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The Critical Importance of Mature & Old Trees for Climate Resilience 

 

Available scientific evidence strongly suggests that logging mature trees and forests will often undermine 

climate resilience on federal forests. For a variety of reasons, mature and old trees tend to be well positioned 

to survive the disturbance-enhancing effects of climate change. These trees develop structural and 

physiological attributes with age that enable them to better resist disturbance-induced mortality (e.g., thicker 

bark, higher crowns, deeper roots, etc.).1 Evidence to suggest that mature trees are more vulnerable to 

increased mortality from climate change compared to younger trees remains limited.2 While forests are 

becoming increasingly vulnerable to various stressors, some theories about increasing forest resilience to 

climate change through logging remain largely speculative—particularly when applied to entire landscapes.3 

Moreover, logging mature trees and forests is well-known to significantly reduce or even eliminate many of 

the key natural values they provide.4 The relative resistance of mature trees and stands to climate change, as 

well as the well-established negative effects of logging them, point toward the critical importance of 

protecting mature and old trees from logging on federal lands. 

Research indicates that mature and old trees are often better equipped to survive natural disturbances, 

including those being exacerbated by climate change, than their younger counterparts. Big trees tend to have 

adaptive traits that allow them to survive fire, including thick bark, open crowns, comparatively high moisture 

content,5 and tall canopies that favorably modify the local microclimate and near-surface fuel conditions.6  

There is also no consensus from empirical studies that bigger, older trees are necessarily more vulnerable to 

drought7—and research suggests that such trees often have physiological mechanisms (e.g., larger root 

volume and depth) to help them better withstand drought.8 Additionally, mature and old-growth forests and 

trees can increase resilience to insect outbreaks because the complex structure of mature and old forests often 

supports a greater abundance and diversity of insectivores (even while some insects target the bigger trees of 

certain species).9 Contrary to the popular assertion that trees weaken as they grow old, recent research 

indicates that vulnerability to disturbances—particularly drought and/or insects—tends to be more a function 

of species than age.10  Striking examples of forest dieback do exist and are projected to continue or increase 

with climate change.11 But there is limited evidence that either mature forests or mature trees experience 

increased mortality as compared to younger cohorts.12 Striking examples of forest dieback do exist and are  

 

Figure 1. Annual mortality ratio (the annual mortality sound bole volume of trees ≥ 5 in. DBH in cubic feet on forest 

land/total live sound bole volume of trees ≥ 5 in. DBH in cubic feet on forest land) vs. stand age class. Data queried 

from FIA using EVALIDator. Legend shows USFS regions.  
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projected to continue or increase with climate change.13 But there is limited evidence that either mature 

forests or mature trees experience increased mortality as compared to younger cohorts.14 

Beyond the existing mortality literature, figure 1 above corroborates that there is no generalizable trend of 

increasing mortality with stand age. This analysis used annual mortality ratio data extracted from FIA using 

EVALIDator to demonstrate proportional mortality rather than total mortality without context for stand size 

and age distribution on USFS forests. The data indicate that proportionally significantly more trees in young 

stands (0-40 years) are dying. The data beyond 40 years indicate that there is no increasing trend in mortality 

with stand age. These mortality ratio data are further broken down in the appendix by four different primary 

disturbances related to climate change: insect, disease, fire, and drought damage. Similarly, while these 

breakdowns by disturbance certainly show sometimes significant mortality in older age classes, they do not 

show generalizable trends of increasing mortality with stand age.   

Research also suggests that older trees and forests are often relatively more resistant to heat and drought 

stress, potentially because of higher moisture retention capabilities, larger mycorrhizae networks, and/or 

more effective water transport systems.15 Consistent with this, other research has shown that the resilience of 

unmanaged stands to disturbance is typically greater than it is for managed ones.16 And where mature forests 

and trees do experience mortality from disturbance events, their dead and fallen biomass continue to provide 

a range of important natural values, including carbon storage and critical wildlife habitat.17  The presence of 

older trees and stands thus generally enhances the overall climate resilience of a given landscape, while also 

provisioning for other natural values like biodiversity and watershed integrity.18 

It is also important to acknowledge that the efficacy of active management regimes to confer resilience 

relative to the effects of climate change is often speculative. While broad climate trends have been established 

(e.g., the western U.S. becoming increasingly hot and dry), there is limited consensus on the specific nature of 

site-specific conditions that will occur under future warming scenarios.19 For example, while 

evapotranspiration is expected to increase and water yields to decrease on many national forests under some 

climate scenarios, the reverse is true under others.20  Also, notwithstanding substantial research activity, 

fundamental questions about the efficacy of some fuels treatments—such as thinning—remain to be 

answered.21  And the evidence that thinning can mitigate the effect of drought on growth response and 

recovery often focuses on species-specific responses among young trees and/or in younger stands, with little 

research on the efficacy of removing mature trees or the cascading effects of such mature tree removals on 

overall ecosystem health.22  More broadly, what might be seen as stagnated growth and recovery following a 

drought could actually be acclimation that will protect that tree or stand from future disturbance more 

effectively than more direct human interventions.23 Additionally, logging to increase resistance to insect-

Figure 2. (a) Total carbon on USFS forested lands by stand age class; (b) USFS forest area vs. 
stand age class (data queried from FIA using EVALIDator tool) 
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related mortality has shown mixed results (and, indeed, can undermine forest resilience along other axes).24 

While thinning stands early in a bark beetle outbreak can sometimes mitigate tree mortality, thinning does not 

stop a bark beetle outbreak once it has become an epidemic, and typically causes more harm than benefit.25 

Up until now there has been limited research on the success of active management intended to increase 

climate adaptation and resilience, and most predictions of benefit rely heavily on models, which have a 

number of significant limitations.26 

In contrast, the scientific evidence documenting the numerous important and irreplaceable values associated 

with mature forests and trees is well-established. The proportion of carbon stored (2/3rds) in mature and old-

growth forests and trees (i.e., those at least 80 years old) far exceeds the proportion of acres (1/3rd) that they 

occupy, across forest types, as shown in Figure 2 from FIA data. This finding stands without even including 

the significant carbon stores in large trees outside of mature and old-growth stands. Older trees hold 

significantly more carbon than younger trees, and their annual rate of carbon sequestration generally increases 

as they age.27 After a forest stand enters maturity, it often continues to accumulate carbon at a significantly 

high rate for extended periods of time.28 Large, dead trees can continue to store carbon for centuries, as they 

slowly decompose when left as snags or coarse woody debris (CWD) on the forest floor.29 Mature stands 

develop complex habitats as they age that support significant—and often imperiled—biodiversity.30 They also 

regulate hydrological cycles, often preventing water from quickly evaporating or running off the landscape.31 

Due to their increasing rarity and unique attributes, mature and old forest habitats are becoming even more 

important under changing climatic conditions. Relatively cool, moist areas can serve as climate refugia for 

species that are sensitive to temperature increases in a warming world.32 

Based on the foregoing discussion, we argue strongly for a cautious, carefully considered use of active 

management techniques when applied to mature or old-growth trees in dry, disturbance-adapted forests, and 

we note there is no ecological justification for active management of older trees and stands in more 

mesic/wetter forest types as this could actually constitute maladaptive management.33 This view is in part a 

reflection of the potential for active management of such forests and trees to produce unforeseen negative 

outcomes, as well as the need to preserve treatment options until we have better empirical evidence—rather 

than committing vast swaths of federal lands to unproven management theories with unknown long-range 

effects.34 The kind of conservative, measured approach advocated here is also based upon well-established 

facts about the numerous irreplaceable values of mature and old-growth forests and trees and their increasing 

rarity relative to historical conditions. 
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Appendix: Mortality ratios for USFS regions categorized by primary disturbance 

All data for the primary disturbance mortality ratio plots were queried from FIA using EVALIDator. All 

error bars for plots are from the standard error output from EVALIDator. While the increased mortality 

ratios for the 0-20 year stand age class may partially be due to background mortality of saplings/seedlings, we 

note of importance that there are no consistent trends showing that older stands are dying at higher rates. 

There do appear to be data gaps in the mortality ratio data, notably for disease and drought, but from what 

data are available, these data show that there is not a need to log mature and old-growth stands because of 

increased mortality. 
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