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Abstract
Cattle degrade streams by increasing sediment, nutrient, and fecal bacteria levels. Riparian fencing is one best management
practice that may protect water quality within many grazed lands. Here we surveyed the literature and summarized the
responses of sediment, nutrient, and fecal indicator bacteria levels to riparian exclosure fencing in cattle-grazed lands.
Overall, our review of relevant literature supports the role of riparian exclosure fencing in reducing the negative impact of
cattle on water quality, particularly for sediment and fecal indicator bacteria in temperate forest and temperate grassland
streams. Establishing buffer widths > 5–10 m appears to increase the likelihood of water quality improvements. Fencing may
also be effective at reducing pollutant inputs during stormflows. Our survey also identified critical spatial and thematic gaps
that future research programs should address. Despite cattle grazing being prevalent in 12 terrestrial biomes, our systematic
search of the empirical literature identified 26 relevant studies across only three biomes. Regions with the greatest cattle
populations remain largely unstudied. In addition, we identified inconsistencies in how studies reported information on
regional factors, cattle management, and other metrics related to study results. We provide a list of standard parameters for
future studies to consider reporting to improve cross-study comparisons of riparian fencing impacts. We also encourage
future studies in semi-arid and tropical regions where cattle grazing is common.
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Introduction

Agricultural land use and land management practices, par-
ticularly within riparian areas, have extensive impacts on
water quality (Osborne and Kovacic 1993; Wilcock et al.
2009; Chase et al. 2016). Although agricultural production
is responsible for significant sediment and nutrient pollution
in many streams (Pimentel et al. 1995; Allan et al. 1997;

Dodds and Whiles 2004), riparian buffers can decrease non-
point source pollutant loading into adjacent waterways
(Lowrance et al. 1997; Aguiar et al. 2015; Pearce and Yates
2017). Several reviews have highlighted widespread effec-
tiveness of riparian buffers in reducing agricultural con-
taminant loads from crop-producing fields (e.g., Mayer et al.
2007; Hoffmann et al. 2009; Zhang et al. 2010; Sweeney
and Newbold 2014). However, we know less about the
effectiveness of riparian buffers within cattle-grazed lands.
Livestock exclosure fencing may mitigate riparian tram-
pling, in-stream defecation, and streambed disturbance from
cattle and thus decrease direct impacts of grazing while also
enhancing riparian areas to decrease non-point source pol-
lutant loading from pastures. Fencing is more likely to be
used as a best management practice within grazed lands if
livestock exclusion from riparian areas consistently protects
water quality. However, if livestock exclusion does not
protect water quality, other management practices may need
to be pursued (Gillespie et al. 2007; Hadrich and Van
Winkle 2013). A systematic review on the impact of
riparian buffers in grazed watersheds can expand our
understanding of the effectiveness of livestock exclosure
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fencing on water quality and identify gaps in current
research.

Unrestricted cattle grazing often results in significant
alterations to stream channels and riparian areas (Butler
2013), which generally lead to decreased water quality
(Trimble 1994; Muller et al. 2016; Malan et al. 2018).
Increases in sediment, nutrient (nitrogen and phosphorus),
and fecal indicator bacteria (collectively referred to as
“SNF” hereafter) in streams are of high concern due to
negative consequences to human use as well as to aquatic
communities. Cattle can increase SNF levels within streams
by excreting fecal matter and urea directly into the water
column when loitering within streams (Line et al. 2000;
Collins and Rutherford 2004), re-suspending sediment
previously deposited on the streambed (Grudzinski et al.
2018), trampling and eroding stream banks (Trimble and
Mendel 1995), and increasing runoff inputs from riparian
and surrounding grazed watershed areas (Hooda et al. 2000;
Butler et al. 2008; Lucci et al. 2010). Cattle grazing within
riparian zones, in particular, increases soil compaction and
bare ground coverage, thereby increasing SNF availability
and transport into streams (Grudzinski et al. 2016; Miller
et al. 2016). Increased SNF concentrations can damage
streambed habitat used by aquatic biota (Larsen et al. 2011;
Sturt et al. 2011), promote eutrophication and increase algal
biomass (Dodds et al. 2002; Scrimgeour et al. 2013), alter
light availability and dissolved oxygen concentrations
(Bierman et al. 1994; Stringfellow et al. 2009; Dymond
et al. 2017), and decrease biotic integrity and downstream
water quality (Belsky et al. 1999; Bowman et al. 2007). In
addition to extensive negative environmental impacts, water
contaminated with manure that is consumed by livestock
can lead to detrimental health impacts and may decrease
overall weight gain and calf survival, thereby decreasing
potential production profits (Saker et al. 1999; Willms et al.
2002; Bremner et al. 2016). Best management practices are
often encouraged and sometimes regulated in grazed lands
to minimize degradation of water quality and to increase
herd health.

Fencing is a best management practice for keeping cattle
out of riparian and stream environments while allowing
continued grazing on the landscape outside of fenced areas
(e.g., Flores-Lopez et al. 2010; Sunohara et al. 2012;
Bragina et al. 2017). Although excluding cattle from
streams can result in increased cattle weight and milk pro-
duction (Muller et al. 2016), maintenance costs and
unpredictable environmental benefits can discourage
implementation of exclosure fencing (Bryant et al. 2008).
Previous research on the effectiveness of riparian fencing
has produced contradictory results (Miller et al. 2010),
thereby potentially decreasing land managers’ confidence
that riparian fencing is a prudent investment.

Sources, processes, and pathways that are conducive to
SNF stream inputs vary by parameter (Sunohara et al.
2012). For example, a high proportion of total nitrogen is
typically introduced into streams in soluble form (e.g.,
nitrate), whereas a majority of total phosphorus is typically
introduced in particulate form (Logan 1982; Carpenter et al.
1998). Thus, a greater proportion of nitrogen, relative to
phosphorus, enters streams via subsurface groundwater
flow, whereas phosphorus inputs are increasingly associated
with runoff inputs (e.g., Vanni et al. 2001). Surface pro-
cesses (e.g., overland flow and stream bank-bed trampling)
increase fecal indicator bacteria (e.g., Escherichia coli or
fecal coliform) and sediment transport within streams.
Sediment pollution may also bolster bacterial contamination
as sediments increase bacteria survival and transport
(Bragina et al. 2017). The effects of riparian fencing on
water quality could vary by parameter and this may account
for some of the discrepancy among studies.

Numerous environmental and management factors may
mediate the effectiveness of riparian fencing, including but
not limited to; soils, vegetation, climate dynamics, topo-
graphy, and land use history (Shukla et al. 2011). Thus,
influences of riparian fencing from one region may not be
indicative of impacts within others (Sunorhara et al. 2012).
However, a management practice (e.g., utilization of ripar-
ian buffers and/or decreases in stocking rates) could still be
effective across regions.

Fencing benefits may also vary between baseflow and
stormflow. For example, during storms, riparian fencing
may be less effective at mitigating cattle-grazing impacts, as
overland flow from outside of fenced areas may transport
water containing high SNF concentrations into streams.
Thus, hydrograph timing may influence fencing impacts
and we consider it here with respect to the efficacy of
riparian protection from grazer impacts.

A comprehensive review of previous research on the
effects of cattle exclosure fencing in riparian areas is needed
by land managers and conservation scientists seeking to
protect water quality in grazed lands. In this review, we
survey the literature to summarize the responses of sedi-
ment, nutrient, and fecal indicator bacteria levels to riparian
exclosure fencing in cattle-grazed lands. Water quality
responses are also evaluated by hydrograph timing (i.e.,
baseflow vs stormflow) and land management practices
(e.g., riparian buffer width and stocking rate). We also
identify spatial and thematic gaps that can be addressed in
future research. We hypothesized:

(1) Riparian fencing would be most effective at reducing
sediment, phosphorus, and fecal bacteria levels.

(2) Riparian fencing would be most effective at improv-
ing water quality at baseflow.
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Methods

We completed a Web of Science search in April 2019 to
identify peer-reviewed studies that assessed the effective-
ness of riparian exclosure fencing within grazed lands on
stream sediment, nutrient, and fecal indicator bacteria (e.g.,
E. coli) levels. We structured the Web of Science search as
follows:

cattle or cow or ungulate or livestock or pastoral or
grazing AND

creek or stream or river or riparian or waterway AND

fenc* or exclosure or excluded or enclosure AND

nitr* or phos* or nutrient * or sediment* or water
quality or E. coli or fecal or coliform

The “*” is used to include all word endings following
each prefix, for example nitr* will retrieve “nitrogen,
nitrate, and/or nitrite”. The search returned 478 studies
ranging in publication date from 1927 to 2019. First, we
read the title and abstract of each search result to identify
potentially relevant studies. We then read all potentially
relevant studies and eliminated papers where research
objectives or methodologies did not address the effective-
ness of riparian fencing on water quality.

We included studies that examined fencing impacts on
SNF levels in the water column as well as from the
streambed (e.g., Larson et al. 2016; Chase et al. 2017).
Studies which included extensive stream restoration were
not included in the review, as the impact of fencing on
water quality could not be isolated. However, we did
include studies that in addition to riparian fencing, replanted
degraded riparian zones, or stabilized stream banks in local
areas degraded by extensive trampling, as these changes
should occur naturally upon cattle exclusion. Lastly, we
also included studies that provided off-stream water sources
or access points to streams, as this is a necessary manage-
ment practice when exclosure fencing is applied. The
location of each study was mapped by state in the United
States, province in Canada, and country in Europe. Study
biomes were grouped according to Olson et al. (2001).
Details on each study including location, grazing manage-
ment, environmental characteristics, and sampling design
are summarized in Table 1 and Online Resources 1–3.

We grouped responses of specific water quality para-
meters (e.g., nitrate and fecal coliform) across the studies
into four broader parameter categories: sediment, phos-
phorus, nitrogen, and fecal indicator bacteria. The Sediment
category contained total suspended sediment and deposited
streambed sediment. The Phosphorus category included,Ta
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total phosphorus, particulate phosphorus, soluble reactive
phosphorus, and total phosphorus deposited within the
streambed. The Nitrogen category included, total nitrogen,
nitrate, nitrite, ammonium, ammonia, and total Kjeldahl
nitrogen. The Fecal indicator bacteria category included,
E. coli, fecal coliform, fecal enterococci, fecal strep, and
total coliforms (Table 2). Combining parameters into
broader categories may mask some water quality responses
to fencing (e.g., potential differences in particulate vs. dis-
solved nutrient responses). However, given the limited
number of studies for some specific parameters, we could
not draw conclusions at finer levels.

We classified fencing impact on each specific parameter
from each study as generating either a “majority improve-
ment”, “minority improvement”, or “no improvement”
based on the frequency of statistically significant improve-
ments. We classified the result as generating a “majority
improvement” if a majority (>50%) of sites and/or temporal
periods in a study showed significant improvements for a
water quality parameter. We classified fencing as generating
a “minority improvement” if statistical tests showed a sig-
nificant improvement in half or less of the analyses (<50 but
>0%). We determined that fencing resulted in “no
improvement” if no statistically significant differences were
detected due to fencing (0% of statistical tests detected
significant water quality improvements). Often, authors
provided a summary statistic for each water quality para-
meter, and thus classifying study results was straightfor-
ward. Some studies contained separate statistical tests
between sites (upstream vs. downstream or for each stream)
and times (seasons or years). Two studies (Brenner et al.
1996; Kay et al. 2018) did not use statistics to assess fen-
cing impacts. For these studies, the authors reported the
amount of change in pollutant levels before and after fen-
cing installation. We based our classification on the authors’
description and conclusion of fencing impacts.

In addition to the categorical classification, we also cal-
culated response ratios (RRs) (Hedges et al. 1999). RRs
allow for comparisons of change in water quality para-
meters between studies (e.g., Ecke et al. 2017) and have
previously been used to examine impacts of agricultural
practices (e.g., Zuber and Villamil 2016). We calculated
RRs from mean values that studies reported in tables or
extracted values with Engauge Digitizer software (https://
markummitchell.github.io/engauge-digitizer/) when pub-
lications only provided data in figures. RRs for each water
quality parameter were calculated as: ln(mean treatment
value/mean control value) (Hedges et al. 1999). In order to
interpret all the endpoints uniformly, we needed to change
the direction in some inequalities (from RR > 0 to RR < 0)
so that a negative response ratio indicates an improvement
in water quality (decrease in undesirable conditions in
fenced treatment relative to grazed treatment). For thisTa
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adjustment, we multiplied the RR by −1. Study results were
classified into the qualitative categories and had RRs cal-
culated, as some studies did not provide sufficient data to
calculate RRs. The categorical classification allows for an
examination in frequency of improvements, while RRs
describe the degree of change in a water quality parameter.
We examined statistical relationships between potential
covariates (e.g., buffer width) and water quality responses
when enough data was available. We calculated a midpoint
value when authors reported a range for a covariate (e.g.,
40–80 m buffer width in Miller et al. 2010). Spearman’s
rank correlation for non-parametric data was used to assess
relationships between water quality variables and covariates
as the data were not normally distributed. Due to limited
reporting of many covariates (e.g., cattle breed, manure
application, presence–absence of concentrated animal
feeding operation) or uniformity across studies (e.g., graz-
ing season), the relationships with covariates on impact to
water quality could not be determined beyond stocking rates
and riparian buffer widths.

Results

Twenty-six of the 478 studies identified in the literature
search were relevant to this review (Table 1). Fencing
impacts were empirically assessed through a variety of
study designs, including, pre–post treatment comparisons
(e.g., Line et al. 2000), upstream to downstream treatment
comparisons (e.g., Miller et al. 2010), and whole watershed
comparisons (e.g., Larson et al. 2016). Studies also varied
widely in sampling frequency and duration. Some studies
sampled multiple times per week (e.g., Kay et al. 2007),
while others sampled several times per year (e.g., Zaimes
and Schultz 2011a). Most studies sampled water between
weekly and monthly time scales. The duration of studies
varied from <1 year (e.g., Herbst et al. 2012) to over a
decade (e.g., Owens et al. 1996).

Twenty of the 26 studies examined impacts of fencing on
water quality (i.e., within the water column) and six studies
measured fencing impacts on parameters related to
streambed characteristics (Table 1). Of the 26 studies, the
impact of fencing on sediment was examined in 14 studies,
phosphorus in 16 studies, nitrogen in 11 studies, and fecal
indicator bacteria in 12 studies (Table 2). Fifteen studies
examined impacts of fencing on more than one of these
parameter categories and four studies examined impacts on
all four parameter categories. In total, our review examined
fencing impacts on 88 water quality responses (mean of 3.4
parameters per study) (Table 2).

From the 26 reviewed studies, 22 (85%) found that
fencing was associated with either a “majority improve-
ment” or “minority improvement” in at least one water

quality parameter (Table 2). Fencing decreased sediment in
11 of 14 (79%) analyses (8 of 14 majority improvement),
phosphorus in 14 of 26 (54%) analyses (9 of 26 majority
improvement), nitrogen in 9 of 25 (36%) analyses (6 of 25
majority improvement), and fecal indicator bacteria in 17 of
23 (74%) analyses (15 of 23 majority improvement) (Fig. 1).
The largest responses in water quality to riparian exclosure
fencing occurred for fecal bacteria (mean RR=−1.25) and
sediment parameters (mean RR=−0.84), while nutrients
experienced the smallest responses (mean RRs ≥−0.11)
(Fig. 2).

Three of the 12 terrestrial biomes with a mean population
density of >1 cattle/km2 (Fig. 3) had studies related to the

Fig. 1 Summary of study findings grouped by parameter type

Fig. 2 Response ratios of water quality parameters to riparian exclo-
sure fencing from studies that provided sufficient data for calculation.
Lines inside of each box represent median values, outside box
boundaries represent 25 and 75th percentiles. Error bars represent 10
and 90th percentiles. Points outside of errors bars represent 5 and 95th
percentiles
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impact of fencing, including temperate broadleaf and mixed
forests (17 studies), temperate grasslands, savannas and
shrublands (seven studies), and temperate conifer forests
(two studies). Only five studies have been completed out-
side of North America and these were in Western Europe
(France, United Kingdom (two), Denmark, and Ireland)
(Fig. 4 and Table 1). Iowa and Alberta had the most pub-
lished studies with three each (Fig. 4).

Eight of 20 studies sampled the water column during
both baseflow and stormflow conditions. Four studies
compared the impacts of fencing during baseflow and
stormflow conditions with separate statistical analyses (Kay
et al. 2007, 2018; Olson et al. 2011; Sunohara et al. 2012),

while four did not separate analyses by hydrograph timing
(Line et al. 2000; Laubel et al. 2003; Flores-Lopez et al.
2010; Shukla et al. 2011). Between the four studies that
separated statistical analyses by hydrograph timing, 21
water quality responses to fencing were tested (Table 3).
Ten (48%) of these experienced a “majority improvement”
during stormflows (phosphorus n= 3; fecal n= 7) and none
had “minority improvements” (Table 3). The four studies
that did not separate statistical analyses by hydrograph
timing, examined 10 water quality responses and found a
“majority improvement” for six (60%; sediment n= 2;
phosphorus n= 3; nitrogen n= 1), a “minority improve-
ment” for two (20%; phosphorus n= 1; nitrogen n= 1), and

Fig. 3 Mean cattle population
density within each biome.
Biome boundaries were
determined following Olson
et al. (2001). Global cattle
density data were obtained from
the Food and Agricultural
Organization of the United
Nations (FAO 2014). Cattle
densities were calculated by
biome within ArcGIS
(version 13.3)

Fig. 4 Spatial distribution of reviewed studies. No studies were identified outside of North America and Western Europe
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“no improvement” for two (20%; nitrogen n= 2) (Table 4).
Between the eight studies and 31 analyses that contained
stormflow sampling, 18 (58%) water quality responses were
found to be improved due to fencing. When we exclude
nitrogen parameters, improvements occurred in 16 of 22
(73%) remaining water quality responses. Fifteen of these
16 (94%) were “majority improvements”.

There are many potential environmental and manage-
ment related covariates that could influence riparian exclo-
sure fencing impacts on water quality (Table 1, Online
Resources 1–3). Studies were inconsistent in reporting some
of these characteristics. For example, buffer widths which
can be critical for stream health (e.g., Mayer and Canfiled
2008; Yongping et al. 2009), stocking rates (number of
cattle head × animal unit equivalents × months/ha; USDA
2009), and sufficient data to calculate RRs were all only
reported within five of 26 studies (Miller et al. 2010;
Sunohara et al. 2012; Jackson et al. 2015; Larson et al.
2016; Georgakakos et al. 2018). We examined the rela-
tionship between RRs across all parameters and riparian
buffer width (n= 31) and stocking rates (n= 34). Overall, a
greater riparian width appears to improve water quality
(rs=−0.71, p < 0.0001) and buffer effectiveness had a
marked increase at some sites, but not all, when buffer
widths were between 5 and 10 m. With the stepped increase
in RR was a concomitant increase in RR variation (Fig. 5).

There was no relationship between stocking rate and water
quality improvement (rs=−0.26, p= 0.13).

Discussion

Most studies (85%) reported reductions of SNF levels in
streams due to fencing (Table 2). Establishing buffer widths
> 5–10 m appears to increase the likelihood of water quality
improvements (Fig. 5). This range of widths is consistent
with previous studies documenting buffer widths effective
at removal of suspended sediment, fecal bacteria, and
nutrients (see review by Fischer and Fischenich 2000,
Zhang et al. 2010). With increased buffer widths, the area
over which environmental heterogeneity (e.g., slope and
vegetation cover) increases and may explain why there was
a stepped increase in variation of water quality

Table 3 Comparison of study findings between baseflow and stormflow conditions with statistical analyses separated by hydrograph timing

Significant impact grouped by hydrograph timing

Study Baseflow Stormflow Both Neither

Kay et al. (2007) Total coliforms, presumptive E. coli,
presumptive enterococci

Kay et al. (2018) E. coli, intestinal enterococci

Olson et al. (2011) TN TP PP NO3, NH4, E. coli,
TDP, TSS

Sunohara et al.
(2012)

TP, Fecal coliforms,
E. coli

DRP, Total coliforms,
Enterococcus spp.

NH4, NO3

Within these four studies, all improvements were “majority improvements”

Table 4 Comparison of findings from studies with combined statistical
analyses for baseflow and stormflow conditions

Study Sediment Phosphorus Nitrogen

Flores-Lopez et al.
(2010)

SRP= ** NO3=X

Laubel et al. (2003) TSS= ** TP= *

Line et al. (2000) TSS= ** TP= ** NO3=X; TKN= **

Shukla et al. (2011) TP= ** TN= *

No data were available for fecal indicator bacteria. “**” signifies
“majority improvement,” “*” signifies “minority improvement,” and
“X” signifies “no improvement”

Fig. 5 Relationship between buffer widths and ln response ratios. The
open symbols are outliers from a study with a disproportionally large
buffer width (Miller et al. 2010). The relationship is statistically sig-
nificant (rs=−0.71, p < 0.0001) when we excluded outliers. The
excluded observations had exceptionally high influence and leverage
(diagnostic statistics, SAS 9.0 PROC REG) on the relationship
because of high riparian buffer width (60 m) relative to the other
studies (1–15 m)
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improvements between 5 and 10 m. The impact of fencing
varies by parameter category. Overall, fencing was most
effective at decreasing fecal indicator bacteria and sediment
parameters followed by phosphorus and nitrogen para-
meters (Figs 1 and 2). In some study sites, fencing reduced
sediment (Zaimes and Schultz 2011a; Georgakakos et al.
2018) and fecal indicator bacteria by 90% (Bremner et al.
2016; Hagedorn et al. 1999; Larson et al. 2016) and > 50%
lower levels were common (Owens et al. 1996; Line et al.
2000; Line 2003; Kay et al. 2007). These patterns were not
surprising as fencing cattle out of streams will decrease
direct defecation and associated fecal inputs into the water
column (Kauffman and Krueger 1984; Sherer et al. 1992;
Davies-Colley et al. 2004). Eliminating stream bank tram-
pling decreases bank erosion, while mitigating streambed
trampling decreases sediment resuspension and downstream
transport (Line 2003; Wilson and Everard 2018).

Overall, studies reported less phosphorus reduction, but
several studies reported 50–80% lower phosphorus con-
centrations in response to fencing (e.g., Brenner et al. 1996;
Line et al. 2000; Georgakakos et al. 2018; Zaimes et al.
2008). Nitrogen levels benefited the least frequently from
fencing and levels were generally only 5–30% lower in
studies that identified statistically significant differences
(e.g., Olson et al. 2011; Sunohara et al. 2012; Larson et al.
2016). Mayer et al. (2007) found that riparian buffers over
50 m were consistently more effective at removing nitrogen
than buffers 0–25 m. We suggest that nutrient concentra-
tions experienced lower frequencies of water quality
improvement, in part, due to nitrogen’s high solubility and
thus greater potential for groundwater inputs or transport
during surface runoff (Pitt et al. 1999; Rech et al. 2018).
Cattle may alter soil microbial processes leading to losses of
gaseous nitrogen forms (N2O and N2), but this could vary
widely depending upon soil moisture, carbon availability,
and soil texture, thus we are not able to further speculate on
this. In general, studies found more frequent “no improve-
ment” responses for dissolved nutrients (nitrate and soluble
phosphorus) than for total or particulate nutrients (e.g., Line
et al. 2000; Olson et al. 2011; Larson et al. 2016; Georga-
kakos et al. 2018).

We cannot conclude that similar fencing impacts will
carry over into biomes that are not well studied. The three
temperate biomes with peer-reviewed research on riparian
exclosure fencing all contain moderate temperatures and
precipitation compared to some other biomes that support
extensive grazed landscapes. Impacts of fencing may vary
in semi-arid and/or tropical environments due to different
hydrologic regimes, runoff patterns, soils and underlying
geology, vegetation composition, and riparian-grazing
pressure (Dodds et al. 2015). For example, fencing may
have greater implications in semi-arid environments, where
natural shading is rare outside of riparian zones (e.g., open

rangelands in the United States), if cattle are increasingly
drawn to stream environments especially during drought
conditions (e.g., Allred et al. 2013). In tropical environ-
ments with higher discharge and groundwater exchange,
impacts of fencing may also vary. Impacts may potentially
be greater as fencing may effectively filter inputs associated
with frequent runoff events, or to the contrary, fencing may
generate less meaningful benefits if discharge sufficiently
dilutes grazing impacts (e.g., during in-stream trampling
and defecation). Variable hydrologic regimes, such as that
occurring in seasonally flooded tropical regions (e.g., the
Pantanal in South America), may reset riparian areas
between grazing seasons thereby creating unique manage-
ment dynamics.

Although this review reveals that fencing is promising
for improving water quality (Figs 1 and 2), there are many
critical spatial gaps where we could find no studies on
regions with extensive cattle populations. For example,
over half of all studies were completed within the United
States (Table 1 and Fig. 4), which represents only 7% of
the global cattle population (Robinson et al. 2014; USDA
2018). None of the studies identified by our review were
completed in Texas, Nebraska, or Kansas (Fig. 4), the
three states with the highest number of cattle within the
United States (USDA 2018). No studies examined the
efficacy of riparian fencing to mitigate cattle-grazing
impacts in Asia or in the southern hemisphere (i.e.,
South America, Australia, or Africa), which include the
three countries with the highest cattle populations (Brazil,
India, and China) and are mostly grazed by zebu rather
than taurine cattle breeds. Future studies may be particu-
larly beneficial if they are completed in the tropics, which
contain three of the four biomes with the highest cattle
populations (Fig. 3). In these biomes, moderate to high
cattle populations are widespread in the South American,
African, and Asian Tropical and Subtropical Moist
Broadleaf Forests; South American and Indian Tropical
and Subtropical Dry Broadleaf Forests; and South Amer-
ican and African Temperate Grassland, Savanna, and
Shrublands. Outside of the tropics, extensive cattle popu-
lations also inhabit India’s Desert and Xeric Shrubland
biome (Fig. 6). Stream responses to riparian fencing also
may vary around the world due to unique cattle breeds
(i.e., species), each with different physiological require-
ments, thermal responses, and behavioral characteristics
(Zhang et al. 2012; Melletti and Burton 2014; Garrick and
Ruvinsky 2015; Gantner et al. 2017). The reviewed studies
rarely reported cattle breeds (Online resource 2). Since the
biomes and cattle breeds studied thus far do not overlap
with the biomes and cattle breeds in many of the under-
studied regions, it is currently not possible to determine if
riparian exclosure fencing would be more or less effective
relative to regions examined in this review.
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Fencing benefits are not always confined to baseflow
conditions (Tables 3 and 4). Over half (58%) of the
stormflow water quality responses improved with fencing
and these were mostly (89%) “majority improvements”
(Tables 3 and 4). The four studies that separated baseflow
and stormflow analyses found that over half (62%) of the
water quality responses were comparably lower with fen-
cing under both baseflow and stormflow conditions (Table
3). As with baseflow, nitrogen parameters appear to benefit
the least frequently during storm events (Tables 3 and 4).
Although it is promising to see that fencing can benefit
water quality during storms, currently there are an insuffi-
cient number of studies for us to determine the generality of
positive impacts. We identify this as a major gap in the
literature. It is important to increase our understanding of
fencing impacts during storm events as climate change is
altering the timing and amount of precipitation in some
heavily grazed regions (e.g., the South American mid-lati-
tudes; African tropics; Australia; India) and this could
intensify runoff inputs (IPCC 2014).

Fencing alone may be insufficient for meaningful water
quality improvements in watersheds with extensive pollu-
tant inputs upstream of fenced pastures. Several of the
studies examined in this review had study reaches that
drained landuses other than grazed land (e.g., row crop
agriculture; Hagedorn et al. 1999; Laubel et al. 2003),
which can produce higher SNF pollution compared to
grazed landscapes (e.g., Dodds and Whiles 2004). Con-
centrated animal feeding operations (CAFOs) commonly
use manure spreading on pasture as a management practice
which can impact water quality. Although in some studies

located within headwater streams it was obvious that
CAFOs were not present, there may have been CAFOs
upstream of treatment areas in studies conducted in larger
watersheds. If CAFOs are present and manure spreading is
occurring, the effectiveness of riparian exclosure fencing
may be negligible in improving water quality. If meaningful
improvements in water quality adjacent to and downstream
of fenced pastures are a goal, upstream land use impacts,
including the presence of CAFOs, should be evaluated prior
to implementation of fencing. In general, when only a small
fraction of stream length is fenced within a predominantly
cattle-grazed watersheds, watershed level benefits from
fencing may be minimal.

Most studies included in this review were short-term and
studies which had a before–after study design generally
began collecting the “after” samples immediately following
cattle exclusion. Only Muller et al. (2016), Georgakakos
et al. (2018), and Kay et al. (2018) allowed for a transitional
period of >1 year. An instantaneous impact of riparian
fencing, if effectively installed, is the elimination of cattle
from stream channels (Larson et al. 2016), which should
reduce several grazing impacts including, resuspension of
streambed material, direct bank erosion from trampling, and
in-stream defecation. However, riparian environments may
take extended time to respond and recover after imple-
menting fencing (Belsky et al. 1999). For example, the
development of mature riparian vegetation can take up to
several decades (Linhart and Whelan 1980). As riparian
zones mature and subsurface root networks become more
established following cattle exclusion, greater decreases in
sediment, nutrient, and fecal bacteria inputs are expected.

Fig. 6 Global cattle population per kilometer square. Data obtained from the Food and Agricultural Organization of the United Nations
(FAO 2014)
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During storms, additional benefits following longer riparian
transition periods may occur if increased biomass creates a
more efficient filter during runoff. Long-term studies are
needed with respect to riparian fencing. Although some-
times stream restoration efforts attempt “quick-fixes”,
restoring some streams and their riparian areas may take
decades or longer (Wohl et al. 2005). In addition, very few
studies monitor long-term ecosystem response following
restoration (Bernhardt et al. 2005), thus current studies may
not be capturing the full long-term benefits of riparian
exclosure fencing. With a better understanding of long-term
ecosystem benefits from these restoration efforts, returns on
financial investments can be better assessed (Palmer and
Filoso 2009).

Designing Future Studies on Riparian Fencing

Many variables can interact with riparian exclosure fen-
cing and impact water quality. In this study, we were
unable to evaluate the impact of many potential covariates
due to inconsistent reporting of study designs and statis-
tical outputs. The lack of studies in most biomes with
cattle-grazing calls for coordinated research across biomes
to determine if and how water quality will respond to
riparian exclosure fencing at baseflow and stormflow
conditions within other biomes. In addition, some studies
only provided sufficient statistical details when parameters
had a significant response to riparian exclosure fencing
(see RRs in Table 2). To improve our understanding of
interactions between environmental and management
related drivers of water quality, we recommend that future
studies include the following details so that cross-study
comparisons may be more effectively made: (1) fencing
buffer widths, (2) stocking rates, (3) details on when cattle
enter and exit pastures (i.e., grazing seasons), (4) addi-
tional cattle management details including potential
decreases in cattle stocking following installation of
riparian exclosure fencing, (5) type of cattle operation
(beef, dairy or both), (6) information on geology, (7) soils,
(8) vegetation (native or cultivated), (9) upstream land use
(including presence of CAFOs), (10) cattle breeds, (11) if
and how much manure or fertilizer is applied to pastures,
and (12) coordinates for sampling locations. We do not
contend that future study designs need to incorporate all of
these factors into their designs, it would require an
impossible number of study units and organization for all
these factors. However, by including such information in
field studies, future meta-analyses can begin to identify the
key factors that interact most strongly with riparian fencing
to affect water quality. Such findings will allow research-
ers to design field experiments that incorporate key factors
to further advance scientific understanding. With compre-
hensive study descriptions in future research, the relative

impacts and interactions of numerous environmental and
management driven variables may be determined.

Conclusions

We summarized 26 studies that examined the impact of
riparian exclosure fencing on water column or streambed
sediment, nutrient, and fecal indicator bacteria levels.
Across the three studied temperate biomes, represented by
the available literature, most studies identified positive
impacts generated by riparian exclosure fencing. Exclosure
fencing appears to be particularly effective in reducing
sediment and fecal bacteria. We also note that riparian
fencing might protect sensitive riparian plant species and
vital wildlife habitat in addition to water quality effects. Our
review also revealed critical gaps in research on the effec-
tiveness or riparian fencing. In particular, in the United
States and on a global scale, areas with the greatest cattle
populations remain largely unstudied. With research con-
ducted in so few biomes, it is currently not feasible to
compare fencing impacts across biomes. Response of other
grazing livestock (e.g., sheep, goats, water buffalo, and
bison) and wildlife to riparian fencing is also a large
unknown. Future studies conducted over decadal time
scales or at previously studied sites may determine if fen-
cing benefits are compounded with time after riparian zones
largely recover from cattle grazing. We also currently, lack
data to determine how riparian fencing varies across spatial
scales (e.g., local vs. watershed).

In sum, riparian fencing practice appears to have great
potential for allowing successful livestock production while
decreasing negative environmental impacts. It is important
to note that riparian exclosure fencing is not the only stream
restoration approach that can be implemented in grazed
lands to improve environmental condition. Patch-burn
grazing, shade structures, alternative water sources, and
decreases in stocking rates can be utilized alongside riparian
exclosure fencing to further reduce stream degradation.
Additional studies are needed to evaluate the economic
value added from improved water quality and producer
costs of installing riparian exclosure fencing.
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