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Abstract

Human land use is a driving force of habitat loss and modification

globally, with consequences for wildlife species. The American marten

(Martes americana) and fisher (Pekania pennanti) are forest-dependent carni-

vores native to North America. Both species suffered population declines due

to loss of forested habitat and overharvest for furs, and continued habitat

modification is an ongoing threat. Furthermore, the smaller marten may be

susceptible to intraguild exclusion where the larger fisher are abundant, and

both habitat modification and climate change may reduce spatial refugia

available to marten. A detailed understanding of co-occurrence patterns of

marten and fisher in landscapes subjected to intense forest disturbance repre-

sents a key knowledge gap for wildlife ecology and management. Maine, in

the northeastern United States, supports populations of both these species. It

is an extensively forested state, and the vast majority is managed as commer-

cial timberland. We designed a large-scale field study to understand the rela-

tive importance of three sets of predictions for marten and fisher occupancy

patterns where commercial silviculture is widespread: (1) The intensity of

forest disturbance primarily determined both marten and fisher occupancy

rates, (2) fisher occupancy was limited to areas of shallower snow and mar-

ten limited by fisher presence, or (3) both species responded to the composi-

tion of tree species within forested habitat. We collected data to test these

nonmutually exclusive hypotheses via camera-trap surveys, using an experi-

mental design balanced across a gradient of forest disturbance intensity. We

deployed 197 camera stations in both summer and winter over 3 years (2017–
2020). We tagged over 800,000 images and found marten at 124 (63%) and

fisher at 168 (85%) of the stations. By fitting multiseason occupancy models

to the data, we found that the degree of habitat disturbance negatively

influenced detection, occupancy, and temporal turnover for both species.

Contrary to our expectations, however, we found no evidence of interspecific

competition and instead support for positive associations with detection

Received: 24 November 2021 Accepted: 7 December 2021

DOI: 10.1002/ecs2.4027

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Ecosphere published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecosphere. 2022;13:e4027. https://onlinelibrary.wiley.com/r/ecs2 1 of 15
https://doi.org/10.1002/ecs2.4027

https://orcid.org/0000-0003-3501-2119
https://orcid.org/0000-0003-0480-6100
mailto:alessio.mortelliti@maine.edu
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecs2
https://doi.org/10.1002/ecs2.4027
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.4027&domain=pdf&date_stamp=2022-04-03


probabilities both spatially and temporally. Both species were positively asso-

ciated with forest stands containing deciduous trees. Our findings further

illustrate the impact that land use has on the occupancy dynamics for these

forest-dependent carnivores.

KEYWORD S
camera trap, forest management, habitat modification, interspecific competition, land use,
Martes americana, mesocarnivores, multiseason occupancy, Pekania pennanti, wildlife
management

INTRODUCTION

American marten (Martes americana) and fisher
(Pekania pennanti) are mustelid predators native to for-
ests in Canada and the northern United States (Aubry
et al., 2012; Powell et al., 2003). Following European col-
onization of North America, unregulated trapping for
pelts and the clearing or logging of vast areas of forest led
to population declines and local extirpations (MacCleery,
2011; Maser, 1989; White et al., 2015). As silvicultural
techniques advanced toward sustainability (Puettmann
et al., 2008) and states implemented trapping regulations
(and in some cases, active reintroduction efforts), both
species began to recover across much of their historic
range (Aubry & Lewis, 2003; Lancaster et al., 2008;
Williams et al., 2007). However, habitat disturbance,
often resulting from timber extraction, is still a major
threat to these species: activities that reduce forest patch
size, remove large and senescent trees, and simplify forest
structure may severely compromise the long-term viabil-
ity of their populations (Bridger et al., 2016; Harrison
et al., 2004; Moriarty et al., 2011; Patton, 1992; Sauder &
Rachlow, 2014).

Marten and fisher are taxonomically close (Koepfli
et al., 2008; Sato et al., 2012; Stone & Cook, 2002) with
similar life history traits and hunting strategies, but they
differ in body size (marten 0.5–2 kg and fisher 2–7 kg;
Zielinski & Duncan, 2004). Their geographic ranges over-
lap, though marten extend farther north than fisher
(Clark et al., 1987; Powell, 1993) (Figure 1). Both species
are dependent on forested habitat, and although the
effects of land use change on each individual species have
been studied and suggest certain effects are consistent
across their ranges, others may be highly variable. As an
example for fisher, logging activity that removes snags
and decaying trees from the landscape is likely incompat-
ible with successful reproduction (Paragi et al., 1996;
Weir et al., 2012). Although large trees and connectivity
between stands are still required to sustain populations
in managed forests, fisher do tolerate more disturbance
than previously thought (Matthews et al., 2013; Zielinski

et al., 2013). For marten, even partial harvest activities
can diminish the canopy cover, structural complexity and
overall basal area they require and thus reduce habitat
suitability (Chapin et al., 1998; Fuller & Harrison, 2005).
Although home ranges can overlap areas of cut forest
and edge habitat, harvest practices that maintain forest
cover by retaining larger patches of uncut trees, reducing
edges, and keeping total cut areas below 20%–30% of the
landscape are more viable (Hargis et al., 1999; Potvin
et al., 2000).

A critical knowledge gap in the study of marten and
fisher response to landscape change is the role of intraguild
competition between these two species (Lesmeister et al.,
2015; Ritchie & Johnson, 2009; Sévêque et al., 2020).
Because of the similarities in their ecological niches, marten
and fisher may experience intraguild competition in areas
of sympatry (Donadio & Buskirk, 2006; Palomares &
Caro, 1999; Polis & Holt, 1992). The disparity in body size
between fisher and marten may allow fisher to suppress
marten populations, due to either direct predation
(Jensen & Humphries, 2019; McCann et al., 2010) or com-
petition (Fisher et al., 2013; Manlick et al., 2017). However,
there are also many parts of their range where the species
do co-occur, suggesting that some form of niche par-
titioning facilitates coexistence (Hardin, 1960; Schoener,
1974). One hypothesis is that the larger, heavier fisher is
limited to areas of shallower, wetter snow in winter, provid-
ing a spatial refuge for marten at higher elevations or other
areas with deeper snowpack (Krohn et al., 1995;
Raine, 1983). This may be an important component of the
species’ geographic distributions, where marten benefit
from both increased subnivean hunting access in winter
and reduced competition from fisher in regions of deeper
snow. It does also explain spatial segregation in some areas
of sympatry, such as along the elevation gradient in the
Sierra Nevada mountains (Sweitzer & Furnas, 2016). How-
ever, there are many areas where the species do overlap in
space and time, even in winter seasons (Croose et al., 2019;
Williams et al., 2009).

Understanding the mechanisms allowing marten and
fisher to coexist is essential for the long-term
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conservation of both species. This is undoubtedly a
dynamic process, involving local climate, habitat charac-
teristics, prey and predator species (Zielinski &
Duncan, 2004), and direct and indirect human perturba-
tions (Gabriel et al., 2012). The overarching goal of our
study was to investigate the interacting roles of forest dis-
turbance, habitat, and local climate on marten and fisher
co-occurrence patterns in Maine, USA. Specifically, we
aimed to test the relative support for three, nonmutually
exclusive hypotheses: H1: Habitat disturbance, resulting
from timber harvest, is the main driver of the distributions
of marten and fisher. Based on this hypothesis, we would
expect to see occupancy patterns for both species
restricted to areas of low- to moderate-intensity distur-
bance and that co-occurrence would be most common in
areas of lowest forest disturbance (Lewis et al., 2016;
Sauder & Rachlow, 2014; Simons, 2009; Thompson,
1988). H2: Species-specific climate limitations and
intraguild dynamics drive distributions in Maine. In this
case, we expect fisher to be limited to areas of shallower
winter snow, and marten limited to areas with deeper
snow and low fisher probability of presence (following
Krohn et al., 1995). H3: Habitat characteristics, as cap-
tured by the composition of forest stands, drive marten and

fisher distribution. If traits such as forest structure, decid-
uousness in winter, and food available for prey species
are most important, we will expect to see relationships
between the predictors for composition (deciduous
vs. coniferous tree species, which we are using as an
index for multiple facets of forest habitat) and the occu-
pancy patterns of marten and fisher, with occasional co-
occurrence in areas where habitat preferences overlap
(Aubry et al., 2012; Powell et al., 2003).

To achieve our goal, we established a field study
across the northern two-thirds of Maine, wherein we
balanced survey effort for terrestrial wildlife across a
gradient of forest disturbance intensity and latitude.
Marten and fisher occupancy data were collected
through transects of camera traps optimized for these
species (Evans et al., 2019) across 197 survey sites, sam-
pled over a 4-year period (Boitani et al., 2012; Kays
et al., 2011; Kays & Slauson, 2008; Rowcliffe, 2017;
Steenweg et al., 2017). By comparing the relative impor-
tance of forest management, snow depth, and species
dynamics in an information theoretic framework, we
aim to contribute to filling important knowledge gaps in
the basic ecology of marten and fisher and inform opti-
mal conservation strategies.

F I GURE 1 Camera-trap survey stations (n = 197) deployed in Maine, northeastern United States, at the border of overlapping marten

(Martes americana) and fisher (Pekania pennanti) geographic ranges (IUCN, 2021). Each station was deployed for at minimum one summer

and the following winter season, and a subset (highlighted in white) was resampled for up to seven total seasons
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METHODS

Study area

Our research was conducted in the state of Maine, in the
northeastern United States (Figure 1). Maine is primarily
forested, with 89% of the state (17.6 million acres) covered
by forest land (Butler, 2018), and located along the transi-
tion zone from Eastern Deciduous in the south of the state
to Boreal Forest in the north (Gawler et al., 1996;
McWilliams et al., 2005). Common tree species include
maple (Acer sp.), birch (Betula sp.), American beech
(Fagus grandifolia), balsam fir (Abies balsamea), spruce
(Picea spp.), and white pine (Pinus strobus) (Butler, 2018).
Forests are structurally diverse with predominantly mixed-
age stands resulting from both natural disturbance (insect
outbreaks and storm damage; Fraver et al., 2009) and
anthropogenic disturbance (typically partial harvesting;
Seymour et al., 2002). Our 197 sampling sites were distrib-
uted across the majority of the state, except for areas out-
side of the marten geographic range (down east and
southern regions, which are influenced by coastal habitat
and human development, and the far eastern border,
which is predominately open, agricultural land) (geo-
graphic coverage: 44.15968�N to 47.42166�N and
�70.55842�W to �67.62582�W). Mean temperatures in
July, the hottest month in Maine, are 18.5�C (average low
of 12�C to a high of 25�C). Winter temperatures in
January, the coldest month, average �10�C (�16 to
�4.5�C). From May to October, roughly 55 cm of precipi-
tation fall as rain, and another 51-cm fall from November
to April predominately as snow (NOAA, 2020).

Study design

We established a large-scale field study (Garton et al., 2011)
to collect data on wild carnivore occupancy patterns across
the range of forest disturbance regimes characteristic of
Maine. We stratified our sampling based on the following
factors: (1) low to high intensities of forest disturbance,
(2) latitude, and (3) reported furbearer take by trappers for
marten and fisher (Appendix S1: Figures S1–S3).

Forest disturbance intensity was obtained from remote
sensed Landsat image data (Wulder et al., 2019) that were
processed using a novel method to combine multiple
individual change detection algorithms (Kilbride, 2018).
Image layers from 1948 to 2017 provided continuous ras-
ter indices describing the magnitude, year, and duration
of the most recent disturbance event modeled at each
30-m pixel, calibrated specifically to northeastern forests.
We categorized each pixel by the year of most recent
disturbance (none or prior to 1989 = 1, 1989–2000 = 2,

2001–2012 = 3, and 2013–2017 = 4) and the magnitude of
that disturbance (0–199 = 1, 200–639 = 2, 640–1278 = 3,
and 1279–10,185 = 4). We used raster math to multiply
these, giving a discrete score from 1 to 16 for each pixel
across the state of Maine. From this layer, we calculated
the mean disturbance index at multiple spatial scales:
townships (for initial course-scale selection of survey loca-
tions), and circular buffers around each surveyed site once
established (300-m and 1-k radius “local” disturbance, and
3-k and 6-k radius “landscape” disturbance scores, the
maximum area around each station while maintaining
independence).

We used a balanced study design to distribute our sur-
vey effort along a continuum of forest disturbance. We
prioritized townships where high, moderate, and low for-
est disturbance regimes were present in both large, con-
tinuous blocks (3+ townships of a similar value) and
smaller, isolated blocks (1–2 townships) surrounded by
differing disturbance history. We replicated each of these
at least once in both the northern half and southern half
of our survey extent to ensure no systematic bias was
introduced. We further confirmed this by checking for
correlation between our predictor variables and found
that only latitude and snow had correlation coefficient
greater than 0.1 and were therefore never included in
additive models (Appendix S1: Figure S4).

To maximize spatial coverage while also collecting
multiple-season data, we used a rotating panel design
(MacKenzie et al., 2017, p. 218) in which a “permanent”
subset of our sites were deployed from five to seven sea-
sons, while other sites were deployed for only two sea-
sons. We selected “permanent” sites, which were
representative of the broader study design (e.g., sites in
areas of low disturbance in large blocks and sites in areas
of high disturbance surrounded by only moderate distur-
bance), and we replicated these in both northern and
southern portions of the overall study area (Figure 1).

Furbearer trapping intensity was accounted for with
additional survey stations deployed in townships with the
highest reported fur trapping harvest (based on the 2014–
2018 trapping season reports for marten and fisher;
MDIFW, 2019) to augment the survey effort already expe-
nded in townships of low and moderate reported harvest
(Appendix S1: Figure S2).

Survey stations were placed at randomly generated
points within high priority townships as described above,
maintaining a minimum distance of 6 km between sta-
tions. This spacing meets the assumption of indepen-
dence between our detections for martens (home ranges
6–18 km2; Gosse et al., 2005; Shirk et al., 2014;
Simons, 2009) and fishers (home ranges up to 10 km2 for
females and up to 38 km2 for males; Clark, 1986; Furnas
et al., 2017; Powell et al., 2003).
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Snow depth data were obtained from the National
Snow and Ice Data Center Snow Data Assimilation Sys-
tem data products (NOHRSC, 2004). We took the daily
mean snow depth value of estimates within 1 km of each
survey site for a duration of 2 months in the peak of each
winter season that surveys were conducted (15 January
to 15 March).

Habitat data were collected once at each survey sta-
tion for stand-level tree species composition (living trees
within two, 20-factor variable radius plots), and we used
LANDFIRE vegetation type raster data for 300-m and
1-km buffers at larger spatial scales (LANDFIRE, 2016).

Camera trapping was conducted by placing three
Bushnell Trophy Cam E2/E3 passive infrared cameras
(Overland Park, KS, USA) at each survey station, spaced
100 m apart in a linear transect perpendicular to the
access road/trail: We found from prior research that this
configuration would maximize the probability of detec-
tion for marten and fisher (Evans et al., 2019, see also
Mann et al., 2015; Mata et al., 2017; Pease et al., 2016).
Each camera was set approximately 40 cm above the gro-
und (or packed snow), facing toward a suet cage with a
piece of beaver (Castor canadensis) meat, bait which
served as a local attractant (Stewart et al., 2019)
(Appendix S1: Figure S5). Scent lure designed for fur-
bearers (skunk essence and Vaseline-based, private seller
in Kenduskeag, ME, USA) was applied at the base of the
bait tree and at >2 m height, to act as a long-distance
attractant (Schlexer, 2008; Stewart et al., 2019). A previ-
ous study in this region demonstrated that the combined
use of bait and lure increased the detection probability of
carnivore species without impacting noncarnivore mam-
mals (Buyaskas et al., 2020). Each year of our surveys,
stations were first deployed in a summer season for 15+
days, then revisited in the following winter season for
15+ days to collect two seasons of detection data. Each
following year, a subset of previously surveyed sites were
redeployed to increase the total number of contiguous
seasons of data (up to seven), while the remaining effort
was allocated to new sites to increase total sample size.
Seasons ran from June to September in summer and
January to April in winter, for the years 2017–2018,
2018–2019, 2019–2020, and summer 2020. Our methods
adhere to ethical research standards for free ranging wild
mammals (Sikes, 2016) and were approved by the Uni-
versity of Maine Institutional Animal Care and Use Com-
mittee, Protocol #A2018-05-06.

Occupancy models

We analyzed species detection data in two phases: using
multiseason, single-species occupancy models in R
unmarked (Fiske & Chandler, 2011; MacKenzie

et al., 2003; R Core Team, 2020) and then multiseason,
two-species models in program Presence 2.13.12
(Hines, 2006; MacKenzie et al., 2017). Occupancy model-
ing accounts for the potential bias introduced with imper-
fect detection (MacKenzie et al., 2002; White, 2005) and
allows inclusion of habitat-level and observation-level
variables that may influence the probability of an animal
being observed at a survey station separately from the
occupancy process itself.

We constructed detection histories by pooling images
from all three cameras within each station, for each 24-h
period that the station was active in summer and in win-
ter. We incorporated the following covariates: latitude;
year and season of surveys; forest disturbance within
300-m, 1-km, 3-k, and 6-km radius buffers around each
station, to account for the scale of effect of local, home-
range, and landscape-level roles of disturbance on detec-
tion, occupancy, and turnover; and the proportion of
deciduous trees within the immediate stand, as well as
300-m and 1-km radius buffers. We ran two phases of
sequential models: (1) single-species, multiseason
models to determine key landscape variables affecting
marten alone and fisher alone. We first ranked models
with all parameters held constant except the one of
interest, beginning with detection. We then retained the
top model for the detection process as we repeated this
step for the initial occupancy probability, then coloniza-
tion, and finally extinction. We ranked models via
Akaike information criterion (AIC) corrected for small
sample sizes (Burnham & Anderson, 2002). If one or
more model ranked within 2 ΔAIC of the top model and
was not modeling the same covariate at a different spa-
tial scale (e.g., disturbance at 1 km followed by distur-
bance at 300 m), additive models were also tested.
(2) After models with habitat covariates were fully
parameterized, we ran two-species, multiseason models
for marten and fisher to explicitly test for the impor-
tance of interaction between species. We used the ψ, p,
and r parameterization for the two-species models,
which allow for initial occupancy probabilities to be
modeled by whether or not the other species is present;
for colonization and extinction between seasons to be
modeled by the presence or absence of the other spe-
cies; and for detection to vary both at sites where the
other species is present, as well as at the observation
occasion, if the other species is simultaneously
detected. This modeling requires one species to be con-
sidered “dominant,” that is, driving the dynamics of the
other species, and thus, we ran models twice to include
all the possible directional interactions between marten
and fisher. We tested for the impact of interspecific
dynamics on initial occupancy, colonization, extinction,
and detection with an a priori set of models, shown in
Appendix S2: Tables S1 and S2.
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RESULTS

We obtained image data from 197 independent survey
stations across seven seasons, for a total of 632 station/
seasons. Each station was deployed for a minimum of
15 consecutive days (33-day maximum survey period ana-
lyzed, 26.2 � 4.6 [mean � SD]) in one summer season
and all but four stations again in the following winter
season, from 2017 to 2020. A subset of stations were
redeployed for additional summers and winters, with
three stations out for 3–4 seasons total, 18 stations out for
5 seasons total, and 38 for 6–7 seasons total
(Appendix S3: Table S1). Attrition in the number of cam-
era stations was due to access issues (some areas were
impossible to reach in winter), changes in landowner, or
unforeseen equipment failures. In total, we recorded over
800,000 images of which 12,000 contained identifiable
martens and 67,000 contained fishers (Appendix S3:
Figure S1). After collapsing images into 24-h survey
periods, our data set contained 1086 independent marten
visits and 1112 fisher visits, and of those, 123 were visits
by both species to the same station within a single day.
Marten were detected at 35%–61% of stations deployed in
each of the seven seasons (naïve occupancy), and fisher
were detected at 26%–86%, with consistently greater
detection rates in winter than in summer seasons
(Appendix S3: Table S2). After accounting for imperfect
detection, the estimated seasonal occupancy rates for
marten across the survey extent ranged from 0.41 to 0.59
and fisher occupancy ranged from 0.54 to 0.73, with both
species detected across the entire spatial extent of our
surveys (Appendix S3: Figure S2).

The top-ranking single-species, multiseason model for
marten included the intensity of disturbance, with nega-
tive effects on initial occupancy (β = �0.64 � 0.19) and
colonization (β = �0.51 � 0.18), and a positive effect on
extinction probability (β = �0.52 � 0.20). The percentage
of deciduous trees had a positive effect on initial occu-
pancy (β = 0.84 � 0.18), and the average depth of winter
snow was positive with colonization and negative with
extinction (β = 3.02 � 1.11 and β = �3.00 � 1.21). Detec-
tion probability for marten decreased with the number of
days in the survey and also decreased with more distur-
bance (β = �0.025 � 0.004 and β = �0.23 � 0.032)
(Table 1) (Figure 2) (Appendix S3: Table S3).

For fisher, no covariate ranked above null for initial
occupancy, while the probability of turnover between
seasons negatively affected by disturbance (colonization
β = �0.47 � 0.25, and extinction β = �0.23 � 0.17). The
proportion of deciduous trees had a positive effect on col-
onization (β = 1.25 � 0.57), and snow depth had a nega-
tive effect on extinction (β = �2.64 � 1.13). Detection
probability for fisher varied with survey session, with

higher detection rates in the winter seasons than in the
summer seasons (see Appendix S3: Table S3).

Results of the two-species, multiseason models indicate
that for marten, the occupancy status of fisher was not
included in any of top models, but it was included in the
top model sets (within 2 ΔAIC) as a predictor for initial
occupancy (positive), colonization (negative), and extinc-
tion (positive) (Table 2). However, the top-ranked detec-
tion model included positive associations for both species.
For marten, detection probability during a given survey
period was higher if a fisher was also detected (rFf < rFF).
For fisher, both the overall occupancy status of marten at
a site and the detection of a marten in a period increased
detection probability (pm < rMm < rMM). For fisher, the
probability of marten presence was also included in
models ranked within 2 ΔAIC as a predictor of initial
occupancy (positive), colonization (positive), and extinc-
tion (positive).

DISCUSSION

Through a large-scale field study conducted in Maine,
USA, over a 4-year period, we found that marten and
fisher dynamic occupancy patterns were driven primarily
by the intensity of forest disturbance (caused by forest
management), followed by other habitat features (propor-
tion of deciduous trees) and, to a limited extent, by inter-
specific dynamics. We did not find a negative influence
of fisher presence on marten, but rather a positive rela-
tionship between detection events for both species.

Effects of forest disturbance on marten and
fisher occupancy patterns

The effects of disturbance were always negative: Models
indicated that survey stations in areas that had more
recent, or more intense, timber removal activities had
lower probability of initial occupancy (marten), lower
colonization probability (marten and fisher), and higher
probability of extinction (marten and fisher). This is con-
sistent with literature, indicating that forest modification
is detrimental to habitat quality for marten and fisher
(Chapin et al., 1998; Fuller & Harrison, 2005; Zielinski
et al., 2013) and supports our first hypothesis that it is a
driver of occupancy patterns in Maine. Marten especially
showed lower initial occupancy probability in areas of
increasingly disturbed forest and had both higher extinc-
tion rates and lower colonization rates in these areas.
This suggests that marten have a lower tolerance for
intense forest harvest than fisher, and may be more
impacted by continued silviculture practices in the state.
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The need for both cover from predators and structural
complexity to access small mammal prey could be more
limiting for marten, where fisher are able to take advan-
tage of increased snowshoe hare in many areas (Fuller &

Harrison, 2005; Sirén et al., 2021). For both species, our
data support our first hypothesis that the degree of distur-
bance is a key factor in explaining the occupancy patterns
of marten and fisher in Maine.

TAB L E 1 Ranking of single-species, multiseason occupancymodels within 2ΔAIC of the topmodel for Americanmarten (Martes americana)

and fisher (Pekania pennanti) derived from 197 camera-trap stations inMaine, USA, over four summer and threewinter seasons, 2017–2020

Species Model formula ΔAIC AIC Wi k R 2

Martes americana ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(DI_300m
+ Snow) p(DI_3k + Days)

0 6875.46 0.579 12 0.58

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(DI_300m
+ Lat) p(DI_3k + Days)

2.071 6877.53 0.206 12 0.58

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(DI_300m)
p(DI_3k + Days)

4.171 6879.63 0.072 11 0.57

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(Snow)
p(DI_3k + Days)

4.564 6880.02 0.059 11 0.57

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(Lat)
p(DI_3k + Days)

5.955 6881.42 0.029 11 0.57

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(DI_1k)
p(DI_3k + Days)

7.259 6882.72 0.015 11 0.56

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(.)
p(DI_3k + Days)

7.982 6883.44 0.010 10 0.56

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(DI_6k)
p(DI_3k + Days)

8.752 6884.21 0.007 11 0.56

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(DI_6k)
p(DI_3k + Days)

8.765 6884.23 0.007 11 0.56

ψ(DI_3k + DC_300m) γ(DI_300m + Snow)
ε(DC_300m) p(DI_3k + Days)

9.445 6884.91 0.005 11 0.56

ψ(DI_3k + DC_300m) γ(DI_300m + Snow)
ε(DC_Stand) p(DI_3k + Days)

9.605 6885.07 0.005 11 0.56

ψ(DI_3k + DC_300m) γ(DI_300m + Snow) ε(DC_1k)
p(DI_3k + Days)

9.895 6885.36 0.004 11 0.56

Pekania pennanti ψ(.) γ(DC_300m + DI_6k) ε(Snow + DI_6k) p(Survey) 0.000 7257.44 0.207 15 0.67

ψ(.) γ(DC_300m + DI_6k) ε(Snow) p(Survey) 0.042 7257.48 0.202 14 0.67

ψ(.) γ(DC_300m + DI_6k) ε(Snow + DC_1k) p(Survey) 1.111 7258.55 0.119 15 0.67

ψ(.) γ(DC_300m + DI_6k) ε(Snow + DC_1k + DI_6k)
p(Survey)

1.460 7258.90 0.099 16 0.67

ψ(.) γ(DC_300m + DI_6k) ε(DI_6k) p(Survey) 3.401 7260.84 0.037 14 0.66

ψ(.) γ(DC_300m + DI_6k) ε(DC_1k) p(Survey) 3.976 7261.42 0.028 14 0.66

ψ(.) γ(DC_300m + DI_6k) ε(DC_300m) p(Survey) 4.422 7261.86 0.023 14 0.66

ψ(.) γ(DC_300m + DI_6k) ε(.) p(Survey) 4.597 7262.04 0.021 13 0.66

ψ(.) γ(DC_300m + DI_6k) ε(DC_Stand.) p(Survey) 4.701 7262.14 0.020 14 0.66

ψ(.) γ(DC_300m + DI_6k) ε(DI_3k) p(Survey) 5.529 7262.97 0.013 14 0.66

ψ(.) γ(DC_300m + DI_6k) ε(Lat) p(Survey) 5.831 7263.27 0.011 14 0.66

ψ(.) γ(DC_300m + DI_6k) ε(DI_300m) p(Survey) 6.389 7263.83 0.008 14 0.66

Note: ψ is the probability of occupancy in the first season; γ is the probability of a colonization (a station that was unoccupied becoming occupied from one
season to the next); ε is the probability of extinction (an occupied station becoming unoccupied); and p is the detection probability given that a station is
occupied. Wi is the individual model, and k is the number of parameters. DI: disturbance intensity, at the most influential spatial scale. DC: percentage of living
trees that were deciduous species, at the most influential scale. Snow: daily values recorded within a 1-k radius buffer by National Snow and Ice Data Center
(NSIDC) Snow Data Assimilation System (SNODAS), averaged over all winters the stations were active (date range held constant, 15 January to 15 March).

Survey: the season (summer or winter) and year (2017–2020) of data collection.
Abbreviations: AIC, Akaike information criterion; Lat, The latitude of the camera station.
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F I GURE 2 Legend on next page.
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Effects of snow depth on marten and fisher
occupancy patterns

Snow depth positively affected both species and indicated
by higher colonization and lower extinction rates for
marten, and lower extinction rates for fisher, in areas of
deeper winter snow. Although the historic literature sug-
gests fisher are limited by deep snow (Krohn et al., 1995),
we found they were widely distributed, occupying over
70% of our survey stations regardless of either snow or
latitude predictors. The positive association between
snow depth and mustelid predators may be linked to
access to “subnivean” resources, both for prey and for
thermal shelter, during winter (Aubry et al., 2012). We
included only one factor of the many that can describe
snow quality, and research into new modeling techniques
including sinking depths and formation of icy crusts may
provide valuable insight (W. Jakubas, personal communi-
cation, 2021). Overall our results, which failed to detect a
negative impact on snow depth on fisher, mirror recent
trends documented in the northeast, suggesting that
warming winters and abundant prey such as snowshoe
hare may be expanding the areas available to fisher
(Sirén et al., 2021; Suffice et al., 2017, 2020). To what
extent this trend may continue is unclear, and it is also
possible that had our surveys extended farther north (into
Canada) we may have captured an inflection point where
winter conditions still limit fisher.

Intraguild effects on occupancy patterns

We documented co-occurrence between the two species
at 98 stations (50%)—these detected both marten and
fisher within the same season—while another 13 (6%)
detected both species, though only in different seasons.
We modeled marten occupancy based on the presence or
the absence of fisher to assess the potential risk of
intraguild predation (Manlick et al., 2017; McCann
et al., 2010), and we modeled fisher by including marten
occupancy and detection not because we suspect they act
as a dominant predator, but to examine whether habitat
preferred by marten was used more-than-chance by fisher.

Detection probability was higher for both species at sites
where the other was present, and even on individual sur-
vey occasions (24-h periods) when the other species was
also detected. This indicates a greater-than-random over-
lap in the spatial and temporal use of their habitat, as rep-
resented by the probability of daily detections in the same
location, and perhaps, indicating both species respond to
weather conditions favorable for hunting.

Because the inclusion of fisher occupancy probability
failed to outrank the habitat-only models for marten, we
do not find evidence that competition is a limiting factor
for the smaller species. Sévêque et al. (2020) recently pro-
posed a conceptual framework for three potential ways
human disturbance may influence niche partitioning
among carnivores: Disturbance can reduce total available
resources and thus increase competition; it can modify
resources and destabilize community dynamics; or it can
increase the abundance or diversity of resources, and so
facilitate greater niche partitioning. This third scenario
may be facilitating the overlap, both in space and time, we
observed between these species: They are taking advantage
of the heterogeneous landscape resulting from forest distur-
bance, rather than avoiding potential competitors as
expected in our second hypothesis, though these are specu-
lative explanations.

While we did not find that marten occurrence was
suppressed by the presence of fishers, it is possible that
either or both species are impacted by the risks posed by
other mammalian predators (Bull & Heater, 2001;
Feldhamer et al., 2003; Jensen & Humphries, 2019;
Moriarty et al., 2015; Wengert et al., 2014). Exploratory
analyses of our dataset indicate the potential for
intraguild dynamics driven by coyote (Canis latrans),
Canada lynx (Lynx canadensis), and bobcat (Lynx rufus)
and warrant further investigations.

Effects of forest composition on occupancy
patterns of marten and fisher

The species composition of trees as a predictor was
included in top-ranked models, and the presence of
deciduous trees was always positive, with higher

F I GURE 2 Predictions from the top-ranked multiseason occupancy models from 197 camera-trap survey stations deployed in Maine,

USA. (a) American marten (Martes americana) detection decreases over the survey period and with increasing forest disturbance. (b) Marten

initial occupancy is negatively affected by forest disturbance intensity and positively affected by the percentage of deciduous trees. (c) Marten

colonization between seasons is also negatively related to disturbance and positively related to increasing snow depth. (d) Marten extinction

is more likely with increased disturbance and less likely in areas of deeper snowpack. (e) Fisher (Pekania pennanti) detection varied with

each survey, with a consistent trend of higher detection probabilities in the winter seasons. (f) Fisher initial occupancy was around 50%

across sites, while (g) colonization was less likely in areas of large-scale disturbance and more likely in stands with more deciduous trees,

and (h) extinction was negatively related to disturbance and snow depth
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deciduous proportion linked to a higher probability of
initial occupancy (marten) and colonization (fisher).
This runs counter to some literature that indicates pref-
erence for conifers (Fuller et al., 2016; Powell
et al., 2003; Wright, 1999), and does not offer support

for our third hypothesis that alternative habitat prefer-
ences segregated marten and fisher in Maine. The pref-
erence of both mustelid species for stands with a
greater percentage of deciduous species is potentially
linked to the availability of suitable trees for denning

TAB L E 2 Ranking of two-species, multiseason occupancy models for American marten (Martes americana) and fisher (Pekania

pennanti)

Species Parameter Model formula ΔAIC AIC Wi k

Martes americana Initial occupancy ψF = ψf 0.00 14,157.64 0.791 26

ψF ≠ ψf 2.66 14,160.30 0.209 27

Colonization γFF = γFf = γfF = γff 0.00 14,157.64 0.466 26

γFF = γFf = γff ≠ γfF 2.23 14,159.87 0.153 27

γFF = γFf ≠ γfF = γff 2.45 14,160.09 0.137 27

γFF = γfF ≠ γFf = γff 2.66 14,160.30 0.123 27

γFF = γFf = γfF ≠ γff 2.67 14,160.31 0.122 27

Extinction εFF = εFf = εfF = εff 0.00 14,157.64 0.442 26

εFF = εFf ≠ εfF = εff 1.94 14,159.58 0.168 27

εFF = εfF ≠ εFf = εff 2.35 14,159.99 0.136 27

εFF = εFf = εfF ≠ εff 2.38 14,160.02 0.134 27

εFF = εfF = εff ≠ εFf 2.61 14,160.25 0.120 27

Detection p f = rFf ≠ rFF 0.00 14,147.33 0.628 27

p f ≠ rFF ≠ rFf 1.55 14,148.88 0.290 28

p f = rFf = rFf 10.31 14,157.64 0.001 26

p f ≠ rFF = rFf 12.96 14,160.29 0.001 27

Pekania pennanti Initial occupancy ψM = ψm 0.00 14,149.34 0.729 26

ψM ≠ ψm 1.98 14,151.32 0.271 27

Colonization γMM = γMm = γmM = γmm 0.00 14,149.34 0.304 26

γMM = γMm ≠ γmM = γmm 0.39 14,149.73 0.250 27

γMM = γMm = γmm ≠ γmM 0.66 14,150.00 0.218 27

γMM = γMm = γmM ≠ γmm 1.91 14,151.25 0.117 27

γMM = γmM ≠ γMm = γmm 2.00 14,151.34 0.112 27

Extinction εMM = εMm = εmM = εmm 0.00 14,149.34 0.401 26

εMM = εmM = εmm ≠ εMm 1.94 14,151.28 0.152 27

εMM = εMm ≠ εmM = εmm 1.97 14,151.31 0.150 27

εMM = εmM ≠ εMm = εmm 1.98 14,151.32 0.149 27

εMM = εMm = εmM ≠ εmm 2.00 14,151.34 0.148 27

Detection pm ≠ rMm ≠ rMM 0.00 14,114.97 0.838 28

pm ≠ rMM = rMm 3.29 14,118.26 0.162 27

pm = rMm ≠ rMM 17.42 14,132.39 0.000 27

pm = rMM = rMm 34.37 14,149.34 0.000 26

Note: Models for each species were parameterized to test how the occupancy and detection status of the other species would impact initial occupancy (ψ),
colonization (γ), extinction (ε), and detection (p). All parameters included the top-ranked habitat covariates from the single-speciesmodels previously run (reported

in Table 1). We testedψA versusψa (initial occupancy at a site where the other species was present vs. absent); the four possibilities of turnover between seasons,
where the superscripts indicate the status of the other species at the first survey and at the second survey (e.g., γaA is the probability of colonization if the other species
also colonizes the site); and for detection depending on p a (detection at a site not occupied by the other species) and rAa versus r aa (detection probability at a site
occupied by the other species, on an occasional when it is also detected vs. on an occasion when it is not detected). Formarten occupancymodels, F and f indicate the

status of fisher, and for fishermodels, M andm indicate the status ofmarten. See Appendix S2 for descriptions of the a priori models tested.
Abbreviation: AIC, Akaike information criterion.
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and reproduction (Payer & Harrison, 2003; Weir,
Harestad, & Wright, 2012). These stands may also offer
increased availability and access to prey (Davis, 2009;
Purcell et al., 2009; Yaeger, 2005), or the apparent role
of hardwood may be a legacy of forest age itself. Given
the commercial value for conifer trees, many conifer-
dominated stands in Maine are also regenerating from
harvest (McCaskill et al., 2016). However, we did not see
any correlation between our predictor variables for decidu-
ous and for forest disturbance, suggesting that the tree
composition itself may influence habitat use for marten
and fisher.

CONCLUSIONS

We found evidence that marten and fisher do respond
negatively to heavily disturbed forests in Maine.
Although both species were detected in a variety of for-
est types and ages, and across the entire spatial extent of
our study, our occupancy models were primarily driven
by the degree of forest disturbance. We note that inter-
pretation of dynamic multiseason depends on many fac-
tors, and in our effort to collect widely spatially
balanced data, we rotated through which areas were
surveyed in successive seasons. We feel this presents the
most holistic picture of both spatial and temporal
dynamics for marten and fisher in this region, but
acknowledge that no subset of data can capture all the
information. We did not find that deeper snow limited
the distribution of fishers, nor that fisher were an
important limiting factor for martens. Both species had
a positive relationship with the presence of deciduous
trees in forest stands. In northeastern forests, preserving
forest stands with only moderate timber harvest activi-
ties across both small and large scales, and ensuring that
hardwood trees in particular are retained, is likely favor-
able for marten and fisher population persistence. The
strength of our findings derives from the balanced natu-
ral experiment design of our study, which included rep-
licated survey stations across all levels of silvicultural
intensity. The history of forested habitat in Maine is rep-
resentative of much of North America, from extensive
clearing for agriculture and unsustainable timber extrac-
tion, followed by abandonment and young forest regen-
eration, and now experiencing the effects of climate
change, pest outbreaks, and modern timber harvest
practices (FPA, 2013). Further research designed specifi-
cally to unravel broader community interactions among
carnivores would be helpful to understand the full array
of factors driving marten and fisher distribution, and to
better predict how these dynamics may be impacted by
ongoing anthropogenic land use.
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