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LETTERS

Old-growth forests as global carbon sinks
Sebastiaan Luyssaert1,2, E. -Detlef Schulze3, Annett Börner3, Alexander Knohl4, Dominik Hessenmöller3,
Beverly E. Law2, Philippe Ciais5 & John Grace6

Old-growth forests remove carbon dioxide from the atmosphere1,2

at rates that vary with climate and nitrogen deposition3. The seques-
tered carbon dioxide is stored in live woody tissues and slowly
decomposing organic matter in litter and soil4. Old-growth forests
therefore serve as a global carbon dioxide sink, but they are not
protected by international treaties, because it is generally thought
that ageing forests cease to accumulate carbon5,6. Here we report a
search of literature and databases for forest carbon-flux estimates.
We find that in forests between 15 and 800 years of age, net ecosys-
tem productivity (the net carbon balance of the forest including
soils) is usually positive. Our results demonstrate that old-growth
forests can continue to accumulate carbon, contrary to the long-
standing view that they are carbon neutral. Over 30 per cent of the
global forest area is unmanaged primary forest, and this area con-
tains the remaining old-growth forests7. Half of the primary forests
(6 3 108 hectares) are located in the boreal and temperate regions of
the Northern Hemisphere. On the basis of our analysis, these forests
alone sequester about 1.3 6 0.5 gigatonnes of carbon per year. Thus,
our findings suggest that 15 per cent of the global forest area, which
is currently not considered when offsetting increasing atmospheric
carbon dioxide concentrations, provides at least 10 per cent of the
global net ecosystem productivity8. Old-growth forests accumulate
carbon for centuries and contain large quantities of it. We expect,
however, that much of this carbon, even soil carbon9, will move back
to the atmosphere if these forests are disturbed.

We conducted a literature search to test the hypothesis that old-
growth forests continue to accumulate atmospheric carbon dioxide
(CO2). Site-level estimates of the annual sums of carbon-cycle com-
ponents were compiled, including those of biometry-based net prim-
ary production (NPP), eddy-covariance or biometry-based net
ecosystem production (NEP) and chamber-based heterotrophic res-
piration. The data set was completed with site information related to
stand characteristics, standing biomass and stand age. Data were com-
piled from 519 plot studies that reported one or more components of
the carbon cycle. The studies involved boreal (,30%) and temperate
(,70%) forests and represented the full range of conditions of such
forests, excluding those subjected to experimental treatments such as
fertilization and irrigation (Supplementary Information, section 1.1).
Tropical forests were excluded from the analysis because only 12 sites
were found for which NEP and age estimates are available.

The NEP is the net carbon balance of the forest as a whole, and is
the difference between CO2 uptake by assimilation and losses
through plant and soil respiration. On the basis of our global data
set we find that in forests between 15 and 800 years old, the NEP is
usually positive; that is, the forests are CO2 sinks (Fig. 1a). The
maximum probabilities of finding a single forest to be a source of
carbon at 60, 180 and 300 years of age are 0.20, 0.25 and 0.35,
respectively. However, the probability of finding an ensemble of
ten old-growth forests that are carbon neutral is negligible

(Supplementary Fig. 1). In the small number of case studies on the
effect of age on the carbon balance of forests, several have demon-
strated some age-related decline in NEP but very few have shown old
forests to be sources1,2,10–13. Our NEP estimates suggest that forests
200 years old and above sequester on average 2.4 6 0.8 tC ha21 yr21

(tC, tonnes of carbon; Fig. 1a). In our model (Supplementary
Information, section 1.3), we find that old-growth forests accumulate
0.4 6 0.1 tC ha21 yr21 in their stem biomass and 0.7 6

0.2 tC ha21 yr21 in coarse woody debris, which implies that about
1.3 6 0.8 tC ha21 yr21 of the sequestered carbon is contained in roots
and soil organic matter.

The commonly accepted and long-standing view that old-growth
forests are carbon neutral (that is, that photosynthesis is balanced by
respiration) was advanced in ref. 6 and was originally based on ten
years’ worth of data from a single site5. It is supported by the observed
decline of stand-level NPP with age in plantations14,15, but is not
apparent in some ecoregions16. Yet a decline in NPP is commonly
assumed in ecosystem models (Supplementary Information, section
1.4). Moreover, it has led to the view that old-growth forests are
redundant in the global carbon cycle.

If, however, the hypothesis of carbon neutrality6 were correct, the
expected probabilities of observing a sink or source would be equal
and around one-half, the average sink strength for a random
ensemble of forests 200 years old and above would be zero and the
mean CO2 release from heterotrophic respiration would equal the
mean CO2 sequestration through NPP (thus, the ratio of hetero-
trophic respiration to NPP would be approximately one).
However, we observe this ratio to be well below one on average
(Fig. 1b) and not to increase with age. Hence, all three quantitative
tests fail to support the hypothesis of carbon neutrality. The currently
available data consistently indicate that carbon accumulation con-
tinues in forests that are centuries old.

In fact, young forests rather than old-growth forests are very often
conspicuous sources of CO2 (Fig. 1a) because the creation of new
forests (whether naturally or by humans) frequently follows disturb-
ance to soil and the previous vegetation, resulting in a decomposition
rate of coarse woody debris, litter and soil organic matter (measured
as heterotrophic respiration) that exceeds the NPP of the
regrowth2,17–22 (Fig. 1b).

The scatter in the relationship between NPP and age is consid-
erable, but given the climatic, edaphic and biological diversity of the
observations in combination with differences in disturbance histor-
ies, this is to be expected. There is some degree of age-related decline
in NPP beyond 80 years of age (Fig. 1c), and temperate and boreal
forests both show a consistent pattern of declining NPP beyond an
early maximum (Supplementary Fig. 2a) when analysed separately.
The decline in NPP could be partly attributed to the presence or
absence of management (Supplementary Fig. 2b). However, we
expect that this decline is not strictly a management effect, but a
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Biogeochemistry, 07701 Jena, Germany. 4ETH Zürich, Institute of Plant Sciences, CH-8092 Zürich, Switzerland. 5Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE,
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reflection of differences in disturbance history between managed and
unmanaged forests.

Consistent with earlier studies2, biomass continues to increase for
centuries irrespective of whether forests are boreal or temperate
(Supplementary Fig. 3). In the course of succession, plants compete
for resources and self-thinning23 (or thinning by humans in the case
of managed forests) occurs (Fig. 2), so the older stands contain a
relatively small number of individuals, although of course these trees
tend to be large. Obviously biomass cannot accumulate forever. Our
data (Supplementary Fig. 3) suggest a possible upper limit some-
where between 500 and 700 tC ha21 (equivalent to 1,400 to 1,800

cubic metres of wood per hectare); these high-biomass forests were
located in the Pacific Northwest USA16.

We speculate that when high above-ground biomass is reached,
individual trees are lost because of lightning, insects, fungal attacks of
the heartwood by wood-decomposers, or trees becoming unstable in
strong wind because the roots can no longer anchor them. If old-
growth forests reach high above-ground biomass and lose individuals
owing to competition or small-scale disturbances, there is generally
new recruitment or an abundant second canopy layer waiting in the
shade of the upper canopy to take over and maintain productivity.

Although tree mortality is a relatively rapid event (instantaneous
to several years long), decomposition of tree stems can take decades.
Therefore, the CO2 release from the decomposition of dead wood
adds to the atmospheric carbon pool over decades, whereas natural
regeneration or in-growth occurs on a much shorter timescale. Thus,
old-growth forest stands with tree losses do not necessarily become
carbon sources, as has been observed in even-aged plantations (that
is, where trees are all of the same age). We recognize that self-thinning
theory was originally developed and validated for even-aged single-
species stands; however, it has been shown to hold for uneven-aged
multi-species plant communities (Supplementary Information, sec-
tion 1.3). In reasonable agreement with our observations (Fig. 1b),
self-thinning theory predicts that the ratio between heterotrophic
respiration and NPP is constant and around 0.65 6 0.02 (indicating
a carbon sink; Supplementary Fig. 4), as long as stand density is
driven by small-scale, rather than stand-replacing, disturbances.
Old stands, with sufficiently high densities (that is, through develop-
ment of a multilayer canopy structure) are thus expected to maintain
biomass accumulation for centuries. Hence, we postulate that bio-
mass accumulation and decline are largely driven by stand structure.

A stand must be spared for centuries from stand-replacing distur-
bances (such as fires, insect outbreaks, wind-throw and avalanches)
in order to accumulate sufficient aboveground biomass to become
old growth. Because the cumulative probability of disturbances is
higher in stands with high above-ground biomass, old stands are
rarer than young stands, even in unmanaged landscapes. At the land-
scape level, we expect a mosaic of forests characterized by different
times since the last stand-replacing disturbance24. Despite differences
in age and density, these forests are, however, expected to follow the
same relationship between biomass and density (Fig. 2).
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Figure 1 | Changes in carbon fluxes as a function of age. a, Observed NEP
versus age; positive values indicate carbon sinks and negative values indicate
carbon sources. b, Observed ratio of heterotrophic respiration (Rh) to NPP
versus age; Rh:NPP , 1 indicates a carbon sink. c, Observed NPP versus age.
It appears that temperate and boreal forests both show a pattern of declining
NPP. Most probably, the late-successional increase in NPP is caused by the
combination of data from different climate regions or the combination of
disturbance regimes (Supplementary Fig. 2a, b). In each panel, the green
dots show observations of temperate forests, the orange dots show
observations of boreal forests, the thick black line shows the weighted mean
within a moving window of 15 observations, the grey area around this line
shows the 95% confidence interval of the weighted mean and the thin black
lines delineate the 95% confidence interval (where visible) of the individual
flux observations.
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Figure 2 | Biomass accumulation as a function of stand density. Each data
point represents a different forest, many of which have different growing
conditions and tree species. Not all growing conditions and species
compositions allow for the accumulation of the global maximum observed
biomass. Self-thinning, the process of density-dependent mortality, is shown
(solid line, of slope c) as the relationship between the logarithm of above-
ground biomass and the logarithm of stand density according to ref. 23
(c 5 20.51 6 0.08, r2 5 0.25, P , 0.01). The green dots show observations of
temperate forests, the orange dots show observations of boreal forests and
the grey area (which is barely wider than the solid line) shows the 95%
confidence interval of the median.
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Under the Kyoto Protocol (http://unfccc.int/resource/docs/
convkp/kpeng.pdf) only anthropogenic effects on ecosystems are con-
sidered (Article 2 of the Framework Convention on Climate Change
(http://unfccc.int/resource/docs/convkp/conveng.pdf); Supplementary
Fig. 5) and the accounting for changes in carbon stock by afforestation,
reforestation and deforestations is mandatory (Article 3.3), operating
from a base line of 1990. Leaving forests intact was not perceived as an
anthropogenic activity. In addition, the potential consequences of
excluding old-growth forests from national carbon budgets and from
the Kyoto Protocol were downplayed in the carbon-neutrality hypo-
thesis6. However, over 30% (1.3 3 109 ha) of the global forest area is
classified7 by the Food and Agriculture Organization of the United
Nations as primary forest, and this area contains the world’s remaining
old-growth forests. Half (0.6 3 109 ha) of the primary forests are located
in the boreal and temperate regions of the Northern Hemisphere. On the
basis of our analysis, we expect that these forests alone sequester at least
1.3 6 0.5 GtC yr21. Hence, 15% of the global forest surface, which is
currently not being considered for offsetting increasing atmospheric
CO2 concentrations, is responsible for at least 10% of the global NEP8.
Sporadic disturbances will interrupt carbon accumulation, implying
that net biome productivity25 will be lower, but it will remain positive
as demonstrated by the accumulation of carbon in soils4,26, coarse woody
debris and charcoal27,28.

The present paper shows that old-growth forests are usually carbon
sinks. Because old-growth forests steadily accumulate carbon for cen-
turies, they contain vast quantities of it. They will lose much of this
carbon to the atmosphere if they are disturbed, so carbon-accounting
rules for forests should give credit for leaving old-growth forest intact.

METHODS SUMMARY
We conducted a literature and database search to determine the fate of the carbon

sequestered in forests. Observation-based estimates were compiled for carbon-cycle

components, including biometry-based NPP, eddy-covariance or biometry-based

NEP and chamber-based heterotrophic respiration29. The data set was extended

with site information related to stand characteristics, standing biomass and stand
age. In general, uncertainties in flux estimates were not reported in the literature.

Therefore, we estimated the total uncertainty for every component flux contained in

the data set using a consistent framework based on expert judgment

(Supplementary Information, section 1.2). The uncertainty framework in our data-

base was designed to account for differences in data quality between sites due to

length of time series, methodology and conceptual difficulties (that is, gap filling

and dark respiration). Also, an uncertainty of 20% was assigned to the biomass, age

and density estimates. These uncertainties were propagated through the statistical

analyses by means of random realizations based on Monte Carlo principles. Within

each of the 1,000 random realizations, normally distributed random errors, based

on the uncertainty framework of our database, were added to the observed fluxes.

Therefore, all results that are based on flux data are reported as the weighted mean

and the 95% confidence interval of the probability distribution.

Despite the climatic, edaphic and biological diversity of our observations,

above-ground biomass was observed to be related to stand density in the way

described by self-thinning theory23. Although, this theory was initially developed

for even-aged single-species plant communities, we applied it to our data

(Supplementary Information, section 1.3) to determine the components of the
flux-computed NEP, specifically the above-ground biomass, woody debris and

soil sequestration. Furthermore, self-thinning theory was used to calculate the

theoretical ratio of heterotrophic respiration to NPP and compare it with the

observed ratio in support of the hypothesis that biomass accumulation and

decline are largely driven by stand structure.
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