N	20	30	N	100	10	10
\$160	700	N	300	7	N	N	20	30	L	150	15	15
\$161	700	N	300	7	N	N	20	50	L	100	10	1
5162	500	N	150	7	N	N	20	50	L	L	L	15

associated wallrocks, eastern area contiguous-Continued

	Chemical analyses	Instrumental	
	(ppm)	radioactivity	
Sample	(50)	reading_/	Sample description
		SILL ON BROKE	EN HILLContinued
G324A	90	1-58	Devitrified rhyolite.
G324B	200	1-84	Do.
G324C	70	1-58	Porous devitrified rhyolite.
G324D	90	1-60	Devitrified rhyolite.
G324E	N	1-45	Porous devitrified rhyolite.
G324F	N	1-50	Devitrified rhyolite.
G324G	L	1-54	Do.
G324H	N	1-48	Do.
G3241	900	1-54	Do.
G324J	L	1-65	Marginal vitrophyre.
G324K	1,300	1-70	Do.
G324L	1,100	1-64	Devitrified rhyolite.
G324M	700	1-60	Do.
G324N	N 1 COO	1-62	Do.
G3240	1,000	1-62	Do.
		INTRUSIVES IN UPPER	EL PASO CREEKContinued
G325A	100	1-56	Soft devitrified rhyolite.
G325B	60	1-50	Devitrified rhyolite.
	80	5-80	Devitrified thyplita Secondary uranium minerals
G 3 2 5 C	80 N	5-80 1-58	
G325C G325D G326A	80 N N	5-80 1-58 1-54	Devitrified rhyolite. Secondary uranium minerals. Devitrified rhyolite. Do.
G325C G325D G326A	N	1-58	Devitrified rhyolite.
G325C G325D G326A G326B G326C	N N N 70	1-58 1-54 1-50 1-52	Devitrified rhyolite. Do. Do. Do.
G325C G325D G326A G326B G326C G326C	N N 70 N	1-58 1-54 1-50 1-52 1-42	Devitrified rhyolite. Do. Do. Do. Do.
G325C G325D G326A G326B G326C G326C G327A	N N 70 N 80	1-58 1-54 1-50 1-52 1-42 1-58	Devitrified rhyolite. Do. Do. Do. Do. Do. Do.
G325C G325D G326A G326B G326C G326C G327A	N N 70 N	1-58 1-54 1-50 1-52 1-42	Devitrified rhyolite. Do. Do. Do. Do.
G 325C G 325D	N N 70 N 80	1-58 1-54 1-50 1-52 1-42 1-58	Devitrified rhyolite. Do. Do. Do. Do. Do.
G325C G325D G326A G326B G326C G326D G327A G327B	N N 70 N 80 170	1-58 1-54 1-50 1-52 1-42 1-58 1-48	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do.
G325C G325D G326A G326B G326C G326C G327A G327B G327C	N N 70 N 80 170	1-58 1-54 1-50 1-52 1-42 1-58 1-48	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. Do.
G325C G325D G326A G326B G326C G326D G327A G327A G327A G327C	N N N 70 N 80 170 N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. Do. K PLUGContinued
G325C G325D G326A G326B G326C G326C G327A G327A G327C	N N N 70 N 80 170 N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 LARSON CREE	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. Do. Continued
G325C G325D G326A G326A G326C G326C G327A G327A G327C S150 S151 S152 S153	N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 CARSON CREE	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D
G325C G325D G326A G326B G326C G326C G327A G327B G327C	N N N 70 N 80 170 N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 LARSON CREE	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D
G325C G325D G326A G326A G326C G326C G327A G327B G327C S150 S151 S152 S153 S154	N N N N 800 170 N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 LARSON CREE 0.15- 0.225 .15325 .15325 .15325 .15375	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. Continued Quartz latite wallrock. Porous devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D
G325C G325D G326A G326B G326C G326C G327A G327A G327C S150 S151 S152 S153 S154 S155 S155 S155	N N N 70 N 80 170 N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 CARSON CREE 0.15- 0.225 .15325 .15325 .15325 .15375	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. Co. Do. D
G325C G325D G326A G326B G326C G326C G327A G327A G327C S151 S152 S153 S154 S155 S155 S155	N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 LARSON CREE 0.15- 0.225 .15325 .15325 .15325 .15375 .15500 .15575	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D
G325C G325C G326A G326B G326C G326C G327A G327A G327C S150 S151 S152 S153 S154 S155 S155 S155 S156	N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 CARSON CREE 0.15- 0.225 .15325 .15325 .15375 .15500 .15375 .15375 .15425	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D
G325C G325D G326A G326B G326C G326C G327A G327A G327C S150 S151 S152 S153 S154 S155 S155	N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 LARSON CREE 0.15- 0.225 .15325 .15325 .15325 .15375 .15500 .15575	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D
G325C G325C G326A G326B G326C G326C G327A G327A G327C S150 S151 S152 S153 S154 S155 S155 S155	N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 CARSON CREE 0.15- 0.225 .15325 .15325 .15375 .15500 .15375 .15375 .15425	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D
G325C G325D G326A G326B G326C G326C G327A G327A G327C S151 S152 S153 S154 S155 S155 S155 S155 S155 S155 S157 S157	N N N N N N N N N N N N N N N N N N N	1-58 1-54 1-50 1-52 1-42 1-58 1-48 1-56 CARSON CREE 0.15- 0.225 .15325 .15325 .15325 .15375 .15375 .15500 .15375 .15425 .15425 .15500	Devitrified rhyolite. Do. Do. Do. Do. Do. Do. Do. D

^{1/}Readings are uncalibrated field measurements. Those on the plug along the East Fork of Nellie Creek, sill between the East and West Forks of Nellie Creek, sill west of the West Fork of Nellie Creek, and Larson Creek plug were made with Precision Model III8 Deluxe Scintillator, and those on the sill on Broken Hill and the intrusives in upper El Paso Creek were made with Mount Sopris Model SC 131 Scintillator.

TABLE 8.—Uranium, thorium, fluorine, and radioactivity in rhyolite intrusives and associated rocks

[ppm, parts per million, ..., not analyzed]

Samp l e	eU/ (ppm)	u <u>2/</u> (ppm)	Th ² / (ppm)	Th/U	F (ppm)	Instrumental radioactivity reading 3/	Sample description
	X			EAST NELL	15 CDEEN 0		
					ive rock	200	
\$103	60	22.1	55.2	2.6	375	0.15-0.570	Devitrified rhyolite.
\$105	60	23.2	47.0	2.0	<50	.15575	Do.
S110A	60	42.2	57.5	1.4	80	.15660	Marginal vitrophyre.
S112A	50	24.9	50.5	2.0	300	.15600	Devitrified rhyolite.
				W	allrock		
\$107	40	7.7	17.6	2.3	<50	0.15-0.375	Crystal Lake Tuff.
\$108	50	25.6	54.6	2.1	<50	.15340	Do.
\$111	30	8.1	14.4	1.8	100	.15425	Bentonitic sediments.
			SILL BET	WEEN EAST	AND WEST N	ELLIE CREEKS	
				Intru	ive rock		
\$117	40	8.2	56.6	6.9	700	0.15-0.475 .15600	Devitrified rhyolite.
5119	60	29.3	50.9	1.7	700		Do.
S121 S122	40 60	17.4 32.4	53.6 47.6	3.1 1.5	300 <50	.15500	Do.
\$125	50	21.4	38.6	1.9	<50	.15525	Do.
5128	60	23.5	52.2	2.2	<50	.15450	Do.
\$130	50	15.9	58.5	3.7	200	.15475	Do.
5133B	40	12.9	43.6	3.4	<50	.15325	Do.
S133C S135A	50 40	16.3 15.4	42.8 60.9	4.0	<50 <50	.15425	Do. Do.
S135B	50	22.8	23.5	1.0	<50	.15500	Do.
\$137	50	16.7	46.6	2.8	<50	.15425	Do.
			SIL	L WEST OF V	EST NELLI	E CREEK	
			HXXII AL III	Intrus	ive rock		_
\$139	60	-26.8	45.4	1.7	<50	0.15-0.525	Porous devitrified rhyolite
5141	50	16.4	39.7	2.4	<50	.15450	Devitrified rhyolite.
5142	50	13.5	46.3	3.4	<50	.15350 .15375	Porous devitrified rhyolite Do.
S143 S147	50 50	24.4 14.8	43.2 49.5	1.8	<50 <50	.15375	Do.
\$149	60	22.4	50.2	2.3	<50	.15375	Do.
		~			TOTAL STREET	100000 0000000	<u> </u>
					CREEK PLU	G	
515:		10.5			5	2 (22)	
S151 S153	50 50	19.2	45.0 48.4	2.3 4.8	<50 <50	0.15-0.325	Porous devitrified rhyolite
\$156	40	10.0	46.7	4.8	<50	.15325 .15375	Do. Do.
	40	12.1	47.0	3.9	<50	.15425	Devitrified rhyolite.
5158						(A) E32 1722 (A)	
\$158	40	13.9	45.3	3.3	<50	.15500	Do.

See footnotes at the end of the table.

TABLE 8.—Uranium, thorium, fluorine, and radioactivity in rhyolite intrusives and associated rocks—Continued

Sample	eU1/ (ppm)	u <u>2</u> / (ppm)	Th ² / (ppm)	Th	F (ppm)	Instrumental radioactivity reading 3/	Sample description
			INTR	USIVES IN U	PPER EL PA	ASO CREEK	
				Intrus	ive rock		
G325A	70	36.2	46.7	1.3	100	1-56	Soft devitrified rhyolite.
G3258	60	26.2	49.7	1.9	60	1-50	Devitrified rhyolite.
G325C	580	539.4	10.9	.02	80	5-80	Devitrified rhyolite. Secondary uranium minerals
G3250	60	35-7	49.3	1.4	<50	1-58	Devitrified rhyolite.
G326A	60	36.9	47.1	1.3	<50	1-54	Do.
G326C	60	28.7	53.2	1.9	70	1-52	Do.
G327A	60	32.7	58.1	1.9	80	1-58	Do.
G327C	50	26.8	54.9	2.1	<50	1-56	Do.
L47	70	40.0	63.5	1.6	222	프로마인	Marginal vitrophyre, East Nellie Creek plug.
L47		4/37.5	4/55.1	1.5		***	Do.

 $[\]frac{1}{2}$ Beta-gamma scaler method, E. J. Fennelly, analyst.

 $[\]frac{2}{2}$ Delayed neutron method, H. T. Millard, analyst.

^{3/} Readings are uncalibrated field measurements. Those on samples S103-161 were made with Precision Model IIIB Deluxe Scintillator, and those on samples G325A-G327C were made with Mount Sopris Model SC 131 Scintillator.

^{4/} Gamma-ray spectrometry, C. M. Bunker, analyst.

TABLE 11.—Analyses of samples from study areas

[Semiquantitative spectrographic analyses, fire assays, radiometric analyses for U₃O₈, X-ray fluorescence for As, at the Reno Metallurgy Research Center, U.S. Bureau of Mines. Detection limits are in parentheses under trace amount under Au and Ag; M, major quantity (greater than 7 percent); T. R. S., designates location location approximate; †, additional data given by sample number in footnote at end of table; na. not The following elements were looked for and not found or were found in amounts normal for rocks of Bi, Cd, Co, Ga, Hf, In, La, Li, Nb, P, Pt, Re, Sc, Sn, Ta, Te, Tl, W, and Y; Na and Si were major

					Semiqu	antitati	ve spect	rograph	ic analys	es			
				per	cent					PF	m		
Sample	Location T. R. S.	A1 (.003)	Ca (.02)	Fe (.004)	Mg (.004)	Mn (.003)	Ti (.001)	B (100)	Ba (1,000)	Cr (30)	Cu (20)	Mo (20)	N1 (20)
1+	46- 5-25*	>5.0	1.0	M	3.0	0.4	2.0	2-	-	300	60	(4 6	(-
2	46- 5-25*	4	4	2.0	. 8	.05	. 2	100	2,000	60	30 20	<20	
4	45- 4- 6* 45- 4- 4*	M	M	7	.8 3	.1	.4	100	1,000	100	60	<20	40
5	45- 4- 4*	м	M	6	.8	.2	.4	<100	1,000	100	60		40
6+	45- 4-16*	М	1	7	.8	. 2	. 2	33	1,000	60	80	<20	-
7	44- 4- 2	3	.02	1	.006	.01	-02	2.T	4,000	30	20	-	-
8	44- 4- 2 44- 4-11	M 4	.06	2	.02	.01	.05	: e	<1,000 <1,000	100	40 30	-	-
10	44- 4-11	3	.06	2	.2	.03	.1	-	-	70	30	-	143
11	44- 4-11	4	.5	2	.8	.1	. 2	-	-	70	40	-	1,70
12	44- 4-11	4	.06	2	. 2	.05	. 2	: =	-	-	30		-
13	44- 4-11	>5	M	3	.4	.1	.1	12	<1,000	100	300	-	_
14 15	44- 4-11 44- 4-11	.04	M 4	4	. 2	. 2	.002	25 15	~	-	<20		-
16	44- 4-10	M	.06	3	. 2	.01	. 2	5 -2	1,000	100	20	<20	_
17	44- 4-15	>5	4	5	.8	. 3	. 2	22	2	100	80	-	-
18	44- 4-15	M	.03	2	.4	.01	. 2	<100	40,000	100	40	20	-
19	44- 4-15	М	. 3	4	.6	.02	. 2	<100	3,000	100	20	30	
20	44- 4-15	М	. 3	3	.4	.01	. 2	<100	-	100	20	<20	-
21 22	44- 4-15 44- 4-15	4 >5	.03	3	.2	.03	.1	18	4 000	200	60	100	20
23	44- 4-15	4	.06	3	.8	.05	.4		4,000	300	60 80	20	40
24	44- 4-28	5	.06	3	. 2	.02	.1	-	30,000	100	400	-	-
25	44- 4-28	5	.06	2	. 2	.02	.1	-2	30,000	100	300	-	-
26	44- 4-28	м	. 3	1	.4	3	. 2	300	2,000	60	200	< 20	-
27	44- 4-28	м	-06	.5	.4	.8	.1	300	1,000	60	40	< 20	: -
28	44- 4-28	2 M	.1	2	. 2	.1	.1	300	1,000	100	200 40	< 20	-
30	44- 4-28	M	.03	4	.2	. 2	.1	200	4,000	300	300	< 20	-
31†	44- 4-28	3	.06	4	.05	.05	.05	-	М	300	300	-	3.40
32+	44- 4-28	5	.03	2	. 2	.05	. 2	200	<1,000	50	50	-	-
33+ 34+	44- 4-28	3	.03	3 2	.05	.1	.05	100	20,000	300	300		-
35†	44- 4-28	M M	.06	3	.02	.01	.05	12	M 20,000	60 60	400 400	20 20	-
36	44- 4-28	м	.1	3	.1	.05	. 2	300	-	60	80	-	20
37 r	44- 4-28	3	.03	2	.06	.02	.05	-	40,000	100	10,000		-
38	44- 4-28	м	.1	5	. 2	1.6	. 2	100	5,000	60	80	30	
39	44- 4-28	M	.03	3	.1	.05	. 1	200	1,000	60	40	70	-
40	44- 4-28	5	.03	3	. 4	.02	. 2	200	<1,000	50	40	5 .	-
41 42+	44- 4-28 44- 4-28	>5 2	.06	. 8	.2	.05	.2	100	40,000	200 500	40 600	<20 100	40
43	44- 4-28	3	.03	. 8	.02	.05	.03	100	4,000	300	80	< 20	20
44	44- 4-28	5	.03	4	.4	.05	.1	200	20,000	60	80	30	-
45	44- 4-28	5	.03	4	. 2	.1	.1	200	5,000	100	160	30	
46	44- 4-32	М	.03	2	.4	. 2	. 2	200	1,000	100	80	30	-
47	44- 4-32	М	. 2	3	. 2	.05	.05	15	<1,000	100	80	20	=
48 49+	44- 4-32 44- 4-32	3 . 2	.3	3	.2	.05	.05		20,000 M	100	160 600	30 70	277
50 t	44- 4-32	2	.02	1	.2	.02	.02	<100	1,000	60	600	70	-
51÷	44- 4-32	M	.03	2	.4	.1	. 2	300	20,000	100	300	70	_
52+	44- 4-32	5	.1	3	. 2	M	.05		100	30	1,000	20	-
53÷	44- 4-32	3	.1	4	.1	М	.05	2.00	-	30	3,000	+	
54 55	44- 4-30* 44- 4-30*	M 5	.3	2	.4	.05	.1	3-	2,000	100	40 40	-	_
56	44- 4-30*	5	.1	5	.4	. 2	.1	100	1,000	100	40		
57	44- 4-19*	м	>4	7	1.5	.3	.4	100	2,000	60	40	-	-
58	44- 4-19*	5	2	6	1	. 2	.4	100	-,000	60	40	-	/2
59 ÷	44- 5-13*	5	4	7	3	. 2	. 2	-		30	30		
60	44- 5-13*	M	>4	7	1.5	. 2	.8	100	1,000	60	40	-	-

contiguous to the Uncompangre Primitive Area

Sb, and W, activation analyses for Ba, and atomic absorption (AA) for all other elements were performed elements listed. +, looked for but not detected; <, less than amount shown; >, greater than amount shown; T, of sample by township north (T) and range west (R) of New Mexico Principal Meridian, and section (S); •, analyzed.

the type sampled and were judged not to be significant except as noted in the footnotes at end of table: Be, constituents in almost all samples]

		titative alysesC	spectrogra ontinued	aphic	Fire	assay	Acomi	c absor		
		ppm	1		oz	/ton		percent	5	Sample data
ample	РЬ (100)	Sr (1,000)	Zn (1,000)	Zr (70)	Au	Ag	Cu	РЬ	Zn	
17	<100	-	-0	300	-	-	na	na	na	Stream-panned concentrate
2	-	(<70	T	T	na	па	na	Stream-sediment
3	200	-	-	300	-	-1	na	na	na	Do.
4	200	1,000	754	<70		. 1	na	na	na	Outcrop-chip-specimen
5	200	<1,000	**	<70	T	T	na	na	na	Outcrop(talus)-specimen
6†	400	14	-	300		.1	na	na	na	Outcrop-chip-6 ft.
7	400	3.75	5.1	<70	T	. 3	na	na	na	Adit-dump(20 tons)-grab
8	300	.500	#1	<70	T	. 3	na	na	na	Adit-face-chip-3.5 ft.
9	100	2	-	70	T	.1	na	na	na	Outcrop-vein-chip-1.25 ft.
10	100		-	<70	T	T	110		110	Outcrop-vein-chip-1.75 ft.
11	<100		-	70	T	3:-	na	na	na	Adit-dump(200 tons)-grab
12	-	-	-	<70	T	T	na	na	na na	Adit-portal-chip-5 ft.
13	100	1,000	5	70	T	.1	na	na	na	Adit-dump(1,000 tons)-grab
15	~	4,000	-	2.5	Т _	Т _	na	na	na	Do. Adit-portal-stream-sediment
				20	227		32.9	1.025	-025	N INC. NO. OF THE PARTY OF THE
16 17	200	-	-	<70 70	T T	2	na na	na	na	Pit-dump(15 tons)-grab
18	5,000	2	-	<70	T	. 2	na	0.10	0.03	Adit-dump(800 tons)-grab Adit-portal-chip-0.5 ft.
19	700		-	<70	T		na	na na	na na	Adit-stockpile(100 lb.)-grab
20	100	-	-	<70	T	. 1	na	na	na	Adit-portal-vein-chip-7 ft.
21	700		-	70	T	. 2	na	na	na	Pit-dump(20 tons)-grab
22	<100	1,000	7	70	-	_/%	na	na	na	Outcrop(talus)-specimen
23	700	177	π.	70	70	T	na	na	na	Pit-vein-chip-2 ft.
24	6,000	-	-	70		2.2	0.2	.05	na	Pit-vein-chip-l ft.
25	1,500	-	-	70	-	1.6	.1	.02	na	Pit-dump(15 tons)-grab
26	10,000	177	7	<70	T	.01	na	.21	na	Adit-vein-chip-2 ft.
27	400	· -	-	<70	T	25.	na	na	na	Adit-vein-chip-5 ft.
28	2,000	-	2	<70	T	.04	na	.09	na	Adit-dump(150 tons)-grab
29 30	1,500	-	1,000	100	T T	. 2	na .02	.06	na .06	Pit-face-chip-6.5 ft.
30	1,500	==	1,000	100	1	. 0	.02	.00	.00	Shaft-dump(75 tons)-grab
31+	3,500	2,000	1,000	100	.02	2.4	.03	.15	.03	Shaft-stockpile(100 lb.)-grab
32+	600	-	-	100	T	. 2	na	na	na	Adit-portal-vein-chip-l ft.
33÷	1,500	-	-	100	T	5.9	.02	.07	na	Shaft-drift-face-vein-chip-3 ft
34+ 35+	6,000	4,000	1	<70	T	8.8	.02	. 21	na	Pit-face-veinlet-chip-0.25 ft.
33.	6,000	-	-	<70	-	6.7	.02	. 20	na	Pit-face-vein-chip-2.5 ft.
36	1,500	20	72	<70	T	. 3	na	.05	na	Pit-face-fault zone-chip-1.5 ft
37÷	6,000 700	<1,000	-	100	T	62.1	.62	.51	na	Trench-stockpile(50 lb.)-grab.
39	600	47//	7.0	300	7 T	. 2	na	na	na	Pit-dump(5 tons)-grab
40	200	~	100	300 100	T T	. 2	na	na	na	Pit-dike-chip-2.5 ft.
40	200	-			1	.1	na	na	na	Pit-vein-chip-l ft.
41	100	-	<u>-1</u>	100	T	.1	na	na	na	Pit-floor-specimen
421	1,000	+	-	70	.01	7.4	.05	.27	na	Pit-stockpile(1 ton)-grab
43	2,000	500	·=	70	т -	2.4	na	.17	na	Adit-dump(30 tons)-grab
45	1,500 6,000		9 8	70		- 5	na	.07	na	Adit-dump(200 tons)-grab
43	0,000	-	-	70	T	1.0	.01	.12	na	Shaft-dump(250 tons)-grab
46	3,000	8	2,000	< 70	.01	3.0	na	.10	.10	Shaft-dump(400 tons)-grab
47	3,000		7,000	<70	T	2.7	na	.07	.12	Adit-wall-vein-chip-1 ft.
48	8,000	*	3,000	<70	.01	2.7	na	.32	. 26	Adit-face-chip-5 ft.
49+	20,000	1,000	30,000	< 70	.07	13.6	.07	.94	1.70	Adit-face-vein-chip-1.5 ft.
50 i	10,000	-	10,000	<70	.07	14.3	.07	.33	1.57	Adit-raise-wall-specimen
51+	20,000	*	3,000	<70	T	5.6	na	.23	. 20	Adit-dump(700 tons)-grab
52+	10,000		-	<70	T	2.3	.14	.53	na	Adit-face-vein-chip-3.75 ft.
53+	20,000	-	5,000	< 70	-	5.4	. 24	.95	.52	Adit-face-muck-grab
54	200	(7.1	· =	100	970		na	na	na	Outcrop-dike-chip-80 ft.
55	100	81	3,000	100	•	(#)	na	na	na	Outcrop-dike-chip-specimen
56	200	<1,000	-	600	72	-	na	na	na	Pit-floor-grab-5 ft.
57	200	<1,000	-	600	-	-	na	na	na	Outcrop(talus)-specimen
58	200	<1,000	870	600		.2	na	na	na	Stream-sediment
59 F	100	<1,000 <1,000	~	100		-	na	na	na	Outcrop(talus)-specimen
60	200		-	100	-	T	200	1000000	2.0	Outcrop(talus)-grab-30 ft.

TABLE 11.—Analyses of samples from study areas

					Semida	ancicati	ve spece	rograph	ic analys	es			
					cent					P			
Sample	Location T. R. S.	A1 (.003)	Ca (.02)	Fe (.004)	Mg (.004)	Mn (.003)	Ti (.001)	8 (100)	Ba (1,000)	Cr (30)	Cu (20)	Mo (20)	N1 (20
61+	44- 5-13*	5.0	0.2	1.0	0.2	0.05	0.05	-		60	40	1.5	-
62+	44- 5-13*	н	>4	>7	3	. 2	.4	100	1,000	60	40	900	~
63	44- 4-18*	Ħ	>4	7	1.5	.4	.4	100	2,000	60	40		~
64	44- 4-18*	5	. 5	4	.8	.1	. 2		-	30	30	-	-
65	44- 4-18*	М	. 4	7	1.5	. 2	. 2	-	1,000	30	30	-	-
66	44- 4- 7*	М	. 5	7	1.5	. 2	. 2	.71	1,000		20	100	
67 68†	44- 4- 5*	м	. 5	2	-4	. 4	.2	100	2,000	60	20		70
69	44- 4- 5*	3 M	.3	.9 5	.4	M . 2	.02		20,000	200	. 160 80	300	70
70	44- 5- 2*	M	٠,3	2	.2	.1	.1	<100	1,000	60	80	-	-
71÷	44- 5- 2*	5	.5	2	1.5	.05	.05	<100	_	300	20		
72:	44- 5- 2*	М	. 3	7	.4	.4	.1	<100	<1,000	100	100	-	
73	44- 5- 2*	5	. 2	3	. 2	.1	.05	<100	<1,000	60	80	-	~
74	44- 5- 9*	М	. 3	3	.4	.1	.1	<100	5,000	100	20	-	34
751	44- 5- 9*	М	.3	2	.2	м	.1	<100	2,000	60	40	100	-
76+	44- 5-15*	н	м	7	.8	. 2	. 2	<100	2,000	100	20	100	-
77 t	44- 5-15*	М	. 2	4	.3	. 2	.2	- 3	1.5	30	20		-
78T	44- 5-15*	>5	4	4	.4	.1	.2	30	144	70	60	-	-
79 t	44- 5-15*	H	. 3	2	.8	.1	.2	-	<1,000	100	60		-
80†	44- 5-15*	H	.2	1	.4	.05	. 2	-	<1,000	60	40		-
81	44- 5-15*	>5	.5	3	.4	.1	.2	-	1,000	70	40	2	4
82	44- 5-15*	>5	. 5	3	.4	.1	.2	-	1,000	70	30	-	-
83÷	44- 5-22*	5	. 2	1	.4	.05	.05	-	-	60	20		-
84+	44- 5-22*	M	. 3	2	. 2	.1	.1	370	0.000	60	40		0.00
85	44- 5-22*	5	4	6	3	.1	.1	-		60	160	•	34
861	44- 5-22*	м	. 3	2	.4	.1	.2	÷.	1,000	60	40	-	-
87	44- 5-22*	.3	.06	4	. 2	.05	.02	= -	987	200	80		17
88	44- 5-27*	М	2	6	.4	. 2	.4	-	:	30	40	•	-
89 90	44- 5-27* 44- 5-25*	2	.2	6 . 4	.4	.1	.1	-	146	60	40 20	-	-
											20		
91	44- 5-25*	. 3	М	. 2	.1	. 4	.01	7	(37)	177.0	<20	7.0	7
92	44- 5-25*	2	M	.4	.1	. 2	.1	-	5.00	-	<20		-
93 94	44- 5-25*	. 2	м	. 2	.1	. 4	.003	-	-	-	< 20	-	-
95	44- 5-25* 44- 5-25*	5	>4 M	.6 1	.2	.2	.01	2		30	30 30	-	-
96	// C 254	14		700						1221			
97	44- 5-25* 44- 5-25*	1 M	.5	1	.1	. 2	.02	-		60	40	-	-
98+	44- 5-26*	M	.3	4	.8	. 2	. 2		1,000	200	80	-	
99	44- 5-26*	. 2	M	.3	.2	. 2	.2	100	1,000	200	3,000	-	-
100	44- 5-34*	3	.06	3	.1	.05	.1	Ē.,		60	30 20	< 20	-
1010	44- 5-33*	1		3	.05			822					
102	44- 5-33*	3	.03	3		.02	.02	100		30	3,000	30	-
103+	44- 6-36*	м	.03	6	.1	. 2	.05	200		60	600	20	27
104:	44- 6-36*	5	.03	4	.4	.05	.05	100	1,000	100	10,000	30	-
105	44- 6-36*	M	. 2	3	.4	.05	.05	100	<1,000	100	5,000	30 70	-
106÷	44- 6-36*	1		3	.1	.05	.01						
107	44- 6-36*	M	.06	3	.4	.1	.1	100	<1,000	100	30,000 5,000	200 40	7
108	44- 6-36*	M	.03	2	.4	.05	.1	<100	-1,000	100	5,000	30	-
109	44- 6-36*	2	.06	5	. 2	.05	.1	-	-	60	600	20	
110	44- 6-25*	4	.06	2	. 2	.05	.05	2	-	60	40	-	-
111	44- 6-26*	м	.1	3	.4	.1	. 2	200	1,000	60	40	< 20	-
112	44- 6-26*	м	.1	3	.4	.03	. 2	200	1,000	60	20	< 20	
113	44- 6-26*	м	.06	3	. 4	.2	. 2	-	2,000	60	40		
114	44- 6-27*	>5	. 3	2	. 2	.1	.05	-	-	70	30	2	2
115+	44- 6-27*	>5	. 3	2	. 2	.1	.05	-	•	70	30	7	
116	44- 5-20*	М	. 2	1	.1	.05	. 2		-	60	20	20	
117†	44- 5-20*	4	. 1	.6	.02	.02	. 2	-	-	-	20	_	1
118	44- 5-17*	М	4	7	1.5	. 2	. 4	<100	2,000	300	80	-	-
119 120÷	44- 5-17*	м	4	6	1.5	.2	. 4	<100	<1,000	100	40	50	1,5
	44- 5-17*	M	M	>7	1.5	. 2	1	<100	<1,000	300	80	-	

9		alysesC		aphic		assay	Atomi	c absor	5	We 11/1/4 227 400 etc.
-		. ppm				ton		percent		Sample data
Sample	Pb (100)	Sr (1,000)	Zn (1,000)	Zr (70)	Au	Ag	Cu	Pb	Zn	W.K.
61†	600	-		<70	T	0.2	na	na	na	Trench-wall-chip-1 ft.
62+	1,000	<1,000	-	300	-	. 2	na	0.02	na	Pit-floor-specimen
63	200	<1,000	-	600		-	na	na	na	Outcrop-chip-specimen
64	-	<1,000	-	100	_	-	na	na	na	Trench-floor-chip-4 ft.
65	100	<1,000	-	100	-	-	na	na	na	Trench-wall-chip-2 ft.
66	100	<1,000	-	300	-	· :	na	na	na	Outcrop-chip-3 ft.
67	200	_	-	<70		-	na	na	na	Outcrop-chip-specimen
68†	-	1,000	*	300	-	2	0.03	na	na	Trench-wall-chip-10 fc.
69	100	=	i re	-	1,000	-	na	na	na	Trench-floor-grab-10 ft.
70	200	-	-	<70	-	.2	na	na	na	Outcrop-dike-chip-specimen
71 7	200	-	-	<70	T	20	na	na	na	Outcrop(talus)-specimen
72+	3,000	7		<70	T	.1	na	.04	na	Do.
73	200	*	·	<70	T	.1	na	na	na	Do.
74	100		-	<70	T	.1	na	na	na	Do.
75∜	100	~	-	<70	-	.1	na	na	na	Pit-vein-chip-1 ft.
76†	100	<1,000		<70		.1	na	na	па	Outcrop-chip-specimen
77†	700	2	-	<70	T	.1	na	na	na	Outcrop-chip-100 ft.
78+	100	20	-	<70	T	.1	na	na	na	Outcrop-chip-6 ft.
79+	700	5	-	<70	T	T	na	na	na	Outcrop-chip-1 ft.
80÷	200		150	<70	T	.1	na	na	na	Outcrop-chip-10 ft.
81	100	-	(40)	100	T	.1	na	na	na	Trench-floorgrab-50 ft.
82	100	27	-	100	T	T	na	na	na	Trench-floor-grab-100 ft.
83÷	200	*	3	<70 70	T	. 3	па	na	na	Outcrop(talus)-specimen
85	100	70 70	-	70	-	57	na .01	na	na	Do.
.03	Sassass	77.7			1.7		.01	114	n.a	56.
86†	200	-	(A)	100	-	23	na na	na	na	Do.
88	400	_7	-	<70	т	.1	na	na	na	Table 1 and the second
89	200	7: 7:	-	<70	T	. 2	na na	na na	na	Outcrop-dike-chip-specimen
90	-	-	-	<70	-	-	na	na	na	Outcrop-dike-chip-1 ft. Pit-vein-chip-1.5 ft.
91	100	4	2	<70	7	23	na	na	na	Dis
92	<100	-	1754 (#)	<70	T	50	na	na	na	Pit-vein-chip-0.5 ft. Pit-vein-chip-3 ft.
93	100	-	181	<70	Ť	-	na	na	na	Pit-floor-specimen
94	<100	=	141	< 70	T	_	na	na	na	Pit-vein-chip-6 ft.
95	-	2		<70	T	.01	na	na	na	Pit-floor-specimen
96	- : 2	-	-	<70	т	.01	na	na	na	Do.
97	100	-	-	70	-	-	na	na	na	Pit-dump(3 tons)-grab
98+	1,500	4	-	70	-	.9	. 20	.04	na	Pit-vein-chip-1.85 ft.
99	100	_	-	< 70	T	-	na	na	na	Pit-stockpile(10 tons)-grab
100	400	===	1.0	<70	T	.1	na	na	na	Stream-grab-specimen
101†	80,000		10,000	<70	.02	9.8	.41	4.15	2.22	Adit-dump(4,000 tons)-grab
102	30,000	÷	1,000	<70	T	1.4	.05	.99	.19	Adit-portal-vein-chip-7 ft.
103†	50,000	-	5,000	< 70	.02	5.9	.42	1.48	- 32	Shaft-dump(1,000 tons)-grab
104†	60,000	-	40,000	<70 <70	.01	2.5	1.01	3.20 5.32	3.74	Adit-back vein-chip-1.25 ft. Adit-dump(400 tons)-grab
								0.81.82		
106+	M 60,000	-	20,000	<70 <70	.05 T	11.6	1.74	19.0	4.56	Adit-stope-vein-chip-2 ft.
108	60,000	<u> </u>	20,000	<70	.01	1.4	.32	2.16	2.00	Adit-dump(800 tons)-grab
109	20,000	Ī	3,000	<70	T T	1.6	.35	3.02 1.85	1.60	Shaft-dump(500 tons)-grab
110+	200	1.5	-	<60		. 2	na	na	na	Adit-face-vein-chip-3 ft. Trench-wall-chip-100 ft.
				interes.				::::::::::::::::::::::::::::::::::::::		AND 2-1882 SEPTEMBER 1981 (1994) - 0.1882 (1987)
111	500 600	_	-	300 100	T T	. 2	na	na	na	Trench-wall-chip-50 ft.
113	200	-	-	100	T	. 2 T	na	na	na	Trench-wall-chip-6 ft.
114	100	(75 (75	-	70	T	.1	na	na	na	Outcrop-dike-chip-9 ft.
115+	100	-	-	70	T	.1	na na	na na	na na	Pit-floor-specimen Do.
116	100	-2	-	< 70		т				Tunnah Elaura
117†	1,500	77		< 70	т	.1	na	.01	na	Trench-floor-specimen
		-	-	<70	4.	. 2	na		na	Adit-portal-floor-specimen
118	100									
118	100	72	-	< 70	T	. 2	na na	na na	na	Outcrop(talus)-specimen

TABLE 11.—Analyses of samples from study areas

					Semiqu	antitati	ve spect	rograph	ic analys	es			200
				per	cent	-/				ppr	n	96	
Sample	Location T. R. S.	A1 (.003)	Ca (.02)	Fe (.004)	Mg (.004)	Mn (.003)	Ti (.001)	B (100)	Ba (1,000)	Cr (30)	Cu (20)	Ho (20)	Ni (20)
121	44- 6-15*	>5.0	0.06	1.0	0.05	0.006	0.2	-	-	100	40	60	-
122	44- 6-15*	>5	-1	5	2	.05	. 2		· 70	100	100	<20	-
123	44- 6-15*	>5	.06	4	.8	.03	-4	<100 <100	-	100	100	<20	-
124 125	44- 6-15* 44- 6-10*	>5 >5	.07	5 5	.8	.05	. 2	<100	-	100	40	<20	-
126	104			4	.8	.05	.4	-	-	100	60	<20	-
126 127	44- 6-10* 44- 6-10*	>5 >5	.1	3	.2	.03	.4	-	-	100	40	<20	-
128	44- 6-10*	>5	4	4	.8	1	. 2	12	_	300	600	-	-
129+	44- 6-10*	4	.03	1	<.004	.01	.1	100	-	100	40	2	-
130†	44- 6-10*	1	.03	4	<.004	.03	. 2	17	4,000	500	80	<20	-
131+	44- 6- 1*	2	.5	М	.4	.4	6	100		300	80		1990
132†	44- 6- 1*	3	.5	М	.4	. 4	3	-	-	300	60	-	-
133	44- 6- 1*	M	. 3	5	1.5	.05	. 2	-	<1,000	100	40	-	-
134	44- 6- 1*	M	. 3	4	1.5	.05	. 2	1922	<1,000	60	80	-	-
135	44- 6- 1*	5	.3	4	.8	.1	-4	100	-	100	40	7.5	17.
136†	44- 6- 1*	>5	2	4	.8	. 2	.4	22		100	60	<20	_
137	44- 6- 1*	>5	1	5	2	. 2	.4		-	100	60	<20	-
138	45- 6-36*	5	.1	2	.8	.02	. 2	-	-	60	40	30	177
139	45- 6-36*	2	.3	.4	.1	-4	.1	3.4	:=:	100	40 60	<20 <20	-
140	45- 6-36*	>5	.3	2	.2	.4	. 2	-	-	100	60	720	-
141	45- 6-36*	>5	.5	4	3	. 2	.4	8#		100	60	<20	-
142	45- 6-36*	>5	.5	4	3	. 2	.4	-	-	100	60	<20	-
143	45- 6-36*	>5	2	4	.8	.1	.4	_	_	100	40 40	30	-
144 145	45- 6-36* 45- 6-36*	5 M	.06	4	.8 1.5	.2	.2	15	1,000	100 200	40	30	_
												20	
146 147	45- 6-35* 45- 6-35*	M	.3	4	1.5	.05	.2	- 5	1,000	200 100	100	30 30	-
148	45- 6-26*	5	.5	6	.8	.02	.2	15	1,000	100	80	30	-
149†	45- 6-26*	2	.1	м	.4	.2	.8	-		300	60	-	
150	45- 6-34*	3	757	. 2	.006	.006	.1	24	=	÷0	20	20	(=
151	45- 6-34*	>5	.1	4	.6	.4	. 2	<100	2,000		40	-	1
152	45- 6-34*	>5	1	4	2	. 2	. 2		-	100	40	-	-
153	45- 6-34*	5	>4	4	. 8	. 2	. 2	~	2,000	= 7	40	-	-
154 155	45- 6-34* 45- 6-34*	5	4	4	.8	.2	. 2	<100	-	-	60	_	-
	43- 6-34*	5	. 25	4	.6	.03	.2	100	-	75	40	7	17
156†	45- 6-34*	М	1	5	1.5	.1	.4	100	1,000	60	40	<20	-
157 158	45- 7-22*	4	. 5	2	.4	.05	.1		-	100	20	*	-
159	45- 7-21 45- 7-21	3	.5	2.9	.2	.03	.05		-	<30 100	200	-	- 52
160	44- 7- 3*	i	м	-	2	2	.09	-	м	500	300		40
161	44- 7- 3*	.2	м	2	.1	.05	.006		_	100	20	_	20
162	44- 7- 3*	.7	1	1	.8	.05	.02	- 5	4,000	300	40	30	40
163	44- 7- 3*	3	м	.5	.8	2	.1	-	4,000	60	20	-	20
164	44- 7- 3*	3	M	1	.1	.03	.1	144	-	60	<20	-	-
165+	44- 7- 3*	>5	. 3		.2	.4	.4	-	20,000	50	300	-	40
166†	44- 7- 3*	м	м	+:	3	.4	-4	-		30	200	-	
167	44- 7- 3*	5	М	*	3	3	. 2		3-	500	300	-	40
168†	44- 7- 3*	.1	.3	<u>~</u>	. 2	2	.01	-	-	300	300	_	40
169	44- 7- 3*	>5	.4	¥	3	2	. 2	1.7	1.5	300	100	-	40
170	44- 7- 2*	5	M	7	2	. 2	.2	-		100	100	=	10
171	44- 7- 2*	>5	. 5	21	. 2	.4	.2	4	-	200	100	_	<u> </u>
172	44- 7- 2*	>5	. 4	, 3 ,	2	.4	.3			200	200	-	1,0
173	44- 7-10*	5	.06	2	.1	.05	.05	-	<1,000	70	30	=	÷
174 175	44- 7-10* 44- 7-15*	2	.03	2	.02	.03	.05	<u>-</u>	4,000	100	40 30	-	
								_	- 3	100000			
176 177	44- 7-15* 44- 7-15*	M 3	. 06	.5	.1	.02	.2	-	<1.000	30	20	-	: :
178	44- 7-13*	>5	.5	3	.8	.02	.1	-	<1,000	60 200	40	_	134
179	44- 7-13*	5	.1	2	.1	.02	.05	1	13	30	40	_	- 32

		titative alysesC		aphic	Fire	assay		c absor analyse		
-		ppm			oz/	ton		percen		Sample data
Sample	РЬ (100)	Sr (1,000)	Zn (1,000)	Zr (70)	Au	Ag	Cu	Pb	Zn	
121	500	-	-	100	49	7,44	na	na	na	Trench-wall-chip-16 ft.
122	400	-	- 8	200	-	12	na	na	na	Trench-floor-grab-100 ft.
123	400	<1,000		100		0.1	na	na	na	Trench-wall-chip-24 ft.
124	100	-	-	100	T	1200	na	na	na	Trench-floor-specimen
125	100	-	-	100	Т	T	na	na	na	Outcrop-chip-16 ft.
126	100			100		.1	na	na	па	Shaft-vein-chip-4 ft.
127	700	1,000	-	300	T	. 1	na	na	na	Pit-wall-chip-6 ft.
128	400	<1,000		100	T	-	0.05	na	na	Outcrop(talus)-specimen
129 F	700	<1,000	-	70	0.02	1.2	na	na	na	Pit-wall-chip-3 ft.
130+	700	1,000	्च	70	.04	9.6	na	na	na	Pit-vein-chip-2 in.
1310	200	<u>~</u>	14	300	-	-	na	na	пə	Stream-panned concentrate
132+	200	-	2	1,000	20	-	na	na	na	Do.
133	100	-	9	100	T	T	na	na	na	Outcrop-dike-chip-2 ft.
134	100	-	-	100	T	. 1	na	na	na	Do.
135	400	-	*	100	-	. 2	na	na	na	Pit-face-chip-7 ft.
136÷	100	-	<u> </u>	100	2	:==	na	na	na	Adit-dump(700 tons)-grab
137	400		7.	100	T	-	na	na	na	Adit-vein-chip-6 ft.
138	400	-	*	70	.09	. 2	na	na	na	Pit-dump(25 tons)-grab
139	100	323	-	70	T	2.4	na	na	na	Outcrop-chip-10 ft.
140	100	-	*	100	5	T	na	na	na	Outcrop-dike-chip-9 ft.
141	400	-	*	100	-0	100	na	na	na	Adit-dump(1,000 tons)-grab
142	400	-		100	-	5 4	na	na	na	Adit-dump(1,000 tons)-grab-specim
143	~	-	<u>~</u>	100	-	.1	na	na	na	Adit-dump(600 tons)-grab
144	100	-	-	70	T	.1	na	na	na	Pit-dike-chip-4 ft.
145	100	-	~	100	777	ंच	na	na	na	Outcrop-dike-chip-7 ft.
146	400	_	2	100	23	72	na	na	na	Outcrop-dike-chip-0.5 ft.
147	400	-	-	100	-	.1	na	na	na	Outcrop-dike-chip-1.25 ft.
148	100	-	-	70	T	. 1	na	na	na	Adit-dump(25 tons)-grab
149†	90		-	1,000	**	T	na	na	na	Stream-panned concentrate
150	400	<1,000	-	70	T	-	na	na	na	Outcrop-vein-chip-0.5 ft.
151	100	-		200	T		na	na	na	Do.
152		-	-	100	T	.1	na	na	na	Shaft-dump(25 tons)-grab
153	100	20		100	-	-	na	na	na	Adit-face-veinlet-chip-0.5 in.
154	100	-	39	100	-	T	na	na	na	Adit-face-vein-chip-1.25 ft.
155	100		1,75	200	T	1.5	na	na	na	Outcrop-gouge-chip-0.5 ft.
156+	200	-	: -	300	τ	τ	na	na	na	Stream-sediment
157	-	-		70	-	. 1	na	na	na	Adit-dump(60 tons)-grab
158	-	-	Ξ.	-	-	-	na	na	na	Adit-dump(50 tons)-grab
159	-	7		70	7.	1.7	na	na	na	Adit-dump(500 tons)-grab
160+	2,000			175	-	.4	na	0.03	na	Pit-vein-chip-3 ft.
161	400	-	1,000	70	-	4.4	na	na	0.12	Pit-dump(15 tons)-grab
162	6,000	-	2,000	-	2	. 5	na	na .32	.16	Adit-stockpile(100 lb.)-grab
163	500	-	975	70	-	(5)	na	na	na	Adit-dump(80 tons)-grab
164 165+	3,000	-	-	70 200	-	100	.01	na .07	na	Shaft-dump(30 tons)-grab Adit-vein-chip-5 ft.
	2000							240	na	
166† 167	6,000	-	-	300	7	-	na	na	na	Adit-stope-muck-grab
168+	3,000		3.00 3.00	<70	-	. 3	.02	. 31	na	Adit-dump(600 tons)-grab
169	3,000	-	22	300	<u> </u>		.04	.06	na	Adit-face-vein-chip-1 ft.
170	-	2)	2	-	- E	-	na	na na	na	Adit-face-chip-4 ft. Adit-face-chip-3 ft.
171	_									-W5 6 0. W
172	-	-	: -	200	- 5		na	na	na	Adit-face-muck-grab
173	<100	-	72	70	т	- 1	na	na	na	Pit-vein-chip-l ft.
174	<100	2	12	<70	T		na	na	na	Adit-face-chip-4 ft.
175	500	70 70	:S	<70			na na	na na	na	Pit-vein-chip-2 ft. Adit-dump(100 tons)-grab
176	400	<1,000	_	.70		191		TA NEW		
177	400	<1,000	-	<70 <70	т -	T	na	na	na	Adit-portal-vein-chip-2 ft.
		-1,000			T	.1	na	na	na	Adit-portal-vein-chip-2.5 ft.
178 -	200	-								
	200 400	n.		70 < 70	T	.1	na na	na	na na	Outcrop-dike-chip-2.5 ft. Outcrop-chip-35 ft.

TABLE 11.—Analyses of samples from study areas

		0.000	1 21		500000000000000000000000000000000000000	antitati	The second second			10.3			
		Oracl rec		per	cent					PP			
ample	Location T. R. S.	A1 (.003)	Ca (.02)	Fe (.004)	Mg (.004)	Mn (,003)	Ti (,001)	B (100)	Ba (1,000)	Cr (30)	Cu (20)	Mo (20)	N1 (20
181	44- 7-24*	М	0.2	4.0	0.2	0.02	0.1	-	1,000	30	40	14	15
182	44- 7-23*	>5.0	. 5	3	.8	.8	.1	70	77	200	200	-	<20
183	44- 7-23*	М	. 2	6	- 4	.05	.2	100	1 000	60	80		15
184† 185	44- 7-16* 44- 7-16*	2 M	.04	1	.1 .4	.02	.05	<100	<1,000 <1,000	60 60	80 80		
186	44- 7-21*	4	.1	2	.3	.03	.1		_	100	80		
187	44- 7-21*	4	.1	2	.3	.03	.1	-		100	80	18	0
188	44- 7-21*	3	.1	4	. 4	.05	.1	.=2	-	-	40		- 3
189+	44- 7-17*	.5	.03	4	.006	.02	. 2	20	12	50	10,000	20	9
190	44- 7-17*	2	.02	3	.05	. 2	.02	77.0	177	100	300	30	3
191+	44- 7-17*	1	.03	3	.1	. 2	.1	100	-	100	80	70	32
192	44- 7-17*	4	M	6	. 8	.05	.1	100		100	40	-	15
193†	44- 7-17*	. 2	-	2	.05	- 1	.01	-	2	50	300	70	54
194 195+	44- 7-17* 44- 7-17*	. 7 M	.1	3	.05	.1	.02	300	2	50 100	80 40	70	3
196†	44- 7-17*	7	0.3	1	.01	.03	.02			300	600	-20	20
1977	44- 7-18*	.7	.03	1 2	.5	.2	.2	300	2	100	600	<20	۷.
198	44- 7-18*	1	.03	2	.01	.05	.05	-	2	300	60	20	20
99	44- 7-18*	3	.5	3	. 2	.2	.05	200	40,000	300	300	<20	20
200÷	44- 7-18*	1	1.5	4	.01	.03	.05	=2	30,000	500	300	70	20
201	44- 7-18*	.2	.06	3	.05	.05	.05	100		100	40	100	34
02	44- 7- 7*	М	.03	4	. 4	.01	. 2	100	-	50	200	50	- 54
203	44- 7- 7*	5	.06	3	. 2	.05	.1	-	40,000	60	200	30	2
05	44- 7-18* 44- 7-18*	2	.5	H 2	.8	. 1	.1	= 2	-	60 300	200 100	20 <20	2
06	44- 7-18*	м	.06	3	. 2	.03	.2	200	- 2	50	100	30	7
07	44- 7-18*	2	-	1	<.004	.003	.006	-	3	300	200	30	2
08	44- 7-18*	1	.4	.4	.3	.2	.02	-	-	200	1,000	<20	2
09 ÷	44- 8-12*	2	.06	3	.1	.8	.05	-	7,000	50	3,000	50	- 7
210+	44- 8-12*	3	. 3	2	.3	-4	.1	-	М	300	300	30	2
211†	44- 8-12*	2	М	2	.1	. 2	.1	100	4,000	30	40	<20	
212+	44- 8-12*	. 2	.06	1	.02	.4	.006	100	40,000	_	1,000	-	- 3
213†	44- 8-12*	.3	.06	1	.05	. 2	.006	.7.	М	60	1,000	30	3
214 215	44- 8-12* 44- 8-12*	M 2	.3	3	.8	5 3	.2	300	1,000	60 60	400 300	30 30	85
2161								100				-	
17+	44- 8-12* 44- 8-12*	2	.3	1	.3	.2	.05	100	6,000 4,000	60 60	600	70	-
218	44- 8-12*	4	M	2	1.5	.4	.2	200	2,000	60	80	7.0	- 22
219	44- 8-12*	1	.5	ī	. 4	1	.1	200	2,000	60	200	-	- 6
20+	44- 7- 7*	. 7	-	4	.1	.05	.01	-	1,000	60	3,000	50	
21+	44- 7- 7*	2	14	2	. 2	.05	.01	2	~	60	1,000	70	2
22	44- 7- 7*	5	2	2	3	. 2	.1	200	2,000	60	100	*	23
23 24†	44- 7- 7*	.7	1	1	.1	.1	.01	-	-	60	40	30	8
25	44- 7- 7* 44- 7- 7*	.3 5	4.2	1	1.5	.05	.02	1,000	м	60 30	200	30	- 8
26+	44- 7- 7*	4	. 2	1	.4	.05	.05	1,000	-	30	20	30	9
27+	44- 7- 7*	.7	.1	î	.1	.1	.003	-,000	70,000	30	80	70	33
28+	44- 7- 7*	. 3	. 3	.4	.05	.1	.003	27	М	30	40	500	-
29†	44- 7- 7*	2	. 5	3	.2	. 1	.02	-	м	60	160	30	9
30	44- 7- 7*	.1	М	.4	.1	.4	S-77	= 1	30,000	30	80	30	22
31	44- 7- 6*	.7	.1	1	. 2	.05	.05	=	-	30	20	72	-
32	44- 7- 6*	2	.5	2	. 2	.05	.05	3		300	80	30	19
33	44- 7- 6*	.02	M	. 2	.2	.05	0.5	1 000		-	20	200	3.5
35	44- 7- 6* 44- 7- 6*	3	.2	1	.8	.05	.05	1,000	-	60 30	40 40	-	9
36	44- 7- 6*	5	4	1	1.5	.05	.1	1,000	_	30	20		
37	44- 7- 6*	2	М	.4	.4	.05	.05	1,000	€.	60	40	-	
38	44- 7- 6*	3	м	.4	. 8	.05	.1	2	7-	60	40	20	- 55
39	44- 8-12*	2	1	.4	. 2	.1	.02	20	12	_	300	-	3
40	44- 8- 1*	2	М	.6	.4	. 2	.02				300		

-		titative alysesC	spectrogre ontinued	aphic		assay		absor	8	
-		ppm	1		02/	ton	- 5	ercent		Sample data
Sample	Pb (100)	Sr (1,000)	Zn (1,000)	Zr (70)	Au	Ag	Cu	Pb	Zn	
181	400	-	_	<70	2.4	Т	na	na	na	Outcrop-chip-10 ft.
182	200	-	~	70	T	0.1	na	na	na	Outcrop-chip-6 ft.
183	700	-	-	<70	T	.2	na	na	na	Outcrop-chip-15 ft.
184+	100	1,000	170	<70	T	T	na	na	na	Adit-dump(150 tons)-grab
185	100	1,000	-	<70	T	T	na	na	na	Adit-portal-vein-chip-4 ft.
186	÷	-	-	70	T	T	na	na	na	Adit-face-chip-3 ft.
187	#	200	**	70		5	na	na	na	Do.
188	700	0-0	-	100	T	.1	na	na	na	Adit-portal-vein-chip-1.5 ft.
189+	700	2-2	1,000	100	0.09	12.7	1.68		4.7	Shaft-stockpile(150 lb.)-grab
190	М	-	м	100	.01	6.9	na	1.36	2.77	Shaft-dump(600 tons)-grab
191+	20,000	5T	5,000	100	T	15.3	na	1.08	.57	Shaft-dump(250 tons)-grab
	100	-	1 000	100	T	T 9.5	na	na .58	na	Shaft-dump(150 tons)-grab
193† 194	10,000	22	1,000	100	T .01	4.5	na	.47	.18	Shaft-dump(500 tons)-grab
195+	700	ē	2,000	100	.01 T	.2	na	na	.08	Adit-dump(800 tons)-grab Adit-dump(150 tons)-grab
196÷	м	-	3,000	70	т	39.8	.07	6.97	.05	Adit-dump(75 tons)-grab
197†	700	-	1,000	100		.2	.02	.02	.04	Adit-face-chip-4 ft.
198	700			70	т	.3				Adit-dump(400 tons)-grab
199	6,000	-	20,000	<70	T	6.1	na	na .45	na 1.07	Adit-dump(400 tons)-grab
200+	10,000	-	5,000	<70	.01	6.3	na	1.08	.23	Adit-dump(1,500 tons)-grab
201	400	9	1,000	100	т	. 3			.03	Adit-dump(600 tons)-grab
202	200	- 2	-	100	T	.1	na	na		Adit-wall-vein-chip-6 ft.
203	10,000	-	2,000	<70	Ť	.5	na na	na .12	.05	Adit-face-chip-3 ft.
204	700	12	-,	<70	T	.1	na	na	na	Pit-dump(50 tons)-grab
205	400	-	93	< 70	T	4.9	na	na	na	Adit-face-chip-6 ft.
206	6,000	200	3,000	100	т	.5	na	.21	. 29	Pit-face-vein-chip-l ft.
207	10,000	* -	6,000	-	T	3.8	na	.91	.52	Pit-dump(200 tons)-grab
208	300	-	_	-	T	1.2	.19	na		Adit-stockpile(500 lb.)-grab
209+	м	1,000	M	100	T	29.5	.15	8.28	na 6.36	Adit-stockpile(1 ton)-grab
210†	10,000	1.7	3,000	<70	T	22.4	na	.45	.13	Adit-stockpile(300 lb.)-grab
211+	30,000	<1,000	3,000	<70	.02	20.2	.08	1.06	. 29	Adit-stockpile(1 ton)-grab
212†	10,000	<1,000	40,000	< 70	.02	6.2	.05	1.11	2.22	Adit-stockpile(1.5 tons)-grab
213†	10,000	2,000	10,000		T	14.7	.12	. 56	.75	Adit-stockpile(600 lb.)-grab
214	8,000	:=:	4,000	<70	T	1.6	na	.44	.22	Adit-face-vein-chip-2.5 ft.
215	400	·	-	<70	-	.3	na	na	na	Adit-face-vein-chip-1.5 ft.
216÷	8,000	32	2,000	< 70	Т	2.9	0.7	.15	.10	Adit-muck pile
217÷	20,000	-	-		.02	5.6	.13	. 79	na	Adit-back-chip-2 ft.
218	700	-	77.5	100	T	.4	na	na	na	Adit-wall-vein-chip-0.75 ft.
219 220†	1,000	200	5,000	<70	.27	.4 22.7	na .30	1.32	na .44	Adit-wall-vein-chip-1 ft. Adit-face-chip-2 ft.
221+	50,000	_	3,000							
222	500,000	-	3,000	<70	.12 T	10.8	.16	1.23	.19	Adit-face-vein-chip-2 ft.
223	200			- 70	-	.3	na	na	na	Adit-caved stope-grab
224+	10,000	5,000	-	-	.01	1.1	na	na 1.34	na	Adit-wall-vein-chip-4 ft. Adit-wall-vein-chip-7 ft.
225	100	_,000	_	70	-	707	na na	na	na	Adit-face-chip-4 ft.
226+	3,000		1,000	70	T	2.3	na	.16	.15	Adit-face-chip-4 ft.
227+	30,000	8,000	40,000	4	T	1.4	na na	1.11	2.67	Adit-stockpile(2 tons)-grab
228t	10,000	4,000	3,000	1.2	M.1	.6	na	.51	.12	Do.
229+	50,000	4,000	5,000	70	T	3.3	na	2.00	. 30	Do.
230	3,000	1,000	2,000	77		.7	na	.27	.05	Adit-winze-vein-chip-2.5 ft.
231	-	-	=:	70	-		na	na	na	Adit-face-chip-5 ft.
232	200	-	_	2	T	12	na	na	na	Adit-wall-vein-chip-1.5 ft.
233	-	-	•	-	-	1.77	na	na	na	Adit-face-chip-2 ft.
234 235	100 100	-	-7.5 -7	<70 <70	-	19	na	na	na	Adit-face-chip-4 ft. Do.
					_		na	na	na	<i>D</i> 0.
	100	-	•	70	5	.1	na	na	na	Adit-stope-grab
	800									
236 237 238	800 100	-	÷.	- 20			na	na	na	Adit-face-chip-4 ft.
	800 100 4,000	-	4,000	< 70 100	ē	т.2	na na na	na na .15	na na .20	Adit-face-chip-4 ft. Adit-face-chip-4.5 ft. Pit-dump(10 tons)-grab

TABLE 11.—Analyses of samples from study areas

					Semiqu	antitati	ve spect	rograph	ic analys	es	-		
			-	per	cent					PP	m		
Sample	Location T. R. S.	A1 (.003)	Ca,	Fe (.004)	Mg (.004)	Mn (.003)	Ti (.001)	B (100)	Ba (1,000)	Cr (30)	Cu (20)	Mo (20)	Ni (20)
241	44- 8- 1*	4.0	1.0	0.6	0.4	0.05	0.05	200	0=	-	40	-	=
242	44- 8- 1*	1	. 4	.6	. 4	.05	.05	100	92	-	40	-	-
243	44- 8- 1*	2	М	.4	. 2	.05	.02	200	7	60	600	-	- 3
244 245†	44- 8- 1* 44- 8- 1*	2	M 2	2	. 8	.05	.1	200		60	10,000	30	=
246+	44- 8- 1*	3	.06	3	.8	. 2	.1	25	1,2	300	60	<20	1,000
247	44- 7- 6*	2	.02	2	.05	.01	.05	=		30	40	20	2
248	44- 7- 6*	4	.06	2	.1	.1	.1	77	2	200	60	< 20	-
249 250	45- 7-31* 45- 7-31*	>5 2	.06	3	. 8	.1	.1	-	-	100	40 60	<20 <20	20
251	45- 8-36*	4	.06	2	.1	.03	.07	45	14	70	30	12	<20
252	45- 8-36*	4	.1	2	.1	.05	.07	75	(7)	70	60	+	<20
253	44- 8- 2*	2	>4	2	. 8	.05	.1	Ħ	200	200	300	373	20
254 255	44- 8- 2* 44- 8-10*	3 .3	>4 M	2 _	2	.05	.1		-	200	80 20	-	20
256	44- 8-10*	3	м		.4	.02	.02	-	· -	-	20		
257	44- 8-10*	2	.02	2	.1	.05	.05		95	100	60		-
258	44- 8-11*	5	M	2	.8	.1	. 2	300	200	100	80	-	100
259+	44- 8-11*	1	.13	3	.8	.4	.1	100	(4)	_	400	-	72
260↑	44- 8-11*	3	.13	4	.4	.05	. 2	77	1.7	-	40,000	30	-
261+ 262+	44- 8-11*	М	.13	2	- 2	.1	.1	100	40,000	-	30,000	30	2.00
263	44- 8-11* 44- 8-11*	2	3 M	2	.3 3	.1	.05	100	70,000 40,000	30 60	1,500	30 70	- G
264	44- 8-22*	м	.5	5	.8	.05	.2	-	-	100	60	7.0	- 0
265	44- 8-22*	5	4	4	. 8	.1	.2	-	-	100	40	-	-
266+	44- 8-23*	3	. 3	2	.6	.1	.1	-	1,000	60	80	30	15
267 268	44- 8-23* 44- 8-23*	M M	.2 1	4	.6 .8	.2	.1	200 100	1,000	60 60	1,500		-
269+	44- 8-23*	3	1	1	.4	1.6	.05	100	1,000	30	7,000		- 2
270+	44- 8-23*	2	2	1	.6	М	.02	4.7	3,000	30	7,000	:2:	
271	44- 8-23*	5	5	1	.8	.1	775	100	1.7	30	80	100	1.7
272 273	44- 8-23* 44- 8-24*	M	3	1	1.8	.1		100		30	80	-	- 2
274+	44- 8-24*	5	1	4	1	6.2	.1	100	1,000	100	300 20,000	-	
275	44- 8-23*	3	М	4	.4	.1	.1	100	20,000	50	3,000		12
276†	44- 8-24*	3	.06	.2	.4	.02	.1	100	07	100	10,000	30	
277	44- 8-23*	.3	. 1	4	. 2	.04	.02		2 200	100	160	30	-
278 279†	44- 8-23* 44- 8-23*	,1 M	M	2	. 4	.4	.2	2,000	4,000	100	20 30	70	
280	44- 8-23*	5	1	2	.8	.1	.05	200	-	50	40		-57
281	44- 8-23*	4	М	2	.8	.4	.05	ш	2,000	-	40	(4)	
282	44- 8-23*	3	M	1	.4	. 2	.05		-	50	40	30	-
283	44- 8-23*	.7	1	2	. 2	. 2	.02		7.00	100	160	(#3	· -
284 285	44- 8-23* 44- 8-23*	M 3	.03	2 3	1.5	.02	.2	1,000	1,000	60	40	2	
286	44- 8-23*	М	.1	3	.4	.02	.2	1,000		_	40	30	-
287	44- 8-23*	.3	1	2	.05	.05	.01	-,	-	20	40	-	
288+	44- 8-23*	.3	-	2	.02	.02	.01	-	70,000	~	160	70	-
289	44- 8-23*	2	.1	3	.1	.02	.02		2,000	(77.0)	80	70	-
290+	44- 8-23*	2	.03	2	.05	.02	.02		М	-	600	70	=
291+ 292+	44- 8-23* 44- 8-23*	1 3	.02	2 1	.02	.05	.02	12	M 2,000	-	80	30 30	-
293	44- 8-23*	2	.5	1	.1	.1	.02	1	2,000	-	160 60	30	_
294	44- 8-23*	2	.03	2	.1	.05	.02		-	*	60	70	2.5
295	44- 8-26*	3		7	. 2	.05	.1	-	-	100	200	30	-
296	44- 8-26*	м	. 2	7	1.5	.1	.2	100	1,000	50	60		
297 298	44- 8-27* 44- 8-27*	5	.06 M	5	.8	.2	.2	200	-	100	40 40	100	
299	44- 8-28*	м	.02	2	.1	.05	.05	1 1 7 1	-	100	60		
300	44- 8-28*	5	M	6	3	.2	.2	-	_	100	100	-	200

-		titative alysesC	spectrogra ontinued	aphic		assay		c absor	8	12 2 20
		ppm			00000	ton		percent		Sample data
Sample	Pb (100)	Sr (1,000)	Zn (1,000)	2r (70)	Au	Ag	Cu	РЬ	Zn	
241	100		-	100	-	т	na	na	na	Adit-face-chip-3.75 ft.
242	200	<1,000	<u>~</u>	100	23	-	na	na	na	Adit-back-vein-chip-0.5 ft.
243	700	-	1,000	-	0.03	0.2	0.25	na	0.16	Adit-face-chip-6 ft.
244	700	-	-	100	T	. 3	na	na	na	Adit-dump-(50 tons)-grab
245	1,500	-	3,000	100	T	. 7	.44	0.04	.17	Adit-wall-vein-chip-1-75 ft.
246+	200	-	3,000	<70	T	.1	na	na	.15	Pit-dump(5 tons)-grab
247	400	-	A	<70	T	.1	na	na	na	Pit-dump(15 tons)-grab
248	200	-	-	70	T	. 2	na	na	na	Do.
249	200		-	70	T	. 2	na	na	na	Outcrop-chip-3 ft.
250	200	-	-	<70	T	. 1	na	na	na	Adit-dump(500 tons)-grab
251	12	_	-	<70	т	т	na	na	na	Pit-dump(25 tons)-grab
252	-	-	-	<70	T	T	na	na	па	Shaft-dump(75 tons)-grab
253	-	_	-	<70	T	. 2	na	na	na	Pit-dump(50 tons)-grab
254	-	· ·	2	<70	T	. 2	na	na	na	Pit-vein-chip-2 ft.
255	-	<1,000	÷	-	-	9	na	na	na	Adit-face-chip-2.75 ft.
256		<1,000	-	-	T	.1	na	na	na	Adit-face-chip-3.25 ft.
	100	1,000		70			33.55			Pit-dump(15 tons)-grab
257	100	-	E.		=1	. 3	na	na	na	
258	1,000	-1 000	3,000	<70	T-		.01	.05	.05	Adit-dump(125 tons)-grab
259 + 260 +	3,000 1,500	<1,000	3,000	100 70	T _	.5 45.1	na 3.25	.09	. 37	Adit-face-chip-4 ft. Adit-back-vein-chip-1 ft.
70000										CONTROL MARKET STATE OF THE SECOND
261	10,000	<1.000	3,000	70	_ =	38.0	2.74	.58	. 28	Do
262÷	3,000	2,000	1,000	70	T	4.8	.18	.20	.07	Adit-dump(1,000 tons)-grab
263	6,000	1,000	**	70	7	1.6	.06	. 20	na	Adit-dump(500 tons)-grab
264	200	-	*	70	-	.1	na	na	na	Shaft-dump(300 tons)-grab
265	100	-	-	70	23	-	na	na	na	Trench-dump(20 tons)-grab
266 v	700		5	₹70	T		na	na	na	Shaft-dump(100 tons)-grab
267	200		=	70	T	T	.06	na	na	Pit-vein-chip-0.5 ft.
268	700	<1,000	=	<70		. 2	.17	na	na	Adit-dump(1,700 tons)-grab
269+	400	<1,000	-	< 70	-	2.4	.82	na	na	Do.
270+	700	<1,000	=	<70	-	4.3	.82	na	na	Do.
271		-	-	70		.1	na	na	na	Adit-face-chip-4 ft.
272	100	-	4	70	-	500	na	na	na	Do.
273	100	-	<u>.</u>	100	2	22	na	na	na	Pit-face-chip-4 ft.
274+	-	4,000	-	70	-	. 4	1.44	na	na	Pit-stockpile(150 lb.)-grab
275	400		77	100	-	. 4	.22	na	na	Adit-face-chip-4 ft.
276†	400	240	2	100	T	.08	.60	na	na	Pit-face-chip-6 ft.
277	200	_	21	_	· 27			na	na	Adit-face-chip-4.5 ft.
278	-	-	-	100	-	T	na	na	na	Adit-face-vein-chip-1 ft.
279†	50,000	-	5,000	100	T	1.9	na	1.11	.23	Adit-dump(2,000 tons)-grab
280	-	-		70		1.5	na	па	na	Adit-face-vein-chip-1.25 ft.
281	12	φ.	2	35						Adir-foon-wak
282	200		7	7	т -	(T)	na	na	na	Adit-face-muck-grab
283	200	<1,000	-	100		-	na		na	Outcrop-vein-chip-15 ft.
284	400	-1,000	2	100	20	.1	na	na	na	Outcrop-vein-chip-10 ft. Adit-dump(75 tons)-grab
285	700	2	- E	-	т	.2	na	na	na na	Pit-dump(200 tons)-grab
286	1,500	-	1,000	100	_	.1	00.50	.04		71 - 11940-10 W
287	800	(7)	2,000	100		.1	na	.02	.06	Adit-face-vein-chip-1 ft.
288+	100,000	1,000	80,000	-	T	3.1	na	8.57		Adit-face-muck-grab
289	80,000	1,000		- 2	T		na		4.86	Adit-stockpile(500 lb.)-grab
290+	80,000	2,000	20,000 80,000	-		1.3	.84	2.55	4.29	Adit-stockpile(300 lb.)-grab Adit-stockpile(800 lb.)-grab
291+	30 000	2 000	20.000			, ,		No.		51 VI 1978
292+	30,000	2,000	20,000 80,000	-	.2	1.6 9.8	na	.99 1.75	1.08	Adit-stope-muck-grab
293	3,000	-					na	1.73		Adit-stockpile(1,000 lb.)-graf
294			5,000	-		. 3	na	.17	-40	Adit-face-vein-chip-3 ft.
294	3,000 10,000	-	2,000	100	T _	.3	na	.17	.14	Adit-winze-muck-grab Outcrop-vein-chip-0.5 ft.
20.6			W				1000		0.000	
296	200	-	-	100	3	T	na	na	na	Outcrop-vein-chip-1 ft.
297	<100	-	7	70	200	. 2	na	na	na	Adit-portal-vein-chip-2 ft.
					T		7 (44.16)			
298	100	150	-	70	1	-	na	na	na	Outcrop-dike-chip-6 ft.
	100 100 100	-	-	70 70	1	-	na na	na	na na	Outcrop-dike-chip-1 ft. Outcrop-dike-chip-2 ft.

TABLE 11.—Analyses of samples from study areas

					Semiqu	antitati	ve spect	rograph	ic analys	es	- 2250		
					cent					pp	73		
ample	Location T. R. S.	A1 (.003)	Ca (.02)	Fe (.004)	Mg (.004)	Mn (.003)	Ti (.001)	B (100)	Ba (1,000)	Cr (30)	Cu (20)	Mo (20)	Ni (20
301	44- 8-32*	1.0	0.03	4.0	0.006	0.02	0.05	-	51	200	60	100	-
302 303	44- 8-32* 44- 8-31*	м 5	M .03	4	.1	.05	.1	-	<1,000	200 100	40	15	5
304	44- 8-31*	3	1	2	.4	. 2	.05	-	2	60	-	-	
305	44- 8-31*	М	н	6	.8	. 2	.8	47	2	200	40	-	4
306 307	43- 8- 6* 43- 8- 6*	2	. 3	4	.4	3	.1	77	=	100	80	~	2
308	43- 8- 6*	M 3	.3 1	5	.8	1.6	.2		_	200	150	-	-
309	43- 8- 6*	5	2	4	.4	.8	.1		- 2	100	80	-	- 1
310	43- 8- 6*	М	.1	6	1.5	. 2	. 2	-	1,000	200	60	-	-
311 t	43- 9-12*	5	. 3	4	. 4	.4	. 2		м	100	300	<20	20
312+	43- 9-12*	3	. 2	М	. 2	6	.1		5,000	200	1,300	-	-
313÷ 314	43- 9-12* 43- 9-11*	3 M	.02	7	.8	.01	.1	-	1,000	200 100	150	-	-
315	43- 9-12*	11	1	М	1.5	.8	.2	-	2,000	300	80	40	-
316†	43- 9-12*	м	.2	7	.4	. 3	.2	20	-	100	80		12
317†	43- 9-14*	М	. 4	5	.8	.05	. 2	=	. =	60	80	<20	4.7
318† 319†	43- 9-14*	М	. 4	5	. 8	.05	. 2	-	-	60	80	<20	0.7
320	43- 9-13* 43- 9-13*	M	.1	6 3	. 4	.02	.4	100	-	100	40 80	20 20	; <u>=</u>
321	43- 9-13*	>5	.03	2	. 2	.1	.1		_	200	40	<20	20
322t	43- 9-13*	5	.03	7	. 2	6	.2	200	-	-	80	30	14
323	43- 9-24*	М	1	4	. 8	.1	. 2	100	1,000	60	20		-
324 325†	43- 9-24* 43- 9-24*	>5 4	.3	5	. 2	.1	.3	200	4,000	200 60	40 40	<20 20	20
326	43- 9-24*	5	.1	4	. 6	.1	. 2	100	1,000	60	160	_	194
327+	43- 9-24*	M	.06	3	. 4	.05	. 2	200	_	60	20	20	-
328+	43- 9-24*	4	- 5	4	1.5	, 2	. 2	100	1,000	60	80	ne vier	-
329† 330†	43- 8-19* 43- 8-19*	>5 4	.06	3	.2	2	. 2	<100 100	4,000	200 300	60 60	<20 30	20 20
331+	43- 8-19*	5	.3	2	. 2	. 2	.3	100	12	200	40	<20	20
332+	43- 8-19*	M	.2	4	.4	.4	. 2	200	1,000	100	160	20	0.70
3331	43- 9-24*	м	2	6	1.5	. 2	.4	200	1,000	60	40	30	100
334÷ 335÷	43- 9-24* 43- 9-24*	H	.3	M 7	.8	.4	.8	100 200	-	100	80 160	20 30	-
336†	43- 9-24*	5	.4	6	.8	.05	.1	100	-	60	80		
337+	43- 8-30*	5	. 1	3	. 2	.8	.2	100	-	100	50	()	
338	43- 8-30*	>5	4	3	4	. 2	.2	- ω	340	100	80	_	04
339 340	43- 8-30* 43- 8-30*	>5 >5	1	3	2	.2	. 2	-	24	70	40	-	-
			55.5				. 2		127	70	50	-	7
341 342÷	43- 8-30* 43- 8-30*	>5	2	3	2	. 2	.2	-	120	30	50	=	-
343	43- 8-30*	5.7	M 4	2	.8 1.5	.4	.02	100	1,000	30	40	-	-
344+	43- 8-30*	5	2	4	1	.05	. 2	100	1,000	30	20 40	-	
345+	43- 8-30*	>5	1	5	1	.1	.2	100	-	100	80	2	-
346 347	43- 8-30*	5	>4	5	.8	.4	. 2	200	4,000	60	40	1000	1
347 348	43- 8-30* 43- 8-30*	>5 >5	2	5	1	.05	. 2	100	-	60	80	-	-
349+	43- 8-30*	>5	2	4	1	.05	.2	100	_	30 30	40	- 2	-
350	43- 8-30*	>5	2	3	. 2	.2	.2	-	-	70	50	0	-
351	43- 8-30*	>5	2	3	. 2	. 2	.2	-	:. - :	70	50	+0	-
352 353	43- 8-30* 43- 8-30*	>5 >5	.3	3	. 2	. 2	.2		-	30	50	-	-
354	43- 9-25*	2	.5	6	1.8	.4	.2	100	-	60	80	-	-
355	43- 9-25*	.3	м.	.4	.6	.1	.02	3.00	-	60	80 20	=	-
356	43- 9-36*	5	.2	2	.4	.1	.2	100	1,000	60	40	-	-
357	43- 9-36*	4	.03	2	. 2	.05	.1	100	1,000	60	20	=	
358 361†	43- 9-36* 43- 9-22*	. 7 5	.02	1 5	.03	.05	.02	-	-	60	20	-	÷
362	43- 9-22*	5	.06	3	.6	.05	.2	300 200	_	40	40	70	-
		2	.00	-		.03	***	200	-	< 30	20	30	

		titative alysesC		apiite	Fire	assay		c absor analyse				
		ppm			oz	ton		percent		Sample data		
Sample	РЪ (100)	Sr (1,000)	Zn (1,000)	2r (70)	Au	Ag	Cu	Pb	Zn			
301	100	-	-	-	-	_	na	na	na	Outcrop-chip-8 ft.		
302	100	5±35	2 4	100		-	na	na	na	Outcrop-dike-chip-12 ft.		
303	700	-	-	70	T	0.2	na	na	na	Adit-dump(50 tons)-grab		
304	(T)	5 0	and Thomas		T)=1	na	na	па	Adit-face-chip-4 ft.		
305	100	~	2,000	200	T	T	na	na	0.08	Adit-caved stope-grab		
306	1,000	-	3,000	-	-	.1	na	.17	.37	Adit-face-vein-chip-3 ft.		
307	700	75	1,000	70		-	na	.03	.05	Adit-face-vein-chip-l ft.		
308	700		1,000	70 70	T T	.1	na	.02	.08	Adit-face-vein-chip-2 ft. Adit-face-muck-grab		
310	200	<1,000	2,000	70	-	.1	na	na	na	Pit-dump(5 tons)-grab		
311+	1,000	1,000	3 000	70			0.25	.72	17	Add to down (30 tons) or oh		
3127	3,000	- 000	3,000 10,000	70	т -	.6 1.2	.01	.48	.17	Adit-dump(30 tons)-grab Adit-face-vein-chip-2.5 ft.		
313+	20,000	27	30,000	70	T	14.4	.04	.77	.80	Adit-dump(1,200 tons)-grab		
314		<1,000	30,000	100	-	.1	na	na	na	Pit-vein-chip-4 ft.		
315	200	-	-	100	-	Т	na	na	na	Adit-face-vein-chip-3 ft.		
316†	10,000	-	10,000	100	т	.1	na	.24	.48	Shaft-drift-face-vein-chip-4 f.		
317÷	400	2	1,000	300	T	. 2	na	na	.06	Outcrop-vein-chip-6 ft.		
318÷	400	-	1,000	300	-	. 2	na	na	.02	Pit-vein-chip-9 ft.		
319+	700	=	1,000	300	T	-	na	.01	.01	Adit-dump(300 tons)-grab		
320	700	-	1,000	100	T	.1	na	.10	.13	Adit-face-vein-chip-4 ft.		
321	400	÷	-	70	τ	.2	na	na	na	Outcrop(talus)-grab-300 ft.		
322+	3,000	-	2,000	100	.01	. 3	na	.14	.08	Pit-vein-chip-14 ft.		
323	200	-		300	T	. 2	na	na	na	Pit-dump(60 tons)-grab		
324	100	-	-	70	T	. 2	na	na	na	Pit-vein-chip-0.75 ft.		
325†	400	2		100	-	.1	na	na	na	Pit-dump(10 tons)-grab		
326	200	-	250	300	T	T	.01	na	na	Adit-dump(40 tons)-grab		
327†	400	.		100	T	.1	na	na	na	Outcrop-vein-chip-4 ft.		
328† 329†	200	ž	-	100	T	.1	na	па	na	Pit-dump(100 tons)-grab		
330†	10,000	<u> </u>	-	70 70	.01	.6 .3	па па	. 31	na	Adit-wall-vein-chip-1.75 ft. Adit-back-vein-chip-3.5 ft.		
331+	100	_	-	70	-	.2	na	na	na	Adit-wall-vein-chip-2.5 ft.		
332÷	8,000	<u>~</u>	1,000	300	.01	. 5	.01	.32	.07	Adit-dump(250 tons)-grab		
333+	600	4	-	300	-	.3	na	na	na	Do.		
334+	200	75	1077	300	T	. 2	na	na	na	Adit-back-vein-chip-2.5 ft.		
335÷	400	=	(**)	300	T	.1	.01	na	na	Adit-back-vein-chip-1.5 ft.		
336÷	400	-	~	300	12	.1	na	na	na	Pit-dump(200 tons)-grab		
337+	900	ž	-	70	-	T	na	na	na	Outcrop-vein-chip-12 ft.		
338	₹	ž	-	100	350	. 2	na	na	na	Adit-dump(75 tons)-grab		
340	-	-	-	100 70	-	, 1 T	na na	na na	na	Adit-dump(100 tons)-grab Adit-dump(40 tons)-grab		
341	50			100			11.4					
342÷	100	1,000	1,000	100 70	-	- 	na	na	na	Adit-dump(700 tons)-grab		
343	-	1,000	-	100	-		na	na	na	Adit-back-vein-chip-l in. Adit-caved stope-grab		
344+	100	1.6	-	70	144		na	na	na	Adit-back-vein-chip-6 ft.		
3451	100	- 2	_	100	-	÷	na	na	na	Adit-face-chip-3.5 ft.		
346	100	-	-	100	-	_	22	122	22	Adit-wall-vein-chip-2.5 ft.		
347	100	1,000	-	70	(#)	-	na na	na na	na	Pit-dump(20 tons)-grab		
348	100	1,000	940	70	2	2	na	na	na	Pit-dump(35 tons)-grab		
349+	100	1,000	-	70	*		na	na	na	Pit-dump(20 tons)-grab		
350	100	/8	+	100		T	na	na	na	Adit-portal-floor-specimen		
351	I. 	·	-	100	~	. 2	na	na	na	Pit-dump(15 tons)=grab		
352	400	14	-	70	-	-1	na	na	na	Outcrop-vein-chip-2.5 ft.		
353 354	100	-	-	100	.02	1.2	na	na	na	Adit-dump(400 tons)-grab		
355	- 100	37 5=	.75 945	-	T T	T . 2	na	na na	na na	Adit-dump(40 tons)-grab Adit-dump-specimen		
356	200	12	_	300	т					The state of the s		
357	200		-	100		.1	na na	na	na	Trench-dump(20 tons)-grab		
358	200	-		< 70	-	.1	na na	na	na	Pit-dump(20 tons)-grab Pit-stockpile(200 lb.)-grab		
361	<100	-	-	70	120		na	na		Adit-face-vein-chip-0.5 ft.		
201									na			

TABLE 11.—Analyses of samples from study areas

					Semiq	uantitati	ve spect	rographic analyses							
				per	cent		0.6-			p	pm				
Sample	Location T. R. S.	A1 (.003)	Ca (.02)	Fe (.004)	Mg (.004)	Mn (.003)	Ti (.001)	B (100)	Ba (1,000)	Cr (30)	Cu (20)	Mo (20)	N1 (20)		
363	43- 9-21*	>5.0	4.0	5.0	2.0	0.2	0.2	100	-	400	60	-	80		
364	43- 9-16*	5	1	3	.8	.05	. 2	-	-	30	1,300				
365	43- 9- 9*	5	2	3	.4	. 2	. 2	100	_	60	80	30	20		
366	43- 9- 9*	M	.03	2	. 1	.01	.1	-	-	60	40	< 20	-		
367	43- 9- 9*	3	.03	3	. 3	.03	.1	S-75		300	80	6	20		
368	43- 9- 9*	3	.1	2	. 3	.02	.1	-	-	100	40	-	20		
369	43- 9- 9*	3	.1	2	. 3	.03	. 1	-	-	100	40	-	-		
370	43- 9- 8*	>5	4	7	. 1	.1	. 2	200	-	60	40	=	_		
371	43- 9- 8*	3	M	6	.4	.1	. 2	500	175	60	20	7.	7		
372	43- 9- 8*	>5	.03	4	.8	.05	.1	100	-	60	40	=	7		
373	43- 9-18*	>5	.4	3	3	.2	. 2	· <u>~</u>	=	500	80				
374	43- 9-18*	5	.3	3	5	.1	.09	-	7	300	600	7			
375	44-10-36*	>5	4	3	3	. 2	. 2		-	500	80	77	770		
376	44-10-36*	>5	. 5	3	3	.1	. 2		-	70	40	-	-		
377	43- 9-30*	H	2	5	1.5	.1	. 2	-	-	40	40	=			
378	43- 9-30*	м	4	7	1.5	.1	. 4	0.00	<1,000	40	40	-			
379	43- 9-30*	M	4	6	1.5	.1	. 4	2.4°	<1,000	40	40	< 20			
380	43- 9-30*	4	1	2	1	. 1	.1	-	_	30	20	< 20	20		
381	44-10-25*	4	.5	2	. 2	.03	. 2	~	-	200	40	< 20	20		
382+	44-10-25*	М	.5	4	.4	.1	. 2	<100	1,000	-	20	•			
383	44-10-25*	>5	.4	2 .	. 2	.03	. 2	-	127	200	40	< 20	20		
384÷	44-10-25*	M	.5	4	.4	.1	. 2	<100	1,000	7.000	40	-	-		
385	43-10-10*	M	2	4	1.5	.05	. 2	200	_	-	600	60	-		
386	43-10-10*	5	.5	3	.8	.02	.1	-	-	-	1,300	30	-		
387	43-10-10*	3	1	2	1.5	.05	.05	34	141	60	80	-	-		
388†	43-10-10*	м	.5	3	.8	.02	. 2	100	-	-	600	30	-		
389	43-10-10*	3	.13	6	. 4	.02	.05	100	-	-	160	-	-		
390	43-10-26*	. 3	И	.1	,4	.05	.01	-	-	-	20	~	-		
1.	400ppm V	-			71.	20ppm Sn				117.	0.07% U ₃ 6	1-			
6.	100ppm Co,	30nnm Sc				40ppm Sn,	100nnm	U		120.	30ppm Sn	1000	nm V		
31.	17.4% Ba, 0					9.117 Mn,				129.	100ppm B:		P. P. C.		
32.	0.03% Sb	ALTERNATION OF THE				500ppn				130.	0.04% B				
33.	1.7% Ba. O.	06% Sb			76.	100ppm V				131.	52.6% Fe		nm V		
34.	38.7% Ba, 0					<0.01% Un	O _o			132.	30.2% Fe				
35.	0.06% Sb					40ppm Co	. 0			136.	<0.01% U		DOCUMENT.		
37.	0.68% Sb					<0.01% U-	Og			149.	52.2% Fe		pm V		
42.	0.07% Sb					0.01% 030				156.	300ppm S		•		
49.	17% Ba, 0.0	5% Sb			83.	0.01% 030	8			160.	4.2% Ba				
50.	0.05% Sb				84.	40ppm Be				165.	100ppm V				
51.	0.05% Sb					40ppm Be				166.	100ppm V				
52.	7.21% Ba, 5	Oppm Sn			98.	0.07% Sb				168.	0.04% W				
53.	9.85% Ba, 0	.10% Sb,	ě			0.05% Sb				184.	0.07% Sb				
	50ppm Sn					0.04% Bi				189.	0.14% As	0.25	Z Sh		
59.	<0.01% U308	es.				100ppm Bi				191.	0.05% Sb	,			
61.	0.10% U308					<0.01% Sb				193.	0.03% Sb				
62.	100ppm Bi					<0.01% U3				195.	50ppm Sc				
68.	31.9% Mn, 3 0.06% Mo, 900ppm V					0.10% U ₃ č				196.	0.04% Sb				

		titative alysesC		aphic		assay		c absor			
		ppm			QZ,	/ton		percent		Sample data	
Sample	Pb (100)	Sr (1,000)	2n (1,000)	Zr (70)	Au	Ag	Cu	Pb	Zn		
363	<100	=	-7	100	-	-	na	na	na	Adit-dump(250 tons)-grab	
364	200	500		70	870	-	0.25	0.02	na	Adit-dump(300 tons)-grab	
365	400	-	1,000	100	-	-	па	.03	0.13	Pit-dump(5 tons)-grab	
366	200	4	-	<70	T	T	na	na	na	Pit-vein-chip-3 ft.	
367	200		-	<70	- 2	-	na	na	na	Pit-dump(25 tons)-grab	
368	*		-	70	15	-	na	na	na	Adit-face-vein-chip-2 ft.	
369	<100	-	-	70	-	-	na	na	na	Adit-dump(100 tons)-grab	
370	-	-	-	100	-	-	па	na	na	Adit-dump(3,000 tons)-grab	
371	-	~		70	-	-	na	na	па	Adit-stockpile(50 lb.)-grab	
372	7.7	=	::n	100		7.	na	na	na	Adit-portal-vein-chip-8 ft.	
373	-	500	144	100	12	0.1	na	na	na	Pit-vein-chip-6 ft.	
374	-	*	~	70	-	-	.05	na	na	Adit-dump-(20 tons)-grab	
375	-	-	1075	100	-		na	na	na	Pit-dump(3 tons)-grab	
376	-	900	~	100	0.32	T	na	na	na	Outcrop-vein-chip-6 ft.	
377	200	-	~	100	-	. 2	na	na	na	Ad1t-dump(500 tons)-grab	
378	100	<1,000	220	100	T	.1	na	na	na	Adit-face-chip-4 ft.	
379	100	<1,000	-	100	T	. 3	na	na	na	Adit-face-vein-chip-10 in.	
380	-	2	-	70	T	.1	na	na	na	Adit-dump(60 tons)-grab	
381	100	-	-	70	T	. 1	na	na	na	Outcrop-chip-15 ft.	
382+	400	20	-	300	T	. 2	na	na	na	Outcrop(talus)-specimen	
383	100	-	-	100	T	.1	na	na	na	Outcrop-dike-chip-3 ft.	
384+	-	-	-	300	T	. 1	na	na	na	Outcrop-dike-chip-10 ft.	
385	-	2	-	100	T	-	.06	na	na	Adit-portal-vein-chip-0.25 ft	
386	-	*	7	70	-	7	.16	na	na	Adit-portal-vein-chip-4.5 ft.	
387	200		~	-	:=	.1	na	na	na	Adit-dump(150 tons)-grab	
388+		-	3.4	70	T	. 2	.07	na	na	Adit-dump(70 tons)-grab	
389	200		-	-	.15	T	na	na	na	Adit-stockpile(150 lb.)-grab	
390	100	=	-	70	T	37.0	na	na	na	Adit-floor-specimen	
	Oppm Sc	2 500000		266.		Z As			-	325. 0.09% As, 20ppm Co	
	0.04% Sb			269.		X Sb				327. 0.13% As	
	0.08% Sb	0.058.5		270.		Mn, 0.	20% Sb			328. 20ppm Co	
	24.9% Ba,	U.U3% Sb		274.						329. 0.26% As	
	0.03% Sb			276.		3% Sb				330. 0.30% As	
	0.02% Sb	15% 01		279.		LX As				331. 0.17% As	
CONTRACT	15% Ba, O.	134 50		288.			0.04% A	5		332. 0.23% As, <30ppm Sc	
	0.02% Sb			290.				į.		333. 0.02% As	
		0 219 61		291.			0.03% S	D		334. 5.86% Fe, 0.03% As	
	0.03% As,			292.		om Co	/n n	3		100ppm Co, 100ppm V	
	26.4% Ba	0.144 30		311.			40ppm C			335. 40ppm Co, 100ppm V	
	0.015% Mo			312.		6% Mn	9.23% F	Ε,		336. 20ppm Co	
	15% Ba			313.			200ppm :	0.0		337. 0.41% As 342. 20ppm Co	
	36.1% Ba			316.		m Sn	roophig :	30		344. 100ppm V	
	8% Ba. O.	015% Mo		317.		pm Sc				345. 20ppm Co	
	.24% As	National Confession		318.		pm Sc				349. 20ppm Co	
	0.016% N1			319.		pm Sc				361. 0.05% As	
259. 0	0.02% As			322.			3.85% M	n.		382. <30ppm Sc	
	.03% As,	0.60% Sb					. 50ppr			384. <30ppm Sc	
	.10% As				975	CE CO	*	70 75 NO		388. 0.01% Sb	
		4.7% Mn.								TOTAL STATE OF	

INDEX

[Page numbers of major references are in italic type]

A	Pag	re l			Pa	ge
			Cebolla Hot Springs			21
Ace claim	1	34	- Central contiguous area			27
Aeromagnetic survey		17	claims			70
Alder Creek, sample		25	defined			4
Almadi shaft		73	отея			29
Alternation, Cimarron center		37	Chalopyrite			80
Altitudes		3	Chinaman adit			
American Nettie mine		28	Cimarron center			
Andesite, prophyritic		51	mineralization			20
Andesitic lavas		30	Cimarron Chief claims			85
Areas defined		3	Cimarron Ridge, coal			
Argentile			Cimarron Ridge Formation			14
Army-Navy mine		74	Cimarron River, valley cover			23
Ash-flow deposits			volcano vents			15
listed			See also East Fork Cimarron River.	********		13
Ausbaugh adit			See also Middle Fork Cimarron River.			
Ausbaugh aun		/1	See also West Fork Cimarron River.			
В				15 94	27	54
В		- 1	Cinarron Volcano			
Bachelor adit		73	Coal			
Bachelor caldera		18	Cimarron Ridge			
			Deep Creek Mesa road			65
Bachelor mine			San Miguel River			65
		57	Coal Creek, claims			67
Baldy Peak, claim		79	sample			25
Bank adit		76	Coal-entry patents			58
Barite			Commercial activities			4
Barite veins, Corbett Creek		51	Copper exploration			58
Basalt dike, Coal Creek		57	Copper mineralization, Bighorn Ridge			70
Batholith, San Juan Mountains		54	Matterhorn volcanic center			31
Baumgartner Oil Co., claims		72	Copper test			32
Bear Gulch, sample		28	Copper-zinc anomaly			32
Beaver Creek, claims		57	Corbett Creek, claims			61
Bertrandite		46	Cornet Creek, adit			63
Beryllium, El Paso Creek		32	claims			62
Independence Gulch		34	Courthouse Creek, claims			71
Larson Creek		33	Courthouse mine			57
rhyolite intrusions		14	Cow Creek			9
Beth claims		88	center			27
Big Blue Creek		34	claims		***	71
Bighorn Ridge, claims		72	dikes, central area			28
intrusive center		70	laccolith		440	50
Bilk Creek Sandstone Member		12	Cowboy adit			67
Bill Hare Gulch			Creede caldera			18
Black Girl mine		74	Crooked Tree Gulch, claims			79
Black Girl vein		51	Crystal Creek			33
Blaine Basin, claims		59	Crystal Lake, landslide			33
Blaine mine	(69	Crystal Lake Tuff		18,	40
Blowout. See The Blowout.			Crystal Peak		53,	54
Blue Creek		53	Cutler Creek			28
Blue Lakes, claims		70	claims			76
Blue Mesa Tuff		15	Cutler Formation		****	9
Brittle Silver dump		74	oil and gas exploration		***	58
Broken Hill, dike	41,	15	CxCu test			32
intrusion		43	CxHM test			32
Building stone, Telluride	1	56	Czar mine			83
Burns Formation 18,	40, 5	51	Czarina shaft		***	83
•			— 0			
С			D			
Calcite-barite veins, Winchester Gulch	3	71	Dakota Sandstone	016767	13	20
Calliope group.		73	central area			
Campbell Peak, stock		51	gas			58
Capitol City mine		57	oil and gas			23
Capitol City mining area			western area			24
aeromagnetic low	JE, -	55	Dallas Divide, intrusive sill			52
Carbonate Hill, claims		74	Deep Creek, limestone			
Carpenter Ridge Tuff						
		36	Deep Creek Mesa road, coal			
Carson Camp		20	Dexter Creek		21,	79

E124 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Page	Pa	- 50
Dikes	Iron Mountain, stock	51
Broken Hill	Ironton	52
central area	71 611 1	
Coal Creek 67	Joker Gulch, claims	82
Dillon Mesa Tuff	MENTS	
Dix claims 85	Khadive adit	75
Dolores Formation	Kirtland Shale	23
E	L.	
	WINDSHIP CONTROL OF THE WINDSHIP	12.0
East Fork Cimarron River	La Garita caldera	
Eastern contiguous area	Laccolith, Cow Creek	
claims 79	Lake City, aeromagnetic low	
defined4	Lake City caldera	
Economic appraisal	mineralization	
Economic deposits, rhyolite intrusions	Lake Fork Formation	15
El Chaddai Ithrel claims 84	Lake Fork Gunnison River, volcano vents	15
El Mahdi shaft 73	Landsliding, central area	27
El Paso Creek, claims	Laramide orogeny, faulting	23
plugs 41	Laramide orogeny, faulting	36
samples	mineralization	20
upper, dike	Larson Creek	41
uranophane44	claims	83
Elbert Formation 9	volcano vents	15
Elk Creek	Larson volcano	54
Engineer Mountain-Red Mountain Creek, veins 21	Last Dollar road, claims	66
Entrada Sandstone	Last Dollar Mountain, claims	66
Eureka Member	Lead exploration	58
Exchange adit 76	Leadville adits	76
	Leadville Limestone	5
F	Leasing act minerals	58
SACROPORT OF	Lemon Hot Springs	22
Fall Creek	Liberty Bell mine	62
Firebox Creek	Liberty Bell vein	26
Fish Canyon Tuff	Limestone quarry, Deep Creek	65
Fisher Quartz Latite	Limonite	37
Fluorine, rhyolite intrusions	Little Cimarron River 34,	53
Fluorite	Little Eva adit	74
Forceman Creek	Little Gem mine	6
claims 61	Little Gem-Pony Express veins	62
Fruitland Formation, coal		
The state of the s	Lower Cow Creek center	29
6	그 그 그 그 사이 아이는 그 그리지 않는 이 남자가 되는 것 같아. 그 그 가장 하지 않는 것이 없는 것이었다면 없는 것이 없는 것이었다면 없는 것이 없는 것이었다면 없는 없는 것이었다면 없어요. 되었다면 없는 것이었다면 없는 것이었다면 없는 것이었다면 없는 것이었다면 없는 것이었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없	
G		
C	М	
Galena	М	
Galena	M Magnetic susceptibility measurements	47
Galena	Page 2	47
Galena	Magnetic susceptibility measurements	
Galena 39, 61, 62, 78, 80 Gas 28 accumulations 20 exploration 58 Geology, regional 7	Magnetic susceptibility measurements	2
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21	Magnetic susceptibility measurements 13, central area.	2
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19	Magnetic susceptibility measurements	24
Galena 39, 61, 62, 78, 80 Gas 28 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24	Magnetic susceptibility measurements	27 58 4
Galena 39, 61, 62, 78, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69	Magnetic susceptibility measurements	27 58 41 35
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27	Magnetic susceptibility measurements Mancos Shale 13, central area. western area Manganese exploration. Mary Alice Creek Matterhorn center monzonite intrusion veins	27 58 41 35 31 21
Galena 39, 61, 62, 73, 80 Gas 28 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5	Magnetic susceptibility measurements Mancos Shale 13, central area. western area Manganese exploration. Mary Alice Creek Matterhorn center monzonite intrusion veins Matterhorn Creek	27 58 41 35 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26	Magnetic susceptibility measurements Mancos Shale	27 58 41 35 31 31 31 31 41
Galena 39, 61, 62, 73, 80 Gas 28 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5	Magnetic susceptibility measurements Mancos Shale 13, central area. western area Manganese exploration. Mary Alice Creek Matterhorn center monzonite intrusion veins Matterhorn Creek	27 58 41 35 31 31 31 31 41
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Granodiorite, western area 24 Granodiorite porphyty 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River	Magnetic susceptibility measurements Mancos Shale	21 58 41 35 31 21 36 40 38 55
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26	Magnetic susceptibility measurements Mancos Shale	21 58 41 35 31 21 36 40 38 55
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River.	Magnetic susceptibility measurements Mancos Shale	21 58 41 35 31 21 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Ceothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite, porphyty 69 Granodiorite intrusive bodies 27 Graphead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75	Magnetic susceptibility measurements Mancos Shale	21 24 58 41 38 38 56 56 85 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Graythead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River H Hallie C. adit 75 Hayden Peak, claims 66	Magnetic susceptibility measurements Mancos Shale	21 24 58 41 38 38 56 56 85 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27	Magnetic susceptibility measurements Mancos Shale	21 58 41 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39	Magnetic susceptibility measurements Mancos Shale	21 58 41 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80	Magnetic susceptibility measurements Mancos Shale	21 58 41 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 28 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30	Magnetic susceptibility measurements Mancos Shale	25 58 41 35 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40	Magnetic susceptibility measurements Mancos Shale	25 44 35 36 40 36 55 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Gravhead quadrangle 5 Geenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River H H 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41	Magnetic susceptibility measurements Mancos Shale	25 44 35 36 40 38 55 56 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51	Magnetic susceptibility measurements Mancos Shale	25 44 35 36 40 36 55 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Graydhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9	Magnetic susceptibility measurements Mancos Shale	21 58 41 35 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Ceothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Graphead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. 26 Gunnison River. 40 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71	Magnetic susceptibility measurements Mancos Shale	21 58 41 35 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 7, 71 Hidden Treasure mine 41, 80, 82	Magnetic susceptibility measurements Mancos Shale	21 58 41 38 55 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Graythead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Hermosn Formation 18, 40, 51 Hermosn Formation 9 Hidden Silver adit 7 Heigh Bridge Gulch 34, 36	Magnetic susceptibility measurements Mancos Shale	22 58 41 38 56 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Ceothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Graphead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 Hot springs 20	Magnetic susceptibility measurements Mancos Shale	22 58 41 38 56 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Graythead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Hermosn Formation 18, 40, 51 Hermosn Formation 9 Hidden Silver adit 7 Heigh Bridge Gulch 34, 36	Magnetic susceptibility measurements Mancos Shale	22 58 41 38 56 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 Hot springs 20 Hugh S. adit 75	Magnetic susceptibility measurements Mancos Shale	21 22 58 41 38 56 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Granodioritic intrusive bodies 27 Gravenback Mountain, veins 26 Gunnison River. 5 Greenback Mountain, veins 26 Gunnison River. 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 81 Hot springs <t< td=""><td>Magnetic susceptibility measurements Mancos Shale</td><td>21 22 58 41 38 56 56 56 56 56 56 56 56 56 56 56 56 56</td></t<>	Magnetic susceptibility measurements Mancos Shale	21 22 58 41 38 56 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Granodioritic intrusive bodies 27 Gravenback Mountain, veins 26 Gunnison River. 5 Greenback Mountain, veins 26 Gunnison River. 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 81 Hot springs <t< td=""><td>Magnetic susceptibility measurements Mancos Shale</td><td>22 58 41 35 56 56 56 56 56 56 56 56 56 56 56 56 56</td></t<>	Magnetic susceptibility measurements Mancos Shale	22 58 41 35 56 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 Hot springs 20 Hugh	Magnetic susceptibility measurements Mancos Shale	22 58 41 35 56 56 56 56 56 56 56 56 56 56 56 56 56
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Granodioritic intrusive bodies 27 Gravenback Mountain, veins 26 Gunnison River. 5 Greenback Mountain, veins 26 Gunnison River. 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 81 Hot springs <t< td=""><td>Magnetic susceptibility measurements Mancos Shale</td><td>224 58 41 38 55 56 56 56 56 56 57 57 58 57 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58</td></t<>	Magnetic susceptibility measurements Mancos Shale	224 58 41 38 55 56 56 56 56 56 57 57 58 57 58 57 58 58 58 58 58 58 58 58 58 58 58 58 58
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Graybead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 Hot springs 20 Hugh	Magnetic susceptibility measurements Mancos Shale	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodioritic intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Hermosa Formation 9 Hidden Silver adit 71 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 Hot springs 20 Hugh S. a	Magnetic susceptibility measurements Mancos Shale	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Grandiorite intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 Hot springs 20 Humboldt mine 62	Magnetic susceptibility measurements Mancos Shale	22 58 41 58 55 50 85 51 10 55 50 10 10 10 10 10 10 10 10 10 10 10 10 10
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Ceothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Graphead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. 26 Gunnison River. 46 veins 27 Henson Creek 39 claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 H	Magnetic susceptibility measurements Mancos Shale	25 24 35 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 27 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Grayhead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. See Lake Fork Gunnison River. H Hallie C. adit 75 Hayden Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Treasure mine 41, 80, 82 High Bridge Gulch 34, 36 Hot springs 20 Humb	Magnetic susceptibility measurements Mancos Shale	25 24 35 31 31 31 31 31 31 31 31 31 31 31 31 31
Galena 39, 61, 62, 73, 80 Gas 23 accumulations 20 exploration 58 Geology, regional 7 Geothermal energy 21 Glacial deposits 19 Granodiorite, western area 24 Granodiorite porphyry 69 Granodiorite intrusive bodies 27 Granodioritic intrusive bodies 27 Granodioritic intrusive bodies 27 Graphead quadrangle 5 Greenback Mountain, veins 26 Gunnison River. 80 Gunnison River. 40 veins 27 Henson Peak, claims 66 veins 27 Henson Creek 39 claims 80 North Fork 30 samples 40 veins 21, 41 Henson-Formation 18, 40, 51 Hermosa Formation 9 Hidden Silver adit 71 Hidden Silver adit 71	Magnetic susceptibility measurements Mancos Shale	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

E126 STUDIES RELATED TO WILDERNESS—PRIMITIVE AREAS

Ute Creek	
Teller adit	10
Telluride, building stone	15, 28, 38, 51, 53, 54
claims 59 Ute-Ulay mine	
Telluride Conglomerate	
Tellurides 29 Vampire group	68
	ea 2
	8
20 01 00 79	
	i i
incar-source factes	
Oncompangie reak.	1
Thermal energy	A.
	W. Y. Z
Tin, rhyolite intrusion	w, 1, 2
	10.00.65
	12, 20, 65
T TO ASSOCIATE THE TAIL THE THE TAIL TH	
	er 55
Trestern contiguous area.	21
Ciginis	55
U. V Gelined	
Wetternorn Cice, voical	no vents 18
	53, 54
	ngle !
	ms 59, 60
mineralization	25, 5
	2'
Uncompangre Peak	laims 65
claims 83 Williams adit	
volcanics	67
Uncompangre River, claims	2!
Upper Cow Creek intrusive center	is 7
Uranium exploration	80, 8
Uranium mill 57, 65 Yellowstone Gulch, sami	ples 32, 3
Uranium prospects	
Uranium minerals	2
rhyolite intrusions	center 3
Uranophane	
Uravan, Colo	