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ABSTRACT

Despite the common view that conditions in winter strongly influence survival and population size of fish, the ecology of
salmonids has not been as extensively studied in winter as in other seasons. In this paper, we review the latest studies on salmonid
winter survival, habitat use, movement and biotic interactions as they relate to the prevailing physical and habitat conditions in
rivers and streams. The majority of research conducted on the winter ecology of salmonids has been carried out in small rivers
and streams, where temperatures are above zero and where there is no ice. Investigations in large rivers, regulated and dredged
rivers, and under conditions of different ice formations are almost totally lacking, presumably related to sampling difficulties
with these systems. The studies-at-hand indicate that a multitude of physical and biological factors affect the survival, behavior,
and habitat use of salmonids in winter. The general concept that winter functions as a critical period for the survival of young
salmonids is not well supported by the literature. Instead, overwinter survival of juvenile fish appears to be context-dependent,
related to specific habitat characteristics and ice regimes of streams. In general, over wintering salmonids prefer sheltered, low
velocity microhabitats, are mainly nocturnal, and interact relatively little with conspecifics or interspecifics. Specific
descriptions of microhabitat preferences of salmonids are difficult to make due to highly disparate results from the literature.
We suggest that future research should be directed towards (1) being able to predict the dynamics of freezing and ice processes at
different scales, especially at the local scale, (2) studying fish behavior, habitat use and preference under partial and full ice
cover, (3) evaluating the impacts of man-induced environmental modifications (e. g. flow regulation, land-use activities) on the
ecology of salmonids in winter, and (4) identifying methods to model and assess winter habitat conditions for salmonids.
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INTRODUCTION

In boreal areas, winter conditions prevail for a substantial portion of the year. At this time, natural streams are

generally associated with lowwater temperatures, various ice phenomena, low discharge rates, short day length and

low heat radiation (Prowse, 2001). Ice processes undoubtedly have a major influence on the ecology of animals

living in boreal streams through their effect on the timing, duration, and magnitude of flow and water levels. In

environments where marked seasonal environmental changes occur, adaptive changes in behaviour and activity of

animals are expected (Chapman, 1966). Conditions taxing energy reserves require that animals make appropriate

behavioural decisions to ensure survival.

Despite the general belief that conditions in winter strongly influence survival and population size of fish, the

overwintering ecology of salmonids, and other fishes as well, has not been extensively studied (Hubbs and

Trautman, 1935; Cunjak, 1996; Reynolds, 1997). This is presumably a consequence of the difficulty associated with

sampling during winter. Much previous work conducted in winter has been carried out at water temperatures above
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freezing and without the presence of ice. Thus, we know little about the behaviour of fish in relation to ice

(Robertson et al., 2003; Roussel et al., 2004), and little experimental work has been conducted on the impact of

different ice conditions on fish (but see Finstad et al., 2004a). However, technological developments are improving

our ability to study fish in icy conditions (Greenberg and Giller, 2000; Alfredsen and Tesaker, 2002; Robertson

et al., 2004). Knowledge on how different types of ice affect the ecology of fish might have consequences for how

we manage fishes and their habitats in boreal rivers.

The main objective of the present paper is to summarize the latest information about the survival, habitat use,

movement and biotic interactions of salmonids as it relates to the prevailing physical conditions in rivers and

streams during winter. Such information should be of use to both ecologists and resource managers who have

interests in identifying where bottlenecks in fish production lie and in effective management of boreal streams. The

bottleneck, as used in this article, is a critical period during which the density of a salmonid population is reduced

through emigration and/or mortality, due to either density-dependent or density-independent processes. As we are

summarizing the relevant literature on the winter ecology of salmonids, basic knowledge of the life cycles, life

stages, and the general migration patterns of salmonids is needed as background information and can be found in

Milner et al. (2003) and Klemetsen et al. (2003). In this review, we focus on the behaviour and ecology of riverine

stages of overwintering salmonids, which include sea-run, lake-run and resident individuals (Figure 1). However,

because of the close linkage between physical habitat and fish ecology, both physical and biological elements are

discussed. We consider winter as a period with ice formation and low water temperature, reaching freezing or

near-freezing water temperatures.

THE ICE LANE: WINTER CONDITIONS IN STREAMS

In boreal regions, different forms of ice are important to consider when characterizing environmental winter

conditions in lotic systems (Figure 2). Characteristics of the physical habitat in rivers depend on numerous

variables; the most important of which are related to stream flow distribution, morphology, cover, temperature and

water quality (Berg, 1994; Cunjak, 1996; Reynolds, 1997; Tesaker, 1998; Alfredsen and Tesaker, 2002). Moreover,

Figure 1. A general view of the life cycle of a salmonid fish. Individuals of sea- or lake-run populations migrate out of their natal rivers to mature
in oceanic/lentic environments, and finally return to lotic environments to spawn. Stream resident populations spend their entire life in lotic

environments
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the formation and presence of ice will influence these variables. As proposed by Prowse and Gridley (1993),

wintertime can be divided into three main periods: early winter (freeze-up), mid-winter (stable conditions) and late

winter (ice break-up). In addition, ice regimes can be characterized according to river characteristics (Table I). Ice

production in small, steep rivers can be dynamic, both melting and freezing throughout the entire winter, whereas

ice conditions in large rivers are generally more stable. Anthropogenic impacts may also alter ice regimes.

Hydropower production, particularly in high-head systems, alters both the discharge and the water temperature,

with repeated ice break-ups and increased ice production as a result. In some rivers dredging is used to prevent ice

jamming, which has repercussions for both the substrate composition and the flow distribution in the reach.

Figure 2. Different forms of ice characterize the environmental conditions in boreal rivers in winter. Photo Morten Stickler

Table I. Ice processes over the course of winter in three types of rivers

Ice regimes River type
Small, steep rivers

Large rivers Regulated rivers

Freeze-up Border and skim ice Border and skim ice Border ice
Dynamic ice formation Ice over formation Dynamic ice formation

Main winter Extended dynamic ice
formation

Stable ice cover Less surface ice

Anchor ice dams Dynamic ice formation
in open riffles

Local ice runs

Local ice runs Increased dynamic ice
formation

Ice break-up Thermal ice break-up Thermal ice break-up Repeated mechanical ice
break-ups throughout winter
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Freeze-up

In late autumn, low air temperatures and negative energy balances cool the water until it reaches the freezing

point and ice begins to form. At this time, border ice forms along the river margins and skim ice forms in low water

velocity areas (Figure 3; Matousek, 1984). In large and/or low gradient rivers ice formation continues until ice

completely covers the river (static formation of ice cover; Carstens, 1970). In small, steep rivers/river sections

where rapids and riffles dominate, and in regulated rivers where flow varies, dynamic ice formation is expected

(Carstens, 1970). Frazil ice is typically associated with these dynamic ice conditions (Figure 3) in turbulent areas

when water temperatures in the surface layer or in the entire water drop below 08C (i.e., super-cooled water). Frazil

ice production begins with the formation of tiny, discoid- or needle-shaped ice particles in the water mass (Tsang,

1982). Normally, frazil production has a diurnal cycle: growth during night time when heat conduction is

maximized and no growth during daytime due to increased short wave radiation from the sun. During conditions

with severe cold, frazil ice has also been observed to form during daytime (Benson, 1955; Stickler and Alfredsen,

2005). The density of frazil crystals in water can be large, up to 106 particles m�3 (Gilfilian et al., 1973), and frazil

may accumulate in large quantities, known as hanging dams, below the surface ice in areas with reduced water

velocity, e.g. pools. In some cases, these hanging dams can extend down to the riverbed. Once a hanging dam is

formed, it may often last until spring (Brown et al., 2000; Kylmänen et al., 2001).

In areas with sufficient turbulence and super-cooled water, frazil ice may be transported down to the riverbed,

where it adheres and forms anchor ice (Figure 3; Ashton, 1986). Formation of anchor ice can also be triggered by

direct underwater nucleation when super-cooled water is transported to the riverbed (Ashton, 1986). Naturally, both

of these processes can operate at the same time (Tsang, 1982). Anchor ice typically consists of fluffy ice crystals

that may form extensive, porous blankets of ice up to 50 cm thick (Benson, 1955; Power et al., 1999; Stickler and

Alfredsen, 2005; Stickler et al., 2007). As with frazil ice, anchor ice often exhibits a diel pattern, with ice formation

during night and no ice formation during the day, although anchor ice can be formed at any time in northern areas.

During events with anchor ice formation, flow conditions may be substantially altered (Prowse and Gridley, 1993;

Tesaker, 1994; Beltaos, 1995; Yamazaki and Hirayama, 1996; Kerr et al., 2002; Stickler et al., 2007). Anchor ice

alters flow conditions by both artificially raising the riverbed (Prowse and Gridley, 1993) and by smoothing out

irregularities on the river bottom (Arden and Wigle, 1972). Normally, anchor ice is found in highly turbulent,

shallow rapids with rough substrates, but it can also occur in deep areas as noted by Ashton (1986), with

observations of anchor ice at a depth of 6m in the Niagara River, NY, USA, and 20m in the Neva River, Russia.

Figure 3. A schematic illustration of ice formation in rivers
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During freeze-up, some sections or areas in rivers may have relatively little ice or may even be ice-free. In

regulated rivers, ice-free situations typically arise downstream of warm water release points. However, even in

non-regulated rivers, there may be ice-free ‘pockets’, which are typically associated with groundwater, ground heat

influxes from the river bed or friction heat through turbulent rapids (Power et al., 1999).

Main winter

During main winter, the lotic environment is influenced by local meteorology, topography and characteristics of

the river. Main winter in large rivers, and in rivers with low gradient, is characterized by a stable, ice-covered state

with ice-free openings in riffles. In contrast, small, steep rivers may undergo an extended period of dynamic ice

formation before reaching stable winter conditions (Tesaker, 1994). Here surface ice formation is normally

prevented by turbulent water flow. However, partial or full ice cover may develop from frazil ice accumulations,

where frazil ice adheres to solid objects, clustering into large structures, or forms anchor ice dams (Tesaker, 1994;

Stickler and Alfredsen, 2005). An anchor ice dam raises the water level, creating backwaters with reduced water

velocities that may freeze over (Prowse and Gridley, 1993; Stickler and Alfredsen, 2005). The stability of an anchor

ice dam is dependent on water pressure and temperature, where unstable dams may drain or break and cause local

ice runs (Tesaker, 1994).

Due to man’s high demand for electrical energy in winter, discharge is often higher in winter than in summer in

regulated rivers. Moreover, ice conditions in regulated rivers are often highly variable due to artificially induced

variation in flow and temperature. Such variation may prevent formation of stable ice covers and increase the degree

of dynamic ice production. Furthermore, ice covers in regulated rivers are typically susceptible to breaking and

thereby local ice runs and ice jams may occur even in mid-winter.

Ice break-up

Ice break-up is believed to be one of the most significant hydrological events of the year (Prowse, 1994; Prowse

and Culp, 2004). The conditions that lead to ice break-up fall between two extremes, mechanical break-up and

thermal break-up (Prowse and Gridley, 1993). Thermal break-up occurs as short wave radiation increases, thereby

reducing ice thickness before the main spring runoff occurs. With increased water level, this weakened ice cover

breaks-up and moves downstream without any significant effect on the river flood levels. In some cases, as in

regulated rivers, ice may break up before the ice cover is thermally weakened. Here the potential for an abrupt

break-up with ice jamming and ice-induced flooding increases. In both small and large rivers, an ice run can lead to

considerable changes to the river bed due to increased scouring (caused both by the high water velocity and the

transported ice) as well as to an increased sediment transport (Ashton, 1986; Prowse and Gridley, 1993; Beltaos,

1995; Cunjak et al., 1998; Prowse, 2001; Prowse and Culp, 2004). The potential damage in mechanical break-ups is

higher than in thermally matured ice due to the nature of the break-up, and the occurrence of repeated ice break-ups

over a winter period might exacerbate the physical damage. Water quality problems can also occur at this time as

snow and ice melt (Prowse and Gridley, 1993; Prowse and Culp, 2004; Laudon et al., 2005). As reported by Cunjak

et al. (1998) ‘a stream can receive the entire winter chemical load of wet and dry atmospheric deposition within a

few days’ during the spring flood.

OVERWINTER SURVIVAL OF SALMONIDS

Mortality rates are not constant across the different life stages of salmonids. Instead, the early life stages,

particularly the eggs and young juveniles, are believed to incur the highest mortalities. Successful incubation

depends on numerous chemical, physical, and hydraulic factors within and outside the gravel (Chapman, 1988;

Rubin, 1998). The rate of interstitial water flow in the bed material influences the pH, the presence of various toxic

materials, sedimentation and dissolved oxygen concentrations, all of which can negatively affect egg survival. The

movement of gravel beds in association with ice formation, ice break-ups, and high flows may also negatively

impact eggs, by washing them out, by subjecting them to mechanical abrasion, or by decreasing wetted area and
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thereby exposing the eggs to desiccation or freezing. As egg survival is not the main focus of this review, we refer

you to Crisp (2000) for more information.

Winter survival of the young, post-egg life stages of salmonids is believed to be low. True estimates of survival in

the field are, however, difficult to measure accurately (Vetter, 1988) as changes in population size due to emigration

and immigration are not usually taken into account. Thus, most estimates of survival are actually measures of

apparent survival rates. Furthermore, published estimates of overwinter survival are not applicable for all types of

streams as most studies have been conducted in small streams (Table II), largely due to difficulties associated with

sampling large rivers in winter. Nevertheless, studies show that survival rates of fish during winter vary

considerably, not only between rivers and over the winter season, but also between years (Table II). The annual

variation in survival rates for salmonids in their first winter has been shown to be substantial, for brown trout Salmo

trutta (15–84%), brook trout Salvelinus fontinalis (35–73%), Atlantic salmon Salmo salar (43–75%) and coho

salmon, Oncorhynchus kisutch (16–84%) in studies spanning up to 17 consecutive years (Needham et al., 1945;

Hunt, 1969; Holtby, 1988; Cunjak and Randall, 1993).

Amazingly few studies have actually compared survival rates in winter with other seasons, which is necessary if

one is going to make any general conclusions about winter functioning as a bottleneck for survival. Recent studies

indicate that there may not be any general seasonal bottleneck. Instead, survival rates are low in different seasons in

different studies, sometimes in connection with episodic events such as floods and droughts (Elliott, 1993; Smith

and Griffith, 1994; Elliott et al., 1997; Cunjak and Therrien, 1998; Olsen and Vollestad, 2001; Letcher et al., 2002;

Carlson and Letcher, 2003; Lund et al., 2003). Studies have suggested that salmonid survival may be lowest in

spring (Elliott, 1993), in autumn and early summer (Carlson and Letcher, 2003), in winter (Letcher et al., 2002) or

that survival does not differ appreciably between seasons (Olsen and Vollestad, 2001; Lund et al., 2003). These

studies indicate that there may be a complexity of physical and biological factors affecting the survival of fish. In

some rivers the set of prevailing conditions in winter, such as severity and duration of the cold season, together with

quality and suitability of habitats, may act as a bottleneck to survival, whereas in other rivers conditions during

other seasons may be more limiting.

Winter survival varies not only between years, but also during the course of winter. In some streams survival is

lowest in late winter (Reimers, 1963), whereas in others survival is reported to be lowest in early winter (Smith and

Griffith, 1994). It may well be that acclimatization costs associated with rapidly changing temperatures both in

early and late winter may contribute to high mortalities during these periods (Carlson and Letcher, 2003). A

substantial decrease in condition of fish in early winter indicates a stressful period for fish (Mason, 1976; Gardiner

and Geddes, 1980; Cunjak et al., 1987). Cunjak and Power (1987a), and Cunjak et al. (1987) observed that the high

acclimatization costs in early winter limited the extent to which brook trout and brown trout were able to endure

long winters. Nevertheless, the mere fact that acclimatization costs are high does not necessarily mean that

mortality will be high (Olsen and Vollestad, 2001; Lund et al., 2003). Survival rate may remain relatively constant

throughout the winter (Egglishaw and Shackley, 1977; Elliott, 1993; Elso and Greenberg, 2001). Finstad et al.

(2004a) simulated conditions of complete ice cover, as is often in mid-winter, and found that Atlantic salmon parr

had lower metabolic costs under simulated ice cover than when exposed to simulated ice-free conditions. More

stable conditions presumably occur during periods of ice cover than during periods without ice cover and this may

partly explain why survival was generally high or stable in mid-winter. Moreover, the results of the study by Finstad

et al. (2004a) underscore the potential effect that ice regime may have for mortality rates of salmonids in different

types of rivers over winter (Table I).

Winter mortality occurs due to predation, accidents and depletion of energy reserves, often in combination with

harsh physical conditions. The actual causes of mortality are rarely identified, but Needham et al. (1945) and

Maciolek and Needham (1952) reported accidental mortality associated with subsurface ice and collapse of

overhanging snow banks. In general, survival in winter has been related to body size at the onset of winter,

especially in lentic waters (Toneys and Coble, 1980; Garvey et al., 1998; Schindler, 1999). Small fish, with low

absolute energy stores and relatively high metabolic rates (Paloheimo and Dickie, 1966), would be expected to have

high mortality rates during winter when energy stores are metabolized (Gardiner and Geddes, 1980; Cunjak et al.,

1987; Pickering and Pottinger, 1988). This idea is supported by numerous studies, which have reported positive

relationships between size and winter survival for young-of-the-year brook trout, rainbow trout (Oncorhynchus

mykiss), coho salmon and Atlantic salmon (Hunt, 1969; Quinn and Peterson, 1996; Meyer and Griffith, 1996, 1997;
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Johnston et al., 2005). In contrast, i.e. a negative relationship between size and winter survival was reported by

Needham et al. (1945) and Carlson and Letcher (2003) (Table II), and no relationship whatsoever was found by

Lund et al. (2003) and Johnston et al. (2005). Lund et al. (2003) suggested that the lack of size-dependent mortality

might be related to differences in growth among years, i.e. the fish must reach some minimum size to ensure

survival. This lends support to the idea of a threshold size, below which survival is size-dependent and above which

it is not (Lindroth, 1964; Toneys and Coble, 1980). However, recently Finstad et al. (2004b) presented evidence that

Atlantic salmon parr mortality was linked to levels of energy stores rather than body size per se. Finstad et al.

(2004b) observed no changes in mean size of the fish or in the shape of the size distributions between successive

sampling periods over the winter. Instead, there was a tendency for individuals with energy stores below a certain

threshold level to disappear from the population, presumably because they died. Stochastic variation in winter

duration and severity (Bagliniére et al., 1993; Cunjak and Therrien, 1998; Bradford et al., 2001), combined with the

previous summer’s growth opportunities or possibilities to build up energy reserves, may thus provide a

mechanistic explanation for the different relationships observed between size (or condition) and winter survival.

Predation seems to also be an important source of mortality in winter as survival in predator-free environments,

such as fish hatcheries and closed experimental set-ups is generally higher than in natural open habitats (Lindroth,

1964; Smith and Griffith, 1994; Elso and Greenberg, 2001; Table II). Nevertheless, predation on salmonids has not

been studied in any great detail in winter. Presumably predation by fish predators is low as poikilothermic predators

are less active in cold water than in warm water (Egglishaw and Shackley, 1977), although predatory burbot (Lota

lota L.) have been shown to be relatively active in winter (Pääkkönen, 2000). Predation by mammalian and avian

predators is likely to be high, particularly in channels lacking ice cover. Garvey et al. (1998) and Garvey et al.

(2004) hypothesized that predation might be important when winter temperatures are relatively warm and both the

terrestrial and aquatic predators are active (as in southern systems). Further, predation may be important also when

periods of autumn cooling and spring warming are long (as observed in mid-latitude systems), or when cold-active

piscivores are abundant under the ice (as in northern systems).

Overwinter survival may not only depend on energy reserves and predation, but may also co-vary with

environmental factors. Habitat characteristics may have a positive impact on survival, especially the availability of

shelters, together with appropriate behavioural responses by fish, mitigating predation risk and decreasing the use

of energy stores (Heggenes et al., 1993; Garvey et al., 1998; Whalen and Parrish, 1999; Armstrong and Griffiths,

2001; Bradford and Higgins, 2001; Coulombe-Pontbriand and Lapointe, 2004; Johnston et al., 2004). Mitro and

Zale (2002) found support for this idea as overwinter survival was 18–23% greater in sections of a river

characterized by complex bank habitat, high gradient, and large substrate than in sections with simple structure and

few boulders (see also Coulombe-Pontbriand and Lapointe, 2004). Minimizing the risk of predation has been

suggested to be one of the main reasons why juvenile salmonids become predominantly nocturnal at the onset of

winter in channels with no ice cover (Fraser et al., 1993; Heggenes et al., 1993; Valdimarson and Metcalfe, 1998).

Thus, to optimize overwinter survival, fish should have large energy stores in autumn, migrate to a habitat with

substantial cover and perform low-risk activities.

PHYSIOLOGICAL ACCLIMATIONS OF SALMONIDS TO ENDURE LOW TEMPERATURE AND ICE

Rather than hibernate as many other poikilotherms (Ultsch, 1989), salmonids remain active in winter (in

comparison to, e.g. many cyprinids; Cunjak (1996)), even at low or at near freezing water temperatures (Fletcher

et al., 1988). Nevertheless, salmonid activity is constrained by the cold winter temperatures, which limit their

swimming and acceleration abilities, making them susceptible to displacement and predation (Rimmer et al., 1985;

McMahon and Hartman, 1989; Graham et al., 1996). From a physiological point-of-view, winter is a time of change

and adaptation for fish, and a fish’s primary concern is to minimize energy expenditures (Heggenes et al., 1993).

Consequently, salmonids reduce movement, activity, aggression and feeding.

Even if activity is reduced, salmonids feed throughout the winter (Smirnov et al., 1976; Cunjak and Power,

1987a; Simpkins and Hubert, 2000), albeit with reduced appetite (Brett and Higgs, 1970; Metcalfe et al., 1986;

Metcalfe and Thorpe, 1992) due to lowmetabolic costs in cold water. The composition of the diet, although not well

studied, seems to reflect opportunistic feeding from both the drift and the benthos. Trichopterans, ephemeropterans
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and plecopterans have been found to comprise a large portion of the diet (Maciolek and Needham, 1952; Cunjak

and Power, 1987a; Riehle and Griffith, 1993; Simpkins and Hubert, 2000; Lehane et al., 2001).

Wintertime growth of salmonids is usually negligible (Cunjak and Power, 1987a; Cunjak, 1988b; Bradford et al.,

2001; Parrish et al., 2004). Nevertheless, life history strategy and habitat choice have been shown to affect the

feeding activity of Atlantic salmon parr during winter (Valdimarsson et al., 1997; Valdimarsson and Metcalfe,

1999; Parrish et al., 2004), and thus differences in growth may arise between fish adopting different life-history

strategies (Morgan et al., 2000). Specifically, large Atlantic salmon parr have been shown to continue to grow

throughout the winter, smoltify and migrate to sea, whereas small salmon parr grow little, if at all, during winter

(Metcalfe and Thorpe, 1992). Moreover, growth differences corresponded to differences in activity and aggression,

with large fish being less active (presumably more efficient feeders) and more aggressive than small fish

(Valdimarsson et al., 1997; Nicieza and Metcalfe, 1999; Valdimarsson and Metcalfe, 1999).

The low level of feeding observed in winter is not always sufficient to offset energetic needs and consequently a

metabolic deficit may arise. This is especially the case in early winter, whereas later on, metabolic deficiencies are

not as pronounced (Cunjak et al., 1987; Cunjak and Power, 1987a; Cunjak, 1988b). The fact that energetic intake is

lower than energetic needs has been attributed to low assimilation efficiencies and low gastric evacuation rates

during winter (Cunjak and Power, 1987a). Slow gastric evacuation rates in salmonids have been related to the

occurrence of short photoperiods and cold water temperatures (Cunjak et al., 1987; Cunjak and Power, 1987a).

Brett and Higgs (1970) suggested that digestion rates were the major factor limiting growth and consumption in

fingerling sockeye salmon (Oncorhynchus nerka Walbaum).

Regardless of cause, if food intake does not meet energetic needs for standard/basal metabolism, fish have to

catabolise their energy reserves, i.e. fats, proteins and glycogen. Fats are the primary energy reserve and thus are

depleted whenever intake is not sufficient, whereas proteins and glycogen work as supplementary energy stores

(Weatherley and Gill, 1987; Miglavs and Jobling, 1989). Indeed, the depletion of fat reserves has been widely

observed in winter (Cunjak, 1988a; Metcalfe and Thorpe, 1992; Berg and Bremset, 1998; Hutchings et al., 1999;

Finstad et al., 2004b), but evidence for protein catabolism during winter also exists (Berg and Bremset, 1998;

Morgan et al., 2000). Cunjak and Power (1986a) and Cunjak et al. (1987) concluded the energy reserve depletion in

early winter could not be replenished later, leaving fish in low condition until the arrival of spring. Further, while

others observed that the fat content of Atlantic salmon and brown trout declined throughout the winter (Berg and

Bremset, 1998; Finstad et al., 2004b), Cunjak (1988a) found an additional decline of lipids in conjunction with

spring thaw. Other studies have presented contradictory findings. Hunt (1969) noted that fat increased from<1% to

3% of body composition from January to March in fingerling brook trout. In laboratory studies, juvenile Atlantic

salmon increased their appetite in response to energy reserve depletion to regain lost fat (Metcalfe and Thorpe,

1992; Bull et al., 1996). In nature, however, it may not be possible to make this compensation due to limited food

availability and high predation risk. Further, prevailing ice conditions have been observed to affect the energy

balance of salmonids as Finstad et al. (2004a) observed that energy loss was slower in conditions of simulated

ice-cover than in conditions simulating open areas.

Winter conditions induce many changes at the cellular and tissue levels (Jobling, 1994; Helfman et al., 1997).

Changes in blood chemistry, including alterations in hormone and enzyme levels, have been shown to take place

during winter (Pickering and Pottinger, 1988; Jobling, 1994; Helfman et al., 1997). Unsaturated fatty acids increase

at the onset of winter (Jobling, 1994; Helfman et al., 1997), and the size of the heart and the liver may also increase

during winter acclimatization (Helfman et al., 1997). Indeed, the heart of rainbow trout is better adapted to cold

temperatures than the mammalian (rat) heart (Gillis et al., 1999). Pinder and Eales (1969) found that fish buoyancy

was reduced in winter and may be an adaptation to life on or in the substrate. Even sensitivity to light seems to

increase in winter, presumably to facilitate nocturnal feeding, as the ratio of retinal porphyropsin to rhodopsin

increases (Tsin and Beatty, 1977).

Salmonids are not specially adapted to avoid freezing as polypeptides with antifreeze properties are absent in

their plasma (King et al., 1989). The freezing temperature of the blood plasma of salmonids is between �0.7 and

�0.98C (Fletcher et al., 1988; King et al., 1989), so that in situ freezing of fish is rare unless trapped in ice. Brown

et al. (2000) observed substantial reductions in plasma chloride, sodium and potassium levels and an increase in

plasma glucose levels when juvenile rainbow trout experienced frazil and anchor ice conditions. For adult fish, a

similar but non-significant pattern in blood plasma was observed. Further, the swimming activity and escape
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response of adult trout decreased during ice events (Brown et al., 2000). In addition, Tack (1938) and Brown et al.

(1994) have speculated that frazil ice could directly affect the respiratory system of fishes by clogging the gills,

causing suffocation.

HABITAT SHIFTS OF OVERWINTERING SALMONIDS

Winter usually influences the spatial distribution of salmonids in streams. As water temperature decreases in

autumn fish shift to low velocity areas to conserve energy (Fausch and Young, 1995; Cunjak, 1996) and obtain

shelter from endothermic predators and piscivores (Valdimarson and Metcalfe, 1998). Depending on the species

and/or life stage, this may involve small-scale microhabitat shifts up to mesohabitat and macrohabitat movements,

which may even involve leaving the stream if suitable habitats are not available (Bjornn 1971; Reynolds, 1997).

Movements vary from few metres to 100 kilometres (Rimmer et al., 1983; West et al., 1992; Gowan et al., 1994;

Young, 1998). Long-range movements are believed to have evolved in environments with predictable seasonality,

and movement should be favoured if the fitness benefits of moving outweigh the costs of staying (energy loss,

exposure to predators) (Fausch and Young, 1995; Begon et al., 2003). The autumnal shift from summer to

overwintering habitats in fish is triggered by external stimuli or by its biological clock (Begon et al., 2003). The

decision to make long distance movements is probably at least partly genetically determined, although the timing,

duration and distance of migration are also influenced by learning (Linnér et al., 1990; Fausch and Young, 1995;

Alerstam et al., 2003).

Typically fish migrate downstream in winter (Zacharchenko, 1973; Peterson, 1982; Jakober et al., 1998), but

upstream movements are by no means uncommon (Brown and Mackay, 1995; Brown, 1999; Nykänen et al., 2001,

2004a). Large-scale autumnal movements from the main river upstream to tributaries and vice versa have been

observed for juvenile salmonids (Erkinaro, 1995; Bramblet et al., 2002). Overwintering migrations from a river to a

lake, from one river to another, and from an estuary to a stream have also been reported (Reynolds, 1997;

Lenormand et al., 2004).

If the appropriate conditions are present within the summer area, no migration is necessary (Smirnov et al., 1976;

Rimmer et al., 1983; Heggenes and Dokk, 2001). Shifts between river reaches within the main river, i.e. between

summer positions in riffles and overwintering sites in lentic areas or in warm groundwater areas, are typical for

adult salmonids (Cunjak and Power, 1986b; Brown andMackay, 1995; Simpkins et al., 2000; Nykänen et al., 2001,

2004a, 2004b). If such a movement takes place, it generally occurs between August and November, depending on

local conditions and population (Valdimarsson et al., 2000), and it usually coincides with the decline of water

temperature below a certain temperature. Typically the shift occurs at water temperatures between 3 and 68C
(Hillman et al., 1987; Jakober et al., 1998; Nykänen et al., 2001; Bramblet et al., 2002), but other studies have

reported shifts at temperatures of 108C for Atlantic salmon (Fraser et al., 1993) and 10–14.58C for adult European

grayling Thymallus thymallus L. (Nykänen et al., 2004a). In addition to temperature, an increase in discharge

(Peterson, 1982; Tschaplinski and Harman, 1983; Youngson et al., 1983), and possibly even changes in day length

or prey availability are thought to play a role in the timing of autumnal habitat shifts. Even river type (Table I) may

influence the timing of autumnal habitat shifts although this has never been examined.

Movement of fish in winter is typically minimal (Komadina-Douthwright et al., 1997; Jakober et al., 1998;

Muhlfeld et al., 2001; Linnansaari et al., 2005). Nevertheless, winter movement patterns can be complex, with

individual differences that are at least partly dependent on body size (Hiscock et al., 2002a). There may even be

mobile and non-mobile individuals within the same fish population (Nakamura et al., 2002). If long distance

movements are made, they are usually related to accumulation of frazil and anchor ice in preferred habitats (Brown

et al., 2000; Simpkins et al., 2000; Lindström and Hubert, 2004), high discharge events (Brown et al., 2001) or level

of maturation (Whalen et al., 1999; Robertson et al., 2003). Salmonids are typically more mobile in areas with

unstable ice conditions than in areas with stable ice conditions (Jakober et al., 1998, Brown et al., 2000; Simpkins

et al., 2000). Hiscock et al. (2002b) showed that movements mainly occurred during night but others have reported

movements throughout the diel cycle in winter (Hiscock et al., 2002a; Robertson et al., 2004; Stickler et al., 2007).

European grayling have been documented to migrate up to 1 km in a day from a pool to an open rapid to feed

(Zacharchenko, 1973).
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The type of habitat shift depends on the species and size (and thus age). Small fish use crevices within the

substratum, whereas large-bodied individuals may have to move into slow velocity areas, such as pools, to find

suitable shelters from ice and predators (McMahon and Hartman, 1989; Heggenes et al., 1993; Hiscock et al.,

2002b; Lindström and Hubert, 2004). In addition to pools, other slow-velocity mesohabitats, such as off-channel

ponds (or alcoves), logjams, swamps, side channels, beaver ponds and tributaries have been described as suitable

overwintering areas for salmonids (Tschaplinski and Harman, 1983; Swales et al., 1986; Swales and Levings, 1989;

Nichelson et al., 1992; Harper and Farag, 2004). Backwater habitats have also been shown to be used by adult

brown trout (Brown et al., 2001), and even by salmon kelts during ice break-up (Caissie et al., 1997;

Komadina-Douthwright et al., 1997). Availability of cover has been shown to influence the number of fish that

overwinter in an area (Tschaplinski and Harman, 1983; Meyer and Griffith, 1997; Harvey et al., 1999). Fish found

in habitats with little structure in autumn have been observed to move into sites with more complex structure in

winter (Mitro and Zale, 2002).

BEHAVIOR AND HABITAT USE OF SALMONIDS IN THE ICE LANE

Diel activity patterns

Activity of salmonids changes with season. Juvenile salmonids are typically active during both day and night in

summer, but become largely nocturnal in winter (Eriksson, 1978; Cunjak, 1988b; Fraser et al., 1993, 1995;

Heggenes et al., 1993; Bremset, 2000; Jakober et al., 2000; Heggenes and Dokk, 2001; Robertson et al., 2003),

although large individuals (25–60 cm) may remain active during the day (Heggenes et al., 1993). Thus, nocturnal

behaviour of juveniles in winter is largely due to suppressed daytime activity rather than an increase in nighttime

activity (Cunjak, 1988b; Fraser et al., 1993, 1995). Nocturnal behaviour has been documented for Atlantic salmon

(Fraser et al., 1993, 1995), chinook salmon Oncorhynchus tschawytscha Walbaum (Hillman et al., 1992), coho

salmon (Hillman et al., 1992; Roni and Fayram, 2000), brown trout (Griffith and Smith, 1993; Heggenes et al.,

1993), rainbow trout (Riehle and Griffith, 1993; Contor and Griffith, 1995), Arctic char (Salvelinus alpinus L.

(Linnér et al., 1990), bull char Salvelinus confluentus Suckley (Jakober et al., 2000), and cutthroat trout

Oncorhynchus clarki Richardson (Griffith and Smith, 1993; Jakober et al., 2000). However, it is important to note

that most of the observations of nocturnal behaviour of salmonids in winter originate from streams and rivers and

from experimental set ups without ice cover, and thus the pattern may be valid only for those systems.

Nocturnal activity in winter is believed to be controlled more by temperature than by day length (Rimmer et al.,

1983; Fraser et al., 1993, 1995; Heggenes et al., 1993; Valdimarsson et al., 1997; Valdimarsson and Metcalfe,

2001). The temperature for when this seasonal change to nocturnal behaviour occurs has varied widely among

studies, from 5 to 138C (Hartman, 1965; Rimmer et al., 1983, 1984; Heggenes, 1988; Fraser et al., 1993; Riehle and

Griffith, 1993; Bradford and Higgins, 2001), suggesting that there is no universal temperature for the switch in

behaviour (Bremset, 2000). Moreover, nocturnal activity is not restricted to winter as it has been observed at water

temperatures ranging from 2 to 208C in both the fall and summer (Hillman et al., 1992; Fraser et al., 1995; Gries

et al., 1997; Whalen and Parrish, 1999).

Several factors, both physical and biological in nature, may, however, interact with temperature, affecting the

diel activity patterns of salmonids. Light intensity is one such factor as salmon have been shown to hide more at

high light levels than at low light levels when temperature is low (Eriksson, 1978; Valdimarsson et al., 1997). Even

social status (Alanärä and Brännäs, 1997; Bolliet et al., 2001; Harwood et al., 2001), life history strategy (Metcalfe

et al., 1998), and age (Hiscock et al., 2002a; Johnston et al., 2004) have been shown to affect an individual’s degree

of nocturnality. Geographic variation in diel activity patterns has also been observed. Bradford and Higgins (2001)

found that diel activity pattern varied with location within a river, and others have presented evidence for between

river variation in response to temperature changes, suggesting that there may be local, genetically based adaptations

(Valdimarsson et al., 2000). Further, Stickler et al. (2007) found no nocturnal behaviour in a Norwegian regulated

river, which may reflect differences between river types (Table I). These results suggest that while temperature is an

important factor affecting nocturnal behaviour in salmonids, other factors may modify this general seasonally

based diel activity pattern (Reebs, 2002).
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The adaptive function of the change to nocturnal behaviour in winter has been related to adverse physical

conditions associated with ice formation. Ice conditions are relatively stable during daytime, whereas the risk of

being trapped in anchor ice should be greater at night (Tsang, 1972; Heggenes et al., 1993; Whalen et al., 1999).

Thus, leaving the river bottom before nightfall should reduce the risk of getting trapped by ice. Nevertheless, this

explanation cannot be the sole reason for nocturnal activity in winter as the switch to nocturnality happens long

before ice formation commences (Fraser et al., 1993), and fish have been observed to use anchor ice as a cover

(Roussel et al., 2004).

Predation risk is a more likely explanation for the shift to nocturnality. Diurnal endothermic predators have been

shown or implicated to impose a substantial predation risk for salmonids, especially in channels with no ice cover

(Heggenes and Borgström, 1988; Fraser et al., 1993, 1995; Heggenes et al., 1993; Valdimarson andMetcalfe, 1998;

Metcalfe et al., 1999; Hiscock et al., 2002a). The switch to nocturnality is believed to involve a cost to the fish as

foraging efficiency of salmonids at night is much lower than during the day (Valdimarsson et al., 1997). The

reduced efficiency is offset to some degree by the sometimes documented greater density of invertebrate drift at

night (Valdimarsson et al., 1997, but see Heggenes et al., 1993), but the increase is probably too low to compensate

for the reduced ability of salmonids to visually detect prey. Nevertheless, the low metabolic rates in cold water

mean that food requirements are low, and the fish seem to obtain sufficient energy at night while benefiting from a

low risk of predation (Fraser and Metcalfe, 1997; Valdimarson and Metcalfe, 1998).

Local habitat use

Diel changes in activity are also associated with changes in microhabitat use. During daytime, juvenile

salmonids typically use coarse substrates, aquatic vegetation, large woody debris or in some cases deep, slow

flowing waters as shelter (Heggenes et al., 1993; Bunnell et al., 1998; Muhlfeld et al., 2001; Muhlfeld et al., 2003).

Some individuals have even been found to bury themselves within the substrate (Bonneau and Scarnecchia, 1998;

Hiscock et al., 2002a). At night, the salmonids leave their shelters and enter the water column. The distance moved

between daytime and nighttime microhabitats is generally short; e.g. in Atlantic salmon parr averaged small home

ranges (<3m) in winter (Roussel et al., 2004; Scruton et al., 2005). Furthermore, diel changes in habitat use lead to

changes in the spatial distribution of fish. Salmonids have been shown to be more closely associated with stream

edge rather than midstream habitats during night time than during daytime (Cunjak, 1988b; Whalen and Parrish,

1999; Whalen et al., 1999; Roussel et al., 2004). However, as the fish usually spend daytime in shelters, the spatial

distribution of fish is dependent on the location of these shelters, and thus the relation to stream bank during daytime

might be trivial.

Velocity and depth. Juvenile and adult salmonids typically move into deep, low velocity microhabitats during

late fall (Cunjak and Power, 1986b; Baltz et al., 1991; Simpkins et al., 2000; Heggenes and Dokk, 2001; Nykänen

et al., 2004a, 2004b; Mäki-Petäys et al., 1997, 2004). In some cases, the slow focal velocity areas are situated in

close proximity to high water velocity areas so that fish take advantage of high drift densities (Cunjak, 1988b;

Simpkins et al., 2000). Of course, habitat use is influenced by availability and thus exceptions to the general trend

occur (Heggenes et al., 1993; Mäki-Petäys et al., 1997). Several studies have reported use of shallow, fast velocity

areas especially for juvenile Atlantic salmon (Rimmer et al., 1983; Cunjak, 1988b; Roussel et al., 2004).

Themean water column velocity and depth used by salmonids in winter varies from 0 to 60 cm s�1 and 0–400 cm,

respectively, depending on habitat availability. Typical values of mean water column velocity and depth are

<40 cm s�1 and 20–60 cm for juvenile Salmo spp. (Mäki-Petäys et al., 1997, 2004; Heggenes and Dokk, 2001),

<30 cm s�1 and>40 cm for Oncorhynchus spp. (Baltz et al., 1991; Harper and Farag, 2004) and 20–80 cm s�1 and

150–400 cm for adult grayling (Nykänen et al., 2001, 2004a, 2004b), respectively.

Diel differences in microhabitat use reflect differences in daytime and nighttime activity. Focal velocity, which is

close to 0 cm s�1 when fish shelter in substrate during the day, is greater at night when the fish move into the water

column (Heggenes et al., 1993; Baxter and McPhail, 1997; Hiscock et al., 2002b; Muhlfeld et al., 2003). Habitat

use by different age/size classes in a population is relatively more similar in winter than in summer (Baltz et al.,

1991; Heggenes et al., 1993; Mäki-Petäys et al., 2004), even if differences have been reported for some populations

(Cunjak and Power, 1986b; Harwood et al., 2001).
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Cover and substrate. One way juvenile salmonids minimize costs during daytime when they are not foraging is

to hide in unembedded coarse substrates (Cunjak, 1988b, 1996; Griffith and Smith, 1993; Vehanen et al., 2000). A

number of studies have shown, for example that juvenile Atlantic salmon and brown trout of all sizes use or prefer

large substrate sizes (from large pebbles to boulders) in winter (Rimmer et al., 1984; Cunjak, 1988b; Elso and

Greenberg, 2001; Heggenes and Dokk, 2001; Mäki-Petäys et al., 1997, 2004). Rimmer et al. (1984) and Cunjak

(1988b) stated that the size of daytime sheltering rocks is often proportional to the size of the fish hiding under it.

However, this might not always be the case as Heggenes et al. (1993) did not find any relationship between fish

length and substrate particle size.

Salmonids are not necessarily restricted to areas with coarse substrate during daytime in winter. For example,

rainbow trout have been shown to use a broad range of substrate particle sizes, with little preference towards certain

substrate size classes (Baltz et al., 1991). Some salmonid species (e.g. Atlantic salmon and rainbow trout) have

been observed to burrow in loose gravels rather than hide under coarse substrates (Erkinaro et al., 1994; Meyer and

Griffith, 1997). European grayling, which has never been reported to hide under the substratum, and Salvelinus spp.

have also been shown to dwell in sites with particles of small size (Chisholm et al., 1987; Nykänen et al., 2001,

2004a,b; Muhlfeld et al., 2003).

Salmonids, which actively feed at night in channels with no ice cover are not restricted to coarse substrates

(Hiscock et al., 2002b). The majority of juvenile salmon may use silt, sand and gravel habitats during night, even

when cobble and rubble substrates dominate (Whalen and Parrish, 1999). Similar observations have also been made

for juvenile brown and steelhead trout (Heggenes et al., 1993). Moreover, salmonids have generally been shown to

be on or close to the bottom at night (Heggenes et al., 1993; Whalen and Parrish, 1999; Heggenes and Dokk, 2001).

In addition to coarse substrate, salmonids have also been found hiding in or under large woody debris, aquatic

vegetation, undercut banks, surface turbulence and ice (Baltz et al., 1991; Heggenes et al., 1993; Cunjak, 1996;

Muhlfeld et al., 2001, 2003; Meyer and Gregory, 2000). Woody debris is a preferred source of cover for brook trout,

cutthroat trout, brown trout and coho salmon, but may become unprofitable for fish during frazil ice events, forcing

them tomove into other areas (Brown et al., 1994; Cunjak, 1996; Quinn and Peterson, 1996). The complexity of woody

debris structures may also influence preferences as shown for coho salmon (McMahon and Hartman, 1989). Emergent

vegetation might also be expected to provide cover for juvenile salmonids during winter (Cunjak and Power, 1987b;

McMahon and Hartman, 1989; Heggenes et al., 1993), but due to dieback, areas with emergent vegetation may not

provide cover throughout the winter (Griffith and Smith, 1995; Simpkins et al., 2000; Mitro and Zale, 2002).

Role of water temperature and ice as habitat variables. Local areas of warm water, created by groundwater

influxes or by release of warm reservoir water in regulated rivers, have been shown to attract fish during coldwater

periods. Such behavior has been documented for brook trout (Cunjak and Power, 1986b) and cutthroat trout (Brown

et al., 1994; Brown and Mackay, 1995). Even brown trout has been shown to position itself in the vicinity of warm

groundwater (Cunjak, 1996). In some watersheds, groundwater-influenced areas might represent the only refugia

from ice during winter and provide a place where all age classes may gather for overwintering (Craig and Poulin,

1975; Craig, 1978; Brown et al., 1994; Reynolds, 1997). This does not appear to be the case for all salmonids as

Atlantic salmon parr have been shown to avoid spring sources (Cunjak, 1996).

Although microhabitat studies have not been carried out under full surface ice conditions, it has been shown that

surface ice is used as overhead cover (Meyers et al., 1992; Young, 1995). Surface ice has also been shown to

influence local density as densities of young-of-the-year rainbow trout were two times greater in enclosures with

50% surface ice than in enclosures with 10% surface ice (Meyer and Griffith, 1997). Surface ice also affects feeding

as salmonids have been shown to feed less in areas lacking ice cover than in areas with full surface ice (Finstad

et al., 2004a). There even seems to be a relationship between surface ice and use of coarse substrates during

daytime. Gregory and Griffith (1996b) found that juvenile rainbow trout did not conceal themselves as often during

daytime in coarse substrates under surface ice, presumably reflecting low risk of predation from endotherms in

ice-covered areas (Valdimarson and Metcalfe, 1998). Border ice has also been shown to be used as overhead cover

(Emmett et al., 1996; Stickler, 2003; Stickler et al., 2007), and it may also act as a refuge from unstable frazil/

anchor ice formation in open areas (Brown et al., 1994; Brown and Mackay, 1995; Simpkins et al., 2000; Stickler,

2003; Stickler et al., 2007).

Whilst streams covered with surface ice are regarded as stable environments for fish, streams with frazil and

anchor ice are generally regarded as unstable, dynamic environments (Ashton, 1986). These unstable environments
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presumably have consequences for microhabitat use by salmonids. Cutthroat trout, for example moved away from

preferred woody-debris areas in direct response to the formation of frazil and anchor ice (Brown et al., 1994; Brown

and Mackay, 1995; Brown, 1999). Similarly, others have observed salmonids avoid anchor ice by moving to the

bottom of deep pools or to shallow nearshore areas under shelf ice during frazil ice episodes (Jakober et al., 1998;

Simpkins et al., 2000; Stickler, 2003; Stickler et al., 2007). Frazil ice may also indirectly affect habitat use by fish

by altering water velocities and depth. In pools, hanging dams create high near-bed water velocities, forcing kelts to

move into areas of pools with less frazil ice and low water velocities (Komadina-Douthwright et al., 1997). Brown

trout move out of pools with hanging dams, but return when conditions are favourable (Brown et al., 2000).

Although environments with frazil and anchor ice are generally regarded as negative for fish, this is not always

the case. For example Whalen and Parrish (1999) found Atlantic salmon parr resting on top of anchor ice, and parr

have also been observed burrowing into anchor ice during daytime (Linnansaari, personal observation). In other

studies, Linnansaari et al. (2005) and Stickler et al. (2007) found that salmonids did not necessarily avoid frazil and

anchor ice in streams dominated by coarse substrates. In a recent study by Roussel et al. (2004), salmon parr used

habitats covered by hanging ‘collars’ of anchor ice around boulders. Further, microtemperature under anchor ice

where fish resided was slightly warmer than in nearby areas, and thus the fish could avoid freezing conditions by

using the anchor ice (Roussel et al., 2004).

Biotic interactions

Interspecific competition occurs either indirectly through competition for resources or directly through agonistic

behaviour (Wootton, 1990). Most of the literature on competition in salmonids is based on summer conditions, and

during summer juvenile stream salmonids typically form dominance hierarchies, compete for resources, are

aggressive and defend territories (Bachman, 1984; Hughes and Dill, 1990; Fausch, 1998; Heggenes et al., 1999;

Young, 2001; Forseth et al., 2003). At low temperature, salmonids become less aggressive (Hartman, 1963;

McMahon and Hartman, 1989; Heggenes et al., 1993; Whalen and Parrish, 1999; Vehanen and Huusko, 2002) and

territorial behaviour diminishes or disappears (Cunjak and Power, 1987b; Hillman et al., 1987; Riehle and Griffith,

1993; Griffith and Smith, 1993). Reduction of territorial aggression may also result from limited availability of

winter habitat (Cunjak, 1996;Whalen and Parrish, 1999). Anchor or frazil ice formation can force stream salmonids

into restricted areas, resulting in large aggregations of fish (Brown and Mackay, 1995; Whalen et al., 1999; Brown

et al., 2000). In addition to the temperature effect on aggression, fish are also less aggressive at low light levels

(Fraser et al., 1993; Hill and Grossman, 1993; Vehanen et al., 2000; Vehanen and Huusko, 2002), which are

typically associated with ice-covered streams.

Several authors have reported overlap in habitat use by juvenile salmonids during winter, suggesting potential for

interspecific competition (Glova, 1986; Mäki-Petäys et al., 1997; Heggenes and Dokk, 2001). Heggenes and Dokk

(2001) found that niche overlap between juvenile salmon and brown trout is higher during the winter than in

summer. In this light, Harwood et al. (2001) found that Atlantic salmon became less nocturnal or occupied

shallower water when in sympatry than in allopatry with brown trout, indicating that competition for food and

resources may affect overwintering survival in salmonids. Hartman (1965) even suggested that vertical partitioning

between steelhead and coho salmon in winter might reflect interspecific competition. It has also been shown that

signal crayfish (Pacifastacus leniusculus) will outcompete juvenile salmon for use of shelters during winter

(Griffiths et al., 2004).

There is also potential for intraspecific competition as different age classes of the same species have been

reported to use similar habitat or food resources during winter (Mäki-Petäys et al., 1997;Whalen and Parrish, 1999;

Amundsen et al., 2001). Large dominate smaller conspecifics during winter (Gregory and Griffith, 1996a; Vehanen

et al., 2000), even at low levels of aggression (McMahon and Hartman, 1989; Healy and Lonzarich, 2000; Harwood

et al., 2001). Intraspecific competition for shelters occurs in winter, especially when these refuges are limited in

number (Armstrong and Griffiths, 2001; Harwood et al., 2001, 2002; Orpwood et al., 2004). Gregory and Griffith

(1996b) reported that aggressive competition for shelters took place mainly at dawn as fish entered the shelters.

Large individuals and prior resident fish seem to have an advantage in this context. Sharing of winter refuges is

uncommon, but sometimes two or more fish have been found in the same shelter (Cunjak, 1988b; Vehanen et al.,

2000; Harwood et al., 2002). This is especially true of fish reared at high densities in hatcheries and then released
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into streams (Burns et al., 1997; Armstrong and Griffiths, 2001; Griffiths and Armstrong, 2002). Such aggregations

of fish may have costs in terms of increased exposure to predators or competition for local resources (Orpwood

et al., 2004). Griffiths et al. (2003) demonstrated that juvenile Atlantic salmon avoid sharing winter refuges with

their siblings.

CONCLUSIONS

The studies-at-hand indicate that there may be a multitude of factors, both physical and biological, that affect the

survival, behaviour, and habitat use of salmonids in winter. This makes interpretation of observed patterns

complicated and difficult to generalize. The fact that winter seems to function as a bottleneck for survival of young

salmonids in some rivers but not in others suggests that survival may be highly context-dependent, related to the

habitat characteristics and ice regimes of individual rivers.

In general, overwintering salmonids are mainly nocturnal, prefer sheltered, low velocity microhabitats, and

interact relatively little with conspecifics or interspecifics. It is difficult to obtain a precise description of the

microhabitat preferences of any given species as published results vary considerably between studies. Thus, even

basic generalized winter habitat preference curves used in habitat-hydraulic modelling are almost totally lacking

for young salmonids in winter (but see Mäki-Petäys et al., 1997, 2004; Armstrong et al., 2003). Experimental

approaches, both field- and laboratory based, are sorely needed so that we may be able to define criteria that

salmonids use when selecting microhabitats in different kinds of rivers in winter.

Attempts at modelling freeze-up and ice dynamics at local scales, such as individual rapids, have not yet been

satisfying (Alfredsen and Tesaker, 2002), although models devised for larger scales, such as river reaches, have

been more successful (Reiter and Huokuna, 1995). Predicting the formation and dynamics of frazil and anchor ice,

and their effects on the behaviour and microhabitat selection of salmonids is largely unknown. Ice regimes are in

many cases believed to have negative impacts on fish populations, particularly in regulated and dredged rivers

(Saltveit et al., 2001; Dare et al., 2002; Scruton et al., 2005). However, there are not any studies that quantify

overwinter survival of salmonid populations in these impacted rivers (Saltveit et al., 2001), nor are there any studies

that convincingly show that ice limits survival.

Not surprisingly, the focus on winter-related issues in lotic fish research during the last decade or so has provided

much new information about overwintering fish. Still, further work is needed so that we may be better able to

manage boreal rivers and streams (Cunjak 1996; Huusko and Yrjänä, 1997; Alfredsen and Tesaker 2002; Barrineau

et al., 2005). The majority of research conducted on the winter ecology of salmonids has been carried out in small

rivers and streams, where the temperature remains a few degrees above zero and with no ice. Very little information

exists on the behaviour of fish in relation to ice, and experimental research on the impact of different ice conditions

on fish is almost completely lacking. Further, there is little information on overwinter survival in large rivers and in

regulated rivers (Bradford, 1997; Saltveit et al., 2001). We suggest that future research should be directed towards

(1) being able to predict the dynamics of freezing and ice processes at different scales, especially at the local scale,

(2) studying fish behaviour, habitat use and preference under partial and full ice cover, (3) evaluating the effects of

human impact (e.g. flow regulation, land-use activities) on the ecology of salmonids in winter, and (4) identifying

methods to model and assess winter habitat conditions for salmonids.
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