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Climate change threatens Chinook salmon
throughout their life cycle
Lisa G. Crozier 1✉, Brian J. Burke 1, Brandon E. Chasco 1, Daniel L. Widener 2 & Richard W. Zabel 1

Widespread declines in Atlantic and Pacific salmon (Salmo salar and Oncorhynchus spp.) have

tracked recent climate changes, but managers still lack quantitative projections of the viability

of any individual population in response to future climate change. To address this gap, we

assembled a vast database of survival and other data for eight wild populations of threatened

Chinook salmon (O. tshawytscha). For each population, we evaluated climate impacts at all life

stages and modeled future trajectories forced by global climate model projections. Popula-

tions rapidly declined in response to increasing sea surface temperatures and other factors

across diverse model assumptions and climate scenarios. Strong density dependence limited

the number of salmon that survived early life stages, suggesting a potentially efficacious

target for conservation effort. Other solutions require a better understanding of the factors

that limit survival at sea. We conclude that dramatic increases in smolt survival are needed to

overcome the negative impacts of climate change for this threatened species.
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W idespread declines of wild salmon1–5 have negatively
affected fisheries, cultural heritage for indigenous
tribes6, and other marine species, including endan-

gered Southern Resident Killer Whales7. Currently, the majority
of Atlantic and Pacific salmon and steelhead (Salmo salar and
Oncorhynchus spp.) in the conterminous U.S. are threatened with
extinction8. Over the past century, declines were driven by
overfishing, migration barriers, water diversions, habitat loss,
salmon farms, and hatcheries, as well as regime shifts in marine
ecosystems9. Retrospective analyses also show strong relation-
ships between climate indices and salmon performance10,11.
Looking toward the future, indirect and qualitative assessments
point to anthropogenic climate change as an additional over-
riding threat for salmon in the North Atlantic and California
Current12–15. How to mitigate this threat is therefore a primary
concern among conservation organizations and management
agencies.

Previous population models that have used global climate
model (GCM) projections have focused on drivers in fresh-
water life stages only (e.g., stream temperature, winter flood-
ing, and drought)16–18. While these are useful for evaluating
restoration actions within those contexts, they completely
ignore the large impacts of climate change on the marine
stage. On the other hand, GCM projections related to marine
survival have been used primarily to inform niche‑based
models that forecast future habitat for salmon generally rather
than for specific populations19,20. Although marine climate
indices such as the Pacific Decadal Oscillation (PDO)21 and
Atlantic Multidecadal Oscillation (AMO)4 have been tightly
linked to survival, they cannot readily be used in projections
of future climate because these phenomena are not con-
sistently reproduced in GCM projections for complex
reasons22,23. To produce a novel, robust analysis of climate
change impacts, our analysis focused on climate drivers with
more reliable performance in GCM projections that were also
closely correlated with fish survival.

A more general limitation of previous models has been a failure
to account for large‑scale climate forcing that affects multiple life
stages and food webs simultaneously, potentially compounding
climate effects across developmental stages. Accounting for the
correlation structure of climate effects over the full life cycle is
especially important for migratory species with complex life
histories15,24. We acknowledge that relationships between survi-
val and climate are often nonstationary25, so we made the cor-
relation structure of environmental drivers explicit and flexible
enough to incorporate future change. This is a new approach to
downscaling climate projections in multiple environments.

These limitations contribute to three main reasons why exist-
ing approaches for modeling biological impacts of climate change
are inadequate for informing or evaluating potential management
actions for salmon conservation. Similar limitations apply to
other species that are migratory or have complex life histories.

First, proposed management actions are usually focused on
conditions in freshwater, but accounting for “carryover” effects
from freshwater to marine life stages is essential for the evaluation
of such actions. Carryover effects occur when the previous history
of an individual affects its performance in a subsequent life
stage26. For example, the timing of migration from freshwater to
the ocean and back to freshwater are key determinants of salmon
survival in other life stages, and one of the most climate‑sensitive
traits27–30. Migration timing is also a key element in multiple
management actions, especially those involving the hydro-
system31 and fisheries32. Therefore, quantification of carryover
effects that will be affected by climate change is essential for
evaluating the net benefit of proposed actions to protect endan-
gered species.

Second, present models of survival in the salmon marine stage
rely on climate indices, which cannot be linked directly to global
climate model (GCM) projections. Therefore, it is impossible to
conduct formal analyses of how alternative carbon emission
scenarios or other anthropogenic actions to mitigate climate
change might affect the timing of declines in marine survival. Nor
is it possible to quantify uncertainty in modeled projections
across GCMs and thus take full advantage of the Coupled Model
Intercomparison Project, which represents the major advances of
global climate modeling in recent decades33,34.

Third, approaches that are currently available to account for
climate impacts on freshwater and marine life stages use inde-
pendent downscaling methods for the two environments. Ter-
restrial downscaling methods usually employ statistical or
dynamical downscaling of temperature and precipitation, which
are then fed into hydrological models. Statistical downscaling is
an efficient way to explore many alternative climate projections
and characterize model uncertainty at many steps in the modeling
chain35. In contrast, a common approach to marine downscaling
is to integrate GCM output into regional ocean models (ROMS),
which in practice are only available for very few GCM projec-
tions34. As a result, these methods often rely on projections from
different GCMs and are not consistent in characterizing potential
model biases, and thus uncertainty in climate projections.
Moreover, these multiple GCMs are not temporally linked, which
impedes the ability to account for carryover effects from one life
stage to the next36.

We attempted to address each of these difficulties by devel-
oping a modeling approach with flexible and explicit mechanisms
to account for the correlation structure among all climate drivers.
We also used a multimodel approach to indirectly account for the
change in the relationship between climate drivers and ecological
responses. Finally, we allowed the initiation timing of juvenile and
adult migration to vary with environmental conditions, which
subsequently affected both smolt and adult migration survival.
Timing also affected the probability that juvenile fish would be
transported; transport by barge through the hydrosystem is a
mitigation action that has fixed start and stop dates each year.
Three factors—migration timing, hydrosystem operations, and
transportation—subsequently affected arrival timing at the
Columbia River estuary, which in turn affected ocean survival.
Although details of the migration models are unique to this
system, the need to account for carryover effects and the corre-
lation structure of climate drivers in multiple environments is
widely shared by migratory species.

We used a stochastic, age‑structured life‑cycle model37,38 with
both density‑dependent and density‑independent climate effects.
Survival of Chinook salmon (O. tshawytscha) was forced by
environmental drivers, while future climate trends were based on
ensemble projections from GCMs (Figs. 1 and 2 and Supple-
mentary Data 1). We used a simulation framework to explore
model assumptions and quantify different aspects of model
uncertainty, including the functional form of the model, covariate
selection, and life‑stage‑specific sensitivity.

We applied the model to eight populations within the Snake
River spring/summer Chinook salmon Evolutionarily Significant
Unit (ESU). This ESU migrates downstream from natal head-
water streams in central Idaho, passing eight major hydroelectric
projects on the Snake and Columbia Rivers to reach the north-
eastern Pacific Ocean (Fig. 3). After 1–4 years of ocean rearing,
individuals return to freshwater and migrate upstream for a single
spawning opportunity.

We simulated population time series for these exclusively wild
populations, whose recent 15-year geometric mean spawner
abundance ranges from 45 to near 60039,40. The model recon-
structed historical population dynamics closely for most
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populations based on Kolmogorov–Smirnov diagnostics. This
model has been relatively stable when confronted with new data
over the last 10 years, a period during which it has been used
operationally by the National Marine Fisheries Service40. Our
updated version of the model is similar in general characteristics
to that used by Crozier et al.37. However, the updated version
imposes climate influences in more life stages and has stronger
validation based on data from over one million individually
tagged fish (Supplementary Methods and Supplementary
Table 1).

We compared multiple alternative covariates in survival
models, acknowledging that the best predictor might change over
time and thus might track different temporal trajectories25.
Notably, we have found that sea surface temperature (SST) is an
important component of most relevant indices. This is not sur-
prising, because SST reflects complex interactions between
atmospheric forcing, wind strength, upwelling, and mixing of

ocean layers, all of which affect ecosystem productivity
throughout the California Current41. Although the response of
these processes to greenhouse gas forcing will vary, SST will likely
continue to be an important indicator.

Results
Populations declined dramatically in a warming climate. Chi-
nook salmon migration timing did shift earlier in response to
warmer freshwater conditions. However, the timing shift did not
prevent large‑scale population declines under either the RCP 4.5
or 8.5 scenarios. Population abundances diverged quickly under
the two climate scenarios compared with baseline conditions,
which were represented by a stable climate (Fig. 4). Recent
population dynamics and historical population modeling are
detailed in “Methods”.

With a warming climate, deterministic declines inevitably lead to
extinction unless some ecological, evolutionary, or climatic rescue

Fig. 1 Life-cycle model diagram. Diagram showing the life stages and climate drivers that influenced each stage. The freshwater stages include upstream
migration and holding, spawning, rearing in tributaries, and migrating downstream. Migration routes pass through the Columbia River hydrosystem,
bracketed by Lower Granite Dam (LGR), and Bonneville Dam (BON). Freshwater stages were influenced by stream flows (Flow) and temperatures (Temp).
The marine stage, which has variable duration represented by multiple arrows, was influenced by ocean temperatures across the northeastern Pacific
(SSTarc) and along the Washington coast (SSTwa). Other influences on ocean productivity are represented by Upwelling. Figure courtesy of Su Kim
(NOAA Fisheries) and salmon illustrations by Blane Bellerud (NOAA Fisheries).
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effect occurs42. Climate trajectories did level off in the second half of
the 21st century under the RCP 4.5 scenario. This leveling reduced
rates of population decline; however, most populations had already
reached very low abundances at that point.

For practical purposes in salmon management, populations that
have fewer than 50 spawners on average for 4 years in a row are
considered to be at extremely high risk of extinction from chance
fluctuations in abundance, depensatory processes, or the long-term
consequences of lost genetic variation43,44. The evolutionary theory
behind this threshold applies to isolated populations, and these
populations are not truly isolated. So some small populations may
be sustainable within a larger metapopulation. Nonetheless, when
the majority of populations within an ESU pass this threshold, the
ESU itself is at high risk. This ESU is already threatened with
extinction because of historical declines39. Thus, although the
50‑spawner threshold is somewhat arbitrary, it is a useful metric for
demonstrating the severity of declines across all simulations. We
assessed the first year (if any) in which a population in a given
simulation fell below a quasi-extinction threshold of adult
abundance (QET50). The QET50 is passed when the running
mean of spawners, measured at the spawning stream, drops below
50 individuals over any 4‑year period45.

The proportion of all simulations in which a population dropped
below QET50 increased dramatically under a warming climate
compared with a detrended climate (Fig. 5). Under the representa-
tive concentration pathway (RCP) 8.5, ensemble-mean projection,
even the largest populations (Bear Valley Creek and Secesh River)
fell below QET50 in over 75% of simulations by 2060. Under RCP
4.5, the same milestone was passed a decade later.

Similar results with alternative model covariates. We conducted
sensitivity analyses to characterize how extinction risk varied

depending on covariates included in the model, and the extent to
which impacts at different life stages predicted population‑level
response.

Alternative marine and freshwater covariate models had
relatively little effect on overall patterns (Fig. 6). Resulting from
the high importance of SST in model comparisons, all three
models included combinations of basin‑wide and coastal SST
indices, which drives much of the overall effect on survival.
Freshwater models differed in whether fall (Models 1 and 3) or
summer (Model 2) flows limited smolt productivity. We
considered both because the data were consistent with both
models. Populations fared slightly worse in summer flow models
because projected decreases in summer precipitation, increases in
evaporation, and reduced groundwater storage cause summer
flows to decline (Fig. 2). In contrast, fall precipitation (and hence
fall flow) is projected to either stay the same or increase (Fig. 2).
Models that included stronger increases in upwelling (blue, Q75
compared with Q25 in Fig. 6) were more optimistic because
upwelling is positively associated with salmon survival. None-
theless, negative effects from SST still drove most populations
extinct within the century (Fig. 6).

Marine life stage most vulnerable to warming. The impact of
climate change on freshwater life stages was not always negative
but rather depended on population‑specific and model‑specific
sensitivity. In the headwaters, the fall flow model produced a net
benefit to parr‑to‑smolt survival, whereas the summer flow model
lowered survival in the juvenile rearing stage (red and blue vs.
yellow boxes in Fig. 7), but produced no difference in effects at
other life stages. Thus, if climate change affected only the early
rearing period and no other stage, there could be a mix of
responses across populations depending on local limiting factors

Fig. 2 Trends from global climate model projections used in climate scenarios. Global climate model projections are shown for each covariate that
influenced population outcomes. Lines show median projections across climate models for two representative concentration pathways (RCPs), while
shading shows the range across projections from the 25th to 75th quantiles. a Temperature covariates are shown in red for RCP 8.5 and brown for RCP 4.5,
while b flow covariates are shown in green for RCP 8.5 and blue for RCP 4.5. For sources, see Supplementary Table 1. Note that the coastal upwelling index
has different units from other covariates112.
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such as summer vs. fall flow, similar to the conclusions of Crozier
et al.37.

Our model predicted that smolts would shift migration timing
to arrive about 4.5 days earlier at Lower Granite Dam. This shift
did indeed reduced temperature exposure in this life stage.
Nonetheless, temperature effects on the juvenile migration still
grew over time and reduced populations by about 18% on average
from the 2020s to the 2060s.

Climate impacts were most dramatic in the marine stage,
where survival was reduced by 83–90% (Fig. 7). This occurred
despite the fact that smolts arrived at Bonneville Dam about
6.5 days earlier, indicating an earlier initiation of the marine
stage, which generally improves marine survival46.

Adult Chinook were also predicted to shift migration ~4 days
earlier in response to warmer mainstem conditions with lower
flows47. But again, this timing shift was not enough to prevent
mortality from increased heat exposure. During the adult
migration, populations that returned to spawning areas in
summer (Secesh River and Valley Creek) were more affected by
temperature than those that returned in spring, with net declines
of up to 17% by the 2060 s. Still, the declines we found in the
mainstem were relatively small because of the early adult run
timing of Snake River spring/summer Chinook compared with
other run types or species that migrate during peak temperatures.

Discussion
Our analysis showed relative resilience in freshwater stages,
with the dominant driver toward extinction being rising SST,
which tracked a ~90% decline in survival in the marine life
stage. This occurred despite an advance in smolt migration
timing and other changes in hydrosystem management. The
modeled carryover effects of changes in timing are likely to be
adaptive, but inadequate as compensation for large declines in
marine survival.

Our results indicate that as one symptom of a changing ocean,
rising SST puts all of our study populations at high risk of
extinction, despite actions within the hydrosystem to speed
juvenile travel and increase in-river survival. Small populations
had minimal demographic buffers against declining marine sur-
vival rates and quickly dropped below the quasi-extinction
threshold in nearly all simulations (Fig. 5). Threats to our larger
study populations caused even greater concern because they are
the remaining strongholds, which provide genetic and demo-
graphic resilience for the spring/summer Chinook salmon ESU as
a whole48.

Although we have focused on details for certain populations,
there is strong synchrony across all populations within this
Chinook ESU49 and more broadly across other salmon species
throughout their southern distributions50,51. Such synchrony

Fig. 3 Map of study populations. Chinook salmon populations included for modeling (green boxes in the lower map) are named by their natal stream in the
Salmon River Basin. Insert above shows Columbia River Basin (black outline), with locations of the Salmon River Basin (red), Bonneville Dam (BON), and
Lower Granite Dam (LGR).
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suggests that the responses we found could represent a wide-
spread phenomenon52. Salmon populations show coherence at
many spatial scales, and synchrony has increased over time in
both Pacific and Atlantic populations and in climate
indicators3,53,54.

Some Alaskan populations may fare better in response to ocean
warming, but negative responses to warming in freshwater have

been observed in other Alaskan populations, highlighting the
benefits of examining the full life cycle11,50,55. And some studies
have found similar declines in ocean survival over recent decades
in southern and northern Chinook salmon52. Quantitative com-
parisons of combined climatic and anthropogenic influences, as
well as more exploration of changing relationships among drivers,
are needed to unravel the multiple pressures these populations
face4,56,57.

There are two main caveats to these modeled projections. First,
the Northeast Pacific might not warm at the rate modeled, despite
rising levels of atmospheric CO2. Over the past century, global
mean temperature has been a weaker determinant of SST than
internal variability in the climate system, represented by strong
changes in sea-level pressure and natural variability in ocean
circulation58. How long this situation will continue is difficult to
predict. Nonetheless, with the entire ocean warming at all
depths34, this signal will inevitably reach coastal waters.

A second possibility is that the Northeast Pacific will warm as
modeled, but with some sort of ecological surprise59 that will
reverse the historical relationship between SST and salmon survival.
Ocean temperature does not limit salmon through a direct phy-
siological response, but rather through a combination of bottom‑up
and top‑down trophic processes, which jointly regulate salmon
growth and survival60–62 and which explain the non-stationarity of
statistical correlations25. Although warm conditions have been
associated with lower-quality prey and more warm-water predators,
it is possible that novel communities will arise with different
responses to temperature, or that salmon will adapt to an altered
food web in a positive manner. For example, salmon consumption
rates could increase63 with changes in the distribution of prey
species64. Results from Model 3, in which marine survival was

Fig. 4 Population abundance over time by population. Solid lines show the median while shading shows the interquartile range of population abundance
across simulations for detrended (blue) vs. ensemble-mean global climate model projections for representative concentration pathways (RCP) 4.5
(orange) and 8.5 (red). Each panel shows a different population, ordered by present abundance. A reference abundance of 50 spawners, the quasi-
extinction threshold (QET) is also shown (dashed horizontal line). Note the different y axes for small and large populations.

Fig. 5 Percent of simulations in which individual populations reached the
quasi-extinction threshold. Time before most populations reached the
quasi-extinction threshold (QET50) was longer in the detrended climate
than in climate change scenarios RCP (representative concentration
pathways) 4.5 and 8.5. For each climate scenario shown, solid lines reflect
forcing by the median GCM projection, and shading reflects population
responses across the interquartile range of projections.
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driven by upwelling, indicated that improved productivity in a
warmer ocean could benefit salmon. Nonetheless, the benefit, in
that case, was relatively small compared with overall negative
effects. Further exploration using our model with a changing cor-
relation structure over time could clarify additional possible tra-
jectories and when they could be detected.

Other ecological surprises should also be considered, such as
increases in competitors such as jellyfish62 and Humboldt or
market squid65, either of which could reduce salmon survival in
an altered ocean. Predators, which now concentrate on alternative
prey, may change behavior when their preferred prey dwindle or
shift distribution. Such behavioral change can either increase or
decrease predation on salmon66. We recommend closely mon-
itoring trophic interactions and salmon growth rates to detect
such a possibility.

Finally, our model is conservative in that we have not
accounted for any negative effects of ocean acidification. Declines
of sensitive species could have a negative effect on salmon,
especially salmon populations that rely more heavily on sensitive
species67. We have assumed that ocean-stage salmon are rela-
tively insensitive to pH, but if there are effects from ocean acid-
ification, they will likely be negative68,69.

Freshwater climate impacts in this study were also conservative
in some respects. Specifically, we assumed linear responses to
environmental variables, but actual physiological and ecological
thresholds can create non-linear responses, meaning future
temperature or flow impacts could have more severe effects.
Furthermore, the primary covariate for juvenile survival in two
of our models was fall flow, which was the covariate least sensitive
to climate change70. Summer flow could also be (or become)

Fig. 6 Comparison of alternative models in the year each population met the quasi-extinction criterion. The year in which each population fell below the
quasi-extinction threshold (QET50) for Model 1 (red), Model 2 (yellow), and Model 3 (blue). Model 1 covariates include sea surface temperature (SST),
summer air temperature, and fall flow; Model 2 covariates include SST and summer flow; Model 3 covariates include SST, coastal upwelling, summer air
temperature, and fall flow. Extinctions occurred earlier in scenarios with more warming (Q75) compared with less warming (Q25) in models that did not
include upwelling (yellow and red) but later when more intense upwelling ameliorated SST effects (blue). However, in all models, extinctions occurred
earlier in RCP 8.5 scenarios compared with a detrended climate. Note that larger populations (bottom row) often never dropped below QET50 in the
detrended climate, indicated with ~. Boxes show the interquartile range across simulations, while whiskers extend to 1.5 times the interquartile range.
Horizontal lines show the median values.
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limiting (Model 2), and would cause a more negative response.
More generally, the high‑elevation, mostly-wilderness habitat of
these populations is unusual for salmon in the region, and par-
tially explains the relatively small effects of climate change on
their freshwater life stages71. Other populations face more
immediate impacts on freshwater productivity16,72.

There is no easy way to completely mitigate for increasing SSTs
that produce declines in marine survival of this magnitude.
Additional changes to the juvenile transportation schedule or
faster transit through the mainstem can still be explored, but
improvements to survival through other mechanisms are needed.
Ecosystem-based fisheries management attempts to consider the
complex web of drivers for sustainability. These include both
direct and indirect links to anthropogenic actions, as well as
tracking of indicators in all sectors73,74. Conceptual models of
factors that affect salmon marine survival show a large number of
interacting processes75,76. Importantly, solutions involving man-
agement actions can be implemented in either the marine or
freshwater realms.

In the marine realm, human activities can affect salmon sur-
vival through the harvest of salmon, their prey (sardine, anchovy,
krill, juvenile rockfish, juvenile crab), predators (e.g., marine
mammals), and competitors (e.g., hake, Pacific halibut, arrow-
tooth flounder). Changes in fisheries can consequently have
positive or negative effects on salmon. Curtailed salmon harvest
since the 1960s reduced one major source of direct mortality.
Reduced harvest on top predators, however, led to rebounding
marine mammal populations that now consume large amounts of
salmon61,77.

Sea-level rise combined with coastal development threatens
complete loss of intertidal marshes in California and Oregon, as
well as the majority of estuary habitat in Washington78. Such
development will affect some salmon and their prey. Although
the populations studied here generally spend relatively little time
in the Columbia estuary, smaller, earlier-migrating individuals do
utilize these estuary habitats79. As juvenile fish migrate earlier in
the future, they might rely more on estuary habitat. Furthermore,
other salmon populations depend heavily on estuary habitat for
essential growth, and their success has been linked to estuary
restoration actions80.

Competition with hatchery fish interacts with climate effects to
impact wild salmon in a complex manner56 and is an area of
active research. Reducing hatchery production could have posi-
tive benefits, especially for wild Alaskan salmon, which might
then benefit from warmer conditions in some localities11,55.

Other indirect anthropogenic effects on marine habitats are not
well quantified and warrant more research. Increased awareness
of the importance of forage fish for the entire food chain81 has led
to a ban on the development of new fisheries to exploit forage
fish, demonstrating a proactive approach that should support
salmon. But in sum, we lack key information on the full
mechanistic basis of salmon marine survival, which limits the
strength of end-to-end models for guiding management82.

Efforts to mitigate carryover effects from freshwater that could
affect marine survival in these populations have primarily focused
on dams. Survival through Columbia and Snake River dams
generally now meets recovery targets (>96%)83, and cumulative
mortality over 500 km of in-river migrating fish (~50%) is similar
to that estimated for unregulated rivers of similar length (i.e.,
Fraser River84). However, slow travel time through slow-flowing
reservoirs behind dams, combined with increased surface tem-
peratures in these reservoirs85, can potentially result in lower
marine survival86. Mitigation efforts to increase smolt body size
and advance migration timing could increase marine
survival46,87. Restoration efforts in freshwater habitats, such as
restoring floodplains, riparian planting to reduce stream tem-
perature, reconnecting side-channel habitat88, and supporting
other natural processes in juvenile salmon rearing areas also
enhance/restore freshwater salmon production.

Our models estimated strong density dependence at the
parr‑to‑smolt stage, although it is not clear whether summer or
winter habitat is constrained. Headwater areas are subjected to
minimal anthropogenic impacts, but historical and current land
use and irrigation withdrawals reduce habitat quality throughout
the basin. Numerous actions have been identified in recovery
plans and biological opinions that would improve rearing and
migratory habitat in the mainstem Salmon River40,89. Our results
suggest that at present, smolt carrying capacities are limited by
flow more than temperature. Higher flows may create more
habitat, improve connectivity, or decrease contact with predators.
The predator community has also been affected by human
impacts, from introduced sport fish (small-mouth bass and brook
trout) to the creation of reservoir habitats extremely favorable to
invasive fish species (e.g., American shad)90.

Throughout salmon watersheds, improving and expanding
access to rearing habitat should increase smolt abundance and
body condition, resulting in improved population viability91.
Intrinsic habitat potential is negatively correlated with present
levels of disturbance, so restoring all critical habitat could yield
substantial benefits. Specifically, the lower‑elevation habitat that
was historically highly productive has been preferentially lost.
Improving individual fish growth by reducing contaminant
loads92, increasing floodplain habitat91, and increasing habitat
complexity, in general, could boost population productivity93.

Fig. 7 Sensitivity analysis of the impact of climate change on individual
life stages. Results from a three‑by‑four factorial experimental design
examining relative loss in spawner abundance from 2020 to 2060 due to
climate‑change effects at four specific life stages. Net trends in population
size are shown using the ratio of late abundance (2060–2069) compared
with early abundance (2020–2029). Representative concentration pathway
(RCP) 8.5 ensemble-mean climate trends were imposed at each life stage
shown, with other life stages remaining under a detrended climate scenario.
A value of 1.0 (horizontal line) indicates no change in spawner abundance.
Boxes show the interquartile range across simulations, while the whiskers
extend to the most extreme values of individual simulations. Horizontal
lines show median values. Model 1 (red) covariates include sea surface
temperature (SST), summer temperature, and fall flow; Model 2 (yellow)
covariates include SST and summer flow; Model 3 (blue) covariates include
SST, upwelling, summer temperature, and fall flow.
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In conclusion, we have shown that prospects for saving this
iconic keystone species in the conterminous U.S. are diminishing.
Resilience to climate change depends on genetic and ecological
diversity to adapt to environmental change. Many options have
been considered over decades of dedication to salmon recovery,
and improvements have been made. However, there are hard
choices where human demands on land and water have come at
the cost of wildlife.

The urgency is greater than ever to identify successful solutions
at a large scale and implement known methods for improving
survival. Management actions that open new habitat, improve
productivity within existing habitat, or reduce mortality through
direct or indirect effects in the ocean are desperately needed. We
can find new ways to improve salmon habitats while maintaining
other benefits for people, like reconnecting floodplains with rivers
and natural marshes to recharge aquifers and mitigate flooding,
storm surge, and channel erosion. Our modeling approach, which
accounts for carryover effects across the life cycle, allows sys-
tematic exploration of alternative correlation structures among
climate drivers and between climate drivers and ecological
responses. This approach can provide a thorough accounting for
uncertainty in climate projections and thus lay a path forward for
evaluating the benefit of management actions protecting critical
resources.

Methods
Data informing survival estimates. Spawner age and abundance estimates were
compiled through large-scale collaborative efforts between states, tribes, and
coordinating bodies94–96. Stage-specific survival estimates were obtained from
multiple sources97–100, originating from tagging and detection records downloaded
from PTAGIS.org, a regional collaborative database (Supplementary Table 2). We
used detection records only of fish identified as wild from known population
sources. No hatchery fish were released in any of the streams supporting popula-
tions included for this analysis. Environmental covariates used in the model
included air temperature, streamflow and temperature, SST, and coastal upwelling
(Supplementary Table 3).

For the smolt-to-adult analysis, we considered data for all out-migrating
yearling spring/summer Chinook salmon tagged in the Snake River Basin detected
from 2000 to 2015 at Bonneville Dam—the furthest downstream dam on the
Columbia River. We marked a fish as having survived the marine stage if it was
detected at Bonneville Dam (or farther upstream) as an adult. The data included (i)
the last detection date at Bonneville Dam as juveniles, (ii) transportation
classification (transported or in-river), and (iii) whether the fish was detected in the
Columbia River as an adult. Fish were identified by Columbia Basin Research
(CBR) as having migrated volitionally or having been transported by barge. All
PIT-tag files are available on the CBR website (http://www.cbr.washington.edu/

dart/cs/data/nmfs_sar/). We excluded all fish with an unknown rearing type (i.e.,
hatchery versus wild), geographic regions with fewer than 200 individuals (over the
16 years), those fish released or tagged below the confluence of the Snake and
Columbia Rivers, and fish that returned to spawn in less than 1 year. In addition,
we excluded fish that passed Bonneville Dam prior to April 9th or later than July
8th (<0.14% of the total observations), because there was insufficient data to inform
the temporal autocorrelation at the margins of the migration period. In total, there
were 122,415 wild individuals for the SAR analysis.

Life-cycle model structure. We employed a stochastic, age-structured model
modified from previous life‑cycle models37,38,101. The model as depicted in Fig. 8
has five annual time‑steps, based on the typical maximum 5-year generation time
of Snake River spring/summer Chinook salmon. These time‑steps correspond
approximately to life-stage transitions.

The first time‑step (“spawner to parr” stage) spans spawning (August/
September), incubation, and early parr rearing. Survival through the second
timestep (S2) includes both tributary rearing (Stributary) from summer (July or
August) to the following spring when migrating juveniles pass Lower Granite Dam
(April/May), and continue (Smainstem) through the Snake and Columbia River
hydrosystem.

The third timestep includes ocean entry (May/June) and the first winter and
spring in the ocean. Some Chinook salmon return to spawn in their third year
(jacks), but most females and mature adult males stay in the ocean for one or two
more years, during which ocean survival is represented as So. The number of fish in
the ocean each year is a latent variable, fit by detections of survivors when they re-
enter freshwater (“smolt to adult return,” or Ssar). Upstream migration survival
through the hydrosystem (Supstream) and from Lower Granite Dam to spawning
areas (Sprespawn) are captured in the fourth or fifth timestep. Older females tend to
lay more eggs, which is reflected in the fecundity parameter, F5.

To calculate “effective spawners,” we combined different age classes that
returned to spawn in the same year as the weighted sum of three (weight= 0), 4-
(weight= 1), and 5‑year‑old fish (weight= F5). This sum was estimated by an
expansion of the number of redds (nests) counted during spawning surveys45.

Statistics and reproducibility. We fit the life-cycle model in two steps. First, we fit
individual life‑stage relationships with covariates using a variety of methods for
different life stages to generate a posterior distribution for stage-specific parameter
estimates. In addition to these parameters, the life-cycle model introduced some
additional parameters that could not be directly fit to the data. We, therefore,
conducted a second step to calibrate the life cycle model using the Approximate
Bayesian Computing approach102,103. All analyses were conducted in RStudio (ver.
1.3.1073) using R (ver. 3.6.2)104.

In the calibration step, we simulated population time series under recent
climatic conditions using the life-cycle model. We compared the resulting spawner
and smolt time series to those observed and ranked parameter sets by deviance
from a Kolmogorov–Smirnov test. We selected the top 0.2% of 500,000 sets of
parameter combinations (Supplementary Fig. 1). All resulting parameter sets met
the criterion of producing a spawner distribution that was not statistically different
from the observation dataset (P value > 0.05 from Kolmogorov–Smirnov test). This
process maintained the appropriate correlation structure within each parameter set.

Spawner to parr (S1) and parr to smolt (Stributary) stages. We fit adult recruits per
spawner for eight populations in a hierarchical Bayesian framework using multiple
likelihood equations. These equations reflected stages that could be compared
directly with data. Briefly, we fit a two-stage Gompertz function105 (see Supple-
mentary Methods) to solve the two stages simultaneously, combined with inde-
pendently estimated survival rates for later stages. Individual population
coefficients (productivity and capacity parameters for both stages as well as coef-
ficients for temperature and flow) were assumed to be random samples from an
underlying normal distribution106 (priors shown in Supplementary Table 4).

To determine the best environmental covariates, we compared the estimated
predictive error of alternative models using a leave-one-out, cross-validation
method for Bayesian models using the LOO package107. Because of correlations
among the climate variables tested, multiple models had similar support from the
data (Supplementary Table 5). Our primary objective was to identify divergence in
potential responses to climate change. Therefore, we selected two models with
covariates that showed differing trajectories with climate change (Fig. 2). Model 1
included summer air temperature and fall streamflow, while model 2 included
summer streamflow only.

Juvenile survival through the Columbia River hydrosytem (Smainstem). We estimated
juvenile survival from Lower Granite to Bonneville and arrival day at Bonneville
Dam using the COMPASS model108. In the COMPASS model, equations for each
dam and riverine reach used measured hourly flow, temperature, and spill to
predict fish survival and migration rate. Dams had additional equations to deter-
mine the proportion of fish that passed using the spillway, turbine, or bypass
system as a passage route. The COMPASS model also tracked the proportion of
fish loaded into barges for transport and release downstream from the hydropower
system.

Fig. 8 Diagram of life-cycle model. Environmental covariate survival
models that were fit directly to PIT-tag data are shown in blue (Stributary,
Smainstem, SSAR, Supstream). Life stages and fitted transition parameters are
shown in black, with associated equations for reference in the
Supplementary Methods.
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Smolt-to-adult return (Ssar). We used a mixed-effects logistic regression model to
determine the effects of ocean entry date and environmental covariates on the
probability that an individual fish would return as an adult to Bonneville Dam. The
model109 included random effects of day and day‑by‑year interaction, which fol-
lowed an auto‑regressive process. Using Akaike Information Criterion, we selected
variables with high importance based on model weights, which included a large-
scale measure of SST (SSTarc) and a more local, coastal measure of SST (SSTwa), as
well as spring upwelling. We applied separate models for fish that had migrated
through the mainstem river vs. those that had been transported (Supplementary
Table 6).

Adult upstream survival (Supstream). For the adult upstream survival model, we used
generalized additive mixed models (GAMMs) to evaluate the effects of both
anthropogenic and environmental covariates on spring/summer Chinook salmon
survival47. To run the model in simulation mode, all the non-environmental
covariates (fisheries catch, proportion transported as juveniles) had distributions
similar to those during the baseline period of 2004–2016. Survival from the
hydrosystem to spawning streams (Sprespawn), was held constant due to lack of
appropriate data with which to fit a relationship.

Calibration step. The model included a set of maturation parameters that could not
be estimated directly from the data. Therefore, we treated them as tuning para-
meters for the life‑cycle model as a whole. These parameters partitioned total
smolt-to-adult survival (SAR) into age-specific survival rates (S) and propensity to
return at a given age (b) as follows:

SSAR ¼ b3 ´N3 þ b4 ´N4 þ N5

N2
ð1Þ

where b3 denotes the proportion of all 3-year-old fish (N3) that returned as jacks, b4
is the proportion of all 4‑year‑olds (N4) that returned to spawn, and N5 is all
5-year-old fish. We calculated the number of fish in each age class as follows:

N3 ¼ S3 ´N2 ð2Þ

N4 ¼ ð1� b3Þ ´N3 ´ S0 ð3Þ

N5 ¼ ð1� b4Þ ´N4 ´ S0 ð4Þ
where S3 denotes the survival rate of all smolts (N2) over the first winter in the
ocean and S0 is the survival rate over subsequent years at sea. Fish that stay in the
ocean longer have additional mortality, but there is a fecundity advantage (F) for
older spawners because larger fish have higher fecundity. In the model, the effective
number of spawners reflects the age distribution of female spawners, which return
as either 4‑ or 5‑year olds, with the latter having a fecundity advantage. A per-
centage of fish returned as 6‑year olds, but it was so small that we pooled them with
the 5‑year olds.

We fit the tuning parameters (S0, b3, b4, and F5) using a modified Approximate
Bayesian Computing approach102,103. We applied this method by first generating a
prior distribution for each parameter. The priors for parameters that range between
0 and 1 (S0, b3, b4) had a beta distribution centered on the mean and included the
full range used by Zabel et al.38 (Table 1). For F5, we used the normal distribution
with mean from Kareiva et al.98 with sd= 0.1. These values were randomly
combined with the freshwater parameter sets to create 500,000 combinations of all
ten parameters.

We ran the life-cycle model to tune each population using each of these
parameter sets in a different simulation. The life-cycle model was forced by
historical meteorological conditions from 2000 to 2015 (Supplementary Table 3).
For juvenile mainstem survival, we used COMPASS reconstructions of juvenile
migration that incorporated actual river management practices. Note that historical
river management was extremely variable over the juvenile migration stages and
not comparable to the conditions we projected in climate simulations. In particular,
transportation rates were higher, the spill was lower, and dam‑passage survival was
lower than in the corresponding actions proposed by the U.S. Army Corps of
Engineers et al.110 in their environmental impact statement. We ran the SAR model
in retrospective mode, which used the fitted estimates of historical random effects
and observation error. We simulated other life stages in the calibration as we would
in future projections.

We ran 500,000 iterations with different parameter combinations through the
historical reconstruction. We selected this number to produce at least 1000 sets of
parameter values for each population that produced spawner distributions similar
to those observed (Fig. 9). Parameter values from the top 0.2% of these parameter
sets are shown compared with their prior distributions in Supplementary Fig. 1.
The resulting models produced Kolmogorov–Smirnov P values from 0.16 to 0.76,
each of which rejected the null hypothesis that modeled and observed time series
came from different distributions (P < 0.05).

Climate scenarios
Detrended climate simulations. In creating future climate scenarios, our aim was to
maintain the statistical properties of the environmental data driving survival in
various life stages. Large-scale oceanic and atmospheric drivers affect marine and

freshwater environments simultaneously. To account for this, we estimated an
unstructured covariance matrix for all the freshwater and marine environmental
covariates using the Template Model Builder (TBM) libraries for R111. We used a
multivariate state-space model

xt � MVN ρxxt�1;Qð Þ ð5Þ

yt � N xt ; 0:001ð Þ ð6Þ
where xt was a vector of environmental processes at time t, ρx was the correlation
between vectors from successive time-steps, and Q was an unstructured covariance
matrix. For n covariates, the number of estimated correlation coefficients in the
unstructured covariance matrix was equal to 0:5 ´ n ´ n� 1ð Þ. Observation error
for the observation model was fixed at 0.001, essentially implying that covariate
data were measured without error.

Climate change scenarios. Our objective was to specifically explore how the
relationships among various climate drivers interacted with population dynamics
to shape population trajectories. To do this, we first simulated 1000 time series of
75 years of detrended environmental conditions that followed the model-fits of the
covariance relationships in the historical record (Supplementary Fig. 2), although
different matrices were generated for different models.

Second, we added offsets to these detrended simulations according to GCM
projections. Each offset (trend) consisted of a single time series added to all 1,000
detrended simulations. Then, for each climate scenario, we input the resulting
combinations of detrended-plus-offset environmental conditions into the life-cycle
model as forcing factors.

For each model/population/climate scenario, we ran 1000 iterations. Climate
trends were created from the median (GCM50) and interquartile range across
10–80 GCM projections, depending on the covariate (Supplementary Table 1). We
tracked geometric mean population abundance in 10-year intervals. We also
assessed the first year (if any) in which a population in a given simulation fell below
a quasi-extinction threshold of adult abundance (QET50). The QET50 was passed
when the running mean of spawners, measured at the spawning stream, dropped
below 50 individuals in any 4-year period45.

We explored projected climate trends from two carbon emissions scenarios,
representation concentration pathway (RCP) 4.5 and 8.5112,113. For marine
variables, we used time-series output from GCMs directly. For freshwater variables,
we used output that had been statistically downscaled and then processed through
hydrological and stream temperature models70,114,115. For each variable, 10–80
time series per emissions scenario were available (Supplementary Table 1).

We used four steps to extract the relevant trends from GCMs. First, we
calculated the variable mean (e.g., the average for a given month) over a baseline
period centered on 2015 (2005–2025) within each time series individually. Second,
we calculated anomalies from the 2005–2025 baseline period within each time
series. Third, we created a 20-year running mean of anomalies for each time series.
We smoothed each of these individual time series using a 20-year running mean to
reduce interannual variation that was already accounted for by the TMB model.
Fourth, we calculated the 25th, 50th, and 75th quantiles across all time series for
each covariate in each year from the smoothed anomalies.

We repeated this process for each climate scenario, producing the trends shown
in Fig. 2. These trends represented the spread across climate models of the low,
medium, and high rates of change in each covariate. The smoothed trends were
nearly linear because decadal and sub-decadal variability averaged out across
models for most variables. However, decadal patterns were still apparent in the
smoothed trends for flow, due to its very high natural variability as well as the few
GCMs driving flow projections.

Although temperature and flow are physically linked (air temperatures are
input into the hydrological models, and both air temperature and flow are input
into stream temperature models) we found the trends for temperature were much
more linear than those for flow. Thus, there was no consistent relationship between
them (i.e., the rank order of temperature projections was not strongly correlated
with the rank order of flow projections). We, therefore, treated the temperature and
flow offsets as independent, and retained decadal variation in flow, which was low
relative to annual variation. Exploration of alternative methods indicated this
choice did not influence population responses.

Thus, in summary, we added each climate trend to the raw simulation of a
detrended climate produced by the covariance model. All new time series retained
the autocorrelation, variance, and covariance of the historical environment with
forcing from greenhouse gas emissions added.

Life-cycle model simulations. Running the model in simulation mode was rela-
tively straightforward for stages that had been fitted on an annual timestep (S1 and
Stributary) because they only required an annual input of environmental conditions.
However, submodels for upstream and downstream survival required daily
environmental inputs. We, therefore, ran a separate step to produce survival
estimates from numerous representations of daily time series, which were then
grouped by annual spring mean temperature and flow. For each annual timestep,
we sampled randomly from the appropriate disaggregated submodel output
(Supplementary Methods).
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We ran the life-cycle model from 2015 to 2089, applying climate trends to the
detrended climate for each environmental covariate on an annual timestep. We
repeated 1000 iterations for each population, per model, and climate scenario. Our
first results stemmed from a single combination of freshwater and marine covariates
(Model 1: summer temperature + fall flow for freshwater, SSTarc in winter for
transported fish, and SSTarc in winter+ SSTwa in summer for in-river fish to show
the full-time series of population response to climate scenarios (Figs. 4 and 5).

Sensitivity analyses. In our first sensitivity analysis, we compared population
outcomes from Model 1 with a different freshwater covariate model (Model 2:
summer flow + Model 1 marine covariates). Finally, we exchanged the marine
covariates in Model 3: summer temperature + fall flow for freshwater, SSTwa in
summer for transported fish, and SSTarc in spring + spring upwelling for in-river
fish (Fig. 6). Thus, we explored all combinations of the top two models for
freshwater and marine stages, respectively.

In our second sensitivity analysis, we applied climate trends for the ensemble
mean of RCP 8.5 to one life stage, while the other life stages experienced a
detrended climate (Fig. 7). We cycled through survival for parr‑to‑smolt
stage (Stributary), downstream migration (Smainstem), smolt‑to‑adult return
ratio (Ssar), and upstream spawning migration (Supstream). In each case, we reported
the extent of population decline as the ratio of geometric mean population size in
2060–2069 divided by mean abundance in 2020–2029. We ran 1000 simulations
per life stage and calculated the mean change in abundance for each population.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the raw PIT-tag data used in this analysis are publicly available for download from
PIT Tag Information System (www.PTAGIS.org). All survival estimates made from the
raw data are published in other sources, listed in Supplementary Table 2. Redd counts are

available upon request from the Idaho Department of Fish and Game (IDFG.idaho.gov)
for all but one population, and from the Nez Perce Tribe for the Secesh River population
(https://www.cbfish.org/Document.mvc/Viewer/P165414). Population estimates from
redd counts were published by Ford, et al.39 and are available at https://www.webapps.
nwfsc.noaa.gov/apex/f?p=261:HOME::::::#. Environmental data are all publicly available
from sources cited in Supplementary Tables 1 and 3. The source data underlying Figs. 2,
4–7, and 9 are provided as Supplementary Data 1.

Code availability
Model code is available on GitHub (lisa439/LCM).
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