Number	Exhibit Description
1	Brown et al., (2018), "Timber harvest as the predominant disturbance regime in
	northeastern U.S. forests: effects of harvest intensification."
2	Duveneck and Thompson (2019), "Social and biophysical determinants of future forest
	conditions in New England, Effects of a modern land-use regime."
3	Keeton et al., (2011), "Late-Successional Biomass Development in Northern Hardwood-
	Conifer Forests of the Northeastern United States."
4	Lorimer and White (2003), "Scale and frequency of natural disturbances in the
	northeastern US: implications for early successional forest habitats and regional age
	distributions."
5	Sterman et al. (2018), "Does replacing coal with wood lower CO2 emissions? Dynamic
	lifecycle analysis of wood bioenergy."
6	Sterman et al. (2022), "Does wood bioenergy help or harm the climate?"
7	Booth, Mary S. (April 2, 2014, Partnership for Policy Integrity) "Trees, Trash, and
	Toxics: How Biomass Energy Has Become the New Coal."
8	Haberl et al. (2012), "Correcting a fundamental error in greenhouse gas accounting
	related to bioenergy."
9	Gunn et al. (2018), "Scientific evidence does not support the carbon neutrality of woody
	biomass energy."
10	Searchinger et al. (2009), "Fixing a critical climate accounting error."
11	Buchholz et al. (2017), "Greenhouse gas emissions of local wood pellet heat from
	northeastern US forests."
12	Zaino et al. (2018), "Vermont Conservation Design – Natural Community and Habitat
	Technical Report."
13	Rushing et al (2016), "Quantifying drivers of population dynamics for a migratory bird
	throughout the annual cycle."
14	Ducey et al (2013), "Late-Successional and Old-Growth Forests in the Northeastern
	United States: Structure, Dynamics, and Prospects for Restoration.
15	Ceballos et al. (2020). "Vertebrates on the Brink as Indicates of Biological Annihilation
	and the Sixth Mass Extinction."
16	"Climate Change 2021: The Physical Science Basis" (Working Group I contribution to
	the Sixth Assessment Report of the Intergovernmental Panel on Climate Change)
17	Dreiss and Malcom (2020), "Getting to 30x30: Guidelines for Decision-Makers."
18	Dinerstein et al., (2019), "A Global Deal for Nature: Guiding Principles, Milestones, and
	Targets."
19	Vermont Climate Assessment. 2021. University of Vermont, UVM Gund Institute for
	Environment, TNC in Vermont.
20	IPCC Climate Change 2022 Impacts, Adaptations, and Vulnerability Summary for
	Policymakers.
21	Glasgow Leaders' Declaration on Forests and Land Use
22	Erb et al. (2018), "Unexpectedly Large Impact of Forest Management and Grazing on
	Global Vegetation Biomass."
23	Harris et al. (2016), "Attribution of Net Carbon Change by Disturbance Type Across
	Forest Lands of t,he Coterminous United States."

Exhibits – Standing Trees and Center for Biological Diversity Scoping Comment re TGIRP

24	N/A
25	Keith et al. (2009), "Re-Evaluation of Forest Biomass Carbon Stocks and Lessons from
	the World's Most Carbon-Dense Forests."
26	Luyssaert et al. (2008), "Old-Growth Forests as Global Carbon Sinks."
27	Masino et al. (2021), "Older Eastern White Pine Trees and Stands Sequester Carbon for
	Many Decades and Maximize Cumulative Carbon."
28	Stephenson et al. (2014), "Rate of Tree Carbon Accumulation Increases Continuously with Tree Size."
29	N/A
30	Moomaw et al., (2019), "Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good."
31	Dinerstein et al. (2020), "A Global Safety Net to Reverse Biodiversity Loss."
32	Jung et al. (2020), "Areas of Global Importance for Terrestrial Biodiversity, Carbon, and Water."
33	Underwood and Brynn (2015), "Enhancing Flood Resiliency of Vermont State Lands."
34	Warren et al. (2018), "Forest Stream Interactions in Eastern Old-Growth Forests."
35	Thom et al. (2019), "The Climate Sensitivity of Carbon, Timber, and Species Richness Covaries with Forest Age in Boreal-Temperate North America."
36	Dietz et al (2021), "The importance of U.S. national forest roadless areas for vulnerable wildlife species. Global Ecology and Conservation."
37	Talty et al (2021), "Conservation value of national forest roadless areas," Conservation Science and Practice.
38	USFS, Notice of intent to Prepare an environmental impact statement, Flat Country Project
39	Dugan et al. (2019), "Forest Carbon Assessment for the Green Mountain National Forest."
40	Letter to USFS re NLEB (February 21, 2023), from Standing Trees and Center for Biological Diversity to USFS Region 9 and GMNF leadership
41	U.S. Environmental Protection Agency, Phosphorous TMDLs for Vermont Segments of Lake Champlain (June 17, 2016)
42	Olson, E. et al. (2011), Nonnative invasive plants in the Penobscot Experimental Forest in Maine, USA: Influence of site, silviculture, and land use history. 138 JOURNAL OF THE TORREY BOTANICAL SOCIETY 4, 453 – 464.
43	Askins (2015), "The Critical Importance of Large Expanses of Continuous Forest for Bird Conservation."
44	Kellet et al (2023), "Forest-clearing to create early-successional habitats: Questionable benefits, significant costs."
45	Betts et al (2022), "Forest degradation drives widespread avian habitat and population declines."
46	Evans and Mortelliti (2022), "Effects of forest disturbance, snow depth, and intraguild dynamics on American marten and fisher."
47	Miller et al. (2018), "EASTERN NATIONAL PARKS PROTECT GREATER TREE SPECIES DIVERSITY THAN UNPROTECTED MATRIX FORESTS"
48	Miller et al. (2016), "NATIONAL PARKS IN THE EASTERN UNITED STATES HARBOR IMPORTANT OLDER FOREST STRUCTURE COMPARED WITH MATRIX FORESTS"